JPH1128662A - Working method for tubular ceramic molding - Google Patents

Working method for tubular ceramic molding

Info

Publication number
JPH1128662A
JPH1128662A JP9182090A JP18209097A JPH1128662A JP H1128662 A JPH1128662 A JP H1128662A JP 9182090 A JP9182090 A JP 9182090A JP 18209097 A JP18209097 A JP 18209097A JP H1128662 A JPH1128662 A JP H1128662A
Authority
JP
Japan
Prior art keywords
cutting
grinding wheel
molded body
processing
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9182090A
Other languages
Japanese (ja)
Inventor
Yukihisa Koizumi
幸久 小泉
Yukio Maeda
幸男 前田
Shinobu Watanabe
忍 渡辺
Katsumi Imagawa
克巳 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9182090A priority Critical patent/JPH1128662A/en
Publication of JPH1128662A publication Critical patent/JPH1128662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the working accuracy and the working efficiency for a workpiece by providing a chuck mechanism in two places near both ends of a pair of tubular ceramic moldings, and continuously performing cutting and cylindrical surface working while the formed body is rotated on its axis. SOLUTION: The vicinities of both ends of a β-alumina tube molding 1 are aligned with the center of rotation of a spindle 8 of a machine tool 6 to index the average shaft center, and simultaneously chucked by chuck mechanism parts 7A, 7B to be grasped. At the time of cutting, both a grinding wheel spindle 12 and a molding 1 are respectively rotated, and the grinding wheel spindle 12 is moved in the direction right-angled to the central axis of rotation of the molding 1 to be cut by a cutting grinding wheel 10, thereby performing cutting. After the end of cutting, a grinding wheel 11 for cylindrical surface working and a part to be worked of the molding 1 are relatively aligned in the axial direction, and while the grinding wheel spindle 12 is moved in the direction parallel to the central axis of rotation of the workpiece, the molding 1 is cut to attain a designated outer diameter by the grinding wheel 11. Thus working can be performed by chucking one time so as to improve working efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はナトリウム−硫黄電
池の固体電解質として使用されるβ−アルミナ管成形体
のような管状セラミック成形体の加工方法に関し、特に
管状セラミック成形体の全長や切断面の中心軸に対する
直角度及び端部外径の中心軸に対する同心度を高精度に
かつ高能率に加工する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a tubular ceramic molded article such as a .beta.-alumina tubular molded article used as a solid electrolyte of a sodium-sulfur battery. The present invention relates to a method for processing a squareness with respect to a central axis and a concentricity of an end outer diameter with respect to a central axis with high accuracy and high efficiency.

【0002】[0002]

【従来の技術】図2はナトリウム−硫黄電池の構造を示
す断面図である。ナトリウム−硫黄電池の固体電解質と
して使用されるβ−アルミナ管成形体1は、α−アルミ
ナ2と密封接着し正極管3の内部に硫黄層4を挟んで挿
入され、このα−アルミナ2を介して正極管3に固定さ
れる。
2. Description of the Related Art FIG. 2 is a sectional view showing the structure of a sodium-sulfur battery. A β-alumina tube molded body 1 used as a solid electrolyte of a sodium-sulfur battery is hermetically bonded to α-alumina 2 and inserted into a positive electrode tube 3 with a sulfur layer 4 interposed therebetween. And is fixed to the cathode tube 3.

【0003】またナトリウム−硫黄電池はβ−アルミナ
管の内部に金属の管状部品である安全管5を挿入する。
この安全管5も同様にα−アルミナ2を介して固定され
る。このようにβ−アルミナ管成形体1は管の内外面に
管状の部品を有するため、α−アルミナ2との密封接着
部にはβ−アルミナ管成形体1の中心軸に対する直角度
と同心度及び外径精度が要求されている。
In a sodium-sulfur battery, a safety tube 5 which is a metal tubular component is inserted into a β-alumina tube.
This safety tube 5 is similarly fixed via α-alumina 2. As described above, since the β-alumina tube molded body 1 has tubular parts on the inner and outer surfaces of the tube, the perpendicularity and the concentricity with respect to the central axis of the β-alumina tube molded body 1 are provided at the sealing bonding portion with the α-alumina 2. And outer diameter accuracy is required.

【0004】しかし、β−アルミナ管成形体は焼結時の
収縮により寸法が変化し、管全体に曲がりが発生する。
このため曲がったβ−アルミナ管成形体は、工作機械に
固定する際の芯だしや軸の倒れを調整することが非常に
難しい。このような曲がったβ−アルミナ管成形体を所
定の長さに切断し、切断面をβ−アルミナ管成形体の平
均的軸心に対し直角に加工する切断加工、密封接着する
部分を所定のはめあい外径に加工し、β−アルミナ管成
形体の平均的軸心に対し同心に加工する円筒面加工を行
わなければならない。
However, the β-alumina molded body changes its dimensions due to shrinkage during sintering, and the entire tube is bent.
For this reason, it is very difficult to adjust the centering and the inclination of the shaft when fixing the bent β-alumina pipe molded body to the machine tool. The bent β-alumina tube molded body is cut into a predetermined length, and the cut surface is cut at a right angle to the average axis of the β-alumina tube molded body. A cylindrical surface must be machined to fit the outer diameter and concentric with the average axis of the β-alumina tube.

【0005】これらの各加工では、工具としての研削砥
石の仕様や形状がそれぞれ異なるため、各個の工作機械
で加工を行う方法が考えられるが、被加工物であるβ−
アルミナ管成形体をその都度チャックし直すのは加工能
率低下の原因となる。また、チャックし直すことにより
ふれ回りや軸の倒れも発生し加工精度が低下する。
[0005] In each of these processes, since the specifications and shapes of the grinding wheels as tools are different from each other, it is conceivable to perform the process with each machine tool.
Re-chucking the alumina tube compact each time causes a reduction in working efficiency. In addition, re-chucking also causes whirling and tilting of the shaft, thereby lowering the processing accuracy.

【0006】これまでに接着密封部を加工する円筒面加
工については、特開平4−283061号公報に示すよ
うに、β−アルミナ管成形体の外径部全域を同時加工す
る方法が考案されているが、切断加工や切断面の直角度
については考慮がなされていない。また上記方法におい
ては密封接着部以外の外径部まで加工しなければならな
いため、密封接着部の外径部のみの加工より加工時間が
長くなる問題がある。
As for the cylindrical surface processing for processing the adhesive sealing portion, a method of simultaneously processing the entire outer diameter portion of a β-alumina tube molded body has been devised as disclosed in Japanese Patent Application Laid-Open No. 4-283061. However, no consideration is given to the cutting process and the perpendicularity of the cut surface. Further, in the above method, since it is necessary to process the outer diameter portion other than the hermetically bonded portion, there is a problem that the processing time is longer than the processing of only the outer diameter portion of the hermetically bonded portion.

【0007】[0007]

【本発明が解決しようとする課題】本発明の目的は、上
記した従来の問題を解消して、曲がった管状セラミック
成形体の平均的軸心を工作機械の主軸の回転中心に一致
するようにチャックし、チャックし直すことなく複数の
加工工程を行い、被加工物の加工精度と加工能率の向上
を実現する加工方法の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to make the average axis of the bent tubular ceramic body coincide with the rotation center of the main shaft of the machine tool. It is an object of the present invention to provide a processing method for performing a plurality of processing steps without chucking and re-chucking, thereby improving the processing accuracy and processing efficiency of a workpiece.

【0008】[0008]

【課題を解決するための手段】曲がった管状セラミック
成形体であるβ−アルミナ管成形体は図3に示す形状を
しており、管状セラミック成形体の両端近傍を工作機械
の主軸の回転中心に一致させることにより、実際の管状
セラミック成形体の軸と主軸の回転中心の偏差量を小さ
くできる。このため、工作機械の主軸の回転中心とチャ
ック中心を一致させたチャック機構を管状セラミック成
形体の両端近傍の位置に2カ所設けることにより実現で
きる。
A β-alumina tube molded body which is a bent tubular ceramic molded body has a shape shown in FIG. 3, and the vicinity of both ends of the tubular ceramic molded body is set at the center of rotation of a main shaft of a machine tool. By making them coincide with each other, it is possible to reduce the deviation amount of the rotation center between the actual shaft of the tubular ceramic molded body and the main shaft. Therefore, the present invention can be realized by providing two chuck mechanisms in which the center of rotation of the main shaft of the machine tool and the center of the chuck coincide with each other at positions near both ends of the tubular ceramic molded body.

【0009】被加工物である管状セラミック成形体の切
断面側からチャック方向に向かって、切断加工に用いる
切断砥石、円筒面加工に用いる砥石の順に同一の砥石軸
に固定する。このとき切断砥石は円筒面加工砥石よりも
切断に必要な半径分だけ大きな外径とする。上記構成に
より切断加工、円筒面加工を連続的に行うことができ
る。
[0009] From the cut surface side of the tubular ceramic molded body which is the workpiece to the chuck direction, a cutting grindstone used for cutting and a grindstone used for cylindrical surface processing are fixed to the same grindstone shaft in this order. At this time, the cutting grindstone has an outer diameter larger than the cylindrical surface grindstone by a radius required for cutting. With the above configuration, cutting and cylindrical surface processing can be performed continuously.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例について図
面に従って説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例の加工装置の斜視
図である。ここでは被加工物の管状セラミック成形体と
してβ−アルミナ管成形体を加工する図を示している。
図1において工作機械6には被加工物であるβ−アルミ
ナ管成形体1を把持するチャック機構部7A及び7Bと
これらを回転させる主軸8を備えている。チャック機構
部7Bは所定の繰り返しチャック精度を有し、主軸8に
固定されており、そのチャック中心は主軸8の回転中心
に一致するように組み立て調整されている。
FIG. 1 is a perspective view of a processing apparatus according to one embodiment of the present invention. Here, a diagram of processing a β-alumina tube molded body as a tubular ceramic molded body of a workpiece is shown.
In FIG. 1, a machine tool 6 is provided with chuck mechanisms 7A and 7B for gripping a β-alumina tube formed body 1, which is a workpiece, and a main shaft 8 for rotating them. The chuck mechanism 7B has a predetermined repetition chuck accuracy, is fixed to the main shaft 8, and is assembled and adjusted so that the center of the chuck coincides with the rotation center of the main shaft 8.

【0012】このチャック機構部7Bは主軸8の自転運
動とともに回転し、把持したβ−アルミナ管成形体1に
回転力を伝える。またチャック機構部7Aも同様に所定
の繰り返しチャック精度を有し、そのチャック中心は主
軸8の回転中心軸と一致するように組み立て調整され、
チャック機構部7Bおよびβ−アルミナ管成形体1を介
して伝えられる主軸8の回転力により、β−アルミナ管
成形体1が回転可能に把持するように工作機械6に固定
されている。これらのチャック機構部7Aおよび7Bが
所定の間隔で工作機械6に設けられ、上述のように曲が
ったβ−アルミナ管成形体1の両端近傍を工作機械6の
主軸8の回転中心に一致させることにより、β−アルミ
ナ管成形体1の軸と主軸8の回転中心の偏差量を小さく
できる。
The chuck mechanism 7B rotates together with the rotation of the main shaft 8, and transmits a rotational force to the β-alumina tube molded body 1 held. Similarly, the chuck mechanism 7A also has a predetermined repetition chuck accuracy, and its chuck center is assembled and adjusted so as to coincide with the rotation center axis of the main shaft 8,
The β-alumina tube molding 1 is fixed to the machine tool 6 so as to be rotatably gripped by the rotational force of the main shaft 8 transmitted via the chuck mechanism 7B and the β-alumina tube molding 1. These chuck mechanisms 7A and 7B are provided on the machine tool 6 at a predetermined interval, and the vicinity of both ends of the β-alumina tube molded body 1 bent as described above is made to coincide with the rotation center of the main shaft 8 of the machine tool 6. Thereby, the deviation amount between the axis of the β-alumina tube molded body 1 and the rotation center of the main shaft 8 can be reduced.

【0013】工作機械6にはXY方向に任意の位置で位
置決め可能なXYテーブル9を備えている。このXYテ
ーブル9には切断砥石10と円筒面加工用砥石11を回
転させるための砥石軸12が固定されている。これらの
砥石は一方の砥石が加工に使用されているときに他方の
砥石がβ−アルミナ管成形体1と不用意に接触しないよ
うに砥石の外径、砥石の厚さ、砥石間の取り付け間隔が
決められている。XYテーブル9が移動することによ
り、被加工物であるβ−アルミナ管成形体1と、工具で
ある切断砥石10または円筒面加工用砥石11の相対位
置を変化させ、切込み量や送り速度を制御する。本構成
において被加工物であるβ−アルミナ管成形体1の切
断、円筒面の外径加工を行う方法について説明する。
The machine tool 6 has an XY table 9 which can be positioned at any position in the XY directions. A grinding wheel shaft 12 for rotating the cutting wheel 10 and the grinding wheel 11 for cylindrical surface processing is fixed to the XY table 9. These grindstones have an outer diameter of the grindstones, a thickness of the grindstones, a mounting interval between the grindstones so that one grindstone does not inadvertently come into contact with the β-alumina tube molding 1 when one grindstone is used for processing. Is determined. By moving the XY table 9, the relative position between the β-alumina tube formed body 1 as the workpiece and the cutting grindstone 10 or the grindstone 11 for cylindrical surface processing as the tool is changed, and the cut amount and the feed rate are controlled. I do. A method for cutting the β-alumina pipe molded body 1 as a workpiece and processing the outer diameter of a cylindrical surface in this configuration will be described.

【0014】まずチャック機構部7Aおよび7Bを解放
状態にて、β−アルミナ管成形体1をこれらの中に入
れ、チャック機構部7Aおよび7Bを同時にチャックす
ることによりβ−アルミナ管成形体1を把持する。
First, with the chuck mechanisms 7A and 7B released, the β-alumina tube molded body 1 is put into them, and the chuck mechanisms 7A and 7B are simultaneously chucked to thereby form the β-alumina tube molded body 1. Hold.

【0015】加工中の工作機械6の動作の詳細を図4お
よび図5を用いて説明する。図4および図5は、β−ア
ルミナ管成形体1と、砥石軸12に取り付けられた切断
砥石10および円筒面加工用砥石11の加工中の相対位
置を上から見た平面図である。図4では切断加工時の砥
石軸12とβ−アルミナ管成形体1の相対位置を示して
いる。これら両者をそれぞれ回転させ、相対的に切り込
みを与えるように砥石軸12をβ−アルミナ管成形体1
の回転中心軸と直角な矢印13の方向に移動させること
により切断を行う。
The operation of the machine tool 6 during machining will be described in detail with reference to FIGS. FIGS. 4 and 5 are plan views of the relative positions of the β-alumina tube formed body 1, the cutting grindstone 10 attached to the grindstone shaft 12, and the grindstone 11 for cylindrical surface processing during processing, as viewed from above. FIG. 4 shows the relative positions of the grindstone shaft 12 and the β-alumina tube molded body 1 during the cutting process. These two members are respectively rotated to grind the grinding wheel shaft 12 so as to give a relative cut.
The cutting is performed by moving in the direction of arrow 13 perpendicular to the rotation center axis of.

【0016】切断加工終了後、円筒面加工用砥石11が
β−アルミナ管成形体1に接する前に矢印13の方向の
移動を停止し、次に円筒面加工用砥石11とβ−アルミ
ナ管成形体1の被加工部分の軸方向の相対位置合わせを
行うため、砥石軸12を被加工物の回転中心軸と平行な
矢印14の方向に移動する。
After the cutting is completed, the movement in the direction of arrow 13 is stopped before the grinding wheel 11 for cylindrical surface processing comes into contact with the β-alumina tube molded body 1, and then the grinding wheel 11 for cylindrical surface processing and the β-alumina tube molding are stopped. In order to perform relative axial positioning of a portion to be processed of the body 1, the grinding wheel shaft 12 is moved in the direction of an arrow 14 parallel to the rotation center axis of the workpiece.

【0017】図5は円筒面加工時の動作を示した。円筒
面加工用砥石11をβ−アルミナ管成形体1に所定の外
径に達するまで切り込みを行うため、β−アルミナ管成
形体1の回転中心軸と直角な矢印15の方向に移動し、
引き続き砥石軸12を被加工物の回転中心軸と平行な矢
印16の方向に砥石軸12を移動させ、面粗さを向上さ
せる。以上により加工を終え、チャック機構部7Aおよ
び7Bをチャック解放し、β−アルミナ管成形体1を工
作機械から外す。
FIG. 5 shows the operation at the time of machining the cylindrical surface. In order to cut the grinding wheel 11 for cylindrical surface processing into the β-alumina tube molded body 1 until it reaches a predetermined outer diameter, the grinding wheel 11 is moved in the direction of an arrow 15 perpendicular to the rotation center axis of the β-alumina tube molded body 1,
Subsequently, the grindstone shaft 12 is moved in the direction of arrow 16 parallel to the rotation center axis of the workpiece to improve the surface roughness. The machining is completed as described above, the chuck mechanisms 7A and 7B are released from the chuck, and the β-alumina tube molded body 1 is removed from the machine tool.

【0018】次に実際に加工を行った例について説明す
る。チャック機構部7Aおよび7Bには、繰り返しチャ
ッキング精度30μmの三爪エアーチャックを用い、こ
れらチャック中心と主軸8の回転中心の偏差量を50μ
m以下に組立調整した。
Next, an example of actual processing will be described. For the chuck mechanisms 7A and 7B, a three-jaw air chuck having a repetition chucking accuracy of 30 μm is used, and the deviation between the center of the chuck and the rotation center of the spindle 8 is set to 50 μm.
m.

【0019】また被加工物としてβ−アルミナ管成形体
を用いた。このβ−アルミナ管成形体は、切断加工後の
全長が600mm、外径64mmで最大で全長に対し
0.5%程度の曲がりがある。従来2台の加工機を用い
て切断、円筒面加工を行った場合、加工時間85分を要
し、β−アルミナ管成形体1の中心軸に対する円筒面の
同心度は72μm、切断面の直角度は53μmであっ
た。これに対し本発明を用いることにより、加工時間1
5分、円筒面の同心度は46μm、切断面の直角度12
μmを得た。
Further, a β-alumina molded tube was used as a workpiece. This β-alumina pipe molded body has a total length after cutting of 600 mm and an outer diameter of 64 mm, and has a maximum bending of about 0.5% of the total length. When cutting and cylindrical surface processing were performed using two conventional processing machines, a processing time of 85 minutes was required, the concentricity of the cylindrical surface with respect to the central axis of the β-alumina tube molded body 1 was 72 μm, and the The angle was 53 μm. On the other hand, by using the present invention, processing time 1
5 minutes, concentricity of cylindrical surface is 46 μm, squareness of cut surface is 12
μm was obtained.

【0020】[0020]

【発明の効果】本発明により、曲がった管状セラミクス
成形体の平均的軸心を割り出してチャックする事がで
き、複数の工程を複数の工作機械を使用することなく、
1回のチャックで加工でき、加工能率の向上が実現でき
る。
According to the present invention, the average axis of the bent tubular ceramic molded body can be determined and chucked, and a plurality of processes can be performed without using a plurality of machine tools.
Processing can be performed with a single chuck, and improvement in processing efficiency can be realized.

【0021】また複数の工作機械を使用した場合に比
べ、チャックし直す際の振れ回りや軸の倒れに起因した
精度の劣化を防止できる。このように本発明では、被加
工物の加工精度と加工能率の向上を実現することができ
る。
In addition, as compared with the case where a plurality of machine tools are used, it is possible to prevent deterioration in accuracy due to whirling and shaft fall when re-chucking. As described above, according to the present invention, it is possible to improve the processing accuracy and processing efficiency of a workpiece.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の加工装置の斜視図。FIG. 1 is a perspective view of a processing apparatus according to an embodiment of the present invention.

【図2】ナトリウム−硫黄電池の構造を示す断面図。FIG. 2 is a cross-sectional view illustrating a structure of a sodium-sulfur battery.

【図3】曲がった管状セラミック成形体の形状を示す
図。
FIG. 3 is a view showing a shape of a bent tubular ceramic molded body.

【図4】被加工物と砥石軸に取り付けられた砥石の切断
加工中の相対位置を上から見た図。
FIG. 4 is a top view of a relative position of a workpiece and a grindstone attached to a grindstone shaft during a cutting process.

【図5】被加工物と砥石軸に取り付けられた砥石の円筒
面加工中の相対位置を上から見た図。
FIG. 5 is a top view of the relative positions of the workpiece and the grindstone attached to the grindstone shaft during cylindrical surface machining.

【符号の説明】[Explanation of symbols]

1…β−アルミナ管成形体、 2…α−アルミナ、
3…正極管、4…硫黄層、 5…安全
管、 6…工作機械、7A、7B…チャック
機構部、8…主軸、 9…XYテーブル、
10…切断砥石、 11…円筒面加工用砥
石、12…砥石軸、13〜16…砥石軸と被加工物の相
対移動方向。
1 ... β-alumina tube molded body, 2 ... α-alumina,
3 ... Positive electrode tube, 4 ... Sulfur layer, 5 ... Safety tube, 6 ... Machine tool, 7A, 7B ... Chuck mechanism, 8 ... Spindle, 9 ... XY table,
Reference numeral 10: cutting whetstone, 11: whetstone for cylindrical surface processing, 12: whetstone shaft, 13 to 16: relative movement direction of whetstone shaft and workpiece.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今川 克巳 茨城県日立市弁天町三丁目10番地2号日立 協和工業株式会社内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Katsumi Imagawa 3-10-2 Bentencho, Hitachi City, Ibaraki Prefecture Hitachi Kyowa Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】管状セラミック成形体の切断及び切断部近
傍の外径の加工方法において、管状セラミック成形体を
チャックした後、同一砥石軸上に所定の間隔で取り付け
た切断用砥石および円筒面加工用砥石を用いて、該成形
体を自転運動させつつ、切断加工、円筒面加工を連続的
に行うことを特徴とする管状セラミック成形体の加工方
法。
In a method for cutting a tubular ceramic molded body and processing an outer diameter in the vicinity of a cut portion, a cutting grindstone attached to a same grinding wheel shaft at predetermined intervals after chucking the tubular ceramic molded body, and cylindrical surface processing. A cutting method of a tubular ceramic molded body, wherein cutting and cylindrical surface machining are continuously performed while rotating the molded body using a grinding wheel.
【請求項2】管状セラミック成形体がβ−アルミナ管成
形体である請求項1に記載の管状セラミック成形体の加
工方法。
2. The method for processing a tubular ceramic molded article according to claim 1, wherein the tubular ceramic molded article is a β-alumina tubular molded article.
【請求項3】請求項1に記載した加工方法を特徴とする
管状セラミック成形体の加工装置。
3. An apparatus for processing a tubular ceramic molded body, characterized by the processing method according to claim 1.
JP9182090A 1997-07-08 1997-07-08 Working method for tubular ceramic molding Pending JPH1128662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9182090A JPH1128662A (en) 1997-07-08 1997-07-08 Working method for tubular ceramic molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9182090A JPH1128662A (en) 1997-07-08 1997-07-08 Working method for tubular ceramic molding

Publications (1)

Publication Number Publication Date
JPH1128662A true JPH1128662A (en) 1999-02-02

Family

ID=16112190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9182090A Pending JPH1128662A (en) 1997-07-08 1997-07-08 Working method for tubular ceramic molding

Country Status (1)

Country Link
JP (1) JPH1128662A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123075A (en) * 2004-10-28 2006-05-18 Micron Seimitsu Kk Two-process continuous grinding method and device therefor
JP2006519108A (en) * 2003-02-26 2006-08-24 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Cylindrical grinding method in the manufacture of tools made of hard metal, and cylindrical grinding machine for grinding cylindrical raw materials in the manufacture of tools made of hard metal
JP2009090390A (en) * 2007-10-04 2009-04-30 Koyo Mach Ind Co Ltd Centerless grinding method and centerless grinder for outer diameter surface and surface of workpiece
CN102814720A (en) * 2011-06-09 2012-12-12 沈阳中科超硬磨具磨削研究所 Notching machine for grinding wheel
CN102990508A (en) * 2012-10-31 2013-03-27 萧县佳诚造纸机械有限责任公司 Fixing device for polishing and grinding circular shaft
CN103158050A (en) * 2013-03-25 2013-06-19 靖江市建肯高速电机有限公司 Grinding method for motorized spindle end cover
CN105081923A (en) * 2015-07-31 2015-11-25 瑞安市车辆配件厂 Clamp for grinding of external spherical surface of spherical surface washer
CN106078451A (en) * 2016-07-15 2016-11-09 吴江明凯金属制品有限公司 A kind of device for cutting aluminium
CN106312775A (en) * 2016-08-29 2017-01-11 卢碧娴 Workpiece-movable metal cutting machine
CN106392801A (en) * 2015-07-27 2017-02-15 王健 Valve internal hole deburring machine
KR101866788B1 (en) * 2018-01-22 2018-06-18 보은에스앤씨 주식회사 Welding tip processing method for semiconductor pipe welding
CN108436729A (en) * 2018-03-28 2018-08-24 安徽理工大学 A kind of axial workpiece semi-automatic polishing device
CN109015137A (en) * 2018-07-13 2018-12-18 安徽派日特智能装备有限公司 A kind of grinding machine automatic entrance-exit cutter mechanism
CN111300248A (en) * 2019-11-25 2020-06-19 衡阳阳光陶瓷有限公司 Burnishing machine that ceramic machining used
CN111716187A (en) * 2020-06-16 2020-09-29 福建和盛塑业有限公司 Galvanized steel pipe butt-joint treatment method for buried cable protection pipe before welding
CN112296777A (en) * 2020-10-19 2021-02-02 刘丹丹 Nonrust steel pipe processingequipment
CN112792629A (en) * 2021-01-12 2021-05-14 西安万翔航空科技有限公司 Quill shaft grinding device, be used for automatic grinding equipment of cable
CN113478362A (en) * 2021-09-07 2021-10-08 江苏隆凯森机械科技有限公司 Cast iron flange pipe joint manufacturing automatic processing machinery
CN116604452A (en) * 2023-05-15 2023-08-18 浙江樾筑科技有限公司 Building construction assembling climbing frame processing equipment and method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519108A (en) * 2003-02-26 2006-08-24 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Cylindrical grinding method in the manufacture of tools made of hard metal, and cylindrical grinding machine for grinding cylindrical raw materials in the manufacture of tools made of hard metal
JP2006123075A (en) * 2004-10-28 2006-05-18 Micron Seimitsu Kk Two-process continuous grinding method and device therefor
JP4521244B2 (en) * 2004-10-28 2010-08-11 ミクロン精密株式会社 Two-step continuous grinding method and apparatus
JP2009090390A (en) * 2007-10-04 2009-04-30 Koyo Mach Ind Co Ltd Centerless grinding method and centerless grinder for outer diameter surface and surface of workpiece
CN102814720A (en) * 2011-06-09 2012-12-12 沈阳中科超硬磨具磨削研究所 Notching machine for grinding wheel
CN102990508A (en) * 2012-10-31 2013-03-27 萧县佳诚造纸机械有限责任公司 Fixing device for polishing and grinding circular shaft
CN103158050A (en) * 2013-03-25 2013-06-19 靖江市建肯高速电机有限公司 Grinding method for motorized spindle end cover
CN106392801A (en) * 2015-07-27 2017-02-15 王健 Valve internal hole deburring machine
CN105081923A (en) * 2015-07-31 2015-11-25 瑞安市车辆配件厂 Clamp for grinding of external spherical surface of spherical surface washer
CN106078451A (en) * 2016-07-15 2016-11-09 吴江明凯金属制品有限公司 A kind of device for cutting aluminium
CN106312775A (en) * 2016-08-29 2017-01-11 卢碧娴 Workpiece-movable metal cutting machine
KR101866788B1 (en) * 2018-01-22 2018-06-18 보은에스앤씨 주식회사 Welding tip processing method for semiconductor pipe welding
CN108436729A (en) * 2018-03-28 2018-08-24 安徽理工大学 A kind of axial workpiece semi-automatic polishing device
CN109015137A (en) * 2018-07-13 2018-12-18 安徽派日特智能装备有限公司 A kind of grinding machine automatic entrance-exit cutter mechanism
CN111300248A (en) * 2019-11-25 2020-06-19 衡阳阳光陶瓷有限公司 Burnishing machine that ceramic machining used
CN111716187A (en) * 2020-06-16 2020-09-29 福建和盛塑业有限公司 Galvanized steel pipe butt-joint treatment method for buried cable protection pipe before welding
CN112296777A (en) * 2020-10-19 2021-02-02 刘丹丹 Nonrust steel pipe processingequipment
CN112792629A (en) * 2021-01-12 2021-05-14 西安万翔航空科技有限公司 Quill shaft grinding device, be used for automatic grinding equipment of cable
CN113478362A (en) * 2021-09-07 2021-10-08 江苏隆凯森机械科技有限公司 Cast iron flange pipe joint manufacturing automatic processing machinery
CN113478362B (en) * 2021-09-07 2021-12-10 江苏隆凯森机械科技有限公司 Cast iron flange pipe joint manufacturing automatic processing machinery
CN116604452A (en) * 2023-05-15 2023-08-18 浙江樾筑科技有限公司 Building construction assembling climbing frame processing equipment and method thereof
CN116604452B (en) * 2023-05-15 2023-11-10 浙江樾筑科技有限公司 Building construction assembling climbing frame processing equipment and method thereof

Similar Documents

Publication Publication Date Title
JPH1128662A (en) Working method for tubular ceramic molding
US6383061B1 (en) Procedure of and device for processing optical lenses
US8360819B2 (en) Method for grinding a machine part, and grinding machine for carrying out said method
US7393261B2 (en) Cylindrical grinding method for producing hard metal tools and cylindrical grinding machine for grinding cylindrical starting bodies during the production of hard metal tools
WO2011093215A1 (en) Method for manufacturing roller
JP2007519533A (en) Zero centerline tool holder assembly
KR20010093805A (en) Method and device for grinding workpieces with centers which comprise form variations
CN106312484A (en) Double drive ring machining method
CN114161100B (en) Crank processing system and processing method
JP2577300B2 (en) Manufacturing method of ceramic ferrule
JP2002052447A (en) Notch grinding device for semiconductor wafer and notched groove chamfering method
JPH1076401A (en) Machining method and device for cylindrical workpiece having eccentric part
CN219787939U (en) Grinding tool for curved surface machining and numerically controlled grinder
JPH05253923A (en) Cylindrical ceramics machining method
JP2003071685A (en) Method of machining integral power roller
JPH11347901A (en) Truing tool and chamfering device for wafer therewith
JPH06114732A (en) Grinding wheel side surface shaping method by on-machine discharge truing method
Geddam et al. Interlinking dimensional tolerances with geometric accuracy and surface finish in the process design and manufactureof precision machined components
JPH04135120A (en) Method for machining twist groove with small diameter tool
JPH05245701A (en) Working process for long-sized workpiece
JPH0318086Y2 (en)
JP2003039244A (en) Method for manufacturing small diameter part
JPH0957359A (en) Grooving method and manufacture of dynamic pressure bearing
JPH02152757A (en) Perforating and beveling method
CN111993091A (en) Crankshaft machining device