JP4668003B2 - Coaxial cable for bipolar DC power transmission - Google Patents

Coaxial cable for bipolar DC power transmission Download PDF

Info

Publication number
JP4668003B2
JP4668003B2 JP2005239909A JP2005239909A JP4668003B2 JP 4668003 B2 JP4668003 B2 JP 4668003B2 JP 2005239909 A JP2005239909 A JP 2005239909A JP 2005239909 A JP2005239909 A JP 2005239909A JP 4668003 B2 JP4668003 B2 JP 4668003B2
Authority
JP
Japan
Prior art keywords
power transmission
insulator
conductor
bipolar
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005239909A
Other languages
Japanese (ja)
Other versions
JP2007059085A (en
Inventor
健彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Fujikura Ltd
Viscas Corp
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Fujikura Ltd
Viscas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Fujikura Ltd, Viscas Corp filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005239909A priority Critical patent/JP4668003B2/en
Publication of JP2007059085A publication Critical patent/JP2007059085A/en
Application granted granted Critical
Publication of JP4668003B2 publication Critical patent/JP4668003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/025Cable terminations for coaxial cables or hollow conductors

Description

本発明は、双極運転方式の直流送電システムにおいて、正極性の直流送電経路と負極性の直流送電経路と中性線を同軸状に統合した一本の直流送電用同軸ケーブルに関する。   The present invention relates to a single coaxial cable for direct current transmission in which a positive direct current power transmission path, a negative direct current power transmission path, and a neutral wire are coaxially integrated in a bipolar power transmission system.

直流送電には単極送電方式と双極送電方式がある。後者の双極送電方式は、単極送電方式に対して送電容量を大きくできる利点の他に、片極性の送電線路で故障が発生した時に他方の極性の送電線路を用いて50%の電力を送電できるため、電力供給信頼度が高いという利点がある。   There are unipolar and bipolar transmission systems for direct current transmission. In addition to the advantage that the transmission capacity can be increased compared to the unipolar transmission system, the latter bipolar transmission system transmits 50% power using the transmission line of the other polarity when a failure occurs in the transmission line of one polarity. Therefore, there is an advantage that the power supply reliability is high.

双極送電線路での片線故障時に他方の送電線路で送電する場合、帰路電流を大地あるいは海水を介して流す方式と、中性線ケーブルの導体を介して流す方式がある。前者の大地帰路あるいは海水帰路の場合には、直流電流による大地電位の変動や、周辺構築物の電気腐食、船舶のコンパスエラーや魚類などの生態系への悪影響が懸念される。このため、近年では後者の中性線ケーブルを用いる場合が多い。図3に従来の中性線を用いた双極送電方式を示す。   When power is transmitted through the other power transmission line at the time of one-line failure in the bipolar power transmission line, there are a method of flowing a return current through the ground or seawater and a method of flowing through a conductor of a neutral cable. In the case of the former earth return or seawater return, there are concerns about fluctuations in earth potential due to direct current, electrical corrosion of surrounding structures, ship compass errors, and adverse effects on ecosystems such as fish. For this reason, the neutral cable of the latter is often used in recent years. FIG. 3 shows a conventional bipolar power transmission system using neutral wires.

図3(A)は、正極性の直流ケーブル11、負極性の直流ケーブル13及び中性線12の3本のケーブルを用いた双極線送電方式である。なお、図において、14は順変換器、15は逆変換器である(以下同じ)。
図3(B)は、例えば特許文献1の図1に示されるような直流同軸ケーブル16を使用し、その直流同軸ケーブル16の主導体17を正極性の直流送電用に使用し、主導体17の外周に絶縁層を介して設けた中性線導体18を中性線として使用し、負極性の直流送電用に別の直流ケーブル19(直流同軸ケーブルでもよい)を使用する方式である。
図3(C)は、双極送電用の直流同軸ケーブル(特許文献2参照)を用いた方式であり、双極送電用直流同軸ケーブル20の中心導体21に正極性の直流を接続し、第2の導体22に負極性の直流を接続し、鉛被23をアースに接続して、双極送電し、中性線回路は別の中性線ケーブル24を使用するものである。
FIG. 3A shows a bipolar transmission system using three cables: a positive DC cable 11, a negative DC cable 13, and a neutral wire 12. In the figure, 14 is a forward converter and 15 is an inverse converter (hereinafter the same).
In FIG. 3B, for example, a DC coaxial cable 16 as shown in FIG. 1 of Patent Document 1 is used, and the main conductor 17 of the DC coaxial cable 16 is used for positive DC power transmission. The neutral wire conductor 18 provided on the outer periphery of the wire is used as a neutral wire, and another direct current cable 19 (or a direct current coaxial cable) may be used for negative direct current power transmission.
FIG. 3C shows a system using a DC coaxial cable for bipolar power transmission (see Patent Document 2), in which a positive direct current is connected to the central conductor 21 of the DC coaxial cable 20 for bipolar power transmission. A negative direct current is connected to the conductor 22, the lead sheath 23 is connected to the ground, and bipolar power transmission is performed, and the neutral wire circuit uses another neutral wire cable 24.

特開平11−120837号公報Japanese Patent Application Laid-Open No. 11-120837 特開2001−189113号公報JP 2001-189113 A

従来の中性線を用いた双極送電方式(図3A、図3B、図3C)では、いずれも2本あるいは3本のケーブルが必要であり、ケーブル布設の複雑化とケーブル布設費用の高額化が問題である。   The conventional bipolar power transmission system using neutral wires (Fig. 3A, Fig. 3B, Fig. 3C) requires two or three cables, which complicates cable installation and increases the cost of cable installation. It is a problem.

他の問題として、直流送電回路から外部に漏れる磁界が環境に与える影響があり、船舶などに対してコンパスエラーを発生させたり、地磁気を感知して行動する生態系への悪影響や、有害な電磁波の発生などが懸念される。そこで、図3Aの方式では、漏れ磁界を低減するためにケーブル同士を互いにかなり近くに布設する必要があるが、ケーブル布設が難しくなる問題がある。直流同軸ケーブルを用いる図3Bの方式では、正常運転時には中性線(外部導体)にほとんど電流が流れないため(両極間のアンバランス電流が流れるが、定格電流の数%以下)、直流同軸ケーブル本来の漏れ磁場低減効果(主導体と帰路導体に流れる逆向きで同一電流値の電流により、漏れ磁界がキャンセルされて低減する効果)が発揮されず、やはり直流同軸ケーブルと他方の直流ケーブルを近接して布設しなければならない制約がある。   Another problem is that the magnetic field leaking from the DC power transmission circuit has an impact on the environment, causing compass errors to ships, etc., adverse effects on ecosystems that act by sensing geomagnetism, and harmful electromagnetic waves. There are concerns about the occurrence of Therefore, in the method of FIG. 3A, it is necessary to lay the cables fairly close to each other in order to reduce the leakage magnetic field, but there is a problem that the cable laying becomes difficult. In the method shown in FIG. 3B using a DC coaxial cable, almost no current flows through the neutral wire (outer conductor) during normal operation (unbalanced current flows between the two electrodes, but less than a few percent of the rated current). The original effect of reducing the leakage magnetic field (the effect of canceling and reducing the leakage magnetic field by the current of the same current value in the reverse direction flowing in the main conductor and the return conductor) is not exhibited, and the DC coaxial cable and the other DC cable are also close to each other There are restrictions that must be laid.

また、図3Cの方式では、双極送電用直流同軸ケーブルの使用により、正常運転時には正極性と負極性で逆向きの同一電流値の電流が流れるため、漏れ磁場が低減される。しかし、片極性の故障時には、他方の極性の双極送電用直流同軸ケーブルの導体と中性線ケーブルの導体で直流送電回路が形成されるため、この時の漏れ磁界を低減するためには、双極送電用直流同軸ケーブルと中性線ケーブルを近接に布設しなければならないという制約がある。   Further, in the method of FIG. 3C, the use of a bipolar coaxial cable for power transmission causes the leakage current to be reduced because currents having the same current value in opposite directions flow in the positive polarity and the negative polarity during normal operation. However, in the case of a unipolar failure, a DC transmission circuit is formed by the conductor of the DC coaxial cable for bipolar transmission of the other polarity and the conductor of the neutral cable, and in order to reduce the leakage magnetic field at this time, bipolar There is a restriction that a DC coaxial cable for power transmission and a neutral cable must be installed close to each other.

したがって本発明の目的は、ケーブル布設費用を低減でき、しかも双極直流送電時(正常運転時)及び単極直流送電時(片極故障時)のいずれの場合でも外部漏れ磁界の発生を抑制することができる双極直流送電用同軸ケーブルを提供することにある。   Therefore, the object of the present invention is to reduce the cable laying cost and to suppress the generation of an external leakage magnetic field both in the case of bipolar DC power transmission (during normal operation) and unipolar DC power transmission (during unipolar failure). An object of the present invention is to provide a coaxial cable for bipolar DC power transmission.

本発明に係る双極直流送電用同軸ケーブルは、中心に正又は負の一方の極性の直流送電経路となる主導体を設け、この主導体の外側に、主絶縁体、前記主導体とは逆極性の直流送電経路となる帰路導体、帰路絶縁体、中性線用外部導体、中性線用絶縁体、鉛被を、順次同軸状に設けたことを特徴とする。 The coaxial cable for bipolar DC power transmission according to the present invention is provided with a main conductor serving as a DC power transmission path having one of positive and negative polarities at the center, and a main insulator and a polarity opposite to that of the main conductor outside the main conductor. A return conductor, a return insulator, a neutral wire outer conductor, a neutral wire insulator, and a lead sheath , which serve as a direct current power transmission path, are sequentially provided coaxially.

本発明に係る双極直流送電用同軸ケーブルにおいては、主絶縁体及び帰路絶縁体が、耐直流用の高分子絶縁材料からなることが好ましい。   In the bipolar DC power transmission coaxial cable according to the present invention, the main insulator and the return insulator are preferably made of a polymer insulating material for DC resistance.

また本発明に係る双極直流送電用同軸ケーブルにおいては、主絶縁体が耐直流用の架橋ポリエチレンからなり、帰路絶縁体が耐直流用の非架橋ポリエチレンからなることがさらに好ましい。なお、本発明のケーブルは、上述したような高分子材料押出絶縁ケーブル以外に、OFケーブル(Oil-filled Cable)や油浸紙ソリッドケーブル(Mass Impregnated又はNon Draining Cable)であってもよい。   Further, in the coaxial cable for bipolar DC power transmission according to the present invention, it is more preferable that the main insulator is made of DC-resistant cross-linked polyethylene and the return insulator is made of DC-resistant non-cross-linked polyethylene. The cable of the present invention may be an OF cable (Oil-filled Cable) or an oil-immersed paper solid cable (Mass Impregnated or Non Draining Cable) in addition to the above-described polymer material extruded insulated cable.

本発明によれば、1本の同軸ケーブルで中性線を含む双極直流送電を実現することができ、従来複数本(2〜3本)の直流ケーブルを布設する必要であったことに比べ、ケーブル布設費用を大幅に低減できるため、経済的効果が大きい。   According to the present invention, bipolar DC power transmission including a neutral wire can be realized with a single coaxial cable, compared to the conventional necessity of laying a plurality of (2 to 3) DC cables. Since the cable laying cost can be greatly reduced, the economic effect is great.

また本発明の直流同軸ケーブルを使用することにより、双極直流送電時(正常運転時)及び単極直流送電時(片極故障時)のいずれの場合でも外部漏れ磁界の発生を抑制することができるので、航海でのコンパスエラーや、地磁気を感知して行動する生態系への影響、有害な電磁波の発生等を防止することができる。   In addition, by using the DC coaxial cable of the present invention, it is possible to suppress the generation of an external leakage magnetic field in both cases of bipolar DC power transmission (during normal operation) and unipolar DC power transmission (during unipolar failure). Therefore, it is possible to prevent compass errors during voyage, effects on ecosystems that act by sensing geomagnetism, and generation of harmful electromagnetic waves.

本発明に係る直流同軸ケーブルを双極直流送電システムに使用した場合、双極送電の直流電圧が±V0とすると、主絶縁体間には2×V0の電圧が加わり、帰路絶縁体間にはV0の電圧が加わる。従って、主絶縁体及び帰路絶縁体は、上記電圧に耐え得るようにするために、耐直流用(60〜500kV)の高分子絶縁材料(例えば、直流用架橋ポリエチレンや、カーボン充填材入り架橋ポリエチレン、変性ポリオレフィン等)の押出成形により形成することが好ましい。   When the DC coaxial cable according to the present invention is used in a bipolar DC transmission system, if the DC voltage of bipolar transmission is ± V0, a voltage of 2 × V0 is applied between the main insulators, and V0 is applied between the return insulators. Voltage is applied. Therefore, the main insulator and the return insulator are made of a polymer insulation material for direct current resistance (60 to 500 kV) (for example, a crosslinked polyethylene for direct current or a crosslinked polyethylene with a carbon filler) in order to withstand the above voltage. , Modified polyolefin, etc.).

また本発明に係る直流同軸ケーブルは、ケーブルの構造上から、主導体と帰路導体の最高許容温度には差があり、例えば、主導体と帰路導体の最高許容温度はそれぞれ90℃と75℃程度である。すなわち帰路絶縁体は、主絶縁体ほど高温では使用されず、高々75℃程度であるため、主絶縁体よりも耐熱性の低い高分子絶縁材料、例えば非架橋ポリエチレンで形成するとよい。帰路絶縁体に非架橋ポリエチレンを使用すると、架橋の必要がないため、帰路絶縁体の樹脂押出し設備を簡易化できる利点があり、ケーブル製造性を向上させることができる。   The DC coaxial cable according to the present invention has a difference in the maximum allowable temperature between the main conductor and the return conductor due to the structure of the cable. For example, the maximum allowable temperatures of the main conductor and the return conductor are about 90 ° C. and 75 ° C., respectively. It is. That is, the return insulator is not used at a higher temperature than the main insulator and is at most about 75 ° C. Therefore, it is preferable that the return insulator be formed of a polymer insulating material having a heat resistance lower than that of the main insulator, for example, non-crosslinked polyethylene. When non-crosslinked polyethylene is used for the return insulator, there is no need for crosslinking, so there is an advantage that the resin extrusion equipment for the return insulator can be simplified, and cable manufacturability can be improved.

図1は本発明に係る双極直流送電用同軸ケーブルの一実施形態を示す。この双極直流送電用同軸ケーブル1は、中心に主導体2を有し、その外周に主絶縁体3を有している。主絶縁体3は、内部半導電層、架橋ポリエチレン絶縁体層及び外部半導電層から構成されている。通常、内部半導電層、架橋ポリエチレン絶縁体層及び外部半導電層は同時押出法により形成され、この3層間は一体化されている。主絶縁体3の絶縁材料には、耐直流用(60〜500kV)の高分子絶縁材料を使用することができる。主絶縁体3は、例えば、直流用架橋ポリエチレンや、カーボン充填材入り架橋ポリエチレン、変性ポリオレフィン等を押出し成形することにより形成することができる。   FIG. 1 shows an embodiment of a coaxial cable for bipolar DC power transmission according to the present invention. The coaxial cable 1 for bipolar DC power transmission has a main conductor 2 at the center and a main insulator 3 on the outer periphery thereof. The main insulator 3 is composed of an inner semiconductive layer, a crosslinