JPH11273466A - High-voltage direct current power cable and sea bottom laying method for powder cable - Google Patents

High-voltage direct current power cable and sea bottom laying method for powder cable

Info

Publication number
JPH11273466A
JPH11273466A JP11037531A JP3753199A JPH11273466A JP H11273466 A JPH11273466 A JP H11273466A JP 11037531 A JP11037531 A JP 11037531A JP 3753199 A JP3753199 A JP 3753199A JP H11273466 A JPH11273466 A JP H11273466A
Authority
JP
Japan
Prior art keywords
sheath
cable
layer
conductor
grounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11037531A
Other languages
Japanese (ja)
Other versions
JP4801236B2 (en
Inventor
Georg Endre Balog
ゲオルク・エントレ・バローク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Original Assignee
Alcatel CIT SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA filed Critical Alcatel CIT SA
Publication of JPH11273466A publication Critical patent/JPH11273466A/en
Application granted granted Critical
Publication of JP4801236B2 publication Critical patent/JP4801236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/028Power cables with screens or conductive layers, e.g. for avoiding large potential gradients with screen grounding means, e.g. drain wires

Landscapes

  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new cable and cable laying method which can perform a high-energy, long distance transmission between two places separated by a water area at a reasonable cost with a high reliability. SOLUTION: A conductor 1 is of multi-wire type made from copper, while an insulation 2 may consist of winding of a tape or an extruded shape, and a metal sheath 3 is made of lead alloy as conventional. The first layer 4 covering the metal sheath is made of a polymer such as polyethylene(PE) and may be of semiconductive for avoiding potential difference or decreasing it. A reinforcing material 5 in the crosswise direction consisting of a tape of stainless steel etc., is installed on the surface of the layer 4, and thereon a second layer 6 is installed which consists of a hard copper wire equipped with profile. Thereon the following are installed; an insulating material sheath 7 as PE sheath, a layer 8 consisting of galvanized steel wires, and an outside protection material 9 made from polypropylene lines and asphalt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高電圧直流(HV
DC)ケーブルと、そのようなケーブルの海底への敷設
法に関する。このようなケーブルおよびその敷設法は、
WO97/04466(G Balog 13)に記載
されている。
The present invention relates to a high-voltage direct current (HV)
DC) cables and methods of laying such cables on the sea floor. Such cables and how to lay them,
WO 97/04466 (G Barlog 13).

【0002】[0002]

【従来の技術】UK2295506にはHVDCシステ
ムが記載されており、このシステムでは、整流器と複数
のコンバータが直流リンクによって接続され、インバー
タの消弧角を使用して閉ループ内の整流器の点弧角を制
御して、インバータの消弧角を所定の値またはそれ以上
に維持する。各コンバータは、直流電流、直流電圧、コ
ンバータ自体の消弧角、およびコンバータ自体の点弧角
に応じて整流器の点弧角を制御する、閉ループコントロ
ーラを有している。
2. Description of the Related Art UK 2295506 describes an HVDC system in which a rectifier and a plurality of converters are connected by a DC link and the firing angle of the rectifier in a closed loop is determined using the extinction angle of the inverter. By controlling, the arc extinguishing angle of the inverter is maintained at a predetermined value or more. Each converter has a closed loop controller that controls the firing angle of the rectifier in response to the DC current, DC voltage, the extinction angle of the converter itself, and the firing angle of the converter itself.

【0003】DE1262425は、HVDC敷設法で
のケーブルの「電圧抑制(VOLTAGEWISE R
ELIEF)」用装置に関し、その敷設法では、両端
が、「平滑」コイルおよび整流器を介して交流ネットワ
ークに接続され、また、給電および受電する交流ネット
ワーク、ならびに関連する整流器は、両端の交流側の位
相の数が、同じ素数を含まないものである。
[0003] DE 1 262 425 describes the "Voltage Wise R" of cables in the HVDC laying method.
ELIEF) device, the laying method is such that both ends are connected to the AC network via "smoothing" coils and rectifiers, and the AC network for supplying and receiving power and the associated rectifier are connected on both ends to the AC side. The number of phases does not include the same prime number.

【0004】ノルウェーとデンマークの間などの水域を
横断してエネルギーを一つの場所から他の場所に転送す
る通常の方法は、中心絶縁導体を有するHVDCケーブ
ルを使用し、かつ戻り電流用に海水を使用する方法であ
る。このケーブルは、同じ位相の数を有する交流回路間
に敷設される。一つの代替方法は、戻り電流用に、別の
HVDCケーブルを第一のケーブルと平行に敷設するこ
とである。これは費用のかかる解決策である。
[0004] The usual method of transferring energy from one place to another across water bodies, such as between Norway and Denmark, uses HVDC cables with a central insulated conductor and uses seawater for return current. The method to use. This cable is laid between AC circuits having the same number of phases. One alternative is to lay another HVDC cable parallel to the first cable for the return current. This is an expensive solution.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、新規
のケーブルおよび新規の敷設技術を提供することであ
り、水域によって離れている二つの場所の間で、信頼性
のある高エネルギー長距離転送を手ごろな費用で、とい
う顧客の要求を満たすことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a new cable and a new laying technique, and to provide a reliable high energy long distance between two places separated by water bodies. The purpose is to meet the customer's requirement that the transfer be affordable.

【0006】[0006]

【課題を解決するための手段】本発明の主要な特徴は、
特許請求の範囲で規定される。これらの解決策により、
本出願人は顧客の要求を満足させることに成功した。本
出願人によるケーブルは、外部磁界を有することなく単
極モードで作動する。この敷設法によって、高い費用お
よび広範な環境問題の原因となり得る海水電極が省略さ
れる。
The main features of the present invention are as follows.
It is defined in the claims. With these solutions,
Applicant has succeeded in satisfying customer requirements. Applicant's cable operates in unipolar mode without an external magnetic field. This laying method eliminates seawater electrodes, which can be expensive and cause widespread environmental problems.

【0007】本発明の上述およびその他の特徴および目
的は、図面と共に、以下に示す本発明の実施形態の詳細
な説明より明らかにされるであろう。
[0007] The above and other features and objects of the present invention will become apparent from the following detailed description of embodiments of the present invention, taken in conjunction with the drawings.

【0008】[0008]

【発明の実施の形態】図1はケーブルの断面図であり、
金属シース内に封じ込められた一層または複数層の絶縁
材料2を有する中央心線が示されている。心線1の表面
および鉛シース3の下側にそれぞれ配置された内側およ
び外側半導体層は図示されていない。鉛シースには、絶
縁体シース4、補強材5、外装6、絶縁体7、外装8、
および外側保護層9が連続して配置されている。
FIG. 1 is a sectional view of a cable.
A center conductor having one or more layers of insulating material 2 encapsulated within a metal sheath is shown. The inner and outer semiconductor layers respectively arranged on the surface of the core wire 1 and below the lead sheath 3 are not shown. In the lead sheath, an insulator sheath 4, a reinforcing material 5, an exterior 6, an insulator 7, an exterior 8,
And the outer protective layer 9 are continuously arranged.

【0009】導体1は、マルチワイヤ型の銅製の導体で
ある。絶縁体2は、テープを巻き付けたものでも押出し
成形された絶縁体でもよい。金属シース3は、従来形の
鉛合金シースである。金属シースを覆う第一層4は、ポ
リエチレン(PE)などのポリマーである。この第一層
は、電位差を回避しまたは減少させるため、半導体とす
ることができる。ステンレス鋼製テープなどの横方向の
補強材5は、層4の表面に配置される。次に、プロファ
イル付き硬銅線である、二層外装6が配置される。次
に、PEシースである絶縁体シース7と、亜鉛めっき鋼
線からなる外装8、ポリプロピレン製糸およびアスファ
ルトからなる外側保護材9とが配置される。
The conductor 1 is a multi-wire type copper conductor. The insulator 2 may be a wound tape or an extruded insulator. The metal sheath 3 is a conventional lead alloy sheath. The first layer 4 covering the metal sheath is a polymer such as polyethylene (PE). This first layer can be a semiconductor to avoid or reduce potential differences. A lateral stiffener 5 such as a stainless steel tape is placed on the surface of layer 4. Next, the two-layer exterior 6 which is a hard copper wire with a profile is arranged. Next, an insulator sheath 7 which is a PE sheath, an exterior 8 made of galvanized steel wire, and an outer protective material 9 made of polypropylene thread and asphalt are arranged.

【0010】500Kmを超える海底ケーブルのルート
を通って、500KVで、800MWを転送することが
できるケーブルでは、中心導体が1.600mmの断
面積を有するべきであり、戻り導体が約1.900mm
の断面積を有するべきである。このケーブルは、好ま
しくは海底に、海底から、好ましくは2.5mの深さに
埋設されるべきである。
For cables capable of transmitting 800 MW at 500 KV through the route of submarine cables over 500 km, the center conductor should have a cross-sectional area of 1.600 mm 2 and the return conductor should be approximately 1.900 mm
It should have a cross-sectional area of 2 . This cable should preferably be buried in the seabed, from the seabed, preferably at a depth of 2.5 m.

【0011】図2には、二つの端局A、B間に配置され
た主要部品(導体1、戻り導体6、および外装8)を概
略的に示す。局AおよびBは、交流ネットワーク(図示
せず)との相互接続用のコンバータ(図示せず)を含
む。導体1はケーブル電流をAからBに転送し、外装8
は連続的に接地される。同軸戻り導体6は、ケーブルの
両端に配置されたサージアレスタ(バルブ)10および
11を通して大地電位に接続され、戻り導体は、AとB
の間の中ほどで接地される。この接地は、半導体材料に
よって行われる。
FIG. 2 schematically shows the main components (conductor 1, return conductor 6, and sheath 8) arranged between the two terminal stations A and B. Stations A and B include converters (not shown) for interconnection with an AC network (not shown). The conductor 1 transfers the cable current from A to B,
Are continuously grounded. The coaxial return conductor 6 is connected to ground potential through surge arresters (valves) 10 and 11 located at both ends of the cable.
It is grounded in the middle of between. This grounding is provided by a semiconductor material.

【0012】金属戻り導体の接地は、循環電流が存在し
ないように行う必要がある。同時に、コンバータにも真
の接地を行う必要がある。循環電流は、異なるループ内
での抵に従って分割される。海水を非常に大きな導体と
みなすことができるため、電極に対する鉛の抵抗、電極
の抵抗、および接地部分での最終的な抵抗のみが、ルー
プ抵抗を規定する。
The grounding of the metal return conductor must be such that there is no circulating current. At the same time, the converter must also have true ground. The circulating current is divided according to the resistance in different loops. Because seawater can be considered a very large conductor, only the resistance of the lead to the electrode, the resistance of the electrode, and the final resistance at the ground point define the loop resistance.

【0013】図3では、敷設法は図2の敷設法と同様で
あるが、この代替例では、戻り導体6はその一端(A
端)が接地され、他端(B端)がサージアレスタ(バル
ブ)12を通って大地に接続される。
In FIG. 3, the laying method is similar to the laying method of FIG. 2, but in this alternative, the return conductor 6 has one end (A
(End) is grounded, and the other end (end B) is connected to the ground through a surge arrester (valve) 12.

【0014】金属戻り導体を有するケーブルでは、80
0MWの負荷で、540kmの長さの間に約10kV直
流電圧がかかる。地電流を制限するために、抵抗器を使
用することが可能であるが、地電流がある場合は望まし
くない。他の方法は、一点接続によって循環電流を防ぐ
ことである。これらのバルブの一つを直接接地する必要
がある場合は、この方法が可能であるが、他端では、そ
の他のバルブ群に、接地側に対して10kVがかけられ
る。
For a cable having a metal return conductor, 80
At a load of 0 MW, a DC voltage of about 10 kV is applied for a length of 540 km. A resistor can be used to limit the ground current, but is undesirable if there is a ground current. Another method is to prevent circulating current by a single point connection. This method is possible if one of these valves needs to be grounded directly, but at the other end, the other group of valves is applied with 10 kV to ground.

【0015】ケーブルシステムが中間で接地される場合
(図2)、両方のバルブ群には、接地側に対し約5kV
の直流電圧がかけられる。この場合、両端で、ダイオー
ドをツェナーダイオードとして使用することができ、外
側絶縁体を過電圧から保護することができる。
If the cable system is grounded in the middle (FIG. 2), both valve groups have approximately 5 kV to ground.
DC voltage is applied. In this case, at both ends, the diode can be used as a Zener diode, and the outer insulator can be protected from overvoltage.

【0016】上述の、本発明の実施形態の詳細な説明
は、単なる例として理解すべきであり、保護の範囲を限
定するものとみなすべきではない。
The above detailed description of the embodiments of the present invention is to be understood as merely examples and should not be considered as limiting the scope of protection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】HVDCケーブルの断面を示す概略図である。FIG. 1 is a schematic view showing a cross section of an HVDC cable.

【図2】ケーブル敷設法の例を示す図である。FIG. 2 is a diagram illustrating an example of a cable laying method.

【図3】ケーブル敷設法の例を示す図である。FIG. 3 is a diagram illustrating an example of a cable laying method.

【符号の説明】[Explanation of symbols]

1 心線、導体 2 絶縁材料、絶縁体 3 鉛シース 4 絶縁体シース、第一層 5 補強材、層 6 外装、戻り電流導体 7 絶縁体、絶縁体シース 8 外装 9 外側保護層、外側保護材 REFERENCE SIGNS LIST 1 core wire, conductor 2 insulating material, insulator 3 lead sheath 4 insulator sheath, first layer 5 reinforcing material, layer 6 sheath, return current conductor 7 insulator, insulator sheath 8 exterior 9 outer protective layer, outer protective material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 中心導体(1)と、鉛シースなどの金属
シース(3)で被覆された絶縁層(2)と、外側外装
(8)と、腐食保護材(9)とを含むHVDC電力ケー
ブルであって、 前記ケーブルが、金属シース(3)と外側腐食保護層
(9)との間に配置された同軸戻り電流導体(6)を含
むことを特徴とするケーブル。
An HVDC power supply including a central conductor (1), an insulating layer (2) covered with a metal sheath (3) such as a lead sheath, an outer sheath (8), and a corrosion protection material (9). A cable, comprising: a coaxial return current conductor (6) disposed between a metal sheath (3) and an outer corrosion protection layer (9).
【請求項2】 前記金属シース(3)の外側に、ポリマ
ー絶縁体(または半導体)層(4)、スチールテープ補
強材(5)、戻り電流導体として機能する銅外装
(6)、少なくとも一層のポリマー絶縁体層(7)、外
装(8)、ならびに外側シース(9)を順次含むことを
特徴とする請求項1に記載のケーブル。
2. Outside the metal sheath (3), a polymer insulator (or semiconductor) layer (4), a steel tape reinforcement (5), a copper sheath (6) functioning as a return current conductor, at least one layer. Cable according to claim 1, characterized in that it comprises a polymer insulation layer (7), a sheath (8) and an outer sheath (9) in sequence.
【請求項3】 前記ポリマー層(4、7)がPE層であ
ることを特徴とする請求項2に記載のケーブル。
3. Cable according to claim 2, wherein the polymer layers (4, 7) are PE layers.
【請求項4】 前記外装(8)が、AとBの間のケーブ
ルのルートに沿って連続的に接地され、前記戻り導体
(6)が、端接続部(A、B)の中間で接地されること
を特徴とする請求項1から3に記載のHVDCケーブル
のための海底ケーブル敷設法。
4. The armor (8) is continuously grounded along the cable route between A and B, and the return conductor (6) is grounded in the middle of the end connections (A, B). The method of laying a submarine cable for an HVDC cable according to any one of claims 1 to 3, wherein the method is performed.
【請求項5】 前記戻り導体が、両端(A、B)に配置
されたサージアレスタ(10、11)を通して接地され
ることを特徴とする請求項4に記載のケーブル敷設法。
5. The method according to claim 4, wherein the return conductor is grounded through surge arresters (10, 11) arranged at both ends (A, B).
【請求項6】 前記外装(8)がAとBの間のケーブル
のルートに沿って連続的に接地され、前記戻り導体
(6)が一端(A側)で直接接地され、かつ他端(B
側)でサージアレスタ(12)を通して接地されること
を特徴とする請求項1から3に記載のHVDCケーブル
のための海底ケーブル敷設法。
6. The sheath (8) is continuously grounded along a cable route between A and B, the return conductor (6) is directly grounded at one end (A side), and the other end ( B
4. The method of laying submarine cables for HVDC cables according to claim 1, wherein the side is grounded through a surge arrester (12).
JP03753199A 1998-02-19 1999-02-16 High voltage DC power cable and its submarine cable laying method Expired - Fee Related JP4801236B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO19980691A NO310388B1 (en) 1998-02-19 1998-02-19 High voltage cable and undersea cable installation
NO19980691 1998-02-19

Publications (2)

Publication Number Publication Date
JPH11273466A true JPH11273466A (en) 1999-10-08
JP4801236B2 JP4801236B2 (en) 2011-10-26

Family

ID=19901689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03753199A Expired - Fee Related JP4801236B2 (en) 1998-02-19 1999-02-16 High voltage DC power cable and its submarine cable laying method

Country Status (5)

Country Link
EP (1) EP0938102B1 (en)
JP (1) JP4801236B2 (en)
AU (1) AU755659B2 (en)
DK (1) DK0938102T3 (en)
NO (1) NO310388B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118190A (en) * 2008-11-11 2010-05-27 Sumitomo Electric Ind Ltd Solid cable
JP2013191425A (en) * 2012-03-14 2013-09-26 Yazaki Corp Coaxial electric wire and manufacturing method of the same
WO2016191508A1 (en) * 2015-05-28 2016-12-01 Schlumberger Technology Corporation Lead alloy tape barrier
US20190198197A1 (en) * 2017-12-21 2019-06-27 Nexans Stainless steel screen and non-insulating jacket arrangement for power cables
CN111326288A (en) * 2020-04-01 2020-06-23 杭州智海人工智能有限公司 Wind power generation high-voltage direct-current submarine cable
US11562834B2 (en) 2017-10-03 2023-01-24 Schlumberger Technology Corporation Lead alloy barrier tape splice for downhole power cable

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002223949A1 (en) * 2001-11-27 2003-06-10 Pirelli & C S.P.A. Method for testing an electrical cable, modified electrical cable and process for producing it
EP1933333A1 (en) * 2006-12-15 2008-06-18 ABB Technology Ltd An electric power cable, an off-shore installation provided therewith, and use thereof
CN101211680B (en) * 2006-12-26 2010-10-06 上海电缆厂有限公司 Optical fibre composite electric power seabed oil-filled cable
CN102057563B (en) * 2008-06-09 2014-07-16 Abb技术有限公司 A plant for transmitting electric power
EP2197080A1 (en) 2008-12-09 2010-06-16 ABB Research Ltd. Flexible joint with resistive field grading material for HVDC cables and method for connecting same to HVDC cables
JP5864228B2 (en) * 2011-11-21 2016-02-17 矢崎総業株式会社 High voltage conductive path and wire harness
JP5986812B2 (en) * 2011-11-21 2016-09-06 矢崎総業株式会社 Wire harness
CN105405497A (en) * 2015-12-16 2016-03-16 中天科技海缆有限公司 Positive and negative electrodes syncretic optical fiber composite flexible DC medium voltage cable for urban distribution network system
DE102016002881A1 (en) 2016-03-09 2017-09-14 nkt cables GmbH & Co.KG DC cable system with metallic return conductor
CN110060806A (en) * 2018-01-17 2019-07-26 南方电网科学研究院有限责任公司 A kind of horizontal water conservancy diversion cable and deep-well type vertical grounding electrode
CN110828052A (en) * 2019-11-15 2020-02-21 中天科技海缆有限公司 Direct current submarine cable

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445938A (en) * 1973-11-26 1976-08-11 Intenational Standard Electric Single conductor submarine power cable
JPS5556302A (en) * 1978-10-04 1980-04-25 Showa Electric Wire & Cable Co Power cable line
JPS5637409U (en) * 1979-08-31 1981-04-09
JPS5637410U (en) * 1979-08-31 1981-04-09
JPS5638915U (en) * 1979-09-01 1981-04-11
JPS58201515A (en) * 1982-05-17 1983-11-24 住友電気工業株式会社 Method of preventing insulator from deteriorating due to water tree of cable
JPS61176736U (en) * 1985-04-23 1986-11-04
JPH0579814U (en) * 1992-03-27 1993-10-29 日立電線株式会社 Cross-linked polyethylene insulated lead sheathed cable
JPH05300057A (en) * 1992-04-21 1993-11-12 Fujitsu Ltd Power feeding circuit for submarine branch device
JPH06215638A (en) * 1993-01-18 1994-08-05 Sumitomo Electric Ind Ltd Direct-current water bottom power cable line
JPH11120837A (en) * 1997-10-09 1999-04-30 Fujikura Ltd Neutral conductor composite dc power cable and dc power cable line

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256921A (en) * 1979-01-22 1981-03-17 George Bahder Moisture resistant cable

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445938A (en) * 1973-11-26 1976-08-11 Intenational Standard Electric Single conductor submarine power cable
JPS5556302A (en) * 1978-10-04 1980-04-25 Showa Electric Wire & Cable Co Power cable line
JPS5637409U (en) * 1979-08-31 1981-04-09
JPS5637410U (en) * 1979-08-31 1981-04-09
JPS5638915U (en) * 1979-09-01 1981-04-11
JPS58201515A (en) * 1982-05-17 1983-11-24 住友電気工業株式会社 Method of preventing insulator from deteriorating due to water tree of cable
JPS61176736U (en) * 1985-04-23 1986-11-04
JPH0579814U (en) * 1992-03-27 1993-10-29 日立電線株式会社 Cross-linked polyethylene insulated lead sheathed cable
JPH05300057A (en) * 1992-04-21 1993-11-12 Fujitsu Ltd Power feeding circuit for submarine branch device
JPH06215638A (en) * 1993-01-18 1994-08-05 Sumitomo Electric Ind Ltd Direct-current water bottom power cable line
JPH11120837A (en) * 1997-10-09 1999-04-30 Fujikura Ltd Neutral conductor composite dc power cable and dc power cable line

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118190A (en) * 2008-11-11 2010-05-27 Sumitomo Electric Ind Ltd Solid cable
JP2013191425A (en) * 2012-03-14 2013-09-26 Yazaki Corp Coaxial electric wire and manufacturing method of the same
US9396845B2 (en) 2012-03-14 2016-07-19 Yazaki Corporation Coaxial electric wire and method for manufacturing the same
WO2016191508A1 (en) * 2015-05-28 2016-12-01 Schlumberger Technology Corporation Lead alloy tape barrier
US11562834B2 (en) 2017-10-03 2023-01-24 Schlumberger Technology Corporation Lead alloy barrier tape splice for downhole power cable
US20190198197A1 (en) * 2017-12-21 2019-06-27 Nexans Stainless steel screen and non-insulating jacket arrangement for power cables
US10535448B2 (en) * 2017-12-21 2020-01-14 Nexans Stainless steel screen and non-insulating jacket arrangement for power cables
CN111326288A (en) * 2020-04-01 2020-06-23 杭州智海人工智能有限公司 Wind power generation high-voltage direct-current submarine cable
CN111326288B (en) * 2020-04-01 2021-03-30 杭州智海人工智能有限公司 Wind power generation high-voltage direct-current submarine cable

Also Published As

Publication number Publication date
AU755659B2 (en) 2002-12-19
AU1740799A (en) 1999-09-02
EP0938102A3 (en) 2000-10-18
DK0938102T3 (en) 2006-01-30
NO980691D0 (en) 1998-02-19
NO310388B1 (en) 2001-06-25
NO980691L (en) 1999-08-20
EP0938102A2 (en) 1999-08-25
EP0938102B1 (en) 2005-09-14
JP4801236B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4801236B2 (en) High voltage DC power cable and its submarine cable laying method
EP0071435B1 (en) Electric cable and electric cable installations
US10056169B2 (en) Submarine low loss cable system and method for arranging a submarine cable landfall system
CN106796827A (en) Submerged cable and submerged cable operating method
RU2145458C1 (en) Shielded overhead high-voltage power transmission line
JP3822331B2 (en) Neutral wire composite DC power cable and DC power cable line
KR20180101352A (en) Electric cables
JP4668003B2 (en) Coaxial cable for bipolar DC power transmission
JP3107302B2 (en) DC solid power cable, DC solid power cable line, and method for monitoring DC solid power cable line
JP4103259B2 (en) Lightning protection lead and lightning protection system
JP3417590B2 (en) DC submarine power cable line
JP6632954B2 (en) Grounding system
JP3792862B2 (en) Neutral wire composite DC power cable
KR101054024B1 (en) Apparatus and method for reducing overvoltage of transmission line
JP3792860B2 (en) Neutral wire composite DC power cable
CN214203271U (en) Cable with voltage less than or equal to 1.8/3kV
KR0116313Y1 (en) Cable pack for high voltage
EP4220668A1 (en) High voltage ac cable
US20230178268A1 (en) HVAC-cable with composite conductor
JPH09288917A (en) Plastic power cable
KR20230151225A (en) The valance grounding connection for power cable and the impedance grounding line
JPS6038804B2 (en) power cable
JPH05303910A (en) Tree-resisting insulated electric wire
JPH0645214U (en) Anticorrosion structure for long laid submarine cables
JPS5937551B2 (en) How to ground a 3-phase line consisting of a single-core cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090109

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100826

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees