JPH11278801A - Production of hydrogen gas - Google Patents

Production of hydrogen gas

Info

Publication number
JPH11278801A
JPH11278801A JP10083494A JP8349498A JPH11278801A JP H11278801 A JPH11278801 A JP H11278801A JP 10083494 A JP10083494 A JP 10083494A JP 8349498 A JP8349498 A JP 8349498A JP H11278801 A JPH11278801 A JP H11278801A
Authority
JP
Japan
Prior art keywords
water
hydrogen gas
chamber
pressure
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10083494A
Other languages
Japanese (ja)
Other versions
JP3407645B2 (en
Inventor
Ko Hatakeyama
耕 畠山
Hajime Kawasaki
始 川崎
Takeyoshi Den
建順 傳
Kenji Nishimura
建二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP08349498A priority Critical patent/JP3407645B2/en
Publication of JPH11278801A publication Critical patent/JPH11278801A/en
Application granted granted Critical
Publication of JP3407645B2 publication Critical patent/JP3407645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily produce high-pressure hydrogen gas with high reaction efficiency without loss of a catalyst due to the dissolution in a liq. reactant. SOLUTION: The powder 12 of a photoreactive semiconductor is uniformly dispersed in water 11 to prepare a dispersion. The dispersion is made subcritical or supercritical and then irradiated with light to decompose the water into hydrogen gas and oxygen gas. The oxygen gas is removed from the subscritical or supercritical water contg. the produced hydrogen gas and oxygen gas and the powder 12. The temp. pressure or both of the subcritical or supercritical remainder freed from the oxygen gas are lowered to liberate high-pressure hydrogen gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は亜臨界状態又は超臨
界状態の光反応性半導体粉末が分散した水に光を照射し
て光分解し高圧水素ガスを製造する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-pressure hydrogen gas by irradiating light on water in which a photoreactive semiconductor powder in a subcritical state or a supercritical state is dispersed and irradiating the water with light.

【0002】[0002]

【従来の技術】従来より、常温常圧の下でTiO2,Z
rO2,SrTiO3,K4Nb617等の光反応性半導体
を触媒として含む水に光を照射して水を光分解し、水素
ガスを触媒表面で発生させる方法が知られている(例え
ば、特開平7−88380,同9−70533,同9−
142804,同10−1301)。
2. Description of the Related Art Conventionally, TiO 2 , Z
There is known a method of irradiating water containing a photoreactive semiconductor such as rO 2 , SrTiO 3 , K 4 Nb 6 O 17 as a catalyst with light to decompose the water and generate hydrogen gas on the catalyst surface ( For example, Japanese Patent Application Laid-Open Nos. 7-88380, 9-70533, and 9-
142804, 10-1301).

【0003】[0003]

【発明が解決しようとする課題】しかし常温常圧の下で
行われる上記従来方法では、触媒表面に水素ガスが付
着して反応効率が低下し、触媒と水を含む反応液中に
水素ガスの気泡が発生するため、反応液内で光が散乱し
て照射光の透過性が悪くなり、触媒に光が当たること
により触媒が反応液中に溶解する光溶解の現象が生じる
ため、絶えず新しい触媒を補給することが必要となり、
また高圧の水素ガスを製造する場合には、発生した水
素ガスを加圧する必要がある等の問題がある。本発明の
目的は、触媒が反応液に溶解して喪失することがなく、
高い反応効率で容易に高圧の水素ガスを製造できる水素
ガスの製造方法を提供することにある。
However, in the above-mentioned conventional method which is carried out under normal temperature and normal pressure, hydrogen gas adheres to the surface of the catalyst to lower the reaction efficiency, and hydrogen gas is contained in the reaction solution containing the catalyst and water. Since bubbles are generated, light is scattered in the reaction solution and the transmittance of irradiation light deteriorates, and the light irradiates the catalyst, causing the catalyst to dissolve in the reaction solution. Need to be replenished,
In addition, when producing high-pressure hydrogen gas, there is a problem that it is necessary to pressurize the generated hydrogen gas. An object of the present invention is to prevent the catalyst from being dissolved and lost in the reaction solution,
An object of the present invention is to provide a method for producing hydrogen gas, which can easily produce high-pressure hydrogen gas with high reaction efficiency.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は図
1に示すように、水11に光反応性半導体粉末12を均
一に分散した分散液を作る工程と、上記分散液を亜臨界
状態又は超臨界状態にしかつ上記分散液に光を照射して
水11を水素ガスと酸素ガスに分解する工程と、上記水
素ガスと酸素ガスに分解した亜臨界状態又は超臨界状態
の半導体粉末12を含む水11から酸素ガスを取除く工
程と、上記酸素ガスを取除いた亜臨界状態又は超臨界状
態の残部の圧力又は温度のいずれか一方又は双方を低下
させることにより高圧の水素ガスを取出す工程とを含む
水素ガスの製造方法である。亜臨界状態又は超臨界状態
の水11は優れた拡散能力を有するため、触媒として作
用する光反応性半導体粉末12の表面で発生した水素ガ
スは速やかに水と均一相を形成する。この結果、触媒表
面への水素ガスの吸着は少なくなり水素生成効率が増大
する。また亜臨界状態又は超臨界状態の水中では触媒か
ら生じる無機イオンの溶解度が極めて低いため、触媒が
反応液中に溶解して喪失する光溶解の現象が極めて起こ
り難く、触媒の有効利用が可能となる。また特別の加圧
手段を設けることなく高圧の水素ガスが得られる。請求
項2に係る発明は請求項1に係る発明であって図1に示
すように、高圧の水素ガスを取出し、冷却した残液をそ
のまま或は濾過して、分散液に加える水素ガスの製造方
法である。高圧の水素ガスを取出した残液は分散液の一
部として再利用される。
According to the first aspect of the present invention, as shown in FIG. 1, a step of preparing a dispersion in which a photoreactive semiconductor powder 12 is uniformly dispersed in water 11 is provided. Irradiating the dispersion liquid with light to decompose water 11 into hydrogen gas and oxygen gas, and subcritical or supercritical semiconductor powder 12 decomposed into hydrogen gas and oxygen gas. Removing oxygen gas from water 11 containing hydrogen, and extracting high-pressure hydrogen gas by lowering one or both of the pressure and temperature of the remaining subcritical or supercritical state from which the oxygen gas has been removed. And a method for producing hydrogen gas. Since the water 11 in the subcritical state or the supercritical state has excellent diffusion ability, the hydrogen gas generated on the surface of the photoreactive semiconductor powder 12 acting as a catalyst quickly forms a uniform phase with the water. As a result, the adsorption of hydrogen gas on the catalyst surface decreases, and the efficiency of hydrogen generation increases. In addition, in subcritical or supercritical water, the solubility of inorganic ions generated from the catalyst is extremely low, so that the phenomenon of photodissolution, in which the catalyst dissolves in the reaction solution and is lost, is extremely unlikely to occur, and the catalyst can be used effectively. Become. Also, high-pressure hydrogen gas can be obtained without providing any special pressurizing means. The invention according to claim 2 is the invention according to claim 1, wherein as shown in FIG. 1, high-pressure hydrogen gas is taken out, and cooled residual liquid is directly or filtered to produce hydrogen gas to be added to the dispersion liquid. Is the way. The residual liquid from which the high-pressure hydrogen gas has been removed is reused as a part of the dispersion liquid.

【0005】請求項3に係る発明は図4に示すように、
光反応性半導体金属板49とこれを担持する金属板51
が貼り合わされた隔離板52で仕切られ半導体金属板4
9に面する第1室53と担持金属板51に面する第2室
54にそれぞれ水41を供給する工程と、第1室53及
び第2室54の水41をそれぞれ亜臨界状態又は超臨界
状態にしかつ半導体金属板49に光を照射することによ
り第1室53の水41を酸素ガスに第2室54の水41
を水素ガスにそれぞれ分解する工程と、第2室54で生
じた亜臨界状態又は超臨界状態の水素ガスとを含む水4
1の圧力又は温度のいずれか一方又は双方を低下させる
ことにより高圧の水素ガスを取出す工程とを含む水素ガ
スの製造方法である。光反応性半導体金属板49に光を
照射すると、半導体金属板49上で水が分解して、 H2O + 2p+ → 1/2O2 ↑ + 2H+ となり、第1室53に酸素ガスが発生する。また半導体
金属板49に光を照射すると、担持金属板51上で水が
分解して、 2H+ + 2e- → H2 ↑ となり、第2室54に水素ガスが発生する。亜臨界状態
又は超臨界状態の水は圧力が高いため、水の分子と担持
金属板51との衝突頻度が増大し、水素生成効率が増大
する。また特別の加圧手段を設けることなく高圧の水素
ガスが得られる。請求項4に係る発明は請求項3に係る
発明であって図4に示すように、高圧の水素ガスを取出
した残液を冷却した後、この残液を第1室53及び第2
室54に供給する水41に加える水素ガスの製造方法で
ある。高圧の水素ガスを取出した残液は電解液の一部と
して再利用される。
[0005] The invention according to claim 3 is as shown in FIG.
Photoreactive semiconductor metal plate 49 and metal plate 51 supporting the same
Is separated by a separator 52 to which the semiconductor metal plate 4 is attached.
A step of supplying water 41 to the first chamber 53 facing the fuel cell 9 and the second chamber 54 facing the supporting metal plate 51; and a step of bringing the water 41 of the first chamber 53 and the second chamber 54 into a subcritical state or a supercritical state, respectively. By irradiating the semiconductor metal plate 49 with light, the water 41 in the first chamber 53 is turned into oxygen gas, and the water 41 in the second chamber 54 is turned into oxygen gas.
Water containing the subcritical or supercritical hydrogen gas generated in the second chamber 54.
1) a step of extracting high-pressure hydrogen gas by lowering one or both of the pressure and the temperature. When the photoreactive semiconductor metal plate 49 is irradiated with light, water is decomposed on the semiconductor metal plate 49 to become H 2 O + 2p + → 1 / 2O 2 + + 2H + , and oxygen gas enters the first chamber 53. Occur. When the semiconductor metal plate 49 is irradiated with light, water is decomposed on the supporting metal plate 51 to be 2H + + 2e → H 2 、, and hydrogen gas is generated in the second chamber 54. Since water in a subcritical or supercritical state has a high pressure, the frequency of collision between water molecules and the supporting metal plate 51 increases, and the efficiency of hydrogen generation increases. Also, high-pressure hydrogen gas can be obtained without providing any special pressurizing means. The invention according to claim 4 is the invention according to claim 3, and as shown in FIG. 4, after cooling the residual liquid from which high-pressure hydrogen gas has been removed, the residual liquid is discharged to the first chamber 53 and the second chamber 53.
This is a method for producing hydrogen gas to be added to the water 41 supplied to the chamber 54. The residual liquid from which the high-pressure hydrogen gas has been removed is reused as a part of the electrolytic solution.

【0006】[0006]

【発明の実施の形態】本発明において、水の亜臨界状態
とは200〜374℃の温度でかつ160〜215kg
/cm2の圧力にある水の状態を意味する。また水の超
臨界状態とは374〜400℃の温度でかつ215〜3
00kg/cm2の圧力にある水の状態を意味する。亜
臨界状態における温度及び圧力の下限値未満では、反応
が遅く、水の分解効率が良くない。また超臨界状態にお
ける温度及び圧力の上限値を超えると反応容器に負荷が
かかり過ぎ、これも効率的でない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the subcritical state of water is a temperature of 200 to 374 ° C. and 160 to 215 kg.
Means the state of water at a pressure of / cm 2 . The supercritical state of water is a temperature of 374 to 400 ° C. and 215 to 3
It means the state of water at a pressure of 00 kg / cm 2 . If the temperature and pressure in the subcritical state are lower than the lower limits, the reaction is slow and the water decomposition efficiency is not good. If the temperature and pressure in the supercritical state exceed the upper limits, the reaction vessel is overloaded, which is not efficient.

【0007】本発明の請求項1及び2に係る水素ガスの
製造方法を図1〜図3に基づいて説明する。図1に示す
ように、水(H2O)11と光触媒の光反応性半導体粉
末12を撹拌容器13に入れ撹拌して、水11に光反応
性半導体粉末12を均一に分散した分散液(反応液)を
調製する。光反応性半導体粉末12は酸化チタン、酸化
亜鉛、酸化タングステン、酸化セリウム等の金属酸化物
やRb−Nb,Pb−Nb系の複合金属酸化物等がジル
コニウム、白金、ニッケル等の金属上に担持された構造
の粒径が10〜500μmの微粒子である。上記分散液
はバルブ14を介して水槽16に供給される。この水槽
16に貯えられた分散液はバルブ17を介してポンプ1
8で加圧され、かつプレヒータ19で加熱されて亜臨界
状態又は超臨界状態となって反応容器21に圧送され
る。反応容器21には図1の矢印で示す照射光を透過さ
せるサファイア、ダイアモンド等の材料からなる窓22
が形成されている。照射光としては波長300nm以下
の紫外線が好ましいが、これ以上の波長を有する光でも
使用することができる。こうした光照射源としては水銀
ランプ、ハロゲンランプ等が使用される。反応容器21
の上下両面には反応容器21を加熱するヒータ23が設
けられ、これにより反応容器21内において分散液は亜
臨界状態又は超臨界状態を維持する。
A method for producing hydrogen gas according to claims 1 and 2 of the present invention will be described with reference to FIGS. As shown in FIG. 1, a water (H 2 O) 11 and a photoreactive semiconductor powder 12 of a photocatalyst are placed in a stirring vessel 13 and agitated to disperse the photoreactive semiconductor powder 12 uniformly in the water 11 ( Reaction solution). In the photoreactive semiconductor powder 12, a metal oxide such as titanium oxide, zinc oxide, tungsten oxide, and cerium oxide, or a composite metal oxide such as Rb-Nb or Pb-Nb is supported on a metal such as zirconium, platinum, or nickel. Fine particles having a particle size of 10 to 500 μm in the structure provided. The dispersion is supplied to a water tank 16 via a valve 14. The dispersion liquid stored in the water tank 16 is supplied to the pump 1 through a valve 17.
8 and heated by the preheater 19 to be brought into a subcritical state or a supercritical state and fed to the reaction vessel 21 by pressure. The reaction vessel 21 has a window 22 made of a material such as sapphire or diamond that transmits the irradiation light indicated by the arrow in FIG.
Are formed. The irradiation light is preferably ultraviolet light having a wavelength of 300 nm or less, but light having a wavelength longer than that can be used. As such a light irradiation source, a mercury lamp, a halogen lamp, or the like is used. Reaction vessel 21
Heaters 23 for heating the reaction vessel 21 are provided on both upper and lower surfaces of the dispersion vessel, whereby the dispersion liquid maintains a subcritical state or a supercritical state in the reaction vessel 21.

【0008】この状態において光を窓22から反応容器
21内の分散液に照射すると、光は光触媒の光反応性半
導体粉末12の表面において水分子を分解し、次式で示
すように水素ガス及び酸素ガスを生じる。 2H2O → 2H2 + O2 反応容器21で発生した水素ガス及び酸素ガスを含む分
散液は反応容器21から取出され、ヒータ24で所定温
度に加熱された後、脱酸素槽26に送られる。図2に示
すように、脱酸素槽26の内壁には酸素と反応するチタ
ン等の金属の板27が分散液と十分な接触面積を確保で
きるように数多く所定間隔を保って配置されており、そ
の結果、分散液が脱酸素槽26内を通過する間に金属板
27と酸素が反応して分散液中の酸素が除去される。酸
素を除去されて水素ガスを含む分散液は脱酸素槽26か
ら取出され、バルブ28を介して水素と水の分離槽29
へ送られて圧力を降下することにより水と高圧の水素ガ
スに分離される。
In this state, when light is applied to the dispersion in the reaction vessel 21 through the window 22, the light decomposes water molecules on the surface of the photoreactive semiconductor powder 12 of the photocatalyst, and as shown in the following formula, hydrogen gas and This produces oxygen gas. The dispersion containing hydrogen gas and oxygen gas generated in the 2H 2 O → 2H 2 + O 2 reaction vessel 21 is taken out of the reaction vessel 21, heated to a predetermined temperature by the heater 24, and then sent to the deoxygenation tank 26. . As shown in FIG. 2, on the inner wall of the deoxygenation tank 26, a number of metal plates 27, such as titanium, reacting with oxygen are arranged at predetermined intervals so as to secure a sufficient contact area with the dispersion liquid. As a result, while the dispersion passes through the deoxidation tank 26, the metal plate 27 reacts with oxygen to remove oxygen from the dispersion. The dispersion liquid containing hydrogen gas from which oxygen has been removed is taken out of the deoxygenation tank 26, and separated from the hydrogen and water separation tank 29 through a valve 28.
The water is then separated into water and high-pressure hydrogen gas by reducing the pressure.

【0009】分離された高圧の水素ガスはバルブ31を
介して高圧水素貯蔵槽32に送られて保存される。水素
と水の分離槽29で高圧の水素ガスを分散液から取出し
た残液は冷却器33で冷却された後、フィルタ34に送
られる。残液中に含まれる光反応性半導体粉末12は上
述のように酸化チタン等の金属酸化物をジルコニウム、
白金等の金属上に担持させた構造の微粒子であるため、
反応容器21内で光触媒として使用された後において
は、例えば担持金属の白金と金属酸化物の酸化チタンと
が分離して光触媒としての機能を喪失する場合がある。
このような場合には、分離した担持金属と金属酸化物を
上記フィルタ34で濾過して取り除く。フィルタ34を
通過した残液はポンプ36で加圧されて水槽16に回収
され、反応容器21へ送られる分散液の一部として再利
用される。光反応性半導体粉末12が光触媒としての機
能を喪失していない場合には、水素と水の分離槽29で
高圧の水素ガスを分散液から取出した残液は冷却器33
で冷却された後、フィルタ34に送らないで直接にポン
プ36に送られ加圧されて水槽16に回収され、反応容
器21へ送られる分散液の一部として再利用される。
The separated high-pressure hydrogen gas is sent to a high-pressure hydrogen storage tank 32 via a valve 31 and stored therein. The residual liquid obtained by removing high-pressure hydrogen gas from the dispersion liquid in the hydrogen / water separation tank 29 is cooled by a cooler 33 and then sent to a filter 34. As described above, the photoreactive semiconductor powder 12 contained in the residual liquid is made of zirconium, a metal oxide such as titanium oxide.
Because it is a fine particle with a structure supported on a metal such as platinum,
After being used as a photocatalyst in the reaction vessel 21, for example, platinum as a supported metal and titanium oxide as a metal oxide may separate and lose the function as a photocatalyst.
In such a case, the separated supported metal and metal oxide are removed by filtration through the filter 34. The residual liquid that has passed through the filter 34 is pressurized by the pump 36, collected in the water tank 16, and reused as a part of the dispersion liquid sent to the reaction vessel 21. When the photoreactive semiconductor powder 12 has not lost its function as a photocatalyst, the residual liquid obtained by extracting high-pressure hydrogen gas from the dispersion in the hydrogen / water separation tank 29 is cooled by the cooler 33.
After being cooled in, the water is directly sent to the pump 36 without being sent to the filter 34 and pressurized, collected in the water tank 16, and reused as a part of the dispersion liquid sent to the reaction vessel 21.

【0010】図1及び図2に基づく実施態様では脱酸素
槽26は反応容器21の外側に独立して設けられる。し
かしこれ以外にも脱酸素槽26を反応容器21の内側に
反応容器21と一体に設けることも可能である。例えば
図3に示すように、反応容器21内の出口部分に脱酸素
装置37を設けて、反応容器21内で生じた酸素を除去
してもよい。即ち、脱酸素装置37の内壁には酸素と反
応する金属板38が分散液と十分な接触面積を確保でき
るように数多く所定間隔を保って配置されており、反応
容器21で発生した水素ガス及び酸素ガスを含む分散液
が矢印で示すように脱酸素装置37内を通過する間に金
属板38と酸素が反応して分散液中の酸素が除去され
る。この金属板38の材質としてはチタン等が挙げられ
る。酸素を除去されて水素ガスを含む分散液は脱酸素装
置37の出口から矢印で示すように取出され、バルブ2
8を介して水素と水の分離槽29へ送られる。
In the embodiment according to FIGS. 1 and 2, the deoxygenation tank 26 is provided independently outside the reaction vessel 21. However, it is also possible to provide the deoxygenation tank 26 integrally with the reaction vessel 21 inside the reaction vessel 21. For example, as shown in FIG. 3, a deoxygenator 37 may be provided at an outlet portion in the reaction vessel 21 to remove oxygen generated in the reaction vessel 21. That is, a large number of metal plates 38 reacting with oxygen are arranged at predetermined intervals on the inner wall of the deoxidizer 37 so as to secure a sufficient contact area with the dispersion liquid. While the dispersion containing oxygen gas passes through the inside of the deoxidizer 37 as indicated by the arrow, the metal plate 38 reacts with oxygen to remove oxygen in the dispersion. Examples of the material of the metal plate 38 include titanium and the like. The dispersion containing hydrogen gas from which oxygen has been removed is taken out from the outlet of the deoxidizer 37 as shown by the arrow, and the valve 2
The water is sent to the hydrogen / water separation tank 29 through the pipe 8.

【0011】本発明の請求項3及び4に係る水素ガスの
製造方法を図4に基づいて説明する。図4に示すよう
に、水(H2O)41をバルブ42を介して水槽43に
供給する。水槽43に貯えられた水41はバルブ44を
介してポンプ46で加圧され、かつプレヒータ47で加
熱されて亜臨界状態又は超臨界状態となって反応容器4
8に圧送される。反応容器48は光反応性半導体金属板
49とこれを担持する金属板51が貼り合わされた隔離
板52で仕切られる。その結果、光反応性半導体金属板
49に面する第1室53と上記担持金属板51に面する
第2室54が形成される。光反応性半導体金属板49の
材料としてはチタン、SrTiO2,BaTiO49
どのTi化合物やNb系の化合物等の半導体金属が挙げ
られる。また担持金属板51の材料としては白金、ジル
コニウム、ニッケル、ロジウム等の金属が挙げられる。
亜臨界状態又は超臨界状態となって反応容器48に圧送
された水41は反応容器48の第1室53と第2室54
にそれぞれ供給される。反応容器48の上下両面には反
応容器48を加熱するヒータ56が設けられ、これによ
り反応容器48の第1室53及び第2室54内において
水は亜臨界状態又は超臨界状態を維持する。反応容器4
8にはサファイア、ダイアモンド等の材料からなる窓5
7が形成されている。
A method for producing hydrogen gas according to claims 3 and 4 of the present invention will be described with reference to FIG. As shown in FIG. 4, water (H 2 O) 41 is supplied to a water tank 43 via a valve 42. The water 41 stored in the water tank 43 is pressurized by a pump 46 via a valve 44 and heated by a preheater 47 to be in a subcritical state or a supercritical state.
8 to be pumped. The reaction container 48 is partitioned by a photoreactive semiconductor metal plate 49 and a separator 52 on which a metal plate 51 supporting the same is bonded. As a result, a first chamber 53 facing the photoreactive semiconductor metal plate 49 and a second chamber 54 facing the supporting metal plate 51 are formed. Examples of the material of the photoreactive semiconductor metal plate 49 include semiconductor metals such as titanium, Ti compounds such as SrTiO 2 and BaTiO 4 O 9 , and Nb-based compounds. In addition, examples of the material of the supporting metal plate 51 include metals such as platinum, zirconium, nickel, and rhodium.
The water 41 pumped to the reaction vessel 48 in a subcritical or supercritical state is supplied to the first chamber 53 and the second chamber 54 of the reaction vessel 48.
Respectively. Heaters 56 for heating the reaction vessel 48 are provided on both upper and lower surfaces of the reaction vessel 48, whereby water is maintained in a subcritical state or a supercritical state in the first chamber 53 and the second chamber 54 of the reaction vessel 48. Reaction vessel 4
8 is a window 5 made of a material such as sapphire or diamond.
7 are formed.

【0012】この状態において、照射光として例えば、
波長300nm以下の紫外線を窓57から光反応性半導
体金属板49の表面に照射すると、光は半導体金属板4
9の表面において水分子を分解して第1室53に酸素ガ
スが発生し、第2室54に水素ガスが発生する。第1室
53と第2室54は隔離板52で仕切られているため、
発生した酸素ガスと水素ガスが混じり合うことはない。
第2室54で発生した水素ガスを含む水は第2室54か
ら取出され、減圧弁58を介して水素と水の分離槽59
へ送られて圧力を降下することにより水と高圧の水素ガ
スに分離される。分離された高圧の水素ガスはバルブ6
1を介して高圧水素貯蔵槽62に送られて保存される。
水素と水の分離槽59で水素ガスから分離された水は冷
却器63で冷却された後、ポンプ64で加圧されて水槽
43に回収され、反応容器48へ送られる水の一部とし
て再利用される。第1室53で発生した酸素ガスを含む
水は第1室53から取出され、酸素と水の分離槽66へ
送られて圧力を降下することにより水と酸素ガスに分離
される。分離された酸素ガスはバルブ67を介して高圧
酸素貯蔵槽68に送られて保存される。酸素と水の分離
槽66で酸素ガスから分離された水は冷却器69で冷却
された後、水槽43に回収され、反応容器48へ送られ
る水の一部として再利用される。
In this state, as the irradiation light, for example,
When ultraviolet light having a wavelength of 300 nm or less is irradiated from the window 57 onto the surface of the photoreactive semiconductor metal plate 49, light is emitted from the semiconductor metal plate 4.
Water molecules are decomposed on the surface of No. 9 to generate oxygen gas in the first chamber 53, and hydrogen gas is generated in the second chamber. Since the first chamber 53 and the second chamber 54 are separated by the separator 52,
The generated oxygen gas and hydrogen gas do not mix.
Water containing hydrogen gas generated in the second chamber 54 is taken out of the second chamber 54, and is separated through a pressure reducing valve 58 into a separation tank 59 for hydrogen and water.
The water is then separated into water and high-pressure hydrogen gas by reducing the pressure. The separated high-pressure hydrogen gas is supplied to the valve 6
1 and sent to and stored in the high-pressure hydrogen storage tank 62.
The water separated from the hydrogen gas in the hydrogen / water separation tank 59 is cooled by the cooler 63, then pressurized by the pump 64, collected in the water tank 43, and re-used as a part of the water sent to the reaction vessel 48. Used. Water containing oxygen gas generated in the first chamber 53 is taken out of the first chamber 53, sent to an oxygen / water separation tank 66, and reduced in pressure to be separated into water and oxygen gas. The separated oxygen gas is sent to a high-pressure oxygen storage tank 68 via a valve 67 and stored. The water separated from the oxygen gas in the oxygen / water separation tank 66 is cooled by the cooler 69 and then collected in the water tank 43 and reused as a part of the water sent to the reaction vessel 48.

【0013】[0013]

【発明の効果】以上述べたように、本発明によれば、水
に光反応性半導体粉末を均一に分散した分散液を作り、
この分散液を亜臨界状態又は超臨界状態にし光を照射し
て水を水素ガスと酸素ガスに分解し、水素ガスと酸素ガ
スに分解した亜臨界状態又は超臨界状態の光反応性半導
体粉末を含む水から酸素ガスを取除き、酸素ガスを取除
いた亜臨界状態又は超臨界状態の残部の圧力又は温度の
いずれか一方又は双方を低下させることにより高圧の水
素ガスを取出すようにしたので、触媒として作用する光
反応性半導体粉末の表面で発生した水素ガスは速やかに
水と均一相を形成し、触媒表面への水素ガスの吸着は少
なくなり水素生成効率が増大する。また触媒が反応液中
に溶解して喪失する光溶解の現象が極めて起こり難く、
触媒の有効利用が可能となる。
As described above, according to the present invention, a dispersion in which a photoreactive semiconductor powder is uniformly dispersed in water is prepared.
This dispersion is irradiated with light in a subcritical state or a supercritical state to decompose water into hydrogen gas and oxygen gas, and a subcritical or supercritical photoreactive semiconductor powder decomposed into hydrogen gas and oxygen gas is obtained. Since the oxygen gas was removed from the water containing the oxygen gas, the high-pressure hydrogen gas was removed by reducing one or both of the pressure and temperature of the remaining subcritical or supercritical state from which the oxygen gas was removed, Hydrogen gas generated on the surface of the photoreactive semiconductor powder acting as a catalyst quickly forms a uniform phase with water, and the adsorption of hydrogen gas on the catalyst surface decreases, and the hydrogen generation efficiency increases. In addition, the phenomenon of photodissolution, in which the catalyst is dissolved in the reaction solution and lost, is extremely unlikely to occur,
The catalyst can be effectively used.

【0014】また本発明によれば、光反応性半導体金属
板とこれを担持する金属板が貼り合わされた隔離板で仕
切られ、半導体金属板に面する第1室と担持金属板に面
する第2室にそれぞれ水を供給し、第1室及び第2室の
水をそれぞれ亜臨界状態又は超臨界状態にしかつ光反応
性半導体金属板に光を照射することにより第1室の水を
酸素ガスに第2室の水を水素ガスにそれぞれ分解し、第
2室で生じた亜臨界状態又は超臨界状態の水素ガスを含
む水の圧力又は温度のいずれか一方又は双方を低下させ
ることにより高圧の水素ガスを取出すようにしたので、
水の分子と担持金属板との衝突頻度が増大し、水素生成
効率が増大する。更に特別の加圧手段を設けることなく
高圧の水素ガスが得られる。
Further, according to the present invention, a photoreactive semiconductor metal plate and a metal plate supporting the same are separated by a separator bonded to each other, and the first chamber facing the semiconductor metal plate and the first chamber facing the support metal plate. Water is supplied to each of the two chambers, the water in the first and second chambers is brought into a subcritical state or a supercritical state, respectively, and the water in the first chamber is irradiated with light by irradiating the photoreactive semiconductor metal plate with oxygen gas. The water in the second chamber is decomposed into hydrogen gas, and one or both of the pressure and the temperature of the water containing the hydrogen gas in the subcritical state or the supercritical state generated in the second chamber is reduced, thereby increasing the pressure of the high pressure. I tried to extract hydrogen gas,
The frequency of collision between water molecules and the supported metal plate increases, and the hydrogen generation efficiency increases. Further, high-pressure hydrogen gas can be obtained without providing any special pressurizing means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素ガスの製造装置の構成図。FIG. 1 is a configuration diagram of an apparatus for producing hydrogen gas of the present invention.

【図2】図1の装置で脱酸素槽の構造を説明する構成
図。
FIG. 2 is a configuration diagram illustrating a structure of a deoxygenation tank in the apparatus of FIG.

【図3】脱酸素装置を反応容器の内部に設けた実施態様
を示す構成図。
FIG. 3 is a configuration diagram showing an embodiment in which a deoxygenating device is provided inside a reaction vessel.

【図4】本発明の水素ガスの製造装置の別の実施態様を
示す構成図。
FIG. 4 is a configuration diagram showing another embodiment of the apparatus for producing hydrogen gas of the present invention.

【符号の説明】[Explanation of symbols]

11,41 水 12 光反応性半導体粉末 16,43 水槽 21,48 反応容器 26 脱酸素槽 29,59 水素と水の分離槽 32,62 高圧水素貯蔵槽 49 光反応性半導体金属板 51 金属板 66 酸素と水の分離槽 68 高圧酸素貯蔵槽 11,41 Water 12 Photoreactive semiconductor powder 16,43 Water tank 21,48 Reaction vessel 26 Deoxygenation tank 29,59 Hydrogen and water separation tank 32,62 High pressure hydrogen storage tank 49 Photoreactive semiconductor metal plate 51 Metal plate 66 Oxygen and water separation tank 68 High pressure oxygen storage tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 傳 建順 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社那珂エ ネルギー研究所内 (72)発明者 西村 建二 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社那珂エ ネルギー研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Ken-Jun 1002 6-headed Mukaiyama character Naka-machi, Naka-gun, Naka-gun, Ibaraki 14 Mitsubishi Materials Corporation Naka Energy Research Laboratory (72) Inventor Kenji Nishimura Ibaraki 1414 Mitsubishi Materials Co., Ltd., Naka Energy Research Lab.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水(11)に光反応性半導体粉末(12)を均一
に分散した分散液を作る工程と、 前記分散液を亜臨界状態又は超臨界状態にしかつ前記分
散液に光を照射して前記水(11)を水素ガスと酸素ガスに
分解する工程と、 前記水素ガスと酸素ガスに分解した亜臨界状態又は超臨
界状態の前記粉末(12)を含む水(11)から酸素ガスを取除
く工程と、 前記酸素ガスを取除いた亜臨界状態又は超臨界状態の残
部の圧力又は温度のいずれか一方又は双方を低下させる
ことにより高圧の水素ガスを取出す工程とを含む水素ガ
スの製造方法。
1. A step of preparing a dispersion in which a photoreactive semiconductor powder (12) is uniformly dispersed in water (11), and bringing the dispersion into a subcritical state or a supercritical state, and irradiating the dispersion with light. Decomposing the water (11) into hydrogen gas and oxygen gas, and oxygen gas from the water (11) containing the powder (12) in a subcritical or supercritical state decomposed into the hydrogen gas and oxygen gas. Removing the high-pressure hydrogen gas by reducing one or both of the pressure and the temperature of the remaining subcritical or supercritical state from which the oxygen gas has been removed. Production method.
【請求項2】 高圧の水素ガスを取出し、冷却した残液
をそのまま或は濾過して、分散液に加える請求項1記載
の水素ガスの製造方法。
2. The method for producing hydrogen gas according to claim 1, wherein high-pressure hydrogen gas is taken out, and the cooled residual liquid is added as it is or filtered to the dispersion.
【請求項3】 光反応性半導体金属板(49)とこれを担持
する金属板(51)が貼り合わされた隔離板(52)で仕切られ
前記半導体金属板(49)に面する第1室(53)と前記担持金
属板に面する第2室(54)にそれぞれ水(41)を供給する工
程と、 前記第1室(53)及び第2室(54)の水をそれぞれ亜臨界状
態又は超臨界状態にしかつ前記半導体金属板(49)に光を
照射することにより前記第1室(53)の水を酸素ガスに前
記第2室(54)の水を水素ガスにそれぞれ分解する工程
と、 前記第2室(54)で生じた亜臨界状態又は超臨界状態の水
素ガスとを含む水の圧力又は温度のいずれか一方又は双
方を低下させることにより高圧の水素ガスを取出す工程
とを含む水素ガスの製造方法。
3. A first chamber facing a semiconductor metal plate (49), which is separated by a separator (52) in which a photoreactive semiconductor metal plate (49) and a metal plate (51) supporting the same are bonded to each other. 53) and a step of supplying water (41) to each of the second chambers (54) facing the supporting metal plate, and the water in the first chamber (53) and the second chamber (54) are each in a subcritical state or Decomposing water in the first chamber (53) into oxygen gas and hydrogen in the second chamber (54) into hydrogen gas by supercritically irradiating the semiconductor metal plate (49) with light; Removing high-pressure hydrogen gas by lowering one or both of the pressure and temperature of water containing the subcritical or supercritical hydrogen gas generated in the second chamber (54). Method for producing hydrogen gas.
【請求項4】 高圧の水素ガスを取出した残液を冷却し
た後、この残液を第1室(53)及び第2室(54)に供給する
水(41)に加える請求項3記載の水素ガスの製造方法。
4. The method according to claim 3, wherein after cooling the residual liquid from which high-pressure hydrogen gas has been removed, the residual liquid is added to water (41) supplied to the first chamber (53) and the second chamber (54). Method for producing hydrogen gas.
JP08349498A 1998-03-30 1998-03-30 Method for producing hydrogen gas Expired - Fee Related JP3407645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08349498A JP3407645B2 (en) 1998-03-30 1998-03-30 Method for producing hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08349498A JP3407645B2 (en) 1998-03-30 1998-03-30 Method for producing hydrogen gas

Publications (2)

Publication Number Publication Date
JPH11278801A true JPH11278801A (en) 1999-10-12
JP3407645B2 JP3407645B2 (en) 2003-05-19

Family

ID=13804046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08349498A Expired - Fee Related JP3407645B2 (en) 1998-03-30 1998-03-30 Method for producing hydrogen gas

Country Status (1)

Country Link
JP (1) JP3407645B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040395A1 (en) * 2000-07-04 2002-05-23 Zakrytoe Aktsionernoe Obschestvo 'firma Rikom' Method of manufacturing hydrogen
US7166753B2 (en) 2002-04-12 2007-01-23 Suntory Limited Process for production of hydrogen and carbonyl compounds by reacting sub- or super-critical water with alcohols
JP2007054742A (en) * 2005-08-25 2007-03-08 Niigata Univ Hydrogen generating catalyst, hydrogen generating electrode, and manufacturing method thereof
JP2007099535A (en) * 2005-09-30 2007-04-19 Itec Co Ltd Hydrogen production apparatus
CN105214656A (en) * 2015-11-03 2016-01-06 福州大学 Gold nano cluster-golden nanometer particle-titanium dioxide composite photocatalyst and application
JP2020093950A (en) * 2018-12-12 2020-06-18 東洋エンジニアリング株式会社 Apparatus and method for producing hydrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040395A1 (en) * 2000-07-04 2002-05-23 Zakrytoe Aktsionernoe Obschestvo 'firma Rikom' Method of manufacturing hydrogen
US7166753B2 (en) 2002-04-12 2007-01-23 Suntory Limited Process for production of hydrogen and carbonyl compounds by reacting sub- or super-critical water with alcohols
JP2007054742A (en) * 2005-08-25 2007-03-08 Niigata Univ Hydrogen generating catalyst, hydrogen generating electrode, and manufacturing method thereof
JP2007099535A (en) * 2005-09-30 2007-04-19 Itec Co Ltd Hydrogen production apparatus
CN105214656A (en) * 2015-11-03 2016-01-06 福州大学 Gold nano cluster-golden nanometer particle-titanium dioxide composite photocatalyst and application
JP2020093950A (en) * 2018-12-12 2020-06-18 東洋エンジニアリング株式会社 Apparatus and method for producing hydrogen

Also Published As

Publication number Publication date
JP3407645B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
JP4931001B2 (en) Method for accelerating cavitation reaction and method for producing metal nanoparticles using the same
DE102011109806A1 (en) Sonochemical synthesis of titanium-containing oxides
US5968337A (en) Apparatus and method for constant flow oxidizing of organic materials
CN104831071A (en) Method for recovering platinum and palladium from waste carrier catalyst by hydrothermal method
EP1238946B1 (en) Production method of ultrafine gold particle-dissolved water
JP2002516755A (en) Water electrolysis fluid management system
JPH11278801A (en) Production of hydrogen gas
Seymour et al. Sonochemical reactions at 640 kHz using an efficient reactor. Oxidation of potassium iodide
JP2010259496A (en) Decomposition treatment method for organic halogen compound and decomposition treatment device
US6179902B1 (en) Apparatus for recovering, refining, and storing hydrogen gas
KR0171584B1 (en) Process for removing dissolved oxygen from water and system therefor
JP2003236551A (en) Method and device for decomposing organic halide
WO2003010346A2 (en) Wet process and reactor for the recovery of platinum group metals from automobile catalytic converters
RU2350563C2 (en) Aluminium and hydrogen production plant
JP5665166B2 (en) Multi-phase multi-function reactor
EP3188815B1 (en) Method of selective extraction of platinoids, from a support containing same, with an extraction medium consisting of a supercritical fluid and an organic ligand
JP3442623B2 (en) Decomposition method of halogen-containing organic compounds
KR20010045087A (en) Inorganic chemical treatment of industrial wastewater
JP4465696B2 (en) Method and apparatus for decomposing organic substances in water
CN110981049A (en) Efficient catalytic degradation method for organic wastewater
JP4310718B2 (en) Polishing slurry-containing wastewater treatment equipment for CMP
JPH05147928A (en) Method for removing halogenic acid ion contained in alkali metal halide aqueous solution
JP2006075740A (en) Ionic liquid refining process
JPS62216924A (en) Method for recovering platinum metal from waste catalyst
JP2678836B2 (en) Method of regenerating ferric chloride solution

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030212

LAPS Cancellation because of no payment of annual fees