JPS58193788A - Treatment of waste water of complex iron cyanide - Google Patents

Treatment of waste water of complex iron cyanide

Info

Publication number
JPS58193788A
JPS58193788A JP7573482A JP7573482A JPS58193788A JP S58193788 A JPS58193788 A JP S58193788A JP 7573482 A JP7573482 A JP 7573482A JP 7573482 A JP7573482 A JP 7573482A JP S58193788 A JPS58193788 A JP S58193788A
Authority
JP
Japan
Prior art keywords
cyanide
ozone
water
iron
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7573482A
Other languages
Japanese (ja)
Other versions
JPS6216154B2 (en
Inventor
Takanori Nanba
難波 敬典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7573482A priority Critical patent/JPS58193788A/en
Publication of JPS58193788A publication Critical patent/JPS58193788A/en
Publication of JPS6216154B2 publication Critical patent/JPS6216154B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To treat complex iron cyanide to a low concn. by making effective use of light, by adding an oxidizing agent to waste cyanide water contg. complex iron cyanide, etc. coexisting with a reductive material so as to oxidize the same prior to oxidative decomposition of said waste water by combination use of light and ozone. CONSTITUTION:An oxidizing aget of hydrogen peroxide or hypochlorite is added from an storage tank 10 for oxidizing agent to the water cyanide water which contains the complex iron cyanide coexisting with a reductive material and/or in the form of ferrocyanide and is pumped up from a raw water tank 12. The waste water is then fed into a reaction vessel 9. The reductive material contained in the waste cyanide water is oxidized in said vessel to oxidize the ferrocyanide to ferricyanide. The waste water subjected to such oxidation treatment is conducted into an ozone reaction vessel 2 where the waste water is subjected to an ozone oxidation treatment under irradiation of light.

Description

【発明の詳細な説明】 この発明は難分解性の鉄錯シアンを含む廃水の処理方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater containing persistent iron complex cyanide.

一般に、工業グロセスにおいて発生するシアン化合物を
含む廃液(以下シアン廃水という)は、シアン化合物が
強い毒性を有するために、厳しい処理が義務づけられて
いる。
In general, cyanide-containing wastewater (hereinafter referred to as cyanide wastewater) generated in industrial processes is required to be treated strictly because cyanide compounds have strong toxicity.

このシアン廃水の処理には通常酸化法が用いられている
。酸化法の一例として、シアン廃水を高アルカリ条件下
で塩素系酸化剤によって処理するアルカリ−塩素法があ
る。しかし、鉄錯シアン化合物は、非常に安定な構造を
有しており、上記アルカリ−塩素法では容易に酸化分解
できない。このような背景のもとに、鉄錯シアンを含む
廃液の処理には、紫外線あるいは可視光線を照射して鉄
錯シアンを容易に酸化分解できる形態に変えた後に、酸
化処理する方法が用いられている。
Oxidation methods are usually used to treat this cyanide wastewater. An example of an oxidation method is an alkali-chlorine method in which cyanide wastewater is treated with a chlorine-based oxidizing agent under highly alkaline conditions. However, iron complex cyanide compounds have a very stable structure and cannot be easily oxidized and decomposed by the above-mentioned alkali-chlorine method. Based on this background, a method is used to treat waste liquid containing iron-complexed cyanide by irradiating it with ultraviolet or visible light to convert the iron-complexed cyanide into a form that can be easily oxidized and decomposed, followed by oxidation treatment. ing.

第1図はフェロシアン塩、フェリシアン塩のような鉄錯
シアンを含む廃水を光とオゾンを併用して処理する装皺
を示す。第1図中、1は廃水送入ポンプ、2はオゾン反
応種で、このオゾン反応種2の内部には光源3が設置さ
れている。4はオゾンをつくるためのオゾン発生機、5
はオゾン反応種2から排出される未反応オゾンを分解す
るオゾン分解器、6は原水入口、7は処理水出口、8は
オゾン反応槽2の底部に設けた散気板である。
Figure 1 shows a method for treating wastewater containing iron-complex cyanide such as ferrocyanate and ferricyanide using a combination of light and ozone. In FIG. 1, 1 is a waste water feed pump, 2 is an ozone reactive species, and a light source 3 is installed inside this ozone reactive species 2. 4 is an ozone generator for making ozone, 5
is an ozone decomposer that decomposes unreacted ozone discharged from the ozone reaction species 2; 6 is a raw water inlet; 7 is a treated water outlet; and 8 is a diffuser plate provided at the bottom of the ozone reaction tank 2.

