KR20010045087A - Inorganic chemical treatment of industrial wastewater - Google Patents

Inorganic chemical treatment of industrial wastewater Download PDF

Info

Publication number
KR20010045087A
KR20010045087A KR1019990048218A KR19990048218A KR20010045087A KR 20010045087 A KR20010045087 A KR 20010045087A KR 1019990048218 A KR1019990048218 A KR 1019990048218A KR 19990048218 A KR19990048218 A KR 19990048218A KR 20010045087 A KR20010045087 A KR 20010045087A
Authority
KR
South Korea
Prior art keywords
ions
industrial wastewater
treatment
ion
inorganic
Prior art date
Application number
KR1019990048218A
Other languages
Korean (ko)
Other versions
KR100343126B1 (en
Inventor
위성수
김기준
Original Assignee
위성수
김기준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 위성수, 김기준 filed Critical 위성수
Priority to KR1019990048218A priority Critical patent/KR100343126B1/en
Publication of KR20010045087A publication Critical patent/KR20010045087A/en
Application granted granted Critical
Publication of KR100343126B1 publication Critical patent/KR100343126B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents

Abstract

PURPOSE: Disclosed is a method for treating wastewater using inorganic feed for improving treatment efficiency. Above method comprises the steps of (a) injecting inorganic feed for improving removal efficiency of BOD (Biological Oxygen Demand) and COD (Chemical Oxygen Demand); (b) irradiating supersonic wave for removing non-biodegradable organic compounds; and (c) injecting ozone thereinto for deodorizing and decolorizing. CONSTITUTION: The inorganic feed is made by follow steps: (a) mixing ammonia gas with 0.1 M sulfuric acid solution; (b) electrolysis thereof for getting (NH4)2S2O8; (c) mixing of (NH)2S2O8, NaOH, and Al2O3 in a molar ratio of 1:2:1 for 24 hours; (d) drying it at 110 deg.C; (e) calcining at 400 deg.C with air blow; and (f) cooling it for getting precipitate.

Description

오수 및 산업폐수의 처리방법{Inorganic chemical treatment of industrial wastewater}Inorganic chemical treatment of industrial wastewater

본 발명은 오수 및 산업폐수의 처리방법에 관한 것으로서, 더욱 상세하게는 오수 및 산업폐수의 재활용에 있어서 오존발생장치와 초음파를 이용하되 특정의 무기시료를 첨가함으로써 BOD와 COD 제거율을 높이면서 단시간에 다량의 폐수를 처리할 수 있는 방법에 관한 것이다.The present invention relates to a method for treating sewage and industrial wastewater, and more particularly, in the recycling of sewage and industrial wastewater, by using a ozone generator and an ultrasonic wave, by adding a specific inorganic sample, BOD and COD removal rates are increased in a short time. The present invention relates to a method for treating a large amount of wastewater.

각종 산업체에서 배출되는 폐수도 그 양이 증대되면서 성분 또한 다양화되고 있고, 이중 유해물질의 방출로 야기되는 인간 및 생태계에 대한 환경위해성 문제가 점차 심각하게 제기되고 있다.As the amount of wastewater discharged from various industries increases, the composition is also diversified, and environmental risks to humans and ecosystems caused by the release of harmful substances are being raised seriously.

또한, 폐수의 성분의 다양화됨에 따라 폐수처리에 있어서도 종래의 처리기술로는 쉽게 분해나 제거되지 않는 경향이 두드러지고 있으므로 유독성 페수 중에서 이들 성분을 효과적으로 제거할 수 있는 새로운 기술의 개발이 절실히 요구되고 있다.In addition, as the components of the wastewater are diversified, the conventional treatment technology tends not to be easily decomposed or removed even in wastewater treatment. Therefore, there is an urgent need for the development of new technologies that can effectively remove these components from toxic wastewater. have.

기존에 오수 및 폐수처리 방법 및 시설 중 Fenton 방법이나 최종 여과설비는 생물학적 처리 후 용존산소의 결핍으로 인해 발생되는 유기물, 미세부유물 등으로 인해 여과조 내부에서 혐기성 분해를 하게 되어 처리수에 냄새를 유발하거나 활성탄의 막힘현상으로 여과불능 및 처리효율이 급격히 저하되어 계속 사용이 어렵다. 또한, 생물학적 처리가 불안정하거나 관리소홀로 인해 유출수의 색도나 유기물 농도가 높아 여과성능이 저하되고 COD와 BOD 처리효율이 미흡할 뿐만 아니라 지속적 사용이 어려우므로 비경제적이었다.The existing Fenton method or final filtration system among sewage and wastewater treatment methods and facilities causes anaerobic decomposition inside the filtration tank due to organic matter and micro suspended solids caused by the lack of dissolved oxygen after biological treatment, causing odor to the treated water. The clogging of activated carbon causes the filtration and treatment efficiency to drop dramatically, making it difficult to continue using. In addition, due to unstable biological treatment or negligence of management, the effluent has high chromaticity or organic matter concentration, which lowers the filtration performance, and the COD and BOD treatment efficiency is insufficient.

본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로서, 우수한 산업폐수 처리기능을 가지면서 상온·상압 하에서 선택성이 높게 처리할 수 있는 오수 및 산업폐수의 처리방법을 제공하는 데 그 목적이 있다.An object of the present invention is to solve the problems as described above, and to provide a method for treating sewage and industrial wastewater that can be treated with high selectivity under normal temperature and atmospheric pressure while having an excellent industrial wastewater treatment function.

또한, 본 발명은 폐수를 단시간에 다량 처리할 수 있는 새롭고 효율적인 폐수처리방법을 제공하는 데도 그 목적이 있다.It is also an object of the present invention to provide a new and efficient wastewater treatment method capable of treating a large amount of wastewater in a short time.

그리고, 본 발명은 종래 Fenton 방법 등으로는 쉽게 처리되지 않는 난분해성 유기물질을 짧은 시간 동안 효율적으로 처리할 수 있는 방법을 제공하는 데도 그 목적이 있다.In addition, an object of the present invention is to provide a method for efficiently treating a hardly decomposable organic material that is not easily treated with a conventional Fenton method for a short time.

이와같은 목적을 달성하기 위한 본 발명의 오수 및 산업폐수의 처리방법은 난분해성 유기화합물이 함유된 폐수에 무기시료를 첨가하여 BOD와 COD 제거효율을 높이는 단계; 상기 처리물을 초음파를 이용하여 상기 유기화합물을 분해·제거하여 여액을 얻는 단계; 상기 여액을 오존처리하여 색도와 탈취하는 산화단계로 이루어진 데 그 특징이 있다.The treatment method of sewage and industrial wastewater of the present invention for achieving the above object comprises the steps of increasing the removal efficiency of BOD and COD by adding an inorganic sample to the wastewater containing hardly decomposable organic compounds; Decomposing and removing the organic compound using ultrasonic waves to obtain a filtrate; Ozone treatment of the filtrate is characterized by consisting of an oxidation step of deodorizing color and.

본 발명은 산업폐수 처리를 위해 특정의 무기시료를 제조하였는 바, 무기시료의 제조 메카니즘을 살펴보면 다음과 같다.In the present invention, a particular inorganic sample was prepared for industrial wastewater treatment, and the manufacturing mechanism of the inorganic sample was as follows.

상온과 상압 하에서 암모니아 기체와 0.1M 황산용액의 반응물을 이용하여 전기분해에 의해 황산암모니아를 얻고, 이 생성물에 황산용액을 상기와 같은 공정을 반복하여 과산화 이황산이암모늄을 얻는다. 이때, 수득율은 95되고 냉각시 침전된다.Ammonia sulfate is obtained by electrolysis using a reactant of ammonia gas and 0.1M sulfuric acid solution at room temperature and atmospheric pressure, and sulfuric acid solution is repeated to the product to obtain diammonium persulfate. At this time, the yield is 95 and precipitates on cooling.

이와같이 얻어진 생성물은 페놀을 포함하고 있는 폐수를 선택적으로 흡착 및 분해시켜 이산화탄소와 물을 만든다.The product thus obtained selectively adsorbs and decomposes wastewater containing phenol to produce carbon dioxide and water.

본 발명에 따라 얻어진 무기시료는 유기물질에 뛰어난 선택성을 보여주는 복합산화물이며, 다른 폐수처리제에 비하여 우수한 안정성과 넓은 표면적을 가지고 있다.The inorganic sample obtained according to the present invention is a composite oxide showing excellent selectivity to organic materials, and has excellent stability and wide surface area compared to other wastewater treatment agents.

보다 상세하게 본 발명의 폐수처리제인 무기시료의 제조방법을 살펴보면;Looking at the manufacturing method of the inorganic sample of the wastewater treatment agent of the present invention in more detail;

폐수처리제의 전형적인 제조방법과 폐수처리 반응의 응용은 반응 전해조에서 암모니아 기체를 황산용액 0.1M에 불어 넣으면서 백금과 흑연봉으로 구성된 전극에 전류를 통해 줌에 따라 과산화이화산 암모늄을 얻는다. 이를 다시 복분해하거나 전해조를 통해 얻은 생성물을 수처리에 사용하는 데 알루미나가 사용되었고, 나트륨은 수산화나트륨, 산화철을 0.1M 과산화이황산암모늄 용액에 몰비 (NH4)2S2O8: NaOH: Al2O3= 1:2:1가 되도록 녹인 후 24시간 교반하였고, 건조는 110℃로 유지시킨 오븐에서 소성은 400℃로 유지시킨 고열로에서 공기를 불어 넣어줌으로써 행하였다.A typical method for producing a wastewater treatment agent and application of wastewater treatment reaction is to obtain ammonium peroxide as a current is passed through an electrode composed of platinum and graphite rods while blowing ammonia gas into 0.1M sulfuric acid solution in a reaction electrolyzer. Alumina was used to metathesize this again or use the product obtained through the electrolytic cell in water treatment, and sodium was dissolved in sodium hydroxide and iron oxide in a 0.1 M ammonium peroxide solution (NH 4 ) 2 S 2 O 8 : NaOH: Al 2 O It melt | dissolved so that it may become 3 = 1: 2: 1, and it stirred for 24 hours, and drying was performed by blowing air in the high temperature furnace which maintained at 400 degreeC in the oven maintained at 110 degreeC.

본 발명에 따라 얻어진 무기시료의 제조과정의 일예는 다음 반응식 1과 같다.An example of the preparation process of the inorganic sample obtained according to the present invention is shown in Scheme 1 below.

전기에너지Electric energy

2NH3+2H2SO4-----------〉 (NH4)2S2O8+ H2 2NH 3 + 2H 2 SO 4 -----------> (NH 4 ) 2 S 2 O 8 + H 2

(NH4)2S2O8+ 2NaOH + Al2O3------------〉 Na2S2Al2O10·(H2O) + 2NH4OH(NH 4 ) 2 S 2 O 8 + 2 NaOH + Al 2 O 3 ------------> Na 2 S 2 Al 2 O 10 (H 2 O) + 2NH 4 OH

이들의 반응물질을 이용하여 격막을 사용하거나 격막이 없는 전해조에서 본 발명에 따른 무기시료를 얻는데, 공정조건에서 사용전압은 8∼12V이고, 전류는 4∼15V이며, 전류밀도는 0.1∼0.15A/㎠이다. 전체 수득율은 사용된 전력으로 비교할 때 약 90이고, 알칼리 과산화이황산 염 등이 복분해에 의해 얻어질 수 있으며, 순수한 무기시료는 냉각시에 침전되며 모액에 반응물을 첨가하여 전기분해조로 재순환시킨다. 결과적으로 얻어진 부상물을 농축하면 본 발명에서 폐수처리제로 사용되는 무기시료를 얻을 수 있다.Using these reactants, an inorganic sample according to the present invention is obtained in an electrolytic cell using a diaphragm or without a diaphragm. The process voltage is 8 to 12 V, a current is 4 to 15 V, and a current density is 0.1 to 0.15 A. / Cm 2. The overall yield is about 90 when compared with the power used, alkali persulfate salts and the like can be obtained by metathesis, pure inorganic samples are precipitated upon cooling and recycled to the electrolysis bath by adding the reactants to the mother liquor. Concentration of the resultant flotation results in an inorganic sample used as wastewater treatment agent in the present invention.

위 반응은 포화조(saturator)라고 불리우는 반응기에서 진행되는 데, 이곳에서 미세한 결정들이 알맞은 정도의 크기로 성장하는데 필요한 시간만큼 충분히 머무르도록 한다. 전기화학적 공정에서 황산, 황산과 황상암모늄의 수용액이 양극에서 전기화학적으로 산화되어 과산화이황산이나 과산화이황화암모늄이 생성되는데, 이를 이용하여 무기시료를 제조하게 된다. 과산화이황산이암모늄은 황산암모늄과 황산용액을 전기분해하여 얻고, 과산화이황산이암모늄과 수산화나트륨을 전기분해에 의해 전해조에서 제조하거나, 복분해 반응에 의해 얻은 생성물이 본 발명에서 폐수처리제로 사용되는 무기시료가 된다.The reaction proceeds in a reactor called a saturator, where the fine crystals are allowed to stay long enough to grow to a reasonable size. In the electrochemical process, an aqueous solution of sulfuric acid, sulfuric acid, and sulfuric ammonium is electrochemically oxidized at the anode to produce disulfide peroxide or ammonium persulfate, thereby preparing an inorganic sample. Diammonium persulfate is obtained by electrolyzing ammonium sulfate and sulfuric acid solution, and the inorganic sample in which the product obtained by electrolysis of diammonium persulfate and sodium hydroxide by electrolysis or metathesis reaction is used as wastewater treatment agent in the present invention. Becomes

이때, 원소의 질량분석은 원자흡수분광기를 사용하여 분석한다.In this case, the mass spectrometry of the element is analyzed using an atomic absorption spectrometer.

무기시료는 상기와 같은 화합물 외에도 음이온 구성물질이 산소이온, 과산화 과망간산 이온, 차아염소산이온, 염소이온, 이산화이온, 중크롬산이온, 아황산이온, 과황산이온, 인산이온, 이인산이온, 질산이온, 황산이온, 브롬이온, 플루오르이온, 요오드이온, 붕산이온, 아세트산이온, 포름산이온, 테레프탈산이온, 말레익산이온, 요소산이온, 아디픽산이온 등이고, 양이온의 구성물질이 리튬, 칼슘, 철, 마그네슘, 나트륨, 알루미늄, 니켈, 아연, 주석 또는 망간인 화합물 모두를 포함한다.In addition to the compounds described above, the inorganic compounds include oxygen ions, permanganate ions, hypochlorite ions, chlorine ions, dioxide ions, bichromate ions, sulfite ions, persulfate ions, phosphate ions, diphosphate ions, nitrate ions, and sulfuric acid. Ions, bromine, fluorine, iodine, boric acid, acetate, formic acid, terephthalate, maleic acid, urea, adipic acid, etc., and the cation is composed of lithium, calcium, iron, magnesium, sodium And all compounds which are aluminum, nickel, zinc, tin or manganese.

이와같이 얻어진 무기시료를 사용하여 산업폐수를 처리하는 방법은 먼저, 상온·상압 하에서 난분해성 유기화합물이 함유된 폐수에 상기 무기시료를 첨가하여 BOD와 COD의 제거효율을 높인다.In the method for treating industrial wastewater using the inorganic sample thus obtained, first, the inorganic sample is added to the wastewater containing hardly decomposable organic compounds under normal temperature and atmospheric pressure to increase the removal efficiency of BOD and COD.

첨가되는 무기시료의 함량은 산업폐수의 COD와 BOD에 따라 달라질 수 있는 바, 일예로 COD 1,300ppm의 산업폐수 5,000㎖에 대해서는 무기시료의 함량이 25ppm인 것이 바람직하다.The content of the added inorganic sample may vary depending on the COD and BOD of the industrial wastewater. For example, the amount of the inorganic sample is preferably 25 ppm for 5,000 ml of the industrial wastewater of 1,300 ppm COD.

그 다음 초음파를 조사하여 폐수 중에 함유된 유기화합물을 분해·제거한다.Ultrasonic irradiation then decomposes and removes the organic compounds contained in the wastewater.

초음파를 조사시키면 초음파가 수용액으로 조사될 때 발생하는 공동화(cavitation)으로 인해 유기화합물이 분해 제거되는 바, 유기화합물의 제거반응이 일어나는 영역을 공동화 기포의 안, 공동화기포의 벽부근, 그리고 수용액 내의 고온부 등 3개 영역으로 나눌 수 있다.When the ultrasonic wave is irradiated with an aqueous solution, the organic compound is decomposed and removed due to the cavitation that occurs when the ultrasonic wave is irradiated with an aqueous solution. The area where the organic compound is removed is placed in the cavity, near the wall of the cavity, and in the aqueous solution. It can be divided into three areas such as high temperature part.

이들 3개 영역에서의 반응형태를 살펴보면; 우선 공동화기포의 안의 온도와 압력은 공동화 과정에서 생성되는 매우 높은 에너지로 인해 약 5,000。K와 500기압 이상이고 공동화 기포가 파열될 때 경계면 부근에서의 온도도 2,000。K로 매우 높다. 따라서, 이 두 영역에서 고온의 열에 의해 유기화합물이 직접 열분해된다. 공동화기포가 파열될 때 방출되는 고온·고압의 에너지에 의해 일부의 물분자가 히드록실 라디칼과 수소 라디칼로 분해되고, 이 라디칼들이 유기물질과 결합하면서 분자량이 보다 작은 새로운 물질로 분해된다.Looking at the response patterns in these three regions; First of all, the temperature and pressure inside the cavitation bubble are about 5,000 ° K and over 500 atm due to the very high energy generated during the cavitation process. Therefore, organic compounds are directly pyrolyzed by high temperature heat in these two regions. The high-temperature, high-pressure energy released when the cavitation bubble bursts causes some water molecules to decompose into hydroxyl radicals and hydrogen radicals, and these radicals combine with organic materials to break down into new materials of lower molecular weight.

초음파는 기포의 파열로 인해 생성되는 충격파가 수백기압이 되고, 이러한 고압의 충격파가 기포부근의 구성물질을 심하게 분해시키는 원인이 된다. 주어진 압력과 온도에서 물의 온도에 따라 요동을 하면 공기가 차 있는 미세 공동(microscopic-vapor cavitation)이 빠르게 생성되거나 깨어진다. 이러한 요동으로 인해 무기시료와 후공정인 오존의 작용이 증대된다.Ultrasonic waves cause the shock wave generated by the bursting of bubbles to become hundreds of atmospheres, and these high-pressure shock waves cause the decomposition of constituents near the bubbles. At a given pressure and temperature, fluctuations depending on the temperature of the water quickly create or break up the filled microscopic-vapor cavitation. These fluctuations increase the action of ozone, an inorganic sample and a post-process.

본 발명에 따른 무기시료는 BOD와 COD를 효과적으로 저감시킬 수 있는 비휘발성 포집제로 과산화수소의 생성에 영향을 끼치지 않으며 수용액의 초음파 반응에서 물이 해리되어 생성된 히드록실 라디칼과 수소 라디칼에 의해 효율이 증대된다.The inorganic sample according to the present invention is a non-volatile scavenger that can effectively reduce BOD and COD and does not affect the production of hydrogen peroxide, and the efficiency is increased by hydroxyl radicals and hydrogen radicals generated by dissociation of water in the ultrasonic reaction of aqueous solution. Is increased.

유기화학 물질이 녹아있는 현탁액에 초음파를 조사하면 그 물질이 분해되어 다양한 분해생성물이 생성된다. 특히, 수용액에서는 난분해성 유기화합물과 물분자가 해리되어 높은 반응성을 갖는 중간 생성물질을 생성하며, 유기화합물의 직접적인 분해에 의해서, 또는 반응성이 강한 물의 중간분해 생성물과의 산화 또는 환원반응에 의해서 여러 가지 분해 생성물이 생성된다. 알켄을 산소로 산화시키는 음화학반응에서 동질음촉매 반응(homogeneous sonocatalysis)의 연구에 의하면 초음파가 화학물질의 리간드 해리를 유도할 수 있기 때문에 초음파가 균일상 촉매로 활용된다.Ultrasonic irradiation of a suspension of organic chemicals decomposes the substance, producing a variety of decomposition products. In particular, in aqueous solution, hardly decomposable organic compounds and water molecules dissociate to form intermediate products having high reactivity, and may be directly reacted by oxidation or reduction of highly reactive water with intermediate decomposition products. Branch decomposition products are produced. Homogeneous sonocatalysis studies in the chemistry of oxidizing alkenes with oxygen show that ultrasound is used as a homogeneous catalyst because ultrasound can induce ligand dissociation of chemicals.

한편, 산소가 녹아있는 물속에 초음파를 조사하였을 때 현상으로 O-O 결합이 깨지지 않은 채로 상당량 과산화물이 생성된다.On the other hand, when irradiated with ultrasonic waves in the water dissolved oxygen, a considerable amount of peroxide is produced without breaking O-O bonds.

본 발명에서 초음파 처리에는 전자빔, 전자파, 자외선, 펄스코로나방전 플라즈마 등을 이용할 수 있다.In the present invention, for the ultrasonic treatment, an electron beam, an electromagnetic wave, an ultraviolet ray, a pulse corona discharge plasma, or the like can be used.

이와같이 무기시료를 첨가하고 초음파 처리를 하여 유기화합물이 분해·제거된 여액에 오존처리를 하는 바, 일반적으로 폐수가 색깔을 띄는 원인은 폐수 속에서 자연광의 특정파장이 흡수되어 산란되기 때문이다. 착색으르 나타내는 물질이 수용액 속에서 콜로이드 입자로 현탁되어 있는 경우와 용해되어 있는 경우로서, 본 발명에서 탈색방법은 용존 착색물질의 화학구조를 산화제로 산화제거하는 화학적 방법이다.As such, ozone treatment is performed on the filtrate from which the organic compound is decomposed and removed by adding an inorganic sample and sonicating. In general, the cause of the color of the waste water is that a specific wavelength of natural light is absorbed and scattered in the waste water. In the present invention, when the substance to be colored is suspended or dissolved in colloidal particles in an aqueous solution, the decoloring method in the present invention is a chemical method of oxidizing and removing the chemical structure of the dissolved colored substance with an oxidizing agent.

본 발명에서 산화제 역할을 하는 것은 오존으로서, 오존과 함께 상기 무기시료는 강력한 산화력을 갖고 있어 수중의 용존 유기물질을 산화시키고 탈색 탈취시켜 용수를 재활용할 수 있도록 해준다.The role of the oxidant in the present invention is ozone, and together with ozone, the inorganic sample has a strong oxidizing power to oxidize dissolved organic substances in water and decolorize and deodorize to recycle water.

수용액 내에서 할로겐 유기물질의 산화반응을 일예로 살펴보면, 예를들어 수용액 중에 함유된 트리클로로에탄은 불포화 염화탄화수소, 불포화 탄화수소를 거쳐 최종적으로 이산화탄소와 물만이 남게 된다.As an example, the oxidation reaction of the halogen organic material in the aqueous solution, for example, trichloroethane contained in the aqueous solution is left through the unsaturated hydrocarbon chloride, unsaturated hydrocarbon, carbon dioxide and water.

상기와 같이 오수 및 산업폐수에 무기시료를 첨가하고 초음파와 오존 발생기를 이용하여 30여분 동안 처리하면 난분해성인 유기물질이 분해·제거되어 탈색 및 살균되고 BOD가 용수로 재활용될 정도로 저감되어 폐수 처리가 완료된다.Adding inorganic samples to sewage and industrial wastewater as described above and treating them for 30 minutes using ultrasonic wave and ozone generator will decompose and remove hardly decomposable organic substances, decolorize and sterilize them, and reduce BOD to be recycled into water. Is done.

