JPS5924671B2 - Complex cyanide processing equipment - Google Patents

Complex cyanide processing equipment

Info

Publication number
JPS5924671B2
JPS5924671B2 JP6598877A JP6598877A JPS5924671B2 JP S5924671 B2 JPS5924671 B2 JP S5924671B2 JP 6598877 A JP6598877 A JP 6598877A JP 6598877 A JP6598877 A JP 6598877A JP S5924671 B2 JPS5924671 B2 JP S5924671B2
Authority
JP
Japan
Prior art keywords
complex
cyanide
reaction tank
ozone
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6598877A
Other languages
Japanese (ja)
Other versions
JPS541964A (en
Inventor
繁樹 中山
謙治 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6598877A priority Critical patent/JPS5924671B2/en
Publication of JPS541964A publication Critical patent/JPS541964A/en
Publication of JPS5924671B2 publication Critical patent/JPS5924671B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明はニッケル、銅、鉄などの金属イオンとシアン
の錯化合物(以下錯シアンと呼ぶ)を含有する廃水など
のオゾンと光線を併用する錯シアンの処理装置に関する
ものである。
[Detailed Description of the Invention] This invention relates to a treatment device for complex cyanide, such as wastewater containing a complex compound of cyanide and metal ions such as nickel, copper, or iron (hereinafter referred to as complex cyanide), which uses ozone and light in combination. It is.

周知の如くメッキ工場や写真現像などからは、強い毒性
をもつシアンを含有する廃水が排出される。
As is well known, plating factories and photo development facilities discharge wastewater containing highly toxic cyanide.

これらの廃水の中には遊離したシアンイオン(フリーシ
アン)の他に上記金属イオンとの錯化合物である錯シア
ンが多量に含まれている。
In addition to free cyanide ions (free cyanide), these wastewaters contain a large amount of complex cyanide, which is a complex compound with the above-mentioned metal ions.

錯シアンは一般にフリーシアンよりも化学的に安定であ
り、酸化剤による酸化分解が困難である場合が多い。
Complex cyanide is generally more chemically stable than free cyanide, and is often difficult to oxidatively decompose with an oxidizing agent.

錯シアンの中でも鉄イオンとの錯体(フェリシアンイオ
ン、フェロシアンイオン)は特に安定であり、オゾンの
ような強力な酸化剤を用いてもシアンの排出規制値にま
で処理することは困難である。
Among complex cyanogens, complexes with iron ions (ferricyanide ions, ferrocyanide ions) are particularly stable, and it is difficult to treat them to the emission regulation value for cyanide even using strong oxidizing agents such as ozone. .

ところが、このような安定な錯シアンを含有する廃水に
紫外線または近紫外〜可視光線を照射しつつオゾンばつ
気処理を行なうと、オゾンによる単独処理よりもシアン
の除去速度が促進され、低濃度までの処理が可能である
ことが明らかにされている。
However, when wastewater containing such stable complex cyanogens is subjected to ozone aeration treatment while being irradiated with ultraviolet rays or near-ultraviolet to visible light, the removal rate of cyanide is accelerated compared to single treatment with ozone, and the removal rate of cyanide is reduced to low concentrations. It has been shown that it is possible to process

ところがこの方法により、無条件に光を照射しながらオ
ゾン処理すると、オゾンの利用効率が低下してシアン除
去に必要なオゾンの量が過大になったり、また、必要と
するシアン除去速度を得るための光源の容量が太き(な
るなどのために実用上問題があった。
However, if this method is used for ozone treatment while unconditionally irradiating light, the ozone utilization efficiency will decrease and the amount of ozone required for cyanide removal will become excessive. There was a practical problem due to the large capacity of the light source.

そこで、本発明者はこの問題を解決するために、錯シア
ンの光照射下でのオゾン処理に関する研究をさらに進め
た結果、次のような事実を見出すにいたった。
Therefore, in order to solve this problem, the present inventor further conducted research on ozone treatment of complex cyanide under light irradiation, and as a result, discovered the following fact.

すなわち、種々の濃度のフェリシアン化カリウム水溶液
について、低圧水銀ランプを用いた紫外線照射下でのオ
ゾン処理と、紫外線をカットした高圧水銀ランプ照射下
でのオゾン処理を比較検討し、表1に示すような結果を
得た。
That is, for potassium ferricyanide aqueous solutions of various concentrations, we compared ozone treatment under ultraviolet irradiation using a low-pressure mercury lamp and ozone treatment under irradiation with a high-pressure mercury lamp that cuts ultraviolet rays, and obtained results as shown in Table 1. Got the results.

ただし、ここで行なった実験条件は次に示した通りであ
る。
However, the experimental conditions conducted here are as shown below.

反応器;内部照射型(直径10C1rL)オゾン供給速
度: 1 l / rn 1 nオゾン濃度;17ヤ/
1−O2 紫外線光源;4W低圧水銀ランプ 近紫外〜可視線光源;100W高圧水銀ランプ(310
mμ以下カット) この表から次の事が明らかになった。
Reactor: Internal irradiation type (diameter 10C1rL) Ozone supply rate: 1 l/rn 1 n Ozone concentration: 17 l/rn
1-O2 Ultraviolet light source; 4W low-pressure mercury lamp Near-ultraviolet to visible light source; 100W high-pressure mercury lamp (310
(cut below mμ) From this table, the following things became clear.

まず、シアンの除去速度については、 (1)光源の単位消費電力当りのシアン除去速度は紫外
光線照射の方が近紫外〜可視光線照射に比べて3〜5倍
速い。
First, regarding the cyan removal speed: (1) The cyan removal speed per unit power consumption of the light source is 3 to 5 times faster with ultraviolet light irradiation than with near ultraviolet to visible light irradiation.

一方、単位量シアンの除去に必要なオゾン量、(△03
/△CN)wtlについては、 (1)紫外光線照射の場合、錯シアン濃度が高い(約1
0100ppと3程度となり比較的少量であるが、錯シ
アン濃度が低下すると、それに従って著しく多くなる。
On the other hand, the amount of ozone required to remove a unit amount of cyanide, (△03
/△CN) wtl: (1) In the case of ultraviolet light irradiation, the complex cyanide concentration is high (approximately 1
Although it is a relatively small amount of about 0.0100pp, it increases significantly as the complex cyanide concentration decreases.

(2)近紫外〜可視光線照射の場合、錯シアン濃度が高
い場合(約50ppm)、2.4と少く、かつ錯シアン
濃度が低下しても、その増加割合は紫外光線照射に比し
て著しく少い。
(2) In the case of near-ultraviolet to visible light irradiation, when the complex cyanide concentration is high (approximately 50 ppm), it is as low as 2.4, and even if the complex cyanide concentration decreases, the increase rate is less than that of ultraviolet light irradiation. Significantly less.

この発明は、これらの研究をもとになされたものであり
、反応槽を多段にし、廃水など、被処理水の流れから見
て前段の比較的錯シアン濃度が高い(通常は100pp
[[lまたはそれ以上)ところで紫外線を照射しつつオ
ゾン処理し、錯シアン濃度が低下(100ppmまたは
それ以下)した後段の反応槽で紫外線を含まない近紫外
〜可視光線を照射しつつオゾン処理することにより、光
源の消費電力および必要オゾン量を最少になるようにし
たものである。
This invention was made based on these studies, and the reaction vessels are multi-staged, and the concentration of complex cyanide in the first stage is relatively high (usually 100 pp
[[L or more] By the way, ozone treatment is performed while irradiating ultraviolet rays, and ozone treatment is performed while irradiating near ultraviolet to visible light that does not contain ultraviolet rays in a subsequent reaction tank where the complex cyanide concentration has been reduced (100 ppm or less) This minimizes the power consumption of the light source and the amount of ozone required.

図はこの発明の一実施例による錯シアンの処理装置を示
す系統図である。
The figure is a system diagram showing a complex cyanide processing apparatus according to an embodiment of the present invention.

錯シアンを含む廃水などの被処理水は、先づ、前段の反
応槽1に入口2から連続的に導入される。
Water to be treated, such as wastewater containing complex cyanide, is first continuously introduced into the reaction tank 1 at the front stage from the inlet 2.

ここで紫外線を主として放射するランプ3からの光電子
、図示しないオゾナイザ−から送給されるオゾン含有気
体の入口4から供給されるオゾンおよび被処理水の錯シ
アンが反応して一定量のシアンが除去される。
Here, photoelectrons from a lamp 3 that mainly emits ultraviolet rays, ozone supplied from an ozone-containing gas inlet 4 supplied from an ozonizer (not shown), and complex cyanide in the water to be treated react to remove a certain amount of cyanide. be done.

反応槽1において除去されなかった錯シアンを含有する
処理水は出口5から排出され、反応槽6に入口91.7
から導入され、紫外線を含まないランプ8からの光量子
と前段と同様の型式でオゾンおよび錯シアンが反応しシ
アンが除去され、出口9から、放流される。
The treated water containing complex cyanide that was not removed in the reaction tank 1 is discharged from the outlet 5 and flows into the reaction tank 6 through the inlet 91.7.
Ozone and complex cyanide react with the photons from the lamp 8, which does not contain ultraviolet light, in the same manner as in the previous stage, and the cyanide is removed, which is then discharged from the outlet 9.

反応槽1において除去されなかった錯シアンを含有する
処理水は出口5から排出され、反応槽6に入ロアから導
入され、紫外線を含まないランプ8からの光量子と前段
と同様の型式でオゾンおよび錯シアンが反応しシアンが
除去され、出口9から放流される。
The treated water containing complex cyanide which has not been removed in the reaction tank 1 is discharged from the outlet 5 and introduced into the reaction tank 6 from the lower part, where it is mixed with photons from the lamp 8 which does not contain ultraviolet light and ozone and in the same manner as in the previous stage. The complex cyanide reacts to remove cyanide and is discharged from the outlet 9.

反応槽1および6における未反応オゾンはそれぞれの出
口10および11から排出され、公知の従来技術による
オゾン分解器12を通して大気中に放出される。
Unreacted ozone in reactors 1 and 6 is discharged through respective outlets 10 and 11 and released into the atmosphere through an ozonolyzer 12 according to the known prior art.

ここで用いる反応槽1および6は通常のディフューザ一
方式、エゼクタ一方式などの気液反応式のものでよく、
光照射方式は内部照射または外部照射のいづれでもよい
The reaction vessels 1 and 6 used here may be of a gas-liquid reaction type, such as an ordinary diffuser one-type or ejector one-type.
The light irradiation method may be either internal irradiation or external irradiation.

使用するランプ3としては低圧水銀ランプ、ランプ8と
しては310mμ以下の波長をカットした高圧水銀灯が
適当である。
As the lamp 3 used, a low-pressure mercury lamp is suitable, and as the lamp 8, a high-pressure mercury lamp that cuts wavelengths of 310 mμ or less is suitable.

上記のように構成することにより錯シアンが有効に除去
され、オゾンの利用効率が改善され、光源の容量を従来
のものより小型にすることができた。
By configuring as described above, complex cyanide can be effectively removed, ozone utilization efficiency can be improved, and the capacity of the light source can be made smaller than that of conventional ones.

なお、反応槽1及び6は1個のものにまとめあるいは3
個以上用いても差支えない。
In addition, reaction vessels 1 and 6 may be combined into one or three
There is no problem in using more than one.

以上説明した通り、この発明は反応槽を少なくとも2つ
の部分に分け、前段の方に紫外線を用い、後段の方に紫
外線を含まない光線を用いるようにすることにより、オ
ゾンの利用効率を改善し、錯シアンを高効率で除去でき
るという効果がある。
As explained above, this invention improves the efficiency of ozone utilization by dividing the reaction tank into at least two parts, using ultraviolet rays in the former stage and using light that does not contain ultraviolet rays in the latter stage. , has the effect of being able to remove complex cyanogens with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す系統図である。 図中1,6は反応槽、3,8はランプ、2は入口、9は
出口である。
The figure is a system diagram showing one embodiment of the present invention. In the figure, 1 and 6 are reaction vessels, 3 and 8 are lamps, 2 is an inlet, and 9 is an outlet.

Claims (1)

【特許請求の範囲】 1 錯シアンを含む被処理水を反応槽中で光線とオゾン
を併用して処理するものにおいて、上記反応槽を直列的
に連通ずる少なくとも2つの部分に分け、一方の反応槽
において紫外線を主体とする光線を用い、他方の反応槽
において紫外線を含まない錯シアンの光吸収領域の波長
を主体とする光線を用い、上記被処理水を上記一方の反
応槽から他方の反応槽へ流通するようにした錯シアンの
処理装置。 2 紫外線を主体とする光線として低圧水銀ランプの放
射光を用いるようにした特許請求の範囲第1項記載の錯
シアンの処理装置。 3 紫外線を含まない錯シアンの光吸収領域の波長を主
体とする光線として、310mμ以下の短波長をカット
した高圧水銀灯の放射光を用いるようにした特許請求の
範囲第1項または第2項記載の錯シアンの処理装置。
[Scope of Claims] 1. In a system in which water to be treated containing complex cyanide is treated using a combination of light and ozone in a reaction tank, the reaction tank is divided into at least two parts connected in series, and one of the parts is The water to be treated is transferred from one reaction tank to the other by using a light beam mainly containing ultraviolet rays in one reaction tank and using a light beam mainly having a wavelength in the light absorption region of complex cyanide that does not contain ultraviolet rays in the other reaction tank. A processing device for complex cyanogen that is distributed to a tank. 2. The complex cyanogen treatment apparatus according to claim 1, wherein radiation light from a low-pressure mercury lamp is used as the light beam mainly consisting of ultraviolet rays. 3. Claim 1 or 2 uses synchrotron radiation from a high-pressure mercury lamp with short wavelengths of 310 mμ or less cut off as the light beam mainly having wavelengths in the light absorption region of complex cyanide that does not contain ultraviolet rays. cyanide complex processing equipment.
JP6598877A 1977-06-03 1977-06-03 Complex cyanide processing equipment Expired JPS5924671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6598877A JPS5924671B2 (en) 1977-06-03 1977-06-03 Complex cyanide processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6598877A JPS5924671B2 (en) 1977-06-03 1977-06-03 Complex cyanide processing equipment

Publications (2)

Publication Number Publication Date
JPS541964A JPS541964A (en) 1979-01-09
JPS5924671B2 true JPS5924671B2 (en) 1984-06-11

Family

ID=13302891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6598877A Expired JPS5924671B2 (en) 1977-06-03 1977-06-03 Complex cyanide processing equipment

Country Status (1)

Country Link
JP (1) JPS5924671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946404A (en) * 2017-03-06 2017-07-14 博天环境集团股份有限公司 A kind of processing method of cyanide wastewater

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078082B2 (en) * 1984-08-24 1995-01-30 株式会社東芝 Train operation command device
JPH0764257B2 (en) * 1985-10-31 1995-07-12 三菱電機株式会社 Train rescheduling plan creation device
JPS63221890A (en) * 1987-03-09 1988-09-14 Iwasaki Electric Co Ltd Method and apparatus for treating water containing organic substance
JPH0454877Y2 (en) * 1987-06-08 1992-12-22
JPH03143769A (en) * 1989-10-27 1991-06-19 Hitachi Ltd Delay recovering system
JP2006341229A (en) * 2005-06-10 2006-12-21 Sumitomo Precision Prod Co Ltd Advanced treating method of cyanide compound-containing drain
JP5378522B2 (en) * 2010-06-28 2013-12-25 新日鐵住金株式会社 Manufacturing method of heat transfer tube for steam generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946404A (en) * 2017-03-06 2017-07-14 博天环境集团股份有限公司 A kind of processing method of cyanide wastewater
CN106946404B (en) * 2017-03-06 2019-09-24 博天环境集团股份有限公司 A kind of processing method of cyanide wastewater

Also Published As

Publication number Publication date
JPS541964A (en) 1979-01-09

Similar Documents

Publication Publication Date Title
TWI460136B (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
HU212078B (en) Method and apparatous for treating of liquids contain dangerous material
WO2018092831A1 (en) Water treatment method and device
JP2006341229A (en) Advanced treating method of cyanide compound-containing drain
JPS5924671B2 (en) Complex cyanide processing equipment
JPH10174983A (en) Accelerated oxidation treatment apparatus using ozone and photocatalyst
JP3506171B2 (en) Method and apparatus for removing TOC component
EP0242941B1 (en) Process and apparatus for the deodorization of air
JPS5852598A (en) Removal of organic compounds from radioactive waste liquid
JP2582550B2 (en) Treatment of water containing organic matter
US11814304B2 (en) Ultraviolet treatment method and system
JPS5929081A (en) Treatment of waste water containing humic acid and fulvic acid
JPH07241598A (en) Water treatment apparatus
JPH0440292A (en) Process for simultaneous removal of organic substance and dissolved oxygen
JP2588511B2 (en) Processing equipment
JPS5922595B2 (en) How to treat wastewater with ozone
JPS58193788A (en) Treatment of waste water of complex iron cyanide
JPH01218676A (en) Method for treating waste water
JPH09192658A (en) Manufacturing device of ultrapure water
JP2001029966A (en) Method and apparatus for treating organic wastewater containing endocrine disturbing substance or carcinogen
JP3493843B2 (en) Accelerated oxidation treatment equipment in water treatment
JP2001259621A (en) Water treating device
JPS55147192A (en) Treating method for water
JP2546757B2 (en) Advanced organic matter processing method and apparatus
JP3859866B2 (en) Water treatment method