第1図に示す装置によって、鉄錯シアン廃水を処理する
には、ポンダ1の部製によって鉄錯シアン廃水を原水人
口6がらオゾン反応槽2に送入L−1ここで上記廃水中
の鉄錯シアンに光源3から紫外線あるいは可視光線を照
射させ、分子内励起を生じさせる。との鉄錯シアンの励
起状態には極々あるが、その−例として金m原子とシア
ン分子間の配位子場の励起がある。この結果、溶媒であ
る水分子と配位子として固定されているシアン分子の置
換反応が起る。このため、シアン分子は遊離してシアン
イオンとなり、鉄錯体は水分子が入ったアコ錯体となる
。また、このアコ錯体は、順次光励起を受けて配位子の
シアン分子と水分子との置換が行なわれ、最終的に鉄イ
オンとなる。ぞして、遊離したシアンイオンは、通常フ
リーシアンと呼ばれ、酸化剤によって容易にシアン酸、
さらには炭酸ガスと窒素まで酸化される。第1図に示す
装置では、オゾン反応槽2内に酸化剤としてのオゾンが
オゾン発生機4がらオゾン反応槽2内下部の散気板(デ
ィフューザー)8を通し微細気泡としてオゾン含有気体
の形で供給されており、フリーシアンは酸化される。シ
アン化合物が酸化分解された廃水は処理水として処理水
出ロアから放流している。″また、上記オゾン反応槽2
の上部から排出される気体は、未反応のオゾンを含有し
ており、このオゾンはオゾン分解器5で完全に分解した
後に系外に放出している。
In order to treat iron-complexed cyanide wastewater using the apparatus shown in FIG. The complex cyanide is irradiated with ultraviolet rays or visible light from a light source 3 to cause intramolecular excitation. There are many excited states of iron-complexed cyanide, and an example is the excitation of the ligand field between a gold m atom and a cyanide molecule. As a result, a substitution reaction occurs between water molecules as a solvent and cyan molecules fixed as ligands. Therefore, cyan molecules are liberated and become cyan ions, and the iron complex becomes an aco complex containing water molecules. Further, this aco complex is sequentially photoexcited, and the cyan molecules of the ligands are replaced with water molecules, and finally become iron ions. Therefore, the liberated cyanide ions are usually called free cyanide, and are easily converted into cyanic acid and cyanide by oxidizing agents.
Furthermore, carbon dioxide and nitrogen are also oxidized. In the apparatus shown in FIG. 1, ozone as an oxidizing agent enters the ozone reaction tank 2 through an ozone generator 4 and a diffuser 8 in the lower part of the ozone reaction tank 2, forming fine bubbles in the form of ozone-containing gas. Free cyanide is oxidized. Wastewater in which cyanide compounds have been oxidized and decomposed is discharged from the lower treated water outlet as treated water. ``In addition, the above ozone reaction tank 2
The gas discharged from the upper part of the ozone contains unreacted ozone, and this ozone is completely decomposed in the ozone decomposer 5 and then discharged to the outside of the system.

なお、光照明によりフリーシアンとなったシアンは、塩
素系の酸化剤でも酸化分解できるが、低濃度まで効率よ
く処理するためには、強い酸化力をもつオゾンの利用が
経済的に有利であるとされている。
Cyanide, which becomes free cyanide due to light illumination, can be oxidized and decomposed using chlorine-based oxidizing agents, but in order to efficiently treat it down to low concentrations, it is economically advantageous to use ozone, which has strong oxidizing power. It is said that

しかし、上述のような従来の光とオゾンとにょる鉄錯シ
アンの処理方法を、還元剤が共存する被処理水あるいは
フェロシアンとフェリシアントカ共存する被処理水に適
用すると、きわめて長時間の処理を要し、また低濃度ま
でのシアン処理が行なえない欠点がある。第2図の曲線
(a)は200ppmのシアンを含むフェロシアン水溶
液を用いて光照射オゾン処理を行なった結果であり、1
3時間の反応を行なっても10 ppm程度までしかシ
アン処理が行なわれず、しかも反応時間を延長しても。
However, when the conventional treatment method of light, ozone, and iron-complexed cyanide as described above is applied to water to be treated where a reducing agent coexists or ferrocyanate and ferricyantoca coexist, the treatment takes an extremely long time. It also has the disadvantage that cyan processing up to low density cannot be performed. Curve (a) in Figure 2 is the result of light irradiation and ozone treatment using a ferrocyan aqueous solution containing 200 ppm of cyanide.
Even if the reaction was carried out for 3 hours, the cyanide treatment was carried out to only about 10 ppm, and even if the reaction time was extended.

残留シアン濃度がそれ以下には11とんと低下しなかっ
た。さらに、上記フェロシアン水溶液に還元剤としてチ
オ硫酸ナトリウム100岬/lが共存し7ている場合t
tcは、第2図の曲線伽)に示すように、反応の初期で
もシアン濃度がをミとんと減少せす、送入オゾンがチオ
硫酸ナトリウムの酸化に消費される分たけ処理時間が長
くなり、しかも到達シアン濃度も15 ppm前後であ
った。そして、上記いずれの場合でも、照射光量を著し
く増力1させると。
The residual cyanide concentration did not decrease below 11 tons. Furthermore, when sodium thiosulfate 100/l is present as a reducing agent in the ferrocyan aqueous solution, t
As shown in the curve in Figure 2, tc shows that even in the early stages of the reaction, the cyanide concentration decreases drastically, and the treatment time increases as the ozone supplied is consumed in the oxidation of sodium thiosulfate. Furthermore, the cyanide concentration reached was around 15 ppm. In any of the above cases, if the amount of irradiated light is significantly increased by 1.

illllアシアン濃度下したもののl ppm以)に
はならなかった、 そこで、この発明の発明者は、上述した従来の処理力法
における光照射効果の低下ならひに最終処塊水のシアン
1Iiii1度に限界が存在する原因についで検討を力
ねえた。この結果、3つの原因が明らかとなっん。(′
の第1点は、フェリンアンはフェリンアンに比べて光の
吸光率が小さいために、10」じ先車を照射しても欽l
鎧シアンからフリーシアンを生成させる効率が低いこと
が挙げられる。第2点として、一部の鉄錯シアンが順次
配位子のシアン分子を放出して3価の鉄イオンになると
、共存し”[イア)フェロシアンと反応してグルシアン
ブルーと呼ばれる化合物を生成し、このプルシアンブル
ーは難溶性で、かつ安定なシアン錯塩であると同時に紫
外線および可視光を吸収し易い性質をもっており、この
ために照射光の大部分が上記グルシアンブルーに吸収さ
れて無効に消費される。さらに、第3点として、還元物
質の共存は、オゾンを優先的に消費し、この間に光によ
って遊離したシアンイオンが逆反応によって再ひ錯体に
取り込まれ、光照射の効果が生かされなくなる。
Therefore, the inventor of this invention proposed that if the light irradiation effect in the conventional processing power method described above decreases, the cyanide concentration in the final treatment agglomerate should be increased to 1Iiii 1 degree. I did not bother to consider the reason why the limit exists. As a result, three causes became clear. (′
The first point is that Ferrin Anne has a lower light absorption rate than Ferrin Anne, so even if the vehicle ahead is irradiated by 10 inches, the
One of the reasons is that the efficiency of generating free cyan from armor cyan is low. The second point is that some iron-complexed cyanide sequentially releases cyanide molecules as ligands and becomes trivalent iron ions. This Prussian blue is a poorly soluble and stable cyanide complex salt, and at the same time has the property of easily absorbing ultraviolet rays and visible light. Therefore, most of the irradiated light is absorbed by the Glucian blue and becomes ineffective. Thirdly, the coexistence of reducing substances preferentially consumes ozone, and during this time cyanide ions liberated by light are incorporated into the rehydration complex by a reverse reaction, reducing the effect of light irradiation. will not be kept alive.

この発明は、上述のような従来の光とオゾンを併用した
鉄錯シアンの処理方法では、低濃度までの処理が経済的
に行なえない欠点を解消して、光を有効に利用し、小容
量の光源を用いて従来の処理方法より低濃度まで鉄錯シ
アンの処理が行なえるその処理方法を提供することを目
的としている。
This invention solves the drawback that the conventional treatment method for iron-complex cyanide using a combination of light and ozone, as described above, cannot economically process down to low concentrations. The purpose of the present invention is to provide a processing method that can process iron-complex cyanogen to a lower concentration than conventional processing methods using a light source.

この目的を達成するために、この発明による鉄錯シアン
廃水の処理方法は、還元性物質と共存しおよび/または
フェロシアン形態の鉄錯シアンを含むシアン廃水を、光
とオゾンを併用して含有シアンを酸化分解する処理に先
立って、原シアン廃水に酸化剤を添加し、共存する還元
性物質を酸化しおよび/または鉄錯シアンの還元形態で
あるフェロシアンをフェリシアンに酸化することを%徴
としたものである。
To achieve this objective, the method for treating iron-complexed cyanide wastewater according to the present invention comprises treating cyanide wastewater containing iron-complexed cyanide coexisting with reducing substances and/or in the form of ferrocyanate using a combination of light and ozone. Prior to the treatment of oxidizing and decomposing cyanide, an oxidizing agent is added to the raw cyanide wastewater to oxidize coexisting reducing substances and/or to oxidize ferrocyan, which is a reduced form of iron-complexed cyanide, to ferricyan. This is a sign.

以下、この発明の実施態様を図によって説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図はこの発明による鉄錯シアン廃水の処理方法を行
なう装置を示す、第3図中、1〜5.7.8は第1図に
示す従来の装置と同じ部分であり。
FIG. 3 shows an apparatus for carrying out the method for treating iron complex cyanide wastewater according to the present invention. In FIG. 3, 1 to 5.7.8 are the same parts as the conventional apparatus shown in FIG.

9は前処理として原シアン廃水中の還元性物質の酸化し
たり共存する7エロシアンを7エリシアンへ酸化したり
するための反応槽、lOは酸化剤貯槽、11は原シアン
廃水へ酸化剤を注入するためのIンゾ、12は原水槽、
13は反応槽9からオゾン反応槽2にシアン廃水を導く
ためのポンプであるO 第3図に示す装置によって鉄錯シアン廃水を処理するK
は、まず、ポンプ1によって原水槽12から汲み上げた
原シアン廃水に、ポン7”11を用いて酸化剤貯槽10
から酸化剤を添加し、反応槽9に送入する。この反応槽
9内て原シアン廃水に含有されている還元性物質の酸化
と同時にフェロシアンのフェリシアンへの酸化が行なわ
れる。このようにして、鉄錯塩の形態が完全にフェリシ
アンに変換された原シアン廃水はポンf13によってオ
ゾン反応槽2内に導かれ、光照射を受けながら、オゾン
酸化処理される。なお、オゾン反応槽2およびこれ以降
の動作は従来の処理方法と同様であるから説明を省略す
る。
9 is a reaction tank for oxidizing reducing substances in the raw cyanide wastewater as a pretreatment and oxidizing the coexisting 7 Elysian to 7 Elysian, IO is an oxidizing agent storage tank, and 11 is an oxidizing agent injected into the raw cyanide wastewater. 12 is the raw water tank,
13 is a pump for guiding the cyanide wastewater from the reaction tank 9 to the ozone reaction tank 2; K is a pump for treating the iron-complex cyanide wastewater with the device shown in FIG. 3;
First, the raw cyanide wastewater pumped up from the raw water tank 12 by the pump 1 is added to the oxidizer storage tank 10 using the pump 7''11.
An oxidizing agent is added thereto and the mixture is fed into the reaction tank 9. In this reaction tank 9, ferrocyan is oxidized to ferricyan simultaneously with the oxidation of the reducing substance contained in the raw cyanide wastewater. In this way, the raw cyanide wastewater whose iron complex salt form has been completely converted to ferricyanide is guided into the ozone reaction tank 2 by the pump f13, and is subjected to ozone oxidation treatment while being irradiated with light. Note that the ozone reaction tank 2 and its subsequent operations are the same as those in the conventional treatment method, so a description thereof will be omitted.

次に、この発明の効果について説明する。上述し次よう
に、従来の処理方法での欠点は、還元性物質の酸化およ
びフェロシアンのフェリシアンへの酸化を行なうことで
容易に解消できる。すなわチ、フェロシアンをフェリシ
アンへ予め転換シて腋〈ことで、フェロシアンの吸光率
の低い点は解決でき、また3価の鉄イオンとフェロシア
ンが共存することもなく、シたがってプルシアンブルー
の生成が防止できる。さらに、還元性物質を予め酸化し
であるために、光照射とオゾン処理の初期段階で遊離し
たシアンイオンが再ひ錯体を形成することがなく、した
がってオゾンで速やかに酸化されることになる。
Next, the effects of this invention will be explained. As mentioned above and as follows, the drawbacks of conventional processing methods can be easily overcome by oxidizing the reducing substance and oxidizing ferrocyan to ferricyan. In other words, by converting ferrocyan to ferricyan in advance, the problem of low absorbance of ferrocyan can be solved, and trivalent iron ions and ferrocyan do not coexist. The generation of Prussian blue can be prevented. Furthermore, since the reducing substance is oxidized in advance, the cyanide ions liberated in the initial stages of light irradiation and ozone treatment do not form a re-complex, and are therefore quickly oxidized by ozone.

上述したこの発明の処理方法を用いた処理結果は第3図
の曲線(e)に示すようlcなる。この曲!(C)は初
期のシーポンとして200 ppmのフェロシアンと、
100 ppmのチオ硫酸ナトリウムの混合溶液に対し
、予め酸化剤として過酸化水素を1100pp添加し、
その後上述した従来の光とオゾンを併用する処理方法と
同様な処理を行なったものである。
The processing result using the above-mentioned processing method of the present invention is lc as shown by the curve (e) in FIG. This song! (C) with 200 ppm ferrocyan as the initial seapon;
To a mixed solution of 100 ppm sodium thiosulfate, 1100 ppm of hydrogen peroxide was added as an oxidizing agent in advance,
Thereafter, a treatment similar to the conventional treatment method described above using both light and ozone was performed.

そして、第3図の曲&1(cJから明らかなように、組
時間で低濃度までの鉄錯シアン処理が可能になった。
As is clear from the song &1 (cJ in Figure 3), iron-complex cyanide treatment was possible down to a low concentration within a short time.

なお、この発明において、酸化剤として上記過酸化水素
の代りVCさらし粉1次亜塩1g飯す) IJウムなど
の次亜塩素除塩系のものを用いても上述したと同様な効
果が得られる。この発明において上記酸化剤の使用量は
、フェロシアン錯塩をフェリシアン錯塩に酸化及び共存
還元性物質の酸化に会費十分な量とする。過剰の酸化剤
はオゾン処理時のオゾン消費の原因になり、オゾン利用
効率の低下をもたらし好ましくない。
In addition, in this invention, the same effect as described above can be obtained by using a hypochlorite-removing salt such as VC bleaching powder (1 g of VC bleaching powder) in place of the above-mentioned hydrogen peroxide as an oxidizing agent. . In this invention, the amount of the oxidizing agent used is sufficient to oxidize the ferrocyanide complex salt to the ferricyanide complex salt and to oxidize the coexisting reducing substance. Excessive oxidizing agent causes ozone consumption during ozone treatment, resulting in a decrease in ozone utilization efficiency, which is undesirable.

実施例及び比較例 Fe(CN)  −CN濃度200 ppmの廃水中に
、NILtStOs  100 ppm及びルα100
 pp!mlを加え、30分間攪拌反応させた後下記条
件にて光−オゾン処理を行った(実施例)。
Examples and Comparative Examples Fe(CN) - In wastewater with a CN concentration of 200 ppm, 100 ppm of NILtStOs and 100 ppm of Le
pp! ml was added, stirred and reacted for 30 minutes, and then subjected to photo-ozone treatment under the following conditions (Example).

高圧水銀灯  100W オゾン注入  2047分 半回分処理   (オゾン化気体連続注入)比較のため
に上記実施例において、Na、S、α 及び)&Otを
添加しないもの(比較例1)、及びH202を添加しな
い本の(同2)について同様に行った。
High pressure mercury lamp 100W Ozone injection 2047 minutes Semi-batch treatment (Continuous ozonated gas injection) For comparison, in the above example, Na, S, α and ) & Ot were not added (Comparative Example 1), and H202 was not added. The same procedure was carried out for (2).

これら廃水の残*CN#度の経時的な変化を求め結果を
下表に示す。
Changes in the residual *CN# degree of these wastewaters over time were determined and the results are shown in the table below.

土表の如く本発明により10時間後には数百分のオーダ
ーにてCN濃度が減少していた。
As with the soil surface, the CN concentration was reduced on the order of several hundred minutes after 10 hours due to the present invention.

以上説明したように、この発明による鉄錯シアン廃水の
処理方法を用いると、照射された光な効率よく利用でき
、少容量の光源でも短時間で低換度までの鉄錯シアン処
理ができるという効果が得られる。
As explained above, by using the method for treating iron-complexed cyanide wastewater according to the present invention, the irradiated light can be used efficiently, and even with a small capacity light source, it is possible to treat iron-complexed cyanide to a low degree of conversion in a short period of time. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の鉄錯シアン廃水の処理方法に用いる装置
を示す概略構成図、第2図は従来およびこの発明の処理
法で処理した結果を示す反応時間−シアン濃度関係図、
第3図はこの発明による鉄錯シアン廃水の処理方法に用
いる装置の一例を示す概略構成図である。 2・・・オゾン反応槽、3・・・光源、4・・・オゾン
発生機、9・・・反応槽、10・・・駿化剤貯檜。 なお、図中同一符号は同一または相当部分を示す。 代理人   葛  野  信  − 第1図 第2図 (a) Fe(CN)ニー:CN・200ppm+No
zSzO3・100p100pp Fe(CN):’−
CN・200ppm反応峙藺(H「)
FIG. 1 is a schematic configuration diagram showing an apparatus used in a conventional iron-complex cyanide wastewater treatment method, and FIG. 2 is a reaction time-cyanide concentration relationship diagram showing the results of treatment with the conventional treatment method and the treatment method of the present invention.
FIG. 3 is a schematic diagram showing an example of an apparatus used in the method for treating iron-complex cyanide wastewater according to the present invention. 2... Ozone reaction tank, 3... Light source, 4... Ozone generator, 9... Reaction tank, 10... Shunting agent storage hinoki. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Figure 2 (a) Fe (CN) knee: CN・200ppm+No
zSzO3・100p100pp Fe(CN):'-
CN・200ppm reaction reaction (H")

Claims (2)

【特許請求の範囲】[Claims] (1) ffi元性物性物質存しおよび/またはフェロ
シアン形態の鉄錯シアンを含むシアン廃水を、光とオゾ
ンを併用して含有シアンを酸化分解する処理に先立って
、原シアン廃水に酸化剤を添加し、共存する還元物質を
酸化しおよび/または鉄錯シアンの還元形態であるフェ
ロシアンをフェリシアンに酸化することを特徴とする鉄
錯シアン廃水の処理方法。
(1) An oxidizing agent is added to the raw cyanide wastewater prior to treatment of cyanide wastewater containing ffi-elementary physical substances and/or iron-complex cyanide in the form of ferrocyane to oxidize and decompose the contained cyanide using a combination of light and ozone. 1. A method for treating iron-complexed cyanide wastewater, the method comprising: adding a coexisting reducing substance, and/or oxidizing ferrocyane, which is a reduced form of iron-complexed cyanide, to ferricyanide.
(2)酸化剤として、過酸化水素または次亜塩素酸塩系
酸化剤を用いる特許請求の範囲第1項記載の鉄錯7アン
廃水の処理方法。
(2) The method for treating iron-complexed wastewater according to claim 1, which uses hydrogen peroxide or a hypochlorite-based oxidizing agent as the oxidizing agent.
JP7573482A 1982-05-06 1982-05-06 Treatment of waste water of complex iron cyanide Granted JPS58193788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7573482A JPS58193788A (en) 1982-05-06 1982-05-06 Treatment of waste water of complex iron cyanide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7573482A JPS58193788A (en) 1982-05-06 1982-05-06 Treatment of waste water of complex iron cyanide

Publications (2)

Publication Number Publication Date
JPS58193788A true JPS58193788A (en) 1983-11-11
JPS6216154B2 JPS6216154B2 (en) 1987-04-10

Family

ID=13584793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7573482A Granted JPS58193788A (en) 1982-05-06 1982-05-06 Treatment of waste water of complex iron cyanide

Country Status (1)

Country Link
JP (1) JPS58193788A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341229A (en) * 2005-06-10 2006-12-21 Sumitomo Precision Prod Co Ltd Advanced treating method of cyanide compound-containing drain
CN104926036A (en) * 2015-06-12 2015-09-23 长春黄金研究院 Cyanogen-containing tailing slag treatment method
CN112158910A (en) * 2020-08-28 2021-01-01 浙江工业大学 Method for treating antiepileptic drugs in water by using novel Fenton-like system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141249U (en) * 1987-03-09 1988-09-16
JPH01127728A (en) * 1987-11-13 1989-05-19 Hitachi Constr Mach Co Ltd Exchanger for front attachment of shovel excavator
CN104445571B (en) * 2014-10-23 2016-08-24 上海交通大学 A kind of ultraviolet-aided heterogeneous Fenton oxidation sewage water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341229A (en) * 2005-06-10 2006-12-21 Sumitomo Precision Prod Co Ltd Advanced treating method of cyanide compound-containing drain
CN104926036A (en) * 2015-06-12 2015-09-23 长春黄金研究院 Cyanogen-containing tailing slag treatment method
CN112158910A (en) * 2020-08-28 2021-01-01 浙江工业大学 Method for treating antiepileptic drugs in water by using novel Fenton-like system

Also Published As

Publication number Publication date
JPS6216154B2 (en) 1987-04-10

Similar Documents

Publication Publication Date Title
Kim et al. Degradation of organic pollutants by the photo‐Fenton‐process
Catalkaya et al. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study
Glaze Drinking-water treatment with ozone
US4012321A (en) Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light
HU212078B (en) Method and apparatous for treating of liquids contain dangerous material
RO112022B1 (en) Used waters treating process
Nakayama et al. Improved ozonation in aqueous systems
Chiou et al. Photochemical mineralization of di-n-butyl phthalate with H2O2/Fe3+
JPH08500050A (en) Method and apparatus for the decomposition of free and complex cyanide, AOX, mineral oil, complexing agents, COD, nitrite, chromate, and metal separation in wastewater
JP2006341229A (en) Advanced treating method of cyanide compound-containing drain
Aplin et al. Effect of Fe (III)-ligand properties on effectiveness of modified photo-Fenton processes
JPS58193788A (en) Treatment of waste water of complex iron cyanide
US4446029A (en) Destruction of iron cyanide complexes
Sánchez et al. Solar activated ozonation of phenol and malic acid
CN1227187A (en) Regeneration of cyanide by oxidation of thiocyanate
JPS62176595A (en) Method for removing organic substance in waste water
JPH1157753A (en) Removing method of toc component and device therefor
KR100343126B1 (en) Inorganic chemical treatment of industrial wastewater
JPS5924671B2 (en) Complex cyanide processing equipment
JPH07241598A (en) Water treatment apparatus
JP2792481B2 (en) Treatment method for wastewater containing sulfoxides
KR101907485B1 (en) Method of wastewater treatment contaning free cyanide and heavymetals-cyanide complex
JP2001029966A (en) Method and apparatus for treating organic wastewater containing endocrine disturbing substance or carcinogen
JPS6211635B2 (en)
JP3493843B2 (en) Accelerated oxidation treatment equipment in water treatment