JP3099158B2 - Continuous casting method of defect-free slab - Google Patents

Continuous casting method of defect-free slab

Info

Publication number
JP3099158B2
JP3099158B2 JP05175836A JP17583693A JP3099158B2 JP 3099158 B2 JP3099158 B2 JP 3099158B2 JP 05175836 A JP05175836 A JP 05175836A JP 17583693 A JP17583693 A JP 17583693A JP 3099158 B2 JP3099158 B2 JP 3099158B2
Authority
JP
Japan
Prior art keywords
mold
slab
flow
molten steel
electromagnetic stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05175836A
Other languages
Japanese (ja)
Other versions
JPH079099A (en
Inventor
義正 水上
英明 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05175836A priority Critical patent/JP3099158B2/en
Publication of JPH079099A publication Critical patent/JPH079099A/en
Application granted granted Critical
Publication of JP3099158B2 publication Critical patent/JP3099158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は無欠陥鋳片の連続鋳造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for defect-free slabs.

【0002】[0002]

【従来の技術】一般に、連続鋳造においてスラブを鋳造
する際、スラブ長辺面に縦割れが発生し、その割れ手入
れのため鋳片の歩留り低下を招くばかりでなく、ブレー
クアウトにまで発展し大きな生産障害を生じることがあ
る。
2. Description of the Related Art In general, when a slab is cast in continuous casting, a vertical crack is generated on the long side surface of the slab. May cause production difficulties.

【0003】特に、カーボン含有量が0.08〜0.1
6%のいわゆる中炭素鋼においては縦割れ発生頻度が高
い。
[0003] In particular, the carbon content is 0.08 to 0.1
The so-called medium carbon steel of 6% has a high frequency of occurrence of vertical cracks.

【0004】一般に鋳片は凝固に伴い収縮するが、鋳片
がモールドに拘束されると鋳片は収縮できず鋳片長辺面
に引っ張り応力がかかる。
Generally, a slab shrinks with solidification, but when the slab is constrained by a mold, the slab cannot shrink and a tensile stress is applied to the long side surface of the slab.

【0005】この際、凝固シェル厚が薄い凝固初期はそ
の応力に耐え切れず鋳片に縦割れが発生する。
[0005] At this time, in the early stage of solidification where the thickness of the solidified shell is small, the stress cannot withstand the stress and vertical cracks occur in the slab.

【0006】特に、凝固シェルが不均一の場合はシェル
が薄い部分に応力が集中し縦割れを発生することにな
る。
In particular, when the solidified shell is non-uniform, stress is concentrated on a thin portion of the shell, and a vertical crack is generated.

【0007】カーボン含有量が0.08〜0.16%の
中炭素鋼の場合は冷却と共に包晶反応を生じ、凝固シェ
ルとモールドが離れるために、凝固シェルが不均一とな
るため縦割れが発生し易い鋼種である。
[0007] In the case of medium carbon steel having a carbon content of 0.08 to 0.16%, a peritectic reaction occurs upon cooling, and the solidified shell is not uniform because the solidified shell and the mold are separated from each other. It is a type of steel that easily occurs.

【0008】従って、モールドによる鋳片の拘束を防止
するか、凝固シェルを均一にし応力が集中しないように
すれば縦割れは防止できる。
Therefore, vertical cracks can be prevented by preventing the slabs from being restrained by the mold or by making the solidified shell uniform so that stress is not concentrated.

【0009】その防止対策として従来から、鋳片のモー
ルドによる拘束防止および鋳片の均一冷却を確保する観
点から、モールドパウダーの使用(特開平3―2785
0)が行なわれている。
As a countermeasure, the use of a mold powder has been conventionally used from the viewpoint of preventing the slab from being restrained by the mold and ensuring uniform cooling of the slab (Japanese Patent Laid-Open No. 3-2785).
0) has been performed.

【0010】これは、鋳片とモールド間に均一にパウダ
ーを流入させ、鋳片のモールドによる拘束を防止すると
同時に鋳片の緩冷却を確保しようとするものであるが、
パウダーの粘性を低くしているため、パウダー巻き込み
が生じ、パウダーが鋳片内に介在物として捕捉され内部
欠陥を発生させる等の問題が生じるため、内部欠陥が問
題にならない鋼種にしか適用できない等の問題があっ
た。
[0010] This is to make the powder flow uniformly between the slab and the mold to prevent the slab from being restrained by the mold and at the same time to ensure slow cooling of the slab.
Due to the low viscosity of the powder, powder entrainment occurs and the powder is trapped as inclusions in the slab, causing problems such as internal defects.Therefore, it can be applied only to steel types where internal defects are not a problem. There was a problem.

【0011】また、凝固核を分散させ均一凝固を確保す
る観点からモールド内面へのコーティング剤(特開昭6
3―180347)或は、モールド表面への凹凸の付与
(特開昭63―160752)等も提案されているが、
表面コーティング剤が剥離するとか、摩耗により凹凸が
消失するため表面の再加工の頻度が多くなるとか、モー
ルドの寿命が短くなり生産性が低下する等の問題があっ
た。
Further, from the viewpoint of dispersing solidification nuclei and ensuring uniform solidification, a coating agent on the inner surface of the mold (Japanese Patent Laid-Open No.
3-180347) or the provision of irregularities on the mold surface (Japanese Patent Application Laid-Open No. 63-160752) has been proposed.
There were problems such as peeling off of the surface coating agent, frequent removal of the surface due to loss of unevenness due to abrasion, and shortening the life of the mold and reducing productivity.

【0012】更に、カーボン含有量0.10%以下に下
げる方法も提案されているが、この方法ではカーボン含
有量を低下させた分の強度をマンガン等の他の合金元素
を添加することになり、合金コストを上昇させる等の問
題があった。
Further, a method of reducing the carbon content to 0.10% or less has also been proposed. However, in this method, another alloy element such as manganese is added to increase the strength of the reduced carbon content. However, there are problems such as an increase in alloy cost.

【0013】[0013]

【発明が解決しようとする課題】従来の縦割れ防止に関
する技術は縦割れを防止するがために、他の鋳片欠陥で
ある内部欠陥を発生させ、鋳型寿命を低下させ、或は合
金コストを上昇させる等の問題があり、工業的には満足
できるものではなかった。
The conventional technology relating to the prevention of vertical cracks causes internal defects, which are other slab defects, in order to prevent vertical cracks, thereby reducing the life of the mold or reducing the alloy cost. There was a problem such as raising, and it was not industrially satisfactory.

【0014】本発明は内部欠陥を発生させることなく、
モールド寿命も低下させることなく、且つ合金コストを
上昇させることなく縦割れ防止する方法を提供すること
を目的としてなされたものである。
The present invention does not cause internal defects,
An object of the present invention is to provide a method for preventing vertical cracking without reducing the mold life and without increasing the alloy cost.

【0015】[0015]

【課題を解決するための手段】本発明は上記課題を有利
に解決するためになされたものであり、その趣旨とする
ところは、モールド内で溶鋼流動を付与するスラブの連
続鋳造において、凝固界面の溶鋼流動の回転方向を左右
交番に与えることを特徴とする無欠陥鋳片の鋳造方法に
関するものである。
DISCLOSURE OF THE INVENTION The present invention has been made to advantageously solve the above-mentioned problems, and the gist of the present invention is to provide a method for continuously casting a slab in which molten steel flows in a mold. The present invention relates to a method for casting a defect-free slab, wherein the direction of rotation of molten steel flow is given alternately in left and right directions.

【0016】[0016]

【作用】本発明者らは凝固シェルの均一化のため種々の
実験と検討を行ない、凝固界面に溶鋼流動を与えること
により凝固シェルの均一化がはかれることを見いだした
ものである。
The present inventors have carried out various experiments and studies for the uniformization of the solidified shell, and have found that the uniformity of the solidified shell can be achieved by applying molten steel flow to the solidification interface.

【0017】つまり、前述のようにモールドパウダーの
流入不均一により凝固シェルに不均一が生じた場合に、
溶鋼流動を与えると、凝固先端部には凝固遅れ部に比
べ、より高温の溶鋼が供給され凝固先端部の凝固速度は
減速すると同時に、凝固先端部は削り取られ、凝固界面
は平準化されることを見いだしたものである。
That is, as described above, when unevenness occurs in the solidified shell due to uneven inflow of the mold powder,
When molten steel flow is applied, the solidification tip is supplied with higher temperature molten steel than the solidification delay part, the solidification speed of the solidification tip is reduced, and at the same time, the solidification tip is scraped off and the solidification interface is leveled. It was found.

【0018】凝固界面への高温の溶鋼の付与の方法とし
てはモールド内電磁撹拌装置を使うことにより容易に可
能である。
The method of applying high-temperature molten steel to the solidification interface can be easily achieved by using an in-mold electromagnetic stirring device.

【0019】しかし、更に検討を進めた結果、従来のモ
ールド内電磁撹拌をそのまま適用しても鋳片長辺全面の
縦割れ防止に対しては効果が発揮できなかった。
However, as a result of further study, even if the conventional electromagnetic stirring in the mold was applied as it was, no effect could be exerted on the prevention of vertical cracks on the entire long side of the slab.

【0020】つまり、図1に示すように通常溶鋼は浸漬
ノズル4を介して鋳片長辺側に吐出してくる。
That is, as shown in FIG. 1, the molten steel is normally discharged to the long side of the slab through the immersion nozzle 4.

【0021】そのため吐出流7の反転流3はメニスカス
近傍ではノズル4の方向への流れになる。
Therefore, the reverse flow 3 of the discharge flow 7 flows in the direction of the nozzle 4 near the meniscus.

【0022】従って、図2に示すように鋳片表面a及び
cでは吐出流3の反転流とモールド内電磁撹拌流5の方
向が一致し凝固界面流速が確保できるが、鋳片表面b、
dでは吐出流の反転流3とモールド内電磁撹拌流5が相
殺し凝固界面の流速が確保できなかった。
Therefore, as shown in FIG. 2, on the slab surfaces a and c, the direction of the reversal flow of the discharge flow 3 and the direction of the electromagnetic stirring flow 5 in the mold coincide, and the solidification interface flow velocity can be secured.
In the case of d, the reverse flow 3 of the discharge flow and the electromagnetic stirring flow 5 in the mold cancel each other out, and the flow velocity at the solidification interface could not be secured.

【0023】次に、吐出流の反転流3に打ち勝つモール
ド内電磁撹拌流5を与えたが鋳片表面a、cでモールド
パウダーの巻き込みが発生し、内部欠陥を発生した。
Next, the in-mold electromagnetic stirring flow 5 which overcomes the reverse flow 3 of the discharge flow was applied, but mold powder was entrained on the slab surfaces a and c, causing internal defects.

【0024】そこで、モールド内電磁撹拌装置1による
凝固界面の溶鋼流動の回転方向を左右交番に与えた結
果、鋳片表面a、b、c、d共に縦割れを防止できた。
Then, the rotation direction of the molten steel flow at the solidification interface by the electromagnetic stirring device 1 in the mold was given to the left and right alternations, and as a result, vertical cracks could be prevented on the slab surfaces a, b, c and d.

【0025】凝固界面の溶鋼流速としては、吐出流の反
転流3とモールド内電磁撹拌流5が同一方向になる部位
で、10〜25cm/sが好ましい。
The molten steel flow velocity at the solidification interface is preferably 10 to 25 cm / s at a portion where the reverse flow 3 of the discharge flow and the electromagnetic stirring flow 5 in the mold are in the same direction.

【0026】10cm/s未満では凝固界面への高温溶
鋼の付与が少なく凝固界面の平準化が不十分になる恐れ
があり、また、25cm/s超ではメニスカス流速が速
くなりすぎるため、パウダー巻き込みによる内質欠陥を
増加させる恐れがあり好ましくない。
If it is less than 10 cm / s, the application of high-temperature molten steel to the solidification interface is small, and leveling of the solidification interface may be insufficient. If it is more than 25 cm / s, the meniscus flow rate becomes too fast, and powder entrainment may occur. It is not preferable because there is a possibility that the internal defect may increase.

【0027】また、左右交番の周期としては15〜25
sが好ましい。吐出流の反転流3とモールド内電磁撹拌
流5が相殺する部位は凝固界面の溶鋼流速は0cm/s
になる場合が発生するが、左右交番の周期を15〜25
sにすれば縦割れは防止できる。
The cycle of the left and right alternation is 15 to 25.
s is preferred. In the portion where the reverse flow 3 of the discharge flow and the electromagnetic stirring flow 5 in the mold cancel each other, the molten steel flow velocity at the solidification interface is 0 cm / s.
May occur, but the cycle of the left and right
If it is set to s, vertical cracks can be prevented.

【0028】即ち、15s未満では不均一凝固の十分な
平準化が困難であり好ましくない。
That is, if the time is less than 15 seconds, it is difficult to sufficiently level uneven solidification, which is not preferable.

【0029】一方、25s超では逆方向電磁力による当
該部位での溶鋼流速が10cm/sの時、不均一凝固が
進みすぎて、十分な平準化が達成できず好ましくない。
On the other hand, if the flow rate of the molten steel at the relevant site is 10 cm / s due to the reverse electromagnetic force, if the flow rate exceeds 25 s, uneven solidification proceeds too much, and sufficient leveling cannot be achieved.

【0030】[0030]

【実施例1】取鍋内に保持された成分C:0.13%、
Si:0.02%、Mn:0.45%、P:0.016
%、S:0.015%、Al:0.035%の溶鋼をタ
ンデッシュ及び逆Y字35°の浸漬ノズルを介して、鋳
造速度1.5m/minで、幅1700mm、厚み24
5mmのモールドに鋳造した。
Example 1 Component C held in a ladle: 0.13%
Si: 0.02%, Mn: 0.45%, P: 0.016
%, S: 0.015%, Al: 0.035% molten steel through a tundish and a reverse Y-shaped 35 ° immersion nozzle at a casting speed of 1.5 m / min, a width of 1700 mm, and a thickness of 24.
It was cast into a 5 mm mold.

【0031】この際、図2に示すモールド内電磁撹拌装
置1を用いて、凝固界面の溶鋼流速が、吐出流の反転流
3とモールド内電磁撹拌流5が同一方向になる部位
(a,c)、(b,d)で、20cm/sになるように
し、且つモールド内電磁撹拌流5の方向を20sで左右
交番とした。
At this time, using the in-mold electromagnetic stirring device 1 shown in FIG. 2, the molten steel flow velocity at the solidification interface is such that the reverse flow 3 of the discharge flow and the in-mold electromagnetic stirring flow 5 are in the same direction (a, c). ) And (b, d), the flow rate was set to 20 cm / s, and the direction of the electromagnetic stirring flow 5 in the mold was changed to left and right at 20 s.

【0032】鋳造後、鋳片表面を目視観察し縦割れ長さ
の測定、およびスライム法による鋳片内介在物量を測定
した。鋳片表面に割れは観察されなかった。モールドパ
ウダー起因の250μmの大型介在物も皆無であった。
After casting, the surface of the slab was visually observed to measure the length of vertical cracks and the amount of inclusions in the slab by the slime method. No crack was observed on the slab surface. There was no large inclusion of 250 μm due to the mold powder.

【0033】[0033]

【比較例1】取鍋内に保持された成分C:0.13%、
Si:0.02%、Mn:0.45%、P:0.016
%、S:0.015%、Al:0.035%の溶鋼をタ
ンデッシュ及び逆Y字35°の浸漬ノズルを介して、鋳
造速度1.5m/minで、幅1700mm、厚み24
5mmのモールドに鋳造した。この際、モールド内電磁
撹拌装置は使用しなかった。
Comparative Example 1 Component C held in a ladle: 0.13%,
Si: 0.02%, Mn: 0.45%, P: 0.016
%, S: 0.015%, Al: 0.035% molten steel through a tundish and a reverse Y-shaped 35 ° immersion nozzle at a casting speed of 1.5 m / min, a width of 1700 mm, and a thickness of 24.
It was cast into a 5 mm mold. At this time, the in-mold electromagnetic stirring device was not used.

【0034】鋳造後、鋳片表面を目視観察し縦割れ長さ
の測定、およびスライム法による鋳片内介在物量を測定
した。鋳片表面a、b、c、d共に鋳片長さ1m当たり
0.3mの縦割れが発生した。モールドパウダー起因の
250μmの大型介在物は皆無であった。
After casting, the surface of the slab was visually observed to measure the length of vertical cracks and the amount of inclusions in the slab by the slime method. A vertical crack of 0.3 m per 1 m of the slab length occurred on each of the slab surfaces a, b, c, and d. There was no large inclusion of 250 μm due to the mold powder.

【0035】[0035]

【比較例2】取鍋内に保持された成分C:0.13%、
Si:0.02%、Mn:0.45%、P:0.016
%、S:0.015%、Al:0.035%の溶鋼をタ
ンデッシュ及び逆Y字35°の浸漬ノズルを介して、鋳
造速度1.5m/minで、幅1700mm、厚み24
5mmのモールドに鋳造した。
Comparative Example 2 Component C retained in a ladle: 0.13%,
Si: 0.02%, Mn: 0.45%, P: 0.016
%, S: 0.015%, Al: 0.035% molten steel through a tundish and a reverse Y-shaped 35 ° immersion nozzle at a casting speed of 1.5 m / min, a width of 1700 mm, and a thickness of 24.
It was cast into a 5 mm mold.

【0036】この際、図2に示すモールド内電磁撹拌装
置1を用いて、凝固界面の溶鋼流速が、吐出流の反転流
とモールド内電磁撹拌流が同一方向になる部位で、20
cm/sになるようにし、且つモールド内電磁撹拌は一
定方向の流動を付与した。
At this time, using the in-mold electromagnetic stirring device 1 shown in FIG. 2, the molten steel flow velocity at the solidification interface is set at a position where the reverse flow of the discharge flow and the in-mold electromagnetic stirring flow are in the same direction.
cm / s, and the electromagnetic stirring in the mold provided a flow in a certain direction.

【0037】鋳造後、鋳片表面を目視観察し縦割れ長さ
の測定、およびスライム法による鋳片内介在物量を測定
した。
After casting, the surface of the slab was visually observed to measure the length of vertical cracks and the amount of inclusions in the slab by the slime method.

【0038】鋳片表面a、cに割れは観察されなかった
が、鋳片表面b、dには鋳片長さ1m当たり0.5mの
縦割れが発生し、モールド内電磁撹拌による流動を付与
しなかった場合よりも縦割れが悪化する部位が発生する
ことがわかった。
No cracks were observed on the slab surfaces a and c, but a vertical crack of 0.5 m per slab length of 1 m occurred on the slab surfaces b and d. It was found that there was a portion where the vertical cracks were worse than in the case where it was not provided.

【0039】モールドパウダー起因の250μmの大型
介在物は皆無であった。
There were no large inclusions of 250 μm due to the mold powder.

【0040】[0040]

【比較例3】取鍋内に保持された成分C:0.13%、
Si:0.02%、Mn:0.45%、P:0.016
%、S:0.015%、Al:0.035%の溶鋼をタ
ンデッシュ及び逆Y字35°の浸漬ノズルを介して、鋳
造速度1.5m/minで、幅1700mm、厚み24
5mmのモールドに鋳造した。
Comparative Example 3 Component C held in a ladle: 0.13%,
Si: 0.02%, Mn: 0.45%, P: 0.016
%, S: 0.015%, Al: 0.035% molten steel through a tundish and a reverse Y-shaped 35 ° immersion nozzle at a casting speed of 1.5 m / min, a width of 1700 mm, and a thickness of 24.
It was cast into a 5 mm mold.

【0041】この際、図2に示すモールド内電磁撹拌装
置1を用いて、凝固界面の溶鋼流速が、吐出流の反転流
とモールド内電磁撹拌流が相殺する部位で、20cm/
sになるようにし、且つモールド内電磁撹拌は一定方向
の流動を付与した。
At this time, using the in-mold electromagnetic stirring apparatus 1 shown in FIG. 2, the molten steel flow velocity at the solidification interface is set to 20 cm / cm at a portion where the reverse flow of the discharge flow and the in-mold electromagnetic stirring flow cancel each other.
s, and the electromagnetic stirring in the mold provided a flow in a certain direction.

【0042】鋳造後、鋳片表面を目視観察し縦割れ長さ
の測定、およびスライム法による鋳片内介在物量を測定
した。鋳片表面a、b、c、d共に割れは観察されなか
ったが、モールドパウダー起因の250μmの大型介在
物は溶鋼10kg当たり4個検出され、内部欠陥が悪化
することが分かった。
After casting, the surface of the slab was visually observed to measure the length of vertical cracks and the amount of inclusions in the slab by the slime method. No cracks were observed on any of the slab surfaces a, b, c, and d, but four large inclusions of 250 μm due to mold powder were detected per 10 kg of molten steel, and it was found that internal defects were worse.

【0043】[0043]

【発明の効果】以上のごとく、本発明による無欠陥鋳片
の鋳造方法によれば、モールド内に電磁撹拌装置を設置
し、凝固界面の溶鋼流動の回転方向を左右交番に与える
だけで、鋳片の内部欠陥を発生させることなく、モール
ド寿命も低下させることなく、且つ合金コストを上昇さ
せることなく縦割れの防止が可能となり、手入れ省略、
生産性向上という工業的に効果の大きい連続鋳造方法が
可能となった。
As described above, according to the method of casting a defect-free slab according to the present invention, the electromagnetic stirring device is installed in the mold, and the rotation direction of the molten steel flow at the solidification interface is simply given to the left and right alternations. It is possible to prevent vertical cracks without causing internal defects of the piece, reducing the life of the mold, and increasing the cost of the alloy.
A continuous casting method that is industrially effective, that is, improves productivity, has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】モールド内溶鋼に流動を付与する方法を示す説
明図で、立面図である。
FIG. 1 is an elevational view showing a method of giving a flow to molten steel in a mold.

【図2】モールド内溶鋼に流動を付与する方法を示す説
明図で、平面図である。
FIG. 2 is an explanatory view showing a method of giving a flow to molten steel in a mold, and is a plan view.

【符号の説明】[Explanation of symbols]

1 モールド内電磁撹拌装置 2 モールド 3 反転流による湯流れ 4 浸漬ノズル 5 電磁撹拌による湯流れ 6 モールドパウダー 7 吐出流 8 下降流 9 溶鋼 10 凝固シェル DESCRIPTION OF SYMBOLS 1 In-mold electromagnetic stirring apparatus 2 Mold 3 Hot water flow by reverse flow 4 Immersion nozzle 5 Hot water flow by electromagnetic stirring 6 Mold powder 7 Discharge flow 8 Downflow 9 Molten steel 10 Solidified shell

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−16841(JP,A) 特開 昭63−104763(JP,A) 特開 昭57−75270(JP,A) 特開 昭55−64953(JP,A) 特開 昭55−158859(JP,A) 特開 平6−71403(JP,A) 特開 平6−182518(JP,A) 特開 平6−226409(JP,A) 特開 昭60−37251(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/115 B22D 11/04 311 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-16841 (JP, A) JP-A-63-104763 (JP, A) JP-A-57-75270 (JP, A) 64953 (JP, A) JP-A-55-158859 (JP, A) JP-A-6-71403 (JP, A) JP-A-6-182518 (JP, A) JP-A-6-226409 (JP, A) JP-A-60-37251 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/115 B22D 11/04 311

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 モールド内で溶鋼流動を付与するスラブ
の連続鋳造において、凝固界面の溶鋼流動の回転方向を
左右交番に与えることを特徴とする無欠陥鋳片の鋳造方
法。
1. A method for casting a defect-free slab, wherein the direction of rotation of molten steel flow at a solidification interface is alternately provided in a continuous casting of a slab that imparts molten steel flow in a mold.
JP05175836A 1993-06-24 1993-06-24 Continuous casting method of defect-free slab Expired - Fee Related JP3099158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05175836A JP3099158B2 (en) 1993-06-24 1993-06-24 Continuous casting method of defect-free slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05175836A JP3099158B2 (en) 1993-06-24 1993-06-24 Continuous casting method of defect-free slab

Publications (2)

Publication Number Publication Date
JPH079099A JPH079099A (en) 1995-01-13
JP3099158B2 true JP3099158B2 (en) 2000-10-16

Family

ID=16003071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05175836A Expired - Fee Related JP3099158B2 (en) 1993-06-24 1993-06-24 Continuous casting method of defect-free slab

Country Status (1)

Country Link
JP (1) JP3099158B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218408A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of metal
JP5402803B2 (en) * 2010-04-09 2014-01-29 新日鐵住金株式会社 Metal continuous casting method

Also Published As

Publication number Publication date
JPH079099A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
JPH02284750A (en) Method for continuously casting steel using static magnetic field
JP3099158B2 (en) Continuous casting method of defect-free slab
JP3099157B2 (en) Continuous casting method
JP3149834B2 (en) Steel slab continuous casting method
JP3273291B2 (en) Stirring method of molten steel in continuous casting mold
JPS5942589B2 (en) Continuous steel casting method
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
JP2895281B2 (en) Treatment of residual slag in tundish
JP3538967B2 (en) Continuous casting method
JPS6340650A (en) Apparatus for reducing center segregation in continuously casting slab
JP2786814B2 (en) How to reuse tundish in continuous casting of steel.
JP4492333B2 (en) Steel continuous casting method
JP2727886B2 (en) Horizontal continuous casting method
JP4029472B2 (en) Continuous casting method of molten steel with few bubble defects
JP3726692B2 (en) Continuous casting method
JPH08117938A (en) Method for pouring molten steel in continuous casting of thin slab
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
JPH0616925B2 (en) Nozzle for continuous casting of thin metal strip
JPH02258152A (en) Continuous casting method
JPH11277197A (en) Continuous casting method for large-section slab
JP2001293543A (en) Method for continuously casting steel
JPS6235855B2 (en)
Ray et al. Evaluation of Sub Entry Nozzle Design for Bloom Casting Based on Mathematical Modeling
JPH049255A (en) Continuous casting method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000719

LAPS Cancellation because of no payment of annual fees