JPH11277088A - Treatment of waste water containing water-soluble hydraulic fluid - Google Patents

Treatment of waste water containing water-soluble hydraulic fluid

Info

Publication number
JPH11277088A
JPH11277088A JP10103497A JP10349798A JPH11277088A JP H11277088 A JPH11277088 A JP H11277088A JP 10103497 A JP10103497 A JP 10103497A JP 10349798 A JP10349798 A JP 10349798A JP H11277088 A JPH11277088 A JP H11277088A
Authority
JP
Japan
Prior art keywords
treatment
water
activated sludge
treated
bod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10103497A
Other languages
Japanese (ja)
Inventor
Yoichiro Kono
洋一郎 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintobrator Ltd
Original Assignee
Sintobrator Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintobrator Ltd filed Critical Sintobrator Ltd
Priority to JP10103497A priority Critical patent/JPH11277088A/en
Publication of JPH11277088A publication Critical patent/JPH11277088A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently treat waste water mixed with a water-soluble hydraulic fluid. SOLUTION: In a waste water treatment method, waste water is subjected to activated sludge treatment to be sufficiently lowered in its BOD preliminarily and the treated waste water is subsequently subjected to activated carbon adsorbing treatment. In this activated sludge treatment, a membrane filtering method is pref. employed. Further, BOD is pref. 30 mg or less per 1,000 cc of waste water in the completion stage of an activated sludge method. In this case, since activated sludge treatment is performed as a first stage, BOD can be sufficiently lowered and, since activated carbon adsorbing treatment is performed as a second stage, the COD causing substance contained in the treated water after activated sludge treatment has characteristics easily adsorbed by activated carbon and COD can be sufficiently lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、洗浄や冷却などの
一般産業排水を法令で定められる基準以下の処理水とす
るための排水処理方法に関し、特には、水溶性作動油剤
を含む排水のCOD(化学的酸素要求量)及びBOD
(生物化学的酸素要求量)を効率よく低下させるために
改良された排水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method for converting general industrial wastewater, such as washing and cooling water, into treated water below a standard stipulated by law, and more particularly to COD of wastewater containing a water-soluble hydraulic fluid. (Chemical oxygen demand) and BOD
The present invention relates to an improved wastewater treatment method for efficiently reducing (biochemical oxygen demand).

【0002】[0002]

【従来の技術】油圧モーター、油圧シリンダー等のいわ
ゆる油圧機器は汎用的に使用されていて、これらの油圧
機器から漏れだした作動油が排水中に混入することがあ
る。作動油は一般的に鉱物油を主成分としていて、鉱物
油は排水1リットル当たり数ミリグラム以下に処理しな
くてはその排水を放流することができない。
2. Description of the Related Art Hydraulic motors, hydraulic cylinders, and other so-called hydraulic devices are commonly used, and hydraulic oil leaked from these hydraulic devices may be mixed into drainage water. Hydraulic oils generally contain mineral oil as a main component, and the mineral oil cannot be discharged unless it is processed to a level of several milligrams or less per liter of wastewater.

【0003】排水中の作動油の除去は、油分が水分から
分離して浮き上がる性質を利用すれば容易である。界面
活性剤の混入により油分が乳化、分散して前記のように
水分から分離しないとしても、このような分散した油分
は膜ろ過法によって容易に排水から除去させることがで
きる。
[0003] The removal of hydraulic oil in wastewater is easy if the oil component is separated from water and floats. Even if the oil is emulsified and dispersed by the incorporation of the surfactant and does not separate from the water as described above, such dispersed oil can be easily removed from the wastewater by a membrane filtration method.

【0004】また、鉱物油を主成分とした作動油は火災
の原因となることがあって、火災の危険を回避するため
には水溶性の作動油を採用したい。市販されている代表
的な水溶性作動油としては、例えば、ユシロ化学工業製
の商品名ユシロンルビックHFC43がある。
[0004] Hydraulic oil containing mineral oil as a main component may cause fire, and it is desirable to employ water-soluble hydraulic oil in order to avoid the danger of fire. As a typical commercially available water-soluble hydraulic oil, there is, for example, Yusilon Rubic HFC43 (trade name, manufactured by Yushiro Chemical Industry Co., Ltd.).

【0005】このような水溶性の作動油はグリコール水
溶液を主成分とし、排水に混入すればその混入量によっ
てはBOD、CODが排水1リットル当たり数百ミリグ
ラムとなることがある。BOD、CODは排水1リット
ル当たり数十ミリグラム以下に処理しなくてはその排水
を放流することができない。
[0005] Such a water-soluble hydraulic oil contains a glycol aqueous solution as a main component, and if mixed in the wastewater, the BOD and COD may be several hundred milligrams per liter of the wastewater depending on the amount of the mixed oil. BOD and COD cannot be discharged unless the wastewater is treated to several tens of milligrams per liter of wastewater.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、グリコ
ールは凝集沈殿させ難く、また、ろ過膜を通過し易い特
徴を持つから、後に詳しく説明するように、グリコール
に汚染された排水のBOD、CODを低下させることは
従来の排水処理技術によっては困難であって改善が求め
られてきた。
However, glycol has a characteristic that it is difficult to coagulate and precipitate and easily passes through a filtration membrane. Therefore, as will be described in detail later, the BOD and COD of wastewater contaminated with glycol are reduced. This is difficult with conventional wastewater treatment techniques, and improvements have been required.

【0007】本発明は、水溶性作動油が混入した排水で
あってもそのBOD、CODを放流可能なレベルまで効
果的に低下させることができる排水処理方法を提供する
ことを目的としている。
[0007] It is an object of the present invention to provide a wastewater treatment method capable of effectively reducing the BOD and COD of a wastewater mixed with a water-soluble hydraulic oil to a level at which the wastewater can be discharged.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の排水処理方法においては、活性汚泥処理と
活性炭吸着処理を組み合わせて採用することとし、特に
活性汚泥処理後の排水を活性炭吸着処理することとし
た。好適には、活性汚泥処理には膜分離活性汚泥処理を
採用する。更に好適には、活性汚泥処理は処理後のBO
Dの値が排水1000cc当たり30mg以下となる滞
留時間とする。
To achieve the above object, the wastewater treatment method of the present invention employs a combination of activated sludge treatment and activated carbon adsorption treatment. Adsorption treatment was performed. Preferably, the activated sludge treatment employs a membrane separation activated sludge treatment. More preferably, the activated sludge treatment is carried out after the treatment with BO.
The residence time at which the value of D becomes 30 mg or less per 1,000 cc of drainage water.

【0009】このような方法により水溶性作動油が混入
した廃水を処理すれば、まず活性汚泥処理により排水の
BODを効率よく低下させることができる。次に活性炭
吸着処理を行えば、活性汚泥処理後に処理水に残留した
COD原因物質は活性炭に吸着され易い特徴があるか
ら、排水のCODを効率よく低下させることができる。
If wastewater mixed with water-soluble hydraulic oil is treated by such a method, the BOD of the wastewater can be efficiently reduced first by activated sludge treatment. Next, if activated carbon adsorption treatment is performed, COD-causing substances remaining in the treated water after activated sludge treatment are easily adsorbed by activated carbon, so that COD of wastewater can be efficiently reduced.

【0010】また、活性汚泥処理法を膜分離活性汚泥法
とすれば活性汚泥処理の効率を高められると共に、膜分
離された一次処理水に残留するCOD原因物質は活性炭
に吸着され易い性質があって、更にCODを低下させる
ことが可能となる。
Further, if the activated sludge treatment method is a membrane separation activated sludge method, the efficiency of the activated sludge treatment can be enhanced, and the COD-causing substances remaining in the membrane-separated primary treatment water are easily adsorbed by activated carbon. Thus, the COD can be further reduced.

【0011】また、BOD原因物質は活性炭表面に微生
物を発生させてその吸着力を低下させるから、BOD原
因物質は十分に除去してから活性炭吸着処理を行わなく
てはならない。実験的にはBODを排水1000cc当
たり30mg以下とすればBOD原因物質による活性炭
の吸着性能阻害はほとんど認められない。BODに関す
る排出基準が30mg以下に定められている場合には、
活性汚泥処理の段階でBOD原因物質を排出基準以下と
しておくことが好ましい。BODは処理槽中の排水の滞
留時間を調節する方法で調節することができる。
[0011] Further, since the BOD causing substance generates microorganisms on the surface of the activated carbon and lowers its adsorptive power, the activated carbon adsorption treatment must be performed after the BOD causing substance is sufficiently removed. Experimentally, when the BOD is set to 30 mg or less per 1,000 cc of wastewater, the BOD causative substance hardly inhibits the adsorption performance of activated carbon. If the emission standard for BOD is set at 30 mg or less,
It is preferable that the BOD-causing substance be set to an emission standard or less at the stage of the activated sludge treatment. The BOD can be adjusted by adjusting the residence time of the wastewater in the treatment tank.

【0012】[0012]

【発明の実施の形態】(実験1)DESCRIPTION OF THE PREFERRED EMBODIMENTS (Experiment 1)

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】水溶性の作動油を含む排水のモデルとして
1gのユシロンピックHFC43を1000ccの蒸留
水に混入させた試験水(その分析結果を表1に示す)を
調製し凝集沈殿法により処理した(被処理水の分析結果
を表2に示す)。表1及び表2の結果によればCODは
被処理水1000cc当たり600mgが560mgと
なり、BODは同じく420mgが300mgと低下し
たが、例えば、愛知県の条例で定められている排水基準
ではCODが同じく20mg、BODが同じく25mg
であるから、十分に処理できたとは言い難い。
As a model of waste water containing a water-soluble hydraulic oil, test water prepared by mixing 1 g of Usilonpick HFC43 in 1000 cc of distilled water (the analysis result is shown in Table 1) was prepared and treated by the coagulation sedimentation method (see Table 1). The analysis results of the water to be treated are shown in Table 2). According to the results of Tables 1 and 2, the COD was 600 mg per 1000 cc of treated water and the 560 mg was 600 mg, and the BOD was also 420 mg and 300 mg per 100 cc. 20mg, BOD is also 25mg
Therefore, it is hard to say that the processing was sufficient.

【0016】ここにおいて、凝集剤として硫酸バンドを
被処理水1000cc当たり300mg、消石灰を被処
理水1000cc当たり200mg使用した。また、フ
ロックは0.001mmの粗さであるろ紙を使用して吸
引ろ過をにより分離し、分析は日本工業規格(JISK
0102)に定められた方法により行った。
Here, as a coagulant, a sulfate band was used in an amount of 300 mg per 1000 cc of water to be treated, and slaked lime was used in an amount of 200 mg per 1000 cc of water to be treated. The floc was separated by suction filtration using a filter paper having a roughness of 0.001 mm, and analyzed by Japanese Industrial Standards (JISK).
0102).

【0017】(実験2)(Experiment 2)

【0018】[0018]

【表3】 [Table 3]

【0019】次に、実験1と同じ試験水を逆浸透法によ
り処理した(被処理水の分析結果を表3に示す)。表3
の結果によればCODは被処理水1000cc当たり2
50mgとなり、BODは同じく160mgと低下した
がやはり前記の理由で不十分である。
Next, the same test water as in Experiment 1 was treated by the reverse osmosis method (analysis results of the water to be treated are shown in Table 3). Table 3
According to the results, COD was 2 per 1000 cc of water to be treated.
It became 50 mg, and the BOD also decreased to 160 mg, but it was still insufficient for the above-mentioned reason.

【0020】ここにおいて、逆浸透膜は0.15%Na
Cl水阻止率が95%である日東電工製の商品記号NT
R−729HFを使用した。分析は日本工業規格(JI
SK0102)に定められた方法により行った。
Here, the reverse osmosis membrane is 0.15% Na
Product code NT manufactured by Nitto Denko with Cl water rejection of 95%
R-729HF was used. Analysis is based on Japanese Industrial Standards (JI
SK0102).

【0021】(実験3)(Experiment 3)

【0022】[0022]

【表4】 [Table 4]

【0023】次に、実験1と同じ試験水を限外ろ過法に
より処理した(被処理水の分析結果を表4に示す)。表
4の結果によればCODは被処理水1000cc当たり
470mgとなり、BODは同じく310mgと低下し
たがやはり前記の理由で不十分である。
Next, the same test water as in Experiment 1 was treated by the ultrafiltration method (analysis results of the water to be treated are shown in Table 4). According to the results in Table 4, the COD was 470 mg per 1000 cc of water to be treated, and the BOD was also reduced to 310 mg, but it was still insufficient for the above-mentioned reason.

【0024】ここにおいて、限外ろ過膜は分画分子量が
20000である日東電工製の商品記号NTU−212
0を使用した。分析は日本工業規格(JISK010
2)に定められた方法により行った。
Here, the ultrafiltration membrane has a molecular weight cut-off of 20000, trade name NTU-212 manufactured by Nitto Denko Corporation.
0 was used. The analysis is based on Japanese Industrial Standards (JISK010)
Performed according to the method specified in 2).

【0025】(実施例1)(Example 1)

【0026】[0026]

【表5】 [Table 5]

【0027】次に、実験1と同じ試験水を本発明の方法
により処理した(被処理水の分析結果を表5に示す)。
表5の結果によれば、まず接触酸化法による活性汚泥処
理によりCODは被処理水1000cc当たり150m
gとなり、BODは同じく9mgと低下した。依然CO
Dが高いが活性汚泥処理ではBODがこれだけ低下する
と処理を続けることができない。しかし、続いて活性炭
吸着処理を行えば、CODを同じく13mgに低下させ
ることができた。
Next, the same test water as in Experiment 1 was treated by the method of the present invention (analysis results of the water to be treated are shown in Table 5).
According to the results shown in Table 5, first, COD was reduced to 150 m per 1000 cc of water to be treated by the activated sludge treatment by the catalytic oxidation method.
g, and the BOD also dropped to 9 mg. Still CO
Although D is high, in activated sludge treatment, if the BOD decreases by this amount, the treatment cannot be continued. However, if the subsequent activated carbon adsorption treatment was performed, the COD could be reduced to 13 mg as well.

【0028】ここにおいて、活性汚泥処理は0.022
3の曝気槽に接触材としてデイビイエス製の商品名D
Bレース延べ12mを張り、毎時0.2m3の曝気を行
って、滞留時間は24時間とした。活性炭吸着処理は新
東ブレーター製のコール炭である商品記号FC−500
を充填した吸着塔を毎時8mの速度で通過させて行っ
た。また、分析は日本工業規格(JISK0102)に
定められた方法により行った。
Here, the activated sludge treatment is 0.022
Deibiiesu trade name D as a contact material to the aeration tank m 3
Race B was stretched for a total of 12 m, aerated at 0.2 m 3 per hour, and the residence time was set to 24 hours. Activated carbon adsorption treatment is a product code FC-500, which is a coal charcoal made by Shinto Breta.
At a speed of 8 m / h. The analysis was performed according to the method specified in Japanese Industrial Standards (JIS K0102).

【0029】(実施例2)(Example 2)

【0030】[0030]

【表6】 [Table 6]

【0031】次に、実験1と同じ試験水を本発明の別の
方法により処理した(被処理水の分析結果を表6に示
す)。表6の結果によれば、まず膜ろ過法による活性汚
泥処理によりCODは被処理水1000cc当たり13
0mgとなり、BODは同じく5mgと低下した。続く
活性炭吸着処理によりCODを同じく3mgに低下させ
ることができた。
Next, the same test water as in Experiment 1 was treated by another method of the present invention (analysis results of the water to be treated are shown in Table 6). According to the results in Table 6, first, COD was reduced to 13 per 1000 cc of water to be treated by activated sludge treatment by the membrane filtration method.
0 mg, and the BOD was also reduced to 5 mg. Subsequent activated carbon adsorption treatment was able to reduce COD to 3 mg as well.

【0032】ここにおいて、活性汚泥処理は0.022
3の曝気槽に毎時0.2m3の曝気を行った。処理液
は、被処理液の滞留時間が24時間となるように、定量
ポンプにより被処理液中から三菱レーヨン製中空糸膜商
品名ステラポア(分画分子量0.1ミクロン)により分
離した。活性炭吸着処理は新東ブレーター製のコール炭
である商品記号FC−500を充填した吸着塔を毎時1
5mの速度で通過させて行った。また、分析は日本工業
規格(JISK0102)に定められた方法により行っ
た。 (実験4)
Here, the activated sludge treatment is 0.022
It was aeration per hour 0.2m 3 to the aeration tank of m 3. The treatment liquid was separated from the liquid to be treated by a metering pump using Stellapore (trade name: 0.1 micron) with a hollow fiber membrane manufactured by Mitsubishi Rayon so that the residence time of the treatment liquid was 24 hours. Activated carbon adsorption treatment is carried out by using an adsorption tower packed with Shinto Blater coal coal, product code FC-500, at an hourly rate.
Passing was performed at a speed of 5 m. The analysis was performed according to the method specified in Japanese Industrial Standards (JIS K0102). (Experiment 4)

【0033】[0033]

【表7】 [Table 7]

【0034】次に、比較のために試験水、実験2及び実
験3の処理水を前記実施例と同じ条件で活性炭吸着処理
した(被処理水の分析結果を表7に示す)。表7の結果
によれば試験水を処理した比較例AはCODが被処理水
1000cc当たり410mg、逆浸透法の処理水を処
理した比較例BはCODが同様に250mg、限外ろ過
法の処理水を処理した比較例CはCODが同様に420
mgであっていずれも十分に処理されたとは言い難い。
Next, for comparison, the test water and the treated waters of Experiments 2 and 3 were subjected to activated carbon adsorption treatment under the same conditions as in the above Examples (analysis results of the water to be treated are shown in Table 7). According to the results in Table 7, Comparative Example A treated with test water has a COD of 410 mg per 1000 cc of water to be treated, Comparative Example B treated with reverse osmosis treated water has a COD of 250 mg similarly, and treated with an ultrafiltration method. Comparative Example C treated with water had a COD of 420
mg, and it is hard to say that all were sufficiently processed.

【0035】[0035]

【発明の効果】本発明の水溶性作動油剤を含む排水の処
理方法は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。第1段階として活
性汚泥処理を行うからBODを十分に低下させることが
できると共に、第2段階として活性炭吸着処理を行うか
ら、活性汚泥処理後の処理水に含まれるCODの原因物
質は活性炭に吸着され易い特性を備えていて、CODを
十分に低下させることができる。
The method for treating wastewater containing a water-soluble hydraulic fluid according to the present invention has the following effects because it is configured as described above. Since the activated sludge treatment is performed as the first step, the BOD can be sufficiently reduced, and the activated carbon adsorption treatment is performed as the second step. Therefore, the COD causing substance contained in the treated water after the activated sludge treatment is adsorbed on the activated carbon. It has characteristics that make it easy to reduce COD.

【0036】このような排水処理法を採用すれば、水溶
性作動油剤を使用したとしても従来のように排水処理に
困るということがない。従って、積極的に水溶性作動油
剤を使用して工場の火災の危険性を少なくすることが可
能となる。また、そのために特に複雑な設備や制御を必
要とすることがないから、設備コスト、ランニングコス
ト共に従来の排水処理のレベルから大きく逸脱すること
はない。
If such a wastewater treatment method is employed, even if a water-soluble hydraulic fluid is used, the wastewater treatment will not be troublesome as in the prior art. Therefore, it is possible to reduce the risk of fire in a factory by actively using a water-soluble hydraulic fluid. In addition, since there is no need for particularly complicated equipment and control, both the equipment cost and the running cost do not greatly deviate from the level of the conventional wastewater treatment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性汚泥処理後の排水を活性炭吸着処理
することを特徴とする水溶性作動油剤を含む排水の処理
方法。
1. A method for treating wastewater containing a water-soluble hydraulic oil, wherein the wastewater after activated sludge treatment is subjected to activated carbon adsorption treatment.
【請求項2】 活性汚泥処理は膜分離活性汚泥処理であ
る請求項1記載の水溶性作動油剤を含む排水の処理方
法。
2. The method for treating wastewater containing a water-soluble hydraulic fluid according to claim 1, wherein the activated sludge treatment is a membrane separation activated sludge treatment.
【請求項3】 活性汚泥処理は処理後のBODの値が排
水1000cc当たり30mg以下であることを特徴と
する請求項1又は請求項2記載の水溶性作動油剤を含む
排水の処理方法。
3. The method for treating wastewater containing a water-soluble hydraulic oil according to claim 1, wherein the activated sludge treatment has a BOD value after treatment of 30 mg or less per 1,000 cc of wastewater.
JP10103497A 1998-03-30 1998-03-30 Treatment of waste water containing water-soluble hydraulic fluid Pending JPH11277088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10103497A JPH11277088A (en) 1998-03-30 1998-03-30 Treatment of waste water containing water-soluble hydraulic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10103497A JPH11277088A (en) 1998-03-30 1998-03-30 Treatment of waste water containing water-soluble hydraulic fluid

Publications (1)

Publication Number Publication Date
JPH11277088A true JPH11277088A (en) 1999-10-12

Family

ID=14355637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10103497A Pending JPH11277088A (en) 1998-03-30 1998-03-30 Treatment of waste water containing water-soluble hydraulic fluid

Country Status (1)

Country Link
JP (1) JPH11277088A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177608A (en) * 2010-02-26 2011-09-15 Toray Ind Inc Oil-containing waste water treatment method
CN102872814A (en) * 2012-08-28 2013-01-16 常州大学 Composite adsorbing material for removing nickel ions in natural water and preparation method thereof
CN104492433A (en) * 2014-12-18 2015-04-08 太原科技大学 Adsorption catalyst based on activated carbon felt base as well as preparation method and application of adsorption catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177608A (en) * 2010-02-26 2011-09-15 Toray Ind Inc Oil-containing waste water treatment method
CN102872814A (en) * 2012-08-28 2013-01-16 常州大学 Composite adsorbing material for removing nickel ions in natural water and preparation method thereof
CN104492433A (en) * 2014-12-18 2015-04-08 太原科技大学 Adsorption catalyst based on activated carbon felt base as well as preparation method and application of adsorption catalyst

Similar Documents

Publication Publication Date Title
US7384573B2 (en) Compositions for wastewater treatment
US20020003116A1 (en) System and method for removal of arsenic from aqueous solutions
KR101758986B1 (en) Methods for electronic wastewater treatment at an ultra-low concentration of contaminants adapting microfiltration membrane bioreactor process and selective heavy metal removal process
JP2007029826A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
JP2006320847A (en) Organic arsenic-containing water treatment method, and its apparatus
JP2007029825A (en) Apparatus for treating waste water and method for treating waste water using the apparatus
CN1323958C (en) Method for processing urban sewage deeply
JPH0240296A (en) Apparatus and method for treating waste water
JP2006204977A (en) Method and apparatus for treating biologically treated water-containing water
JP2003093803A (en) Oil-containing wastewater treatment method
CN1931750B (en) Petrochemical effluent treating and reusing process
JP5882992B2 (en) Improvement of activated sludge treatment in wastewater treatment.
JPH11277088A (en) Treatment of waste water containing water-soluble hydraulic fluid
RU2336232C2 (en) Method of biological sewage water purification and silt sediment utilisation
Vendramel et al. Reverse osmosis concentrate treatment by chemical oxidation and moving bed biofilm processes
JPS6034792A (en) Treatment of waste water containing oil
EP3447030B1 (en) Process of treatment of agroindustrial waste water by reaction of acidification with addition of strong acids
CN201321158Y (en) Marine domestic sewage treatment device
CN105859035A (en) Reclaimed water reuse and treatment process
CN104016551A (en) High-salinity industrial wastewater treatment method based on biochemical treatment
CN115304222B (en) Treatment process of oil-containing storage wastewater
JPH06134212A (en) Method for regenerating ferric chloride solution out of waste water sludge
JP2005186047A (en) Method for cleaning arsenic-containing raw water
JPH05245489A (en) Treatment of oil-containing waste water
JPH1028995A (en) Treatment of waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322