초음파나 오존의 처리량은 폐수처리에 있어서 바람직한 기준치는 폐수 5,000㎖당 초음파 24,000rpm, 오존의 양은 2.0g/hr인 것이다.The standard value for the treatment of ultrasonic waves and ozone is 24,000 rpm of ultrasonic water per 5,000 ml of waste water and the amount of ozone is 2.0 g / hr.

본 발명 실시예에서는 피혁폐수를 처리하는 방법에 대하여 언급하였는 바, 피혁폐수 처리효과를 시험하기 위하여 다음과 같이 실험하였다.In the embodiment of the present invention, the method for treating leather wastewater was mentioned, and the following experiment was conducted to test the effect of leather wastewater treatment.

시험조(10,000㎖)에 일일 배출량 15톤의 피혁 가공공장의 2차 처리수 5,000㎖를 취한 다음, 무기시료를 넣고 고주파 발생기로 IKA Labortechnic staufen사의 Ultra Taurax T25B 모델로서 압전형 변환기이고 반응기 바닥에 부착시킨 티타늄의 프로브(28kHz, 700W)를 사용하였다. 그리고, 초음파에 전압을 40분간 걸어주고 유기물질을 처리하였다.Into the test tank (10,000 ml), take 5,000 ml of secondary treatment water from the leather processing plant with daily discharge of 15 tons, and then put the inorganic sample into the ultra high-frequency generator model of Ultra Taurax T25B from IKA Labortechnic staufen, which is a piezoelectric transducer and attached to the bottom of the reactor. Titanium probe (28 kHz, 700 W) was used. Then, a voltage was applied to the ultrasonic waves for 40 minutes to treat organic materials.

한편, 무기시료에 오존발생 장치를 병용하여 전압을 40분간 처리하여 유기물질을 처리하였다.On the other hand, by using the ozone generator in combination with the inorganic sample, the organic material was treated by treating the voltage for 40 minutes.

마지막으로, 본 발명의 폐수처리 방법으로 오존발생 장치에 초음파를 병용하여 전압을 걸어주고 각각 40분씩 처리하여 유기물질을 처리하였다.Finally, by applying the ultrasonic wave to the ozone generating device in combination with the ultrasonic wave in the wastewater treatment method of the present invention and treated for 40 minutes each to treat the organic material.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

비교실시예 1∼5Comparative Examples 1 to 5

본 예들은 상기한 피혁폐수에 무기시료로 Na2S2Al2O10을 처리하고 초음파로 40분간 처리한 결과이다. 각 실시예는 첨가되는 무기시료의 함량을 다음 표 1에 나타낸 바와 같이 변경한 것만 다르다.These examples are the result of treating Na 2 S 2 Al 2 O 10 with an inorganic sample to the leather wastewater and treating it for 40 minutes with ultrasound. Each example differs only in that the content of the inorganic sample added is changed as shown in Table 1 below.

이와같이 피혁폐수를 처리한 각각의 결과를 무기시료를 첨가하지 않고 초음파만을 첨가한 것을 대조구로 하여 처리된 폐수의 용존산소량, 생물학적 산소요구량, 화학적 산소요구량, 색도 및 악취를 측정하였으며, 그 결과를 다음 표 1에 나타내었다.As a control, the dissolved oxygen, biological oxygen demand, chemical oxygen demand, color, and odor of the treated wastewater were measured by using only the ultrasonic wave without the inorganic sample. Table 1 shows.

무기시료주입량(ppm)Inorganic Sample Injection (ppm) 측정치Measure 제거율()Removal rate () 용존산소량Dissolved oxygen BODBOD CODCOD 색도Chromaticity 악취stink 비교실시예Comparative Example 1One 2020 5757 5252 5959 7070 7676 22 2525 6464 5555 6868 7979 8080 33 3030 6464 5555 6868 7878 8080 44 3535 6464 5555 6868 7979 7979 55 4040 6464 5555 6868 7878 8080 대조구Control -- 1919 2121 1515 88 1010

상기 표 1의 결과로부터, 무기시료를 첨가하고 초음파를 처리한 경우 색도와 악취처리 뿐만 아니라 DO, BOD, COD 처리 효율이 60이상이었으며, 무기시료의 주입량이 25ppm일 경우 이상적인 결과를 나타냄을 알 수 있다. 그러나, 무기시료를 첨가하지 않고 초음파만을 처리한 경우는 색도, 악취를 비롯하여 DO, BOD, COD 처리효율이 낮음을 알 수 있다.From the results of Table 1, the addition of inorganic samples and ultrasonic treatment, as well as color and odor treatment, as well as DO, BOD, COD treatment efficiency was more than 60, it can be seen that the ideal results when the injection amount of inorganic samples 25ppm have. However, it can be seen that when only ultrasonic waves are treated without adding an inorganic sample, the DO, BOD, and COD treatment efficiency as well as chromaticity and odor are low.

비교실시예 6∼10Comparative Examples 6 to 10

본 예들은 상기한 피혁폐수에 무기시료로 Na2S2Al2O10을 처리하고 오존발생 장치를 사용하여 전압을 40분간 처리한 결과이다. 각 실시예는 첨가되는 무기시료의 함량을 다음 표 2에 나타낸 바와 같이 변경한 것만 다르다.These examples are the result of treatment of Na 2 S 2 Al 2 O 10 with inorganic samples to the leather wastewater and treatment of voltage for 40 minutes using an ozone generator. Each example differs only in that the content of the inorganic sample added is changed as shown in Table 2 below.

이와같이 피혁폐수를 처리한 각각의 결과를 무기시료를 첨가하지 않고 오존처리만을 수행한 것을 대조구로 하여 처리된 폐수의 용존산소량, 생물학적 산소요구량, 화학적 산소요구량, 색도 및 악취를 측정하였으며, 그 결과를 다음 표 2에 나타내었다.As a control, the dissolved oxygen, biological oxygen demand, chemical oxygen demand, color and odor of the treated wastewater were measured using the ozone treatment without the addition of inorganic samples. It is shown in Table 2 below.

무기시료주입량(ppm)Inorganic Sample Injection (ppm) 측정치Measure 제거율()Removal rate () 용존산소량Dissolved oxygen BODBOD CODCOD 색도Chromaticity 악취stink 비교실시예Comparative Example 66 2020 6262 4747 4949 6060 6666 77 2525 6565 5858 5353 6969 6060 88 3030 6565 5858 5353 6868 6767 99 3535 6565 5858 5353 6969 6969 1010 4040 6565 5757 5353 6868 6969 대조구Control -- 1919 1212 1010 2121 2424

상기 표 2의 결과로부터, 무기시료를 첨가하고 오존처리한 경우 색도와 악취처리 뿐만 아니라 DO, BOD, COD 처리 효율이 45이상이었으며, 무기시료의 주입량이 25ppm일 경우 이상적인 결과를 나타냄을 알 수 있다. 그러나, 무기시료를 첨가하지 않고 오존처만을 한 경우는 색도, 악취를 비롯하여 DO, BOD, COD 처리효율이 낮음을 알 수 있다.From the results of Table 2, when the inorganic sample was added and ozone treatment, as well as color and odor treatment, the DO, BOD, COD treatment efficiency was 45 or more, and when the amount of the inorganic sample was 25ppm, it can be seen that the ideal result was obtained. . However, in the case of ozone treatment without the addition of inorganic samples, it can be seen that the DO, BOD, and COD treatment efficiencies as well as chromaticity and odor are low.

실시예 1∼5 및 비교예 1∼5Examples 1-5 and Comparative Examples 1-5

본 실시예는 본 발명에 따라 피혁폐수에 무기시료로 Na2S2Al2O10을 처리하고 오존발생 장치 뿐만 아니라 초음파를 병용하여 전압을 걸어주고 각각 40분씩 처리하여 유기물질을 처리한 결과이다. 각 실시예는 첨가되는 무기시료의 함량을 다음 표 3에 나타낸 바와 같이 변경한 것만 다르다.This embodiment is the result of treating Na 2 S 2 Al 2 O 10 with an inorganic sample in leather wastewater and applying an ozone generating device as well as ultrasonic waves to apply voltage and treating each organic material for 40 minutes each. . Each example differs only in that the content of the inorganic sample added is changed as shown in Table 3 below.

이와같이 피혁폐수를 처리한 각각의 결과를 종래의 Fenton 방법에 따라 과산화수소와 황산철(II)의 혼합용액으로 피혁폐수를 처리한 경우를 비교예로 하여 각각 처리된 폐수의 용존산소량, 생물학적 산소요구량, 화학적 산소요구량, 색도 및 악취를 측정하여 그 결과를 다음 표 3에 나타내었다.As a comparative example, the results of each treatment of the leather wastewater were treated with a mixed solution of hydrogen peroxide and iron (II) sulfate according to the conventional Fenton method, and the amount of dissolved oxygen, biological oxygen demand, Chemical oxygen demand, color and odor were measured and the results are shown in Table 3 below.

무기시료주입량(ppm)Inorganic Sample Injection (ppm) 측정치Measure 제거율()Removal rate () 용존산소량Dissolved oxygen BODBOD CODCOD 색도Chromaticity 악취stink 실시예Example 1One 2020 8787 7272 7979 9090 9696 22 2525 9494 8383 8888 9999 100100 33 3030 9494 8181 8888 9898 100100 44 3535 9494 8080 8888 9999 9999 55 4040 9494 7575 8888 9898 100100 비교예Comparative example 1One 2020 2323 2121 1515 88 1010 22 2525 2525 2323 1717 88 1010 33 3030 2929 2626 1919 1212 1313 44 3535 3232 3030 2828 1717 1414 55 4040 4141 3636 4545 2222 1818

상기 표 3의 결과로부터, 무기시료를 첨가한 후 초음파와 오존을 처리한 경우 상기 표 1 및 표 2의 경우에 비하여 훨씬 색도와 악취처리 뿐만 아니라 DO, BOD, COD 처리 효율이 높으며, 무기시료의 주입량이 25ppm일 경우 이상적인 결과를 나타냄을 알 수 있다. 통한, 통상의 강산화제를 사용한 Fenton 방법으로 처리한 경우에 비하여서도 색도, 악취를 비롯하여 DO, BOD, COD 처리효율이 높음을 알 수 있다.From the results of Table 3, when ultrasonic and ozone were treated after the addition of the inorganic sample, the DO, BOD, COD treatment efficiency was higher as well as the color and odor treatment compared to those of Tables 1 and 2, When the injection amount is 25ppm it can be seen that the ideal results. In comparison with the Fenton method using a conventional strong oxidizing agent, it can be seen that the DO, BOD, COD treatment efficiency is high, including color and odor.

실험예Experimental Example

한편, 일일 배출량 15톤의 피혁가공 공장의 이차처리수 5,000㎖를 시혐조 10,000㎖에 넣고, 무기시료 25ppm을 정량 투여한 다음 초음파와 오존처리시간을 각각 10, 20, 30 및 40분 수행함에 따른 결과를 표 4에 나타내었다. 이때, 대조구로는 상기 비교예에서와 같이 Fenton 시약인 과산화수소와 황산철(II)을 25ppm 사용한 경우로 하여 각각 10, 20, 30 및 40분 동안 처리한 결과로써 나타내었다.Meanwhile, 5,000 ml of secondary treated water from a leather processing plant with 15 tons of daily emissions was put into 10,000 ml of test sample, 25 ppm of inorganic sample was dosed, and ultrasonic and ozone treatment times were performed for 10, 20, 30 and 40 minutes, respectively. The results are shown in Table 4. At this time, as a control, as shown in the case of using the Fenton reagent hydrogen peroxide and iron (II) sulfate 25ppm as in the comparative example for 10, 20, 30 and 40 minutes respectively.

처리시간(분)Processing time (minutes) 측정치Measure 제거율()Removal rate () 용존산소량Dissolved oxygen BODBOD CODCOD 색도Chromaticity 악취stink 실시예Example 1One 1010 6868 6363 5757 2525 8080 22 2020 7373 7070 6969 8080 8282 33 3030 9494 8181 8888 100100 100100 44 4040 9494 7979 8888 100100 100100 비교예Comparative example 1One 1010 1212 1616 1111 55 88 22 2020 2121 2323 1515 55 99 33 3030 4040 3232 1919 1010 1313 44 4040 4141 3535 2727 1919 1818

상기 표 4의 결과로부터, 본 발명에서와 같이 무기시료를 정량 투여한 후 초음파와 오존의 처리시간에 다른 결과를 살펴본 결과 처리시간은 30분이 이상적이다. 반면, 비교예의 경우 시간이 경과함에 따라 처리효율이 향상되고는 있으나, 처리효율면에 있어서 본 발명의 경우에 비하여 현격히 떨어짐을 알 수 있다.From the results of Table 4, after quantitatively administering the inorganic sample as in the present invention, the results of the examination of the results of the ultrasonic and ozone treatment time were 30 minutes. On the other hand, in the case of the comparative example, the treatment efficiency is improved as time passes, but it can be seen that the treatment efficiency is significantly lower than that of the present invention.

이상에서 상세히 설명한 바와 같이, 본 발명에 따라 제조된 특정의 무기시료를 첨가하고, 여기에 초음파와 오존처리를 병행하여 폐수를 처리하는 경우 통상의 강산화제를 사용한 처리방법이나 초음파나 오존만을 사용하여 처리한 경우에 비하여 월등히 향상된 처리효율을 나타내며 처리시간도 월등히 단축시킬 수 있을 뿐만 아니라, 특히 페놀 등과 같은 난분해성 유기화합물을 포함한 폐수처리에 있어서 그 효율이 우수한 효과가 있다.As described in detail above, when the specific inorganic sample prepared according to the present invention is added, and the wastewater is treated in parallel with the ultrasonic and ozone treatment, a treatment method using a conventional strong oxidizing agent or only ultrasonic or ozone is used. Compared to the case of treatment, the treatment efficiency is greatly improved and the treatment time can be shortened, and in particular, the efficiency of the wastewater treatment containing hardly decomposable organic compounds such as phenol is excellent.

Claims (7)

난분해성 유기화합물이 함유된 폐수에 무기시료(함량: COD 1300ppm의 폐수 5,000㎖ 당 25ppm)를 첨가하여 BOD와 COD 제거효율을 높이는 단계;Increasing the removal efficiency of BOD and COD by adding an inorganic sample (content: 25 ppm per 5,000 ml of waste water having a COD of 1300 ppm) to the wastewater containing hardly decomposable organic compounds; 상기 처리물에 초음파를 발생시켜 난분해성 유기화합물이 분해·제거된 여액을 얻는 단계; 및Generating an filtrate from which the hardly decomposable organic compound is decomposed and removed by generating ultrasonic waves in the treated material; And 상기 여액을 오존처리하여 색도와 탈취하는 산화단계를 포함하는 오수 및 산업폐수의 처리방법.A method of treating sewage and industrial wastewater comprising an oxidation step of deodorizing the filtrate by ozone treatment of the filtrate. 제 1 항에 있어서,The method of claim 1, 상기 무기시료를 생략하고 상기 초음파와 오존을 병용하는 것을 특징으로 하는 오수 및 산업폐수의 처리방법.A method for treating sewage and industrial wastewater, wherein the inorganic sample is omitted and the ultrasonic wave and ozone are used together. 제 1 항에 있어서,The method of claim 1, 상기 오존을 생략하고 상기 무기시료와 초음파를 병용하는 것을 특징으로 하는 오수 및 산업폐수의 처리방법.The method for treating sewage and industrial wastewater, wherein the ozone is omitted and the inorganic sample and the ultrasonic wave are used together. 제 1 항에 있어서,The method of claim 1, 상기 무기시료로는 산소이온, 과산화 과망간산 이온, 차아염소산이온, 염소이온, 이산화이온, 중크롬산이온, 아황산이온, 과황산이온, 인산이온, 이인산이온, 질산이온, 황산이온, 브롬이온, 플루오르이온, 요오드이온, 붕산이온, 아세트산이온, 포름산이온, 테레프탈산이온, 말레익산이온, 요소산이온 및 아디픽산이온 중에서 선택된 음이온 구성물질과, 리튬, 칼슘, 철, 마그네슘, 나트륨, 알루미늄, 니켈, 아연, 주석 또는 망간인 화합물 중에서 선택된 양이온 구성물질로 이루어진 화합물을 사용하는 것을 특징으로 하는 오수 및 산업폐수의 처리방법.The inorganic sample includes oxygen ions, permanganate ions, hypochlorite ions, chlorine ions, dioxide ions, bichromate ions, sulfite ions, persulfate ions, phosphate ions, diphosphate ions, nitrate ions, sulfate ions, bromine ions, and fluorine ions. , Anion components selected from iodine ion, borate ion, acetate ion, formate ion, terephthalate ion, maleic acid ion, urea ion and adipic acid ion, and lithium, calcium, iron, magnesium, sodium, aluminum, nickel, zinc, A process for treating sewage and industrial wastewater, characterized by using a compound consisting of a cation component selected from tin or manganese compounds. 제 1 항 또는 제 4 항에 있어서,The method according to claim 1 or 4, 상기 무기시료로는 암모니아, 황산, 수산화나트륨 및 알루미나를 전기분해하여 얻어진 화합물을 사용하는 것을 특징으로 하는 오수 및 산업폐수의 처리방법.The inorganic sample is a method for treating sewage and industrial wastewater, characterized in that a compound obtained by electrolyzing ammonia, sulfuric acid, sodium hydroxide and alumina is used. 제 1 항에 있어서,The method of claim 1, 상기 난분해성 유기화합물은 페놀 또는 할로겐 화합물인 것임을 특징으로 하는 오수 및 산업폐수의 처리방법.The hardly decomposable organic compound is a phenol or a halogen compound, characterized in that the treatment of industrial wastewater. 제 1 항에 있어서,The method of claim 1, 상기 초음파는 전자빔, 전자파, 자외선 및 펄스코로나방전 플라즈마 중에서 선택된 것을 사용하여 발생시키는 것을 특징으로 하는 오수 및 산업폐수의 처리방법.The ultrasonic wave is generated using an electron beam, electromagnetic waves, ultraviolet rays and pulsed corona discharge plasma, characterized in that the treatment method for sewage and industrial wastewater.
KR1019990048218A 1999-11-02 1999-11-02 Inorganic chemical treatment of industrial wastewater KR100343126B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990048218A KR100343126B1 (en) 1999-11-02 1999-11-02 Inorganic chemical treatment of industrial wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990048218A KR100343126B1 (en) 1999-11-02 1999-11-02 Inorganic chemical treatment of industrial wastewater

Publications (2)

Publication Number Publication Date
KR20010045087A true KR20010045087A (en) 2001-06-05
KR100343126B1 KR100343126B1 (en) 2002-07-05

Family

ID=19618223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990048218A KR100343126B1 (en) 1999-11-02 1999-11-02 Inorganic chemical treatment of industrial wastewater

Country Status (1)

Country Link
KR (1) KR100343126B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010000952A (en) * 2000-10-31 2001-01-05 지영호 Removal of Nitrogen in Waste Water using Plasma Device
KR20030061227A (en) * 2002-01-11 2003-07-18 한국전력공사 Removing Methode of Desulfurization Waste Water by Ozone
KR101528530B1 (en) * 2014-09-24 2015-06-15 (주) 테크윈 Apparatus and method for industrial wastewater treatment using oxidizing agent produced from the wastewater
KR20160069539A (en) * 2014-12-08 2016-06-17 (주) 테크윈 Wet gas cleaning system using oxidizing agent produced from the wastewater
KR20160091674A (en) * 2015-01-26 2016-08-03 금오공과대학교 산학협력단 Apparatus and method for removing contaminants using tripolyphospates and under water plazma dischareg
KR20180131347A (en) * 2017-05-31 2018-12-10 (주) 테크윈 A treatment ystem of wastewater and method using the same
CN112934223A (en) * 2019-12-20 2021-06-11 金风环保有限公司 Ozone catalytic oxidation catalyst and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100220083B1 (en) * 1997-05-09 1999-10-01 조강래 Method and apparatus for purificaton of water using anion and ozone

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010000952A (en) * 2000-10-31 2001-01-05 지영호 Removal of Nitrogen in Waste Water using Plasma Device
KR20030061227A (en) * 2002-01-11 2003-07-18 한국전력공사 Removing Methode of Desulfurization Waste Water by Ozone
KR101528530B1 (en) * 2014-09-24 2015-06-15 (주) 테크윈 Apparatus and method for industrial wastewater treatment using oxidizing agent produced from the wastewater
WO2016047901A1 (en) * 2014-09-24 2016-03-31 (주)테크윈 Resource reuse-type industrial waste water treatment method and apparatus utilizing oxidizing agent generated by utilizing waste water
CN106687417A (en) * 2014-09-24 2017-05-17 技术获胜者有限公司 Resource reuse-type industrial waste water treatment method and apparatus utilizing oxidizing agent generated by utilizing waste water
KR20160069539A (en) * 2014-12-08 2016-06-17 (주) 테크윈 Wet gas cleaning system using oxidizing agent produced from the wastewater
KR20160091674A (en) * 2015-01-26 2016-08-03 금오공과대학교 산학협력단 Apparatus and method for removing contaminants using tripolyphospates and under water plazma dischareg
KR20180131347A (en) * 2017-05-31 2018-12-10 (주) 테크윈 A treatment ystem of wastewater and method using the same
KR20190057265A (en) * 2017-05-31 2019-05-28 (주) 테크윈 Treatment ystem of wastewater and method using the same
CN112934223A (en) * 2019-12-20 2021-06-11 金风环保有限公司 Ozone catalytic oxidation catalyst and preparation method thereof

Also Published As

Publication number Publication date
KR100343126B1 (en) 2002-07-05

Similar Documents

Publication Publication Date Title
Bilińska et al. Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic and synergistic actions
Daud et al. Decolorization of Sunzol Black DN conc. in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study
KR20020059811A (en) Method and apparatus for the production of polycarbonates with brine recycling
CN105621764B (en) A kind for the treatment of process of epoxychloropropane production waste water
Nakayama et al. Improved ozonation in aqueous systems
Sirés et al. Electro-Fenton process: fundamentals and reactivity
KR100343126B1 (en) Inorganic chemical treatment of industrial wastewater
JP2003126861A (en) Method and apparatus for water treatment
US20210238071A1 (en) Process to treat waste brine
CN1196761A (en) Process for combined electrochemical production of sodium peroxide disulphate and soda lye
Shankar et al. Kinetics of photocatalytic degradation of textile dye reactive red 2
DE4430391A1 (en) Preferential oxidn. of harmful matter esp. organic halide in soln.
US3582485A (en) Water purification
US5547655A (en) Recovery and regeneration of sulfuric acid
KR0171584B1 (en) Process for removing dissolved oxygen from water and system therefor
CN107188296A (en) The method that chlorine dioxide mixed oxidization method handles amino phenols waste water from dyestuff
JP2603895B2 (en) Treatment of hypophosphite ions in plating aging solution
JPS58193788A (en) Treatment of waste water of complex iron cyanide
CN108658329A (en) A kind of compound reverse osmosis thick water treatment method based on ozone oxidation
US20230365441A1 (en) System and method for performing electrochemically-cycled oxidation on landfill leachate
JPH10263537A (en) Decomposing device for organic component in aqueous solution and decomposing method thereof
CN108217846B (en) Method for degrading chlorinated organic matters by catalytic hydrogenation dechlorination and enhanced contact glow discharge
KR100444358B1 (en) Surface Modification of Activated Carbon for Treatment of Wastewater
JPH09103789A (en) Oxidation treatment method for aqueous solution containing oxidizable sulfur oxygen compound
RU2113278C1 (en) Method and device for varying chemical composition of liquid conducting media

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100616

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee