JP3417590B2 - DC submarine power cable line - Google Patents

DC submarine power cable line

Info

Publication number
JP3417590B2
JP3417590B2 JP02363193A JP2363193A JP3417590B2 JP 3417590 B2 JP3417590 B2 JP 3417590B2 JP 02363193 A JP02363193 A JP 02363193A JP 2363193 A JP2363193 A JP 2363193A JP 3417590 B2 JP3417590 B2 JP 3417590B2
Authority
JP
Japan
Prior art keywords
power cable
line
cable
wire
submarine power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02363193A
Other languages
Japanese (ja)
Other versions
JPH06215638A (en
Inventor
良輔 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP02363193A priority Critical patent/JP3417590B2/en
Publication of JPH06215638A publication Critical patent/JPH06215638A/en
Application granted granted Critical
Publication of JP3417590B2 publication Critical patent/JP3417590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は直流水底電力ケーブル線
路に関するものである。 【0002】 【従来の技術】図5〜図8は従来の直流水底電力ケーブ
ル線路の構成図である。図5は1条の直流水底電力ケー
ブル21の両端を水中又は海水接地し、水又は海水を帰路
回路とした単極運転方式の線路である。なお、図におい
て3はAC/DC変換器を示す。 【0003】図6は1条の直流水底電力ケーブル21と、
雷サージとケーブルの抵抗降電圧分を絶縁するのみの極
めて低絶縁の直流水底電力ケーブル22の計2条を別個に
布設し、低圧ケーブル22の片端を接地し、この低圧ケー
ブル22を帰路回路とした単極運転方式の線路である。 【0004】図7は高絶縁の直流水底電力ケーブルの2
条21A, 21Bを布設し、それぞれを(+)極、(−)極と
して中性点を水中又は海水接地した直流双極運転方式の
線路である。 【0005】図8は、上述の図7の直流水底電力ケーブ
ル21A, 21Bの接地点間を、前述の低圧ケーブル22で連結
し、片端を接地した直流双極運転方式の線路である。 【0006】 【発明が解決しようとする課題】上述した従来の直流水
底電力ケーブル線路のうち、図5の線路は、往路電流と
同等の帰路電流が海水に流れるので、航行船舶のコンパ
スエラー、魚類への影響、周辺構築物の電気腐食等の問
題があり、近年では単極運転の場合は、図6に示すよう
に帰路回路を構成する低圧ケーブル22を別途布設される
ことが多い。 【0007】双極運転方式では、原理上(+)(−)電
流がバランスとれていれば帰路回路は不要であるが、 (イ)微妙なアンバランス電流の帰路用 (ロ)どちらかの高圧ケーブルに事故が発生した場合
に、直ちに単極運転に戻すが、その時の上記問題を解消
する ために、図7に示す双極運転方式の採用は減少しつつあ
り、図8に示すように低圧の直流水底電力ケーブル22を
接地点間に布設して帰路回路(中性線)を構成する方式
の採用が増加しつつある。 【0008】しかしながら、図6に示す単極運転方式の
線路及び図8に示す双極運転方式の線路の、いずれの線
路においても真に直流送電電力に寄与する直流水底電力
ケーブル21に加えて、帰路回路(中性線)用の直流水底
電力ケーブルが必要となり、 (イ)ルート確保のためのケーブル布設スペースが増大
し、漁業補償等の問題がからんでくる。 (ロ)ケーブル1条分の資材、加工費用の増加及び布設
費用が帰路回路分だけ増大し、非経済的であり、かつ布
設工期も長くなる。 等の問題点がある。特に図8に示す双極運転方式の場
合、正常時には帰路回路(中性線)には殆んど電流が流
れることがなく、いわゆる非常用であるため、さらに、
非経済的、非効率的といえる。 【0009】 【課題を解決するための手段】本発明は上述の問題点を
解消し、帰路回路(中性線)用の直流水底電力ケーブル
を用いることなく、図8に示す直流水底電力ケーブル線
路と同等の効果を発揮せしめ得る直流水底電力ケーブル
線路を提供するもので、その特徴は、外装線を施した直
流水底電力ケーブルの上記外装線を銅線もしくは銅合金
線で構成し、該外装線を直流双極運転方式を採用した線
路の接地側帰路電流回路の中性線として用いることにあ
る。 【0010】 【作用】直流水底電力ケーブルの外装線の総断面積は、
内部の送電電流が流れるケーブル導体の断面積と同等
か、それよりもはるかに大きい。従って、これを銅線も
しくは銅合金線で構成すれば、内部のケーブル導体の直
流抵抗より小さい外部導体となり得る。 【0011】従って、この銅もしくは銅合金の外装線
を、図6、図8の帰路回路(中性線)として用いれば、
本来帰路回路(中性線)の電位は片端が接地されている
ことより分る通り、電位はアース電位にほぼ近く、絶縁
はなくても基本的な機能を果し得るから、大導体サイ
ズ、高導電率、低抵抗の外装線は帰路電流回路(中性
線)となり得る。 【0012】具体的な数値例としては、直流 500kV、1
×1600mm2 クラスの直流水底電力ケーブルに、3mm厚×
12mm幅の平角銅線を2層用いて外装線を構成すれば、略
100枚が必要で、その総断面積は3600mm2 となり、、内
部のケーブル導体1600mm2 の2倍以上となる。 【0013】又直流 500kV、1×3000mm2 クラスの直流
水底電力ケーブルに、直径8mmφの丸型硬銅線を1層用
いて外装線を構成すれば、略60本が必要で、その総断面
積は3016mm2 となり、内部のケーブル導体と同等とな
る。 【0014】さらに、直流 250kV、1×600mm2クラスの
直流水底電力ケーブルに、直径8mmφの丸型硬銅線を1
層用いて外装線を構成すれば、略38本が必要で、その総
断面積は1910mm2 となり、内部のケーブル導体の3倍強
となる。 【0015】一般に、直流電流の流れ易さは、導体の導
電率に比例(抵抗に逆比例)し、導電率は導体の断面積
に比例するから、上記いずれのケースにおいても、外装
線を流れる直流電流は、内部のケーブル導体を流れる直
流電流よりもはるかに電流が流れ易くなる。 【0016】さきに、外装線は基本的に絶縁は不要であ
ると述べたが、わずかではあっても帰路電流×外部導体
(外装線)の抵抗=電圧隆下分の直流電圧が生じる可能
性がある。これは小さい程好ましいので、外装線の総断
面積が上述のように大きいことは好ましいことである。
又これだけのわずかな直流電圧分の絶縁を外装線に例え
ばポリエチレン被覆等で施すことは、海水中への直流帰
路電流の流出を、さらに完全に防止することができ、環
境保全上、又外装線の電気腐食を防ぐ上からも好ましい
ことである。 【0017】上記の観点からみれば、図8の双極運転方
式の場合、本発明のケーブル線路で構成するのが最も効
果的である。なぜなら、双極運転方式では(+)(−)
極のアンバランス分のほんのわずかな電流しか帰路回路
(中性線)に流れないから、電圧降下分も少なく、海水
中への漏洩電流も少なく環境障害も、外装線の電気腐食
の心配も殆んどないからである。 【0018】さらに、直流水底電力ケーブルが水底土中
に埋設されている場合は、 (イ)外装線を保護する外装線の外側のジュート、ポリ
プロピレン紐等のサービング層が腐食せずに残存し、外
装線の海水に対する漏洩電気抵抗が大きいこと。 (ロ)水底の埋設土の水に対する電気抵抗そのものも、
非埋設時のケーブルの水に対する電気抵抗よりもはるか
に大きいこと。 により、外装線から水中に漏洩する漏洩電流が殆んどな
く、環境上も、電気腐食上も極めて好ましいといえる。 【0019】なお、帰路回路(中性線)としての外装線
は、直流水底電力ケーブル1条の単極運転方式の場合
は、1条のケーブルの外装線を、又直流水底電力ケーブ
ル2条の双極運転方式の場合は、2条のケーブルの外装
線をすべて銅線もしくは銅合金線とし、この2条分の外
装線を合せて帰路回路(中性線)として使用すれば、帰
路回路の導体断面積が一層大きくなり、電気抵抗が著し
く減少して好ましい。 【0020】 【実施例】図4(イ)は本発明のケーブル線路を構成す
る直流水底電力ケーブルの一例の横断面図である。図面
において、11はケーブル導体、12はケーブル絶縁体、13
は鉛被等の金属シース、14はジュート、ポリプロピレン
紐等の座床、15は外装線、16はジュート、ポリプロピレ
ン紐等のサービング層で、上記外装線15は銅線、銅合金
線等を多数本撚合せて構成されており、帰路回路(中性
線)として使用される。 【0021】図4(ロ)は本発明のケーブル線路を構成
する直流水底電力ケーブルの他の例の横断面図で、図4
と同一符号は同一部位をあらわしている。図5のケーブ
ルは全体の構成は図4のケーブルと同様であるが、外装
線15の各素線にはポリエチレン、塩化ビニル等の防食絶
縁層17が施されている。 【0022】図1〜図3はいずれも本発明の直流水底電
力ケーブル線路の具体例の説明図である。図1は図4又
は図5に示す直流水底電力ケーブルの1条を用い、ケー
ブル導体1を直流送電電流用に、外装線2を帰路電流回
路(中性線)として用いた、単極運転方式の線路であ
る。なお図面において、3はAC/DC変換器である。 【0023】図2は図4又は図5に示す直流水底電力ケ
ーブルの2条を用い、それぞれのケーブル導体1A,1Bを
直流送電電流の(+)(−)極用に、外装線2を帰路電
流回路(中性線)として用いた、双極運転方式の線路で
ある。 【0024】図3は直流水底電力ケーブルの4条を用い
た1相1A,1B2条の双極運転方式の線路で、これらケー
ブルの外装線2を帰路回路(中性線)として用いること
により総断面積が一層大きくなり、電気抵抗が著しく減
少する。又直流水底電力ケーブルの2条が損傷を受けて
も、残る2条のケーブルで双極運転ができるので、線路
の信頼性は増大する。直流水底電力ケーブルにとってこ
の信頼性の確保は極めて重要なことである。 【0025】 【発明の効果】以上説明したように、本発明の直流水底
電力ケーブル線路はケーブルの外装線を帰路電流回路と
して使用するので、その総断面積はケーブル導体の断面
積よりはるかに大きく、水又は海水中への帰路電流の流
出が殆どなく、環境保全上、又外装線の電気腐食上好ま
しい。又従来のように、中性線ケーブルを布設すること
がないので布設スペースの減少、ケーブル1条分の費用
及び布設に要する費用を削減することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC underwater power cable line. 2. Description of the Related Art FIGS. 5 to 8 are block diagrams of a conventional DC submarine power cable line. FIG. 5 shows a unipolar operation type line in which both ends of one DC underwater power cable 21 are grounded in water or seawater, and water or seawater is used as a return circuit. In the drawing, reference numeral 3 denotes an AC / DC converter. FIG. 6 shows a single underwater DC power cable 21,
A total of two lines of extremely low-insulation DC underwater power cable 22 that only insulate the lightning surge and the resistance voltage drop of the cable are separately laid, one end of the low-voltage cable 22 is grounded, and this low-voltage cable 22 is used as a return circuit. This is a single-pole operation type track. [0004] FIG. 7 shows a high insulation DC submarine power cable 2.
This is a DC bipolar operation type line in which Articles 21A and 21B are laid, and the neutral point is underwater or seawater grounded with (+) pole and (-) pole respectively. FIG. 8 shows a DC bipolar operation type line in which the grounding points of the DC underwater power cables 21A and 21B of FIG. 7 are connected by the low voltage cable 22 and one end is grounded. [0006] Among the above-mentioned conventional DC submarine power cable lines, the line shown in FIG. 5 has a return current equal to the forward current flowing in the seawater, so that the compass error of the navigating ship and fishes However, in recent years, in the case of single-pole operation, a low-voltage cable 22 constituting a return circuit is often separately laid as shown in FIG. In the bipolar operation system, a return circuit is unnecessary in principle if the (+) and (-) currents are balanced, but (a) a return path for a delicate unbalanced current (b) either high-voltage cable In the event of an accident, the operation is immediately returned to the unipolar operation. However, in order to solve the above-mentioned problem, the adoption of the bipolar operation system shown in FIG. 7 is decreasing, and as shown in FIG. The adoption of a system in which the underwater power cable 22 is laid between ground points to form a return circuit (neutral wire) is increasing. However, in addition to the DC underwater power cable 21 which truly contributes to the DC transmission power in each of the unipolar operation type line shown in FIG. 6 and the bipolar operation type line shown in FIG. A DC submarine power cable for the circuit (neutral line) is required. (A) The cable laying space for securing the route increases, and problems such as compensation for fisheries are involved. (B) The material, processing cost and installation cost for one cable are increased by the return circuit, which is uneconomical and the installation period is long. And so on. In particular, in the case of the bipolar operation system shown in FIG. 8, almost no current flows in the return circuit (neutral line) during normal operation, which is a so-called emergency operation.
It is uneconomical and inefficient. [0009] The present invention SUMMARY OF] is to solve the above-ku things used DC underwater power cable return circuit (neutral), the DC underwater power cable shown in FIG. 8 The present invention provides a DC underwater power cable line capable of exhibiting an effect equivalent to that of a line, and is characterized in that the above-mentioned outer line of the DC underwater power cable provided with an outer wire is formed of a copper wire or a copper alloy wire, and the outer wire is provided. Wire adopting DC bipolar operation method
The return current circuit on the ground side of the road is used as a neutral wire . The total cross-sectional area of the outer cable of the DC submarine power cable is
It is equal to or much larger than the cross-sectional area of the cable conductor through which the internal transmission current flows. Therefore, if this is made of a copper wire or a copper alloy wire, it can be an external conductor smaller than the DC resistance of the internal cable conductor. Therefore, if this copper or copper alloy sheath wire is used as a return circuit (neutral wire) in FIGS. 6 and 8,
Originally, the potential of the return circuit (neutral wire) can be understood from the fact that one end is grounded. The potential is almost close to the ground potential and can perform basic functions without insulation, so large conductor size, An armored wire with high conductivity and low resistance can be a return current circuit (neutral wire). As specific numerical examples, DC 500 kV, 1
× 1600mm 2 class DC underwater power cable, 3mm thickness ×
If the outer wire is composed of two layers of 12 mm wide rectangular copper wire,
100 sheets is required, the total cross-sectional area becomes 3600 mm 2 next ,, internal twice or more cable conductors 1600 mm 2. [0013] If an outer wire is composed of one layer of a round hard copper wire having a diameter of 8 mmφ in a DC 500 kV, 1 × 3000 mm 2 class DC underwater power cable, approximately 60 wires are required, and the total cross-sectional area thereof is required. comprising the 3016Mm 2, and the equivalent to the inner cable conductor. Furthermore, a round hard copper wire having a diameter of 8 mmφ is connected to a DC 250 kV, 1 × 600 mm 2 class DC underwater power cable.
If layers are used to form an exterior wire, approximately 38 wires are required, and the total cross-sectional area is 1910 mm 2 , which is slightly more than three times the internal cable conductor. In general, the easiness of the flow of the direct current is proportional to the conductivity of the conductor (inversely proportional to the resistance), and the conductivity is proportional to the cross-sectional area of the conductor. The DC current is much easier to flow than the DC current flowing through the internal cable conductor. Although it has been described above that the sheath wire basically does not need to be insulated, there is a possibility that a DC voltage corresponding to the return current × the resistance of the outer conductor (sheath wire) = voltage drop may be generated even if it is slight. There is. Since this is preferably as small as possible, it is preferable that the total cross-sectional area of the sheath wire is large as described above.
Applying such a small amount of insulation for the DC voltage to the sheathing line with, for example, polyethylene coating, can further completely prevent the flow of the DC return current into seawater, and for environmental protection and the sheathing line. It is also preferable from the viewpoint of preventing electrical corrosion of the steel. In view of the above, in the case of the bipolar operation system shown in FIG. 8, it is most effective to use the cable line of the present invention. Because (+) (-)
Since only a small amount of current corresponding to the pole imbalance flows through the return circuit (neutral wire), there is little voltage drop, little leakage current into seawater, environmental disturbance, and almost no fear of electrical corrosion of the outer cable. Because it is not. Further, when the DC submarine power cable is buried in the submarine soil, (a) a serving layer such as a jute or a polypropylene string outside the sheathing line for protecting the sheathing line remains without being corroded, The electric resistance of the sheathing line against seawater leakage is high. (B) The electric resistance itself of the buried soil at the bottom of the water is also
Much higher than the electrical resistance of non-buried cables to water. Therefore, it can be said that there is almost no leakage current leaking into the water from the armoring wire, and that it is extremely favorable both in terms of environment and electrical corrosion. In the case of the single-pole operation system with one DC underwater power cable, the outer wire as the return circuit (neutral wire) is a single cable outer wire and two DC underwater power cables. In the case of the bipolar operation system, if the outer wire of the two cables is made of copper wire or copper alloy wire and the two outer wires are combined and used as a return circuit (neutral wire), the conductor of the return circuit can be used. This is preferable because the cross-sectional area is further increased and the electric resistance is significantly reduced. FIG. 4 (a) is a cross-sectional view of an example of a DC underwater power cable constituting a cable line according to the present invention. In the drawing, 11 is a cable conductor, 12 is a cable insulator, 13
Is a metal sheath such as a lead sheath, 14 is a seat for jute, polypropylene string, etc., 15 is an exterior wire, 16 is a serving layer of jute, polypropylene string, etc., and the above-mentioned exterior wire 15 is a large number of copper wires, copper alloy wires, etc. It is configured by this twisting and is used as a return circuit (neutral wire). FIG. 4B is a cross-sectional view of another example of the DC submarine power cable constituting the cable line of the present invention.
The same reference numerals denote the same parts. The cable shown in FIG. 5 has the same overall configuration as the cable shown in FIG. 4, except that each element wire of the armoring line 15 is provided with a corrosion-resistant insulating layer 17 made of polyethylene, vinyl chloride or the like. FIGS. 1 to 3 are explanatory diagrams of specific examples of the DC submarine power cable line of the present invention. FIG. 1 shows a single-pole operation system using one of the submerged DC power cables shown in FIG. 4 or FIG. It is a railroad track. In the drawings, reference numeral 3 denotes an AC / DC converter. FIG. 2 shows the use of the two underwater DC power cables shown in FIG. 4 or FIG. 5, the respective cable conductors 1A and 1B for the (+) and (-) poles of the DC transmission current, and This is a bipolar operation type line used as a current circuit (neutral wire). FIG. 3 is a diagram of a two-phase single-phase 1A, 1B bipolar operation line using four submersible DC power cables, which are totally cut off by using the outer wire 2 of these cables as a return circuit (neutral wire). The area is much larger and the electrical resistance is significantly reduced. Also, even if two lines of the DC submarine power cable are damaged, the remaining two cables can be operated in a bipolar manner, thereby increasing the reliability of the line. Ensuring this reliability is extremely important for DC submarine power cables. As described above, since the DC submarine power cable line of the present invention uses the outer wire of the cable as a return current circuit, the total cross-sectional area is much larger than the cross-sectional area of the cable conductor. There is almost no outflow of return current into water or seawater, which is preferable from the viewpoint of environmental protection and electrical corrosion of the exterior wire. Further, unlike the related art, since the neutral cable is not laid, the space for laying the cable can be reduced, the cost for one cable and the cost required for laying can be reduced.

【図面の簡単な説明】 【図1】本発明の単極運転方式の直流水底電力ケーブル
線路の具体例の説明図である。 【図2】本発明の双極運転方式の直流水底電力ケーブル
線路の具体例の説明図である。 【図3】本発明の双極運転方式の直流水底電力ケーブル
線路の他の具体例の説明図である。 【図4】図4(イ)及び(ロ)はいずれも直流水底電力
ケーブルの構造例の横断面図である。 【図5】従来の単極運転方式の直流水底電力ケーブル線
路の説明図である。 【図6】従来の単極運転方式の直流水底電力ケーブル線
路の他の例の説明図である。 【図7】従来の双極運転方式の直流水底電力ケーブル線
路の説明図である。 【図8】従来の双極運転方式の直流水底電力ケーブル線
路の他の例の説明図である。 【符号の説明】 1,1A,1B 直流水底電力ケーブルの導体 2 直流水底電力ケーブルの外装線 3 AC/DC変換器
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a specific example of a single-pole operation type DC underwater power cable line of the present invention. FIG. 2 is an explanatory diagram of a specific example of a DC submarine power cable line of a bipolar operation type according to the present invention. FIG. 3 is an explanatory view of another specific example of the DC submarine power cable line of the bipolar operation type according to the present invention. FIGS. 4A and 4B are cross-sectional views of a structure example of a DC submarine power cable. FIG. 5 is an explanatory diagram of a conventional single-pole operation type DC underwater power cable line. FIG. 6 is an explanatory diagram of another example of a conventional single-pole operation type DC submarine power cable line. FIG. 7 is an explanatory diagram of a conventional DC submarine power cable line of a bipolar operation type. FIG. 8 is an explanatory diagram of another example of the conventional DC submarine power cable line of the bipolar operation type. [Explanation of Signs] 1, 1A, 1B Conductor of DC underwater power cable 2 Armoring line of DC underwater power cable 3 AC / DC converter

Claims (1)

(57)【特許請求の範囲】 【請求項1】 外装線を施した直流水底電力ケーブルの
上記外装線を銅線もしくは銅合金線で構成し、該外装線
直流双極運転方式を採用した線路の接地側帰路電流回
の中性線として用いることを特徴とする直流水底電力
ケーブル線路。
(57) [Claims 1] A line in which a DC submarine power cable provided with a sheathing line is constituted by a copper wire or a copper alloy wire, and the sheathing line adopts a DC bipolar operation system. A submarine power cable line for use as a neutral line on the ground-side return current circuit of the present invention.
JP02363193A 1993-01-18 1993-01-18 DC submarine power cable line Expired - Lifetime JP3417590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02363193A JP3417590B2 (en) 1993-01-18 1993-01-18 DC submarine power cable line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02363193A JP3417590B2 (en) 1993-01-18 1993-01-18 DC submarine power cable line

Publications (2)

Publication Number Publication Date
JPH06215638A JPH06215638A (en) 1994-08-05
JP3417590B2 true JP3417590B2 (en) 2003-06-16

Family

ID=12115939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02363193A Expired - Lifetime JP3417590B2 (en) 1993-01-18 1993-01-18 DC submarine power cable line

Country Status (1)

Country Link
JP (1) JP3417590B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO310388B1 (en) * 1998-02-19 2001-06-25 Cit Alcatel High voltage cable and undersea cable installation
WO2004036115A1 (en) * 2002-10-21 2004-04-29 A.G.K. Ltd. Power supply wire, wire grip, electric appliance suspending device, and electric appliance suspending method
GB2425697B (en) * 2005-04-28 2008-12-10 Manx Electricity Authority Data transmission
WO2011024262A1 (en) * 2009-08-26 2011-03-03 太陽ケーブルテック株式会社 Electric cable

Also Published As

Publication number Publication date
JPH06215638A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
FI72619C (en) FOERBAETTRINGAR I ELEKTRISKA KABLAR OCH ELEKTRISKA KABELINSTALLATIONER.
US4091291A (en) System for underground distribution of electrical power and electrical cable construction for use therein
JP4801236B2 (en) High voltage DC power cable and its submarine cable laying method
KR20110102296A (en) Submarine electric power transmission cable with cable armour transition
RU2145458C1 (en) Shielded overhead high-voltage power transmission line
JP3822331B2 (en) Neutral wire composite DC power cable and DC power cable line
JP4668003B2 (en) Coaxial cable for bipolar DC power transmission
JP3417590B2 (en) DC submarine power cable line
JP3107302B2 (en) DC solid power cable, DC solid power cable line, and method for monitoring DC solid power cable line
JP3792861B2 (en) Neutral wire composite DC power cable
US20130299210A1 (en) Cable and method of manufacturing a cable
JP4103259B2 (en) Lightning protection lead and lightning protection system
KR101977966B1 (en) Mylar tape of high voltage cable for underground
JP3792862B2 (en) Neutral wire composite DC power cable
JP3792860B2 (en) Neutral wire composite DC power cable
EP1113461A1 (en) A bi-polar integrated concentric cable
JPH0641290Y2 (en) Submarine cable for single-core AC power
US20230178268A1 (en) HVAC-cable with composite conductor
HU215306B (en) High-voltage line conductor for overhead lines for voltages of approximately 60kv and higher
JP2001023793A (en) Lightning lead wire and lightning system
JPH02184215A (en) Power cable path
EP3428932A1 (en) Electrical power cable
Zastrow Choices of jacketed or bare concentric neutral cable for effective grounding and corrosion control
BOUCHEKARA Transmission and Distribution of Electrical Power
RU2036249C1 (en) Apparatus to prevent corrosion of lengthened underground structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10