JPH11274229A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH11274229A
JPH11274229A JP7597598A JP7597598A JPH11274229A JP H11274229 A JPH11274229 A JP H11274229A JP 7597598 A JP7597598 A JP 7597598A JP 7597598 A JP7597598 A JP 7597598A JP H11274229 A JPH11274229 A JP H11274229A
Authority
JP
Japan
Prior art keywords
semiconductor chip
semiconductor device
electrode
semiconductor
strain detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7597598A
Other languages
Japanese (ja)
Other versions
JP3873438B2 (en
Inventor
Yasushi Tanaka
恭史 田中
Kazunari Kuzuhara
一功 葛原
Tomohiro Inoue
智広 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7597598A priority Critical patent/JP3873438B2/en
Publication of JPH11274229A publication Critical patent/JPH11274229A/en
Application granted granted Critical
Publication of JP3873438B2 publication Critical patent/JP3873438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Pressure Sensors (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device, which can readily detect the stress on a semiconductor chip. SOLUTION: This is a semiconductor device, which is formed by mounting a semiconductor chip 1 on a substrate 5. A plurality of distortion detecting elements 3 for detecting the distortion of the semiconductor chip 1 are formed an the specified parts in the semiconductor chip 1 in the same direction. Electric signals are applied on the distortion detecting elements 3. At the same time, an electrode 2 for taking out the output from one distortion detecting element 3 to the outside is formed. On the substrate 5, a measuring terminal 6 for connection to the electrode 2 is formed. The measuring terminal 6 and the electrode 2 are connected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体チップを基
板へ実装する際等にかかるストレスを検出することので
きる半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device capable of detecting stress applied when a semiconductor chip is mounted on a substrate.

【0002】[0002]

【従来の技術】従来、半導体チップを基板へ実装する際
等にかかるストレスの分布を解析、評価する場合、故障
モードの解析やシミュレーションによる解析を行う必要
があった。
2. Description of the Related Art Conventionally, when analyzing and evaluating the distribution of stress applied when a semiconductor chip is mounted on a substrate, it has been necessary to analyze a failure mode or analyze by simulation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
ような解析、評価の方法においては、モデルパターンの
作成が必要になり、この作業に多大の時間を要してしま
うという問題があった。
However, in the above-described analysis and evaluation methods, there is a problem that a model pattern needs to be created, and this operation requires a lot of time.

【0004】本発明は、上記の点に鑑みてなしたもので
あり、その目的とするところは、半導体チップにかかる
ストレスを容易に検出することのできる半導体装置を提
供することにある。
[0004] The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor device which can easily detect stress applied to a semiconductor chip.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
半導体チップを基板上に実装してなる半導体装置であっ
て、半導体チップ内の所定個所に該半導体チップの歪み
を検出するための歪み検出素子を同一方向に複数個形成
し、該歪み検出素子に電気信号を印加するとともに歪み
検出素子からの出力を外部へ取り出すための電極を形成
し、前記基板には、前記電極と接続するための測定用端
子を形成し、該測定用端子と前記電極とを接続するよう
にしたことを特徴とするものである。
According to the first aspect of the present invention,
A semiconductor device in which a semiconductor chip is mounted on a substrate, wherein a plurality of strain detecting elements for detecting strain of the semiconductor chip are formed at predetermined locations in the semiconductor chip in the same direction, and An electrode for applying an electric signal and taking out an output from the strain detection element to the outside is formed, and on the substrate, a measurement terminal for connecting to the electrode is formed, and the measurement terminal and the electrode are formed. Are connected.

【0006】請求項2記載の発明は、請求項1記載の半
導体装置において、前記歪み検出素子を半導体チップ内
の全面に均一に分散配置させるようにしたことを特徴と
するものである。
According to a second aspect of the present invention, in the semiconductor device of the first aspect, the strain detecting elements are uniformly distributed over the entire surface of the semiconductor chip.

【0007】請求項3記載の発明は、請求項1記載の半
導体装置において、前記歪み検出素子を半導体チップ内
に局所的に配置させるようにしたことを特徴とするもの
である。
According to a third aspect of the present invention, in the semiconductor device of the first aspect, the strain detecting element is locally arranged in a semiconductor chip.

【0008】請求項4記載の発明は、請求項1乃至請求
項3のいずれかに記載の半導体装置において、前記歪み
検出素子を半導体チップ内の表面側と裏面側の同一個所
に各々対応させて配置するようにしたことを特徴とする
ものである。
According to a fourth aspect of the present invention, in the semiconductor device according to any one of the first to third aspects, the strain detecting elements correspond to the same locations on the front side and the back side in the semiconductor chip, respectively. It is characterized by being arranged.

【0009】請求項5記載の発明は、請求項1乃至請求
項4のいずれかに記載の半導体装置において、前記半導
体チップの結晶構造として、(110)構造を用いるよ
うにしたことを特徴とするものである。
According to a fifth aspect of the present invention, in the semiconductor device according to any one of the first to fourth aspects, a (110) structure is used as a crystal structure of the semiconductor chip. Things.

【0010】請求項6記載の発明は、請求項1乃至請求
項4のいずれかに記載の半導体装置において、前記半導
体チップの結晶構造として、(100)構造を用いるよ
うにしたことを特徴とするものである。
According to a sixth aspect of the present invention, in the semiconductor device according to any one of the first to fourth aspects, a (100) structure is used as a crystal structure of the semiconductor chip. Things.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図面に基づき説明する。図1は、本発明の実施の形態
の一例に係る半導体チップの模式図である。本実施形態
の半導体チップ1には、所定個所、つまり、歪みを検出
したい個所に歪み検出素子としての複数のピエゾ抵抗素
子3が形成され、各ピエゾ抵抗素子3の両端近傍には接
続用配線4を介して接続される電極2が形成されてい
る。ピエゾ抵抗素子3は、例えば、シリコンウエハにホ
ウ素をドーピングすることにより形成することができ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a semiconductor chip according to an example of an embodiment of the present invention. In the semiconductor chip 1 of the present embodiment, a plurality of piezoresistive elements 3 as strain detecting elements are formed at predetermined locations, that is, locations where distortion is desired to be detected, and connection wires 4 are provided near both ends of each piezoresistive element 3. The electrode 2 connected through the electrode 2 is formed. The piezoresistive element 3 can be formed, for example, by doping a silicon wafer with boron.

【0012】ここで、複数のピエゾ抵抗素子3は、全て
同一方向に配置されるとともに、半導体チップ1の全面
にわたって、均一に分散配置されている。
Here, the plurality of piezoresistive elements 3 are all arranged in the same direction, and are uniformly distributed over the entire surface of the semiconductor chip 1.

【0013】本実施形態の半導体チップ1は、図2に示
すように、半導体チップ1の電極2上にバンプ7を形成
しておき、バンプ7の形成面を測定用端子6の形成され
た基板5の測定用端子6に対向させて、フリップチップ
実装し、さらに、アンダーフィル封止樹脂8による樹脂
封止を行い半導体装置が完成されるのである。
As shown in FIG. 2, the semiconductor chip 1 of this embodiment has bumps 7 formed on the electrodes 2 of the semiconductor chip 1 and the surface on which the bumps 7 are formed is formed on the substrate on which the measuring terminals 6 are formed. The semiconductor device is completed by flip-chip mounting, facing the measurement terminal 6 of No. 5, and further by resin sealing with the underfill sealing resin 8.

【0014】本実施形態の半導体装置では、フリップチ
ップ実装工程やアンダーフィル封止工程等において、半
導体チップ1にストレスがかかり半導体チップ1が歪め
ば、ピエゾ抵抗素子3の抵抗値が変化することになり、
外部から測定用端子6を介して電気信号を印加すること
により、ピエゾ抵抗素子3の抵抗値を測定すれば、この
抵抗値の変化により半導体チップ1の歪みを検出するこ
とができるのである。
In the semiconductor device of this embodiment, if the semiconductor chip 1 is stressed in the flip chip mounting step or the underfill sealing step and the semiconductor chip 1 is distorted, the resistance of the piezoresistive element 3 changes. Become
If the resistance of the piezoresistive element 3 is measured by applying an electric signal from the outside via the measuring terminal 6, the distortion of the semiconductor chip 1 can be detected by the change in the resistance.

【0015】従って、半導体チップ1のピエゾ抵抗素子
3の形成された個所にかかっているストレスが容易に検
出できるようになるのである。なお、歪み検出素子とし
て、ピエゾ抵抗素子3の替りに静電容量型素子を使用し
ても良い。
Therefore, the stress applied to the portion of the semiconductor chip 1 where the piezoresistive element 3 is formed can be easily detected. It should be noted that a capacitive element may be used instead of the piezoresistive element 3 as the strain detecting element.

【0016】本実施形態の半導体装置によれば、ピエゾ
抵抗素子3は、半導体チップ1において、全て同一方向
に配置されているので、フリップチップ実装工程やアン
ダーフィル封止工程での半導体チップ1の特定方向の応
力分布が測定できる。また、ピエゾ抵抗素子3は、半導
体チップ1の全面にわたって、均一に分散配置されてい
るので、フリップチップ実装工程やアンダーフィル封止
工程での半導体チップ1全体にわたる応力分布が測定で
きる。従って、半導体チップ1にかかる特定方向のスト
レス分布を容易に検出することができる。
According to the semiconductor device of the present embodiment, since the piezoresistive elements 3 are all arranged in the same direction in the semiconductor chip 1, the piezoresistive elements 3 are mounted in the flip chip mounting step or the underfill sealing step. The stress distribution in a specific direction can be measured. Further, since the piezoresistive elements 3 are uniformly distributed over the entire surface of the semiconductor chip 1, the stress distribution over the entire semiconductor chip 1 in the flip chip mounting step or the underfill sealing step can be measured. Therefore, the stress distribution in the specific direction on the semiconductor chip 1 can be easily detected.

【0017】本実施形態では、ピエゾ抵抗素子3が半導
体チップ1の全面にわたって、均一に分散配置されてい
るが、局所的に配置すれば、局所的且つ詳細なストレス
分布が検出できる。さらには、図3に示すように、ピエ
ゾ抵抗素子3の方向を変えて配置することにより、斜め
の方向でのストレス分布が検出できるのである。つま
り、ピエゾ抵抗素子3の配置の方向により、種々の方向
のストレス分布が検出できるのである。
In the present embodiment, the piezoresistive elements 3 are uniformly distributed over the entire surface of the semiconductor chip 1, but if they are locally disposed, a local and detailed stress distribution can be detected. Further, as shown in FIG. 3, by disposing the piezoresistive elements 3 in different directions, it is possible to detect a stress distribution in an oblique direction. That is, the stress distribution in various directions can be detected depending on the direction of the arrangement of the piezoresistive element 3.

【0018】また、ピエゾ抵抗素子3を、半導体チップ
1内の表面側と裏面側の同一個所に各々対応させて配置
すれば、半導体チップ1の厚み方向のストレス分布が検
出できる。
Further, if the piezoresistive elements 3 are arranged at the same positions on the front surface and the rear surface in the semiconductor chip 1 respectively, the stress distribution in the thickness direction of the semiconductor chip 1 can be detected.

【0019】半導体チップ1の結晶構造として、(11
0)構造のものを用いれば、ピエゾ抵抗素子3の縦方向
の応力が以下の式により、絶対値として検出することが
できるのである。(横方向の応力に対する検出感度は劣
っている) ΔR=(π/2)σy ΔR:ピエゾ抵抗素子3の抵抗値の変化量 π:ピエゾ抵抗係数 σy:縦方向応力 半導体チップ1の結晶構造として、(100)構造のも
のを用いれば、ピエゾ抵抗素子3の縦方向の応力が以下
の式により、絶対値として検出することができるのであ
る。
The crystal structure of the semiconductor chip 1 is (11
0) With the use of the structure, the longitudinal stress of the piezoresistive element 3 can be detected as an absolute value by the following equation. ΔR = (π / 2) σy ΔR: amount of change in the resistance value of the piezoresistive element 3 π: piezoresistance coefficient σy: longitudinal stress As the crystal structure of the semiconductor chip 1 , (100), the longitudinal stress of the piezoresistive element 3 can be detected as an absolute value by the following equation.

【0020】ΔR=(π/2)(σy−σx) ΔR:ピエゾ抵抗素子3の抵抗値の変化量 π:ピエゾ抵抗係数 σy:縦方向応力 σx:横方向応力 また、半導体チップ1の電極2と基板5の測定用端子6
との接続がワイヤボンディングではなくてバンプ7によ
り行われるので、基板5の測定用端子6の形成位置の自
由度が増す。
ΔR = (π / 2) (σy−σx) ΔR: amount of change in resistance value of piezoresistive element 3 π: piezoresistive coefficient σy: longitudinal stress σx: lateral stress Further, electrode 2 of semiconductor chip 1 And measuring terminal 6 of substrate 5
Is connected by the bump 7 instead of by wire bonding, so that the degree of freedom in the position of the measurement terminal 6 on the substrate 5 can be increased.

【0021】なお、ピエゾ抵抗素子3を半導体チップ1
に形成される回路(図示せず)のない部分に形成してお
けば、ストレスを検査した後の半導体装置であっても通
常の使用をすることができる。
The piezoresistive element 3 is connected to the semiconductor chip 1
If it is formed in a portion where no circuit (not shown) is formed, even a semiconductor device after stress inspection can be used normally.

【0022】[0022]

【発明の効果】以上のように、請求項1記載の発明によ
れば、半導体チップを基板上に実装してなる半導体装置
であって、半導体チップ内の所定個所に該半導体チップ
の歪みを検出するための歪み検出素子を同一方向に複数
個形成し、該歪み検出素子に電気信号を印加するととも
に歪み検出素子からの出力を外部へ取り出すための電極
を形成し、前記基板には、前記電極と接続するための測
定用端子を形成し、該測定用端子と前記電極とを接続す
るようにしたので、半導体チップにかかる特定方向のス
トレスを容易に検出することのできる半導体装置が提供
できた。
As described above, according to the first aspect of the present invention, there is provided a semiconductor device in which a semiconductor chip is mounted on a substrate, and distortion of the semiconductor chip is detected at a predetermined position in the semiconductor chip. A plurality of strain detecting elements for forming the same in the same direction, forming an electrode for applying an electric signal to the strain detecting element and extracting an output from the strain detecting element to the outside, and forming the electrode on the substrate. Since a measurement terminal for connecting to the semiconductor chip is formed and the measurement terminal is connected to the electrode, a semiconductor device that can easily detect stress in a specific direction applied to the semiconductor chip can be provided. .

【0023】請求項2記載の発明によれば、請求項1記
載の半導体装置において、前記歪み検出素子を半導体チ
ップ内の全面に均一に分散配置させるようにすれば、半
導体チップ全面にわたってかかる特定方向のストレスの
分布が容易に検出できる。
According to the second aspect of the present invention, in the semiconductor device according to the first aspect, if the strain detecting elements are uniformly distributed over the entire surface of the semiconductor chip, the specific direction in the specific direction over the entire surface of the semiconductor chip is improved. Stress distribution can be easily detected.

【0024】請求項3記載の発明によれば、請求項1記
載の半導体装置において、前記歪み検出素子を半導体チ
ップ内に局所的に配置させるようにすれば、半導体チッ
プの局所的且つ詳細に特定方向のストレスの分布が容易
に検出できる。
According to the third aspect of the present invention, in the semiconductor device according to the first aspect, if the strain detecting element is locally arranged in the semiconductor chip, the semiconductor chip can be specified locally and in detail. The distribution of directional stress can be easily detected.

【0025】請求項4記載の発明によれば、請求項1乃
至請求項3のいずれかに記載の半導体装置において、前
記歪み検出素子を半導体チップ内の表面側と裏面側の同
一個所に各々対応させて配置するようにすれば、半導体
チップの厚み方向のストレス分布が容易に検出できる。
According to a fourth aspect of the present invention, in the semiconductor device according to any one of the first to third aspects, the strain detecting elements correspond to the same portions on the front side and the back side in the semiconductor chip, respectively. With such arrangement, the stress distribution in the thickness direction of the semiconductor chip can be easily detected.

【0026】請求項5記載の発明によれば、請求項1乃
至請求項4のいずれかに記載の半導体装置において、前
記半導体チップの結晶構造として、(110)構造を用
いるようにすれば、前記歪み検出素子の応力を特定の式
により、絶対値として検出することができる。
According to a fifth aspect of the present invention, in the semiconductor device according to any one of the first to fourth aspects, the (110) structure is used as a crystal structure of the semiconductor chip. The stress of the strain detecting element can be detected as an absolute value by a specific equation.

【0027】請求項6記載の発明によれば、請求項1乃
至請求項4のいずれかに記載の半導体装置において、前
記半導体チップの結晶構造として、(100)構造を用
いるようにすれば、前記歪み検出素子の応力を特定の式
により、絶対値として検出することができる。
According to a sixth aspect of the present invention, in the semiconductor device according to any one of the first to fourth aspects, if the (100) structure is used as the crystal structure of the semiconductor chip, The stress of the strain detecting element can be detected as an absolute value by a specific equation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る半導体チップの模式
図である。
FIG. 1 is a schematic diagram of a semiconductor chip according to an embodiment of the present invention.

【図2】同上の半導体チップを基板にフリップチップ実
装及びアンダーフィル封止を行って構成された半導体装
置の断面方向から見た状態を示す模式図である。
FIG. 2 is a schematic diagram showing a state of a semiconductor device configured by flip-chip mounting and underfill sealing the semiconductor chip on a substrate, as viewed from a cross-sectional direction.

【図3】本発明の他の実施形態に係る半導体チップの模
式図である。
FIG. 3 is a schematic diagram of a semiconductor chip according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体チップ 2 電極 3 ピエゾ抵抗素子 4 接続用配線 5 基板 6 測定用端子 7 バンプ 8 アンダーフィル封止樹脂 DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Electrode 3 Piezoresistive element 4 Connection wiring 5 Substrate 6 Measurement terminal 7 Bump 8 Underfill sealing resin

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体チップを基板上に実装してなる半
導体装置であって、半導体チップ内の所定個所に該半導
体チップの歪みを検出するための歪み検出素子を同一方
向に複数個形成し、該歪み検出素子に電気信号を印加す
るとともに歪み検出素子からの出力を外部へ取り出すた
めの電極を形成し、前記基板には、前記電極と接続する
ための測定用端子を形成し、該測定用端子と前記電極と
を接続するようにしたことを特徴とする半導体装置。
1. A semiconductor device having a semiconductor chip mounted on a substrate, wherein a plurality of strain detecting elements for detecting strain of the semiconductor chip are formed at predetermined locations in the semiconductor chip in the same direction, An electrode for applying an electric signal to the strain detecting element and extracting an output from the strain detecting element to the outside; forming a measurement terminal for connecting to the electrode on the substrate; A semiconductor device, wherein a terminal is connected to the electrode.
【請求項2】 前記歪み検出素子を半導体チップ内の全
面に均一に分散配置させるようにしたことを特徴とする
請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein said strain detecting elements are uniformly distributed over the entire surface of the semiconductor chip.
【請求項3】 前記歪み検出素子を半導体チップ内に局
所的に配置させるようにしたことを特徴とする請求項1
記載の半導体装置。
3. The semiconductor device according to claim 1, wherein said strain detecting element is locally arranged in a semiconductor chip.
13. The semiconductor device according to claim 1.
【請求項4】 前記歪み検出素子を半導体チップ内の表
面側と裏面側の同一個所に各々対応させて配置するよう
にしたことを特徴とする請求項1乃至請求項3のいずれ
かに記載の半導体装置。
4. The semiconductor device according to claim 1, wherein the strain detecting elements are arranged corresponding to the same locations on the front surface and the rear surface in the semiconductor chip, respectively. Semiconductor device.
【請求項5】 前記半導体チップの結晶構造として、
(110)構造を用いるようにしたことを特徴とする請
求項1乃至請求項4のいずれかに記載の半導体装置。
5. The crystal structure of the semiconductor chip,
5. The semiconductor device according to claim 1, wherein a (110) structure is used.
【請求項6】 前記半導体チップの結晶構造として、
(100)構造を用いるようにしたことを特徴とする請
求項1乃至請求項4のいずれかに記載の半導体装置。
6. The crystal structure of the semiconductor chip,
5. The semiconductor device according to claim 1, wherein a (100) structure is used.
JP7597598A 1998-03-24 1998-03-24 Semiconductor device Expired - Fee Related JP3873438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7597598A JP3873438B2 (en) 1998-03-24 1998-03-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7597598A JP3873438B2 (en) 1998-03-24 1998-03-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH11274229A true JPH11274229A (en) 1999-10-08
JP3873438B2 JP3873438B2 (en) 2007-01-24

Family

ID=13591767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7597598A Expired - Fee Related JP3873438B2 (en) 1998-03-24 1998-03-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3873438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065052A (en) * 2007-09-07 2009-03-26 Ricoh Co Ltd Semiconductor package group for detecting stress distribution, and method of detecting stress distribution in semiconductor package using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065052A (en) * 2007-09-07 2009-03-26 Ricoh Co Ltd Semiconductor package group for detecting stress distribution, and method of detecting stress distribution in semiconductor package using the same
JP4512125B2 (en) * 2007-09-07 2010-07-28 株式会社リコー Semiconductor package group for detecting stress distribution and method for detecting stress distribution of semiconductor package using the same

Also Published As

Publication number Publication date
JP3873438B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
JP4617943B2 (en) Mechanical quantity measuring device
US8502224B2 (en) Measuring apparatus that includes a chip having a through silicon via, a heater, and a stress sensor
JP5779662B2 (en) Mechanical quantity measuring device
JP2011522251A (en) Configuration of current detection circuit and integrated current sensor
CN110160681B (en) Load sensing device, package and system
US7262617B2 (en) Method for testing integrated circuit, and wafer
CN114252679A (en) Current sensor device
JP3281217B2 (en) Semiconductor type acceleration sensor and method for evaluating characteristics of sensor element of the sensor
JP3837898B2 (en) Semiconductor device
JPH11211749A (en) Semiconductor acceleration sensor
JP3873438B2 (en) Semiconductor device
JP6540397B2 (en) Method of inspecting pressure pulse wave sensor and method of manufacturing pressure pulse wave sensor
JP3599003B2 (en) Bonding damage measurement method
US10837845B2 (en) Detection of strain direction in an integrated circuit
JPH11304614A (en) Semiconductor device
JP7474964B2 (en) Inspection method for device manufacturing equipment and device manufacturing equipment
JPH04279867A (en) Three-dimensional acceleration sensor
JPH08146034A (en) Acceleration-detecting apparatus
JP3753023B2 (en) Bumped chip for measuring bonding damage
JPH11163020A (en) Semiconductor device
JP4877465B2 (en) Semiconductor device, semiconductor device inspection method, semiconductor wafer
JP3573113B2 (en) Bonding damage measuring device and measuring method
JPH11211586A (en) Semiconductor device
KR100533569B1 (en) Semiconductor package for testing and method for there of
JPH0523140U (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees