JPH11290998A - Roll for twin roll type continuous casting - Google Patents

Roll for twin roll type continuous casting

Info

Publication number
JPH11290998A
JPH11290998A JP9503198A JP9503198A JPH11290998A JP H11290998 A JPH11290998 A JP H11290998A JP 9503198 A JP9503198 A JP 9503198A JP 9503198 A JP9503198 A JP 9503198A JP H11290998 A JPH11290998 A JP H11290998A
Authority
JP
Japan
Prior art keywords
drum
roll
continuous casting
twin
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9503198A
Other languages
Japanese (ja)
Inventor
Kazuto Yamamura
和人 山村
Chihiro Yamaji
千博 山地
Yasushi Kurisu
泰 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9503198A priority Critical patent/JPH11290998A/en
Publication of JPH11290998A publication Critical patent/JPH11290998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a roll for twin roll type continuous casting, by which the damage of the roll edge part and a side weir refractory, the leakage of molten metal, etc., caused by thermal deformation of the roll edge can be avoided. SOLUTION: The roll end surface 9 being in contact with the side weir, has a tapered part inward of an obtuse angle α to the barrel surface of the roll as the cooling roll for twin roll type continuous casting. The angle α is decided as the following relations depending on the condition. That is, 0<α< tan<-1> (UL/h)+π/2, further α=θ+π/2, θMP<=θ<=θKP, further α=θMP+(θMP +θKP)/2+π/2. Wherein, (h) is the height in the end surface formed as the tapered part, UL is the min. gap which does not generate the molten steel leakage between the cooling roll and the side weir, θ is the leaning angle by projecting the roll end surface caused by thermal deformation of the cooling roll, θMP and θKP are the above angle θ at a meniscus part and a kissing part in the molten steel pool part, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄、非鉄金属ある
いは合金等の溶融金属を鋳造後急冷凝固・冷却させて、
微細な結晶粒を持ち、加工性および表面性状に優れた金
属薄板を成形する双ドラム式連続鋳造のドラムに関す
る。
The present invention relates to a method for rapidly solidifying and cooling molten metal such as iron, non-ferrous metal or alloy after casting.
The present invention relates to a twin-drum continuous casting drum for forming a metal sheet having fine crystal grains and excellent workability and surface properties.

【0002】[0002]

【従来の技術】内側に向かって回転する一対の冷却ドラ
ム間に溶融金属を注入し、これを急冷凝固して金属薄板
を製造する双ドラム式連続鋳造方法はベッセマー法とし
て知られており、この方法によるときは、従来のような
多段階にわたる熱延工程を必要とすることなく、また最
終形状にする圧延も軽度なもので済むため、工程および
設備の簡略化が可能となる。
2. Description of the Related Art A twin-drum continuous casting method for injecting molten metal between a pair of inwardly rotating cooling drums and rapidly solidifying the molten metal to produce a thin metal sheet is known as the Bessemer method. The method does not require a multi-stage hot rolling process as in the related art, and requires only a small amount of rolling to obtain a final shape, so that the process and equipment can be simplified.

【0003】図7は、この双ドラム式連続鋳造方法を実
施する装置の一例を示す。この鋳造装置は、互いに逆方
向に回転する一対の冷却ドラム1a、1bを適当な間隔
で配置し、ドラム軸方向両端をサイド堰2a、2bで仕
切って湯溜り部3を形成する。そして、図8に示すよう
に、上方から湯溜り部3に溶融金属4を注入しながら互
いに内側に回転させると、注入された溶融金属は冷却ド
ラム1a、1bと接触し、抜熱されてその結果それぞれ
の冷却ドラム表面に凝固シェル5a、5bが形成され
る。この凝固シェルは、成長しながら、冷却ドラム1
a、1bの回転に伴って接合し、さらに、ドラムギャッ
プ6にて圧下されて所定の厚さの薄板鋳片7となり、冷
却ドラム1a、1bの下方に送出されて金属薄板を製造
する。
FIG. 7 shows an example of an apparatus for performing the twin-drum continuous casting method. In this casting apparatus, a pair of cooling drums 1a and 1b rotating in opposite directions are arranged at appropriate intervals, and both ends in the axial direction of the drum are partitioned by side dams 2a and 2b to form a pool portion 3. Then, as shown in FIG. 8, when the molten metal 4 is rotated inward while pouring the molten metal 4 into the pool 3 from above, the injected molten metal comes into contact with the cooling drums 1a and 1b, and the heat is removed therefrom. As a result, solidified shells 5a and 5b are formed on the respective cooling drum surfaces. This solidified shell grows while cooling drum 1
The sheets are joined together with the rotation of a and 1b, and further reduced by the drum gap 6 to form a thin plate cast piece 7 having a predetermined thickness, which is sent out below the cooling drums 1a and 1b to produce a thin metal sheet.

【0004】[0004]

【発明が解決しようとする課題】ところで、図5(a)
に示すように、該冷却ドラム1は鋳造時に熱負荷を受け
て、ドラム半径方向8に熱膨張を起こすとともに、該冷
却ドラムの端部9は図5(b)に示すように、ドラム軸
方向10に張り出し変形を起こす。この時、該冷却ドラ
ムのサイド堰側の端面11aは、11bのように変形
し、エッジ12の部分でサイド堰表面に接触する。サイ
ド堰の表面は耐火物13でできており、また鋳造安定化
のためサイド堰面内方向14で振動している。
FIG. 5 (a)
As shown in FIG. 5, the cooling drum 1 receives a thermal load during casting and causes thermal expansion in the drum radial direction 8, and the end 9 of the cooling drum is moved in the drum axial direction as shown in FIG. 10 overhangs and causes deformation. At this time, the end surface 11a on the side weir side of the cooling drum is deformed like 11b, and comes into contact with the side weir surface at the edge 12. The surface of the side weir is made of refractory material 13 and oscillates in the inward direction 14 of the side weir to stabilize casting.

【0005】図6(a)に示すように、鋭利なエッジ1
2がサイド堰の耐火物表面13を、摩耗や破損により損
傷させる(符号16で示す)とともに、図6(b)に示
すように、鋳造中の地金さし17等の異物噛み込みや耐
火物表面の酸化硬化によって、逆にドラムエッジが部分
的に欠ける18等の損傷してしまう。これらの損傷が起
こった場合、地金さし17の頻度が増えて、先の損傷を
さらに進展させるなど悪循環となり、最終的には鋳造が
不能となってしまう。
[0005] As shown in FIG.
2 damages the refractory surface 13 of the side weir by abrasion and breakage (indicated by reference numeral 16), and as shown in FIG. Oxidative hardening of the object surface, on the other hand, damages the drum edge, such as partly missing 18 and the like. When these damages occur, the frequency of the metal indenter 17 increases, causing a vicious cycle such as further advancing the damages, and finally casting becomes impossible.

【0006】本問題の解決手段として、特開平9−10
8788号公報に示す冷却ドラム〜サイド堰間の強制潤
滑や、実開平6−5744号公報に示す冷却ドラム端面
の溶射硬化肉盛等が考えられるが、上記のような冷却ド
ラムのエッジ12がサイド堰の耐火物表面13に刺さり
込む構造では、冷却ドラム〜サイド堰間接触面の片当た
りによる隙間の発生(図5(b)の15)によって潤滑
機能の低下を引き起こすとともに、同片当たりに伴う局
所的な面圧増加による冷却ドラム端面の溶射硬化肉盛の
剥離等が生じる可能性がある。
As means for solving this problem, Japanese Patent Application Laid-Open No. 9-10
For example, forced lubrication between the cooling drum and the side weir disclosed in Japanese Patent Application Laid-Open No. 8788/1994, and thermal spray hardening of the end face of the cooling drum disclosed in Japanese Utility Model Application Laid-Open No. 6-5744 may be considered. In the structure that is inserted into the refractory surface 13 of the weir, a gap is generated due to a contact between the cooling drum and the side weir contact surface (15 in FIG. 5B), and the lubrication function is reduced, and the contact is caused by the contact. There is a possibility that the thermal spray hardfacing on the end face of the cooling drum is peeled off due to a local increase in surface pressure.

【0007】そこで、本発明は、熱間でのドラムエッジ
とサイド堰との間の当たり方をフラットにさせて、ドラ
ムエッジやサイド堰の耐火物の損傷や、地金さしなどを
有利に回避できる、双ドラム式連続鋳造用ドラムを提供
することを目的とするものである。
Therefore, the present invention flattens the contact between the drum edge and the side weir when hot, and advantageously prevents damage to the refractory of the drum edge and the side weir, and metal stake. It is an object of the present invention to provide a twin-drum continuous casting drum that can be avoided.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めの本発明の要旨は、以下の通りである。 (1)双ドラム式連続鋳造用ドラムにおいて、サイド堰
と接触するドラム端面が、ドラム胴面に対して鈍角αの
テーパーをもつことを特徴とする、双ドラム式連続鋳造
用ドラム。 (2)前記テーパー角度αが、次式の範囲を満たすこと
を特徴とする、上記(1)に記載の双ドラム式連続鋳造
用ドラム。 0<α< tan-1(UL /h)+π/2 ここに、hはテーパーをつける端面の高さ、UL は冷却
ドラムとサイド堰の間で溶鋼漏れを起こさない最小隙間
である。 (3)前記テーパー角度αが、さらに、次式を満たすこ
とを特徴とする、上記(2)に記載の双ドラム式連続鋳
造用ドラム。 α=θ+π/2 θMP≦θ≦θKP ここに、θは冷却ドラムの熱変形によって、サイド堰と
接触するドラム端面が張り出して傾く角度であり、
θMP、θKPは溶鋼プール部のメニスカス、及びキス部に
おける前記角度θである。 (4)前記テーパー角度αが、さらに、次式を満たすこ
とを特徴とする、上記(3)に記載の双ドラム式連続鋳
造用ドラム。 α=θMP+(θMP+θKP)/2+π/2
The gist of the present invention for solving the above problems is as follows. (1) A twin-drum continuous casting drum, wherein a drum end surface that comes into contact with a side weir has a taper of an obtuse angle α with respect to a drum body surface. (2) The twin-drum continuous casting drum according to (1), wherein the taper angle α satisfies the range of the following expression. 0 <α <tan -1 (U L / h) + π / 2 Here, h is the height of the end face tapering, the U L is the minimum clearance that does not cause molten steel leakage between the cooling drum and the side dams. (3) The twin-drum continuous casting drum according to (2), wherein the taper angle α further satisfies the following expression. α = θ + π / 2 θ MP ≦ θ ≦ θ KP Here, θ is an angle at which the drum end surface that comes into contact with the side dam protrudes due to thermal deformation of the cooling drum, and
θ MP and θ KP are the meniscus of the molten steel pool portion and the angle θ at the kiss portion. (4) The twin-drum continuous casting drum according to (3), wherein the taper angle α further satisfies the following expression. α = θ MP + (θ MP + θ KP ) / 2 + π / 2

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照しながら説明する。図1は、本発明の冷却ドラ
ム端部の構造を示す断面図である。即ち、双ドラム式連
続鋳造用冷却ドラム1が熱を受けていない状態(冷間)
において、該冷却ドラムのドラム端面がサイド堰と接触
する端面19aが、ドラム胴面に対して鈍角αのテーパ
ーをもつ冷却ドラムの構造としたものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a structure of an end portion of a cooling drum of the present invention. That is, the cooling drum 1 for twin-drum continuous casting is not receiving heat (cold).
, The end face 19a of the cooling drum where the drum end face contacts the side weir has a cooling drum structure having a taper of an obtuse angle α with respect to the drum body surface.

【0010】ここで、テーパーをつける端面の高さを
h、冷却ドラム〜サイド堰間で溶鋼漏れを起こさない最
小隙間UL とする。一般的に溶鋼湯さしが起こる限界隙
間ULは100μm程度であるから、テーパー起因によ
る鋳造初期の湯さしを起こさない条件、即ちαの上限
(αUPPER )は以下の式を満足する。 h・ tan(αUPPER −π/2)<UL 従って、テーパー角度の範囲は、 0<α<αUPPER = tan-1(UL /h)+π/2 となる。
[0010] Here, the height of the end face tapering h, a minimum gap U L which does not cause molten steel leakage between cooling drum-side weir. Since generally limit the gap U L of the molten steel refers occurs is about 100 [mu] m, the condition that does not cause water pointing casting early by the taper caused, i.e. the upper limit of the alpha (alpha UPPER) satisfies the following equation. h · tan (α UPPER -π / 2) <U L Thus, the range of the taper angle becomes 0 <α <α UPPER = tan -1 (U L / h) + π / 2.

【0011】ところで、図2は、冷却ドラムがサイド堰
の耐火物表面と接触する端面が、冷間において、ドラム
胴面に対して直角である場合の、鋳造を開始してから定
常に至った状態における該端面の張り出し変形の変化を
示すものである。回転する冷却ドラムのエッジを回転方
向に見た場合、張り出しは溶鋼入熱の生じるメニスカス
部(MP)で最小値となり、回転に伴って急激に張り出
しが進み、溶鋼プール下部のドラムキス部KPで最大と
なる。
FIG. 2 shows a case where the end surface of the cooling drum in contact with the refractory surface of the side weir is perpendicular to the drum body surface in the cold state. 9 shows a change in overhang deformation of the end face in the state. When the edge of the rotating cooling drum is viewed in the direction of rotation, the overhang is minimum at the meniscus portion (MP) where the molten steel heat input occurs, and the overhang progresses rapidly with the rotation, and reaches a maximum at the drum kiss portion KP under the molten steel pool. Becomes

【0012】図3は、図2に対応して、冷却ドラムがサ
イド堰の耐火物表面と接触する端面の傾きθの変化を示
す。回転する冷却ドラムのエッジを回転方向に見た場
合、傾きは溶鋼入熱の生じるメニスカス部(MP)で最
小値θMPとなり、回転に伴って急激に張り出しが進み、
溶鋼プール下部のドラムキス部KPで最大θKPとなる。
端面の傾きの最小値θMP、およびメニスカス〜キス部の
振幅Δθ(=θKP−θMP)は、ドラム回転初期(鋳造開
始時)はともにゼロであり、回転(鋳造)に伴い増加し
安定化する。
FIG. 3 corresponds to FIG. 2 and shows the change in the inclination θ of the end face where the cooling drum contacts the refractory surface of the side dam. When the edge of the rotating cooling drum is viewed in the direction of rotation, the inclination becomes the minimum value θ MP at the meniscus portion (MP) where the molten steel heat input occurs, and the overhang rapidly progresses with the rotation,
The maximum value is θ KP at the drum kiss portion KP below the molten steel pool.
The minimum value θ MP of the inclination of the end face and the amplitude Δθ (= θ KP −θ MP ) of the meniscus to kiss portion are both zero at the beginning of the drum rotation (at the start of casting), and increase with the rotation (casting) and become stable. Become

【0013】上記のように、冷却ドラムがサイド堰の耐
火物表面と接触する端面の鋳造中の傾きθはθMPからθ
KPまで変化するが、ドラム胴面に対する鈍角αは一意に
決めざるを得ないことから、該αは次式で定まる限界内
で決める必要がある。即ち、 α=θ+π/2 θMP≦θ≦θKP 上記θMPからθKPまでの範囲内で、テーパー角度αを決
めるに当たり、鋳造中の平均的な傾きに対応するため、
次式で定める傾きにすることが望ましい。 α=θMP+(θMP+θKP)/2+π/2
As described above, the inclination θ during casting of the end face where the cooling drum contacts the refractory surface of the side dam is from θ MP to θ
Although it changes up to KP, since the obtuse angle α with respect to the drum body surface must be uniquely determined, the α needs to be determined within a limit determined by the following equation. That is, α = θ + π / 2 θ MP ≦ θ ≦ θ KP In the range from the above θ MP to θ KP , the taper angle α is determined in order to cope with the average inclination during casting.
It is desirable to make the slope determined by the following equation. α = θ MP + (θ MP + θ KP ) / 2 + π / 2

【0014】図4は、本発明による双ドラム式連続鋳造
用冷却ドラム端部の熱間での変形、及びサイド堰への接
触状態を示す。冷間における冷却ドラムの端面19a
は、熱間では軸方向10に張り出し、サイド堰表面の耐
火物13との接触面はフラットな19bとなる。
FIG. 4 shows the deformation of the end of the cooling drum for twin-drum continuous casting according to the present invention during heat and the state of contact with the side weir. End surface 19a of cooling drum in cold state
When it is hot, it protrudes in the axial direction 10, and the contact surface of the side weir surface with the refractory 13 becomes a flat 19b.

【0015】[0015]

【実施例】次に、前記したような双ドラム式連続鋳造用
冷却ドラムに、図1に示す構造の冷却ドラムの端部構造
を用いた場合の結果について詳細に述べる。図1に示す
構造をドラム幅1300mm、直径1200mmの双ドラム
式連続鋳造用冷却ドラムへ適用した。ドラム胴面に対し
て鈍角αのテーパーをつける端面の高さhを10mm、冷
却ドラム〜サイド堰間で溶鋼漏れを起こさない最小隙間
Lを100μmとすると、テーパー起因による鋳造初
期の湯さしを起こさない条件、即ちαの上限
(αUPPER )は、 αUPPER = tan-1(0.1/10)+π/2 =1.5808rad =90.57度 となる。
Next, the results obtained when the end structure of the cooling drum having the structure shown in FIG. 1 is used for the twin drum type continuous casting cooling drum as described above will be described in detail. The structure shown in FIG. 1 was applied to a twin drum type continuous casting cooling drum having a drum width of 1300 mm and a diameter of 1200 mm. The height h of the end face tapering in the obtuse angle α with respect to the drum cylinder surface 10 mm, when the minimum gap U L which does not cause molten steel leakage between cooling drum-side weirs and 100 [mu] m, cuttings cast initial water by taper due Is satisfied, that is, the upper limit of α (α UPPER ) is α UPPER = tan −1 (0.1 / 10) + π / 2 = 1.5808 rad = 90.57 degrees.

【0016】図3は、本実施例において、冷却ドラムが
サイド堰の耐火物表面と接触する端面の傾きθの変化を
示す。回転する冷却ドラムのエッジを回転方向に見た場
合、傾きは溶鋼入熱の生じるメニスカス部(MP)で最
小値0.1度となり、回転に伴って急激に張り出しが進
み、溶鋼プール下部のドラムキス部KPで最大0.25
度となる。端面の傾きの最小値θMP、およびメニスカス
〜キス部の振幅0.15度(=0.25−0.1)は、
ドラム回転初期(鋳造開始時)はともにゼロであり、回
転(鋳造)に伴い増加し安定化する。従って、 α=θ+90 0.1≦θ≦0.25≦0.57 を満たす範囲で決定すればよい。
FIG. 3 shows the change in the inclination θ of the end face where the cooling drum contacts the refractory surface of the side dam in this embodiment. When the edge of the rotating cooling drum is viewed in the rotating direction, the inclination becomes a minimum value of 0.1 degree at the meniscus portion (MP) where the molten steel heat input occurs, and the overhang suddenly progresses with the rotation, and the drum kiss at the lower part of the molten steel pool. 0.25 max. In part KP
Degree. The minimum value θ MP of the inclination of the end face and the amplitude of the meniscus to kiss portion of 0.15 degrees (= 0.25−0.1)
Initially, the rotation of the drum (at the start of casting) is zero, and increases and stabilizes with rotation (casting). Therefore, it may be determined in a range satisfying α = θ + 90 0.1 ≦ θ ≦ 0.25 ≦ 0.57.

【0017】上記0.1から0.25までの範囲内で、
テーパー角度αを決めるに当たり、鋳造中の平均的な傾
きに対応するため、次式で定める傾きにすることが望ま
しい。 α=0.1+(0.1+0.25)/2+90=90.
3 この場合、鋳造初期のドラム〜ドラム間隙間は、52μ
mであり、100μm以下であり、初期の湯さしの心配
はない。
Within the above range of 0.1 to 0.25,
In determining the taper angle α, it is desirable that the taper angle α be determined by the following equation in order to correspond to the average tilt during casting. α = 0.1 + (0.1 + 0.25) / 2 + 90 = 90.
3 In this case, the gap between the drums at the beginning of casting is 52 μm.
m, which is 100 μm or less, and there is no worry about the initial rinsing.

【0018】本構造による鋳造を行った結果、鋭利なエ
ッジがサイド堰の耐火物表面を、摩耗や破損により損傷
させることなく、鋳造中の地金さし等の異物噛み込みや
耐火物表面の酸化硬化によっても、ドラムエッジが部分
的に欠ける等の損傷を起こさなかった。しかるに、地金
さしの頻度が増えて、先の損傷をさらに進展させるなど
悪循環を起こすことがなく、最終的には鋳造が不能とな
ってしまうことが避けられた。
As a result of the casting by the present structure, the sharp edge does not damage the refractory surface of the side weir due to abrasion or breakage. Oxidation hardening did not cause damage such as partial chipping of the drum edge. However, the frequency of metal ingots was increased, and a vicious cycle such as further development of the damage was not caused. Thus, it was avoided that casting was finally disabled.

【0019】[0019]

【発明の効果】以上詳述したように、本発明によれば、
熱間でのドラムエッジの変形を考慮して、冷間でのエッ
ジ逆テーパーをつけて、熱間でのドラム〜サイド堰間の
当たり方をフラットにさせるため、鋭利なエッジがサイ
ド堰の耐火物表面を、摩耗や破損により損傷させること
なく、鋳造中の地金さし等の異物噛み込みや耐火物表面
の酸化硬化によっても、ドラムエッジが部分的に欠ける
等の損傷を起こさない。そのため、地金さしの頻度が増
えて、先の損傷をさらに進展させるなど悪循環を起こす
ことがなく、最終的には鋳造が不能となってしまうこと
を避けることができる。
As described in detail above, according to the present invention,
In consideration of the deformation of the drum edge during hot, in order to make the edge between the drum and the side weir flat by applying a reverse edge taper in the cold in order to make the contact between the drum and the side weir hot, the sharp edge is the fire resistance of the side weir The surface of the material is not damaged by abrasion or breakage, and damage such as partial chipping of the drum edge does not occur even when a foreign matter such as a metal ingot is caught during casting or the surface of the refractory is oxidized and hardened. For this reason, the frequency of the metal ingot is increased, so that a vicious cycle such as further advancement of the damage is not caused, and it is possible to prevent the casting from becoming impossible finally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による冷却ドラム1の端部9の構造を全
体図(a)と部分拡大図(b)で示す図である。
FIG. 1 is a diagram showing the structure of an end 9 of a cooling drum 1 according to the present invention in an overall view (a) and a partially enlarged view (b).

【図2】冷却ドラムの端部の張り出し変形の変化を示す
図である。
FIG. 2 is a diagram showing a change in overhang deformation of an end of a cooling drum.

【図3】冷却ドラムの端部がサイド堰表面と接触する端
面の傾きθの変化を示す図である。
FIG. 3 is a diagram illustrating a change in the inclination θ of an end surface at which an end of a cooling drum contacts a surface of a side weir;

【図4】本発明による冷却ドラムの端部の変形状態を模
式的に説明する図である。
FIG. 4 is a diagram schematically illustrating a deformed state of an end of a cooling drum according to the present invention.

【図5】冷却ドラムの端部の張り出し変形の状態を模式
的に説明する図である。
FIG. 5 is a diagram schematically illustrating a state in which an end of the cooling drum is overhanging and deformed.

【図6】冷却ドラムの端部、及びサイド堰表面の耐火物
の損傷状態を模式的に説明する図である。
FIG. 6 is a diagram schematically illustrating a damaged state of a refractory on an end of a cooling drum and a surface of a side weir.

【図7】双ドラム式連続鋳造装置による鋳造状況を、斜
視図で模式的に説明する図である。
FIG. 7 is a diagram schematically illustrating a casting state by a twin-drum continuous casting apparatus in a perspective view.

【図8】双ドラム式連続鋳造装置による鋳造状況を、断
面図で模式的に説明する図である。
FIG. 8 is a diagram schematically illustrating a state of casting by a twin-drum continuous casting apparatus in a cross-sectional view.

【符号の説明】[Explanation of symbols]

1、1a、1b 冷却用ドラム 2a、2b サイド堰 3 湯溜り部 4 溶融金属 5a、5b 凝固シェル 6 ドラムギャップ 7 薄板鋳片 8 半径方向膨張変形 9 ドラム端部 10 軸方向膨張変形 11a、11b 従来ドラム端面の冷間及び熱間位置 12 ドラムエッジ 13 サイド堰耐火物 14 サイド堰表面振動方向 15 ドラムエッジとサイド堰表面間ギャップ 16 サイド堰表面の摩耗や破損 17 鋳造中の地金さし 18 ドラムエッジの欠け 19a、19b 本発明によるドラム端面の冷間及び熱
間位置
DESCRIPTION OF SYMBOLS 1, 1a, 1b Cooling drum 2a, 2b Side weir 3 Hot pool 4 Molten metal 5a, 5b Solidified shell 6 Drum gap 7 Thin plate slab 8 Radial expansion deformation 9 Drum end 10 Axial expansion deformation 11a, 11b Conventional Cold and hot positions of the drum end surface 12 Drum edge 13 Side weir refractory 14 Side weir surface vibration direction 15 Gap between drum edge and side weir surface 16 Wear and breakage of side weir surface 17 Metal stake during casting 18 Drum Edge chipping 19a, 19b Cold and hot position of drum end face according to the present invention

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 双ドラム式連続鋳造用ドラムにおいて、
サイド堰と接触するドラム端面が、ドラム胴面に対して
鈍角αのテーパーをもつことを特徴とする、双ドラム式
連続鋳造用ドラム。
1. A twin-drum continuous casting drum,
A twin-drum continuous casting drum, characterized in that the drum end surface in contact with the side weir has a taper at an obtuse angle α with respect to the drum body surface.
【請求項2】 前記テーパー角度αが、次式の範囲を満
たすことを特徴とする、請求項1記載の双ドラム式連続
鋳造用ドラム。 0<α< tan-1(UL /h)+π/2 ここで、hはテーパーをつける端面の高さ、UL は冷却
ドラムとサイド堰の間で溶鋼漏れを起こさない最小隙間
である。
2. The twin-drum continuous casting drum according to claim 1, wherein the taper angle α satisfies the range of the following expression. 0 <α <tan -1 (U L / h) + π / 2 where, h is the height of the end face tapering, the U L is the minimum clearance that does not cause molten steel leakage between the cooling drum and the side dams.
【請求項3】 前記テーパー角度αが、さらに、次式を
満たすことを特徴とする、請求項2記載の双ドラム式連
続鋳造用ドラム。 α=θ+π/2 θMP≦θ≦θKP ここで、θは冷却ドラムの熱変形によって、サイド堰と
接触するドラム端面が張り出して傾く角度であり、
θMP、θKPは溶鋼プール部のメニスカス、及びキス部に
おける前記角度θである。
3. The twin-drum continuous casting drum according to claim 2, wherein the taper angle α further satisfies the following expression. α = θ + π / 2 θ MP ≦ θ ≦ θ KP where θ is the angle at which the drum end surface that comes into contact with the side weir projects and tilts due to thermal deformation of the cooling drum.
θ MP and θ KP are the meniscus of the molten steel pool portion and the angle θ at the kiss portion.
【請求項4】 前記テーパー角度αが、さらに、次式を
満たすことを特徴とする、請求項3記載の双ドラム式連
続鋳造用ドラム。 α=θMP+(θMP+θKP)/2+π/2
4. The twin-drum continuous casting drum according to claim 3, wherein the taper angle α further satisfies the following expression. α = θ MP + (θ MP + θ KP ) / 2 + π / 2
JP9503198A 1998-04-07 1998-04-07 Roll for twin roll type continuous casting Pending JPH11290998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9503198A JPH11290998A (en) 1998-04-07 1998-04-07 Roll for twin roll type continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9503198A JPH11290998A (en) 1998-04-07 1998-04-07 Roll for twin roll type continuous casting

Publications (1)

Publication Number Publication Date
JPH11290998A true JPH11290998A (en) 1999-10-26

Family

ID=14126729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9503198A Pending JPH11290998A (en) 1998-04-07 1998-04-07 Roll for twin roll type continuous casting

Country Status (1)

Country Link
JP (1) JPH11290998A (en)

Similar Documents

Publication Publication Date Title
JPH11290998A (en) Roll for twin roll type continuous casting
KR20070067323A (en) Casting roll having different dimple surface rate according to the surface position
JP4836303B2 (en) Continuous casting mold
RU2208497C2 (en) Side end wall for closing runner space of plant for continuous casting of metal strips between rolls and plant for casting with such side end wall
JP4290522B2 (en) Strip slab and method for producing strip slab
JP2964888B2 (en) Continuous casting method
JP2598356B2 (en) Twin roll continuous casting method
JPH01210157A (en) Method for preventing surface longitudinal crack on continuous cast slab
JP4162065B2 (en) Method for producing wear-resistant material
CN112752626A (en) Method for manufacturing cast plate
JPH0659526B2 (en) Thin plate continuous casting method
JP2820365B2 (en) Dummy sheet for twin-drum continuous casting machine
JP2990554B2 (en) Contact limiting plate for twin roll continuous casting machine
JP2770691B2 (en) Steel continuous casting method
JP3099158B2 (en) Continuous casting method of defect-free slab
JP2898137B2 (en) Twin-drum continuous casting method
KR200253508Y1 (en) Submerged entry nozzle which prevents iron melting outflow
JPS63126651A (en) Belt type continuous casting method
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPH0120046Y2 (en)
JPH01215445A (en) Continuous casting method
JPH07232243A (en) Dummy sheet for twin roll system continuous casting machine
JPS6072651A (en) Continuous casting device
JPH10211550A (en) Method for continuously casting thin cast slab
JPS6035219B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Effective date: 20060130

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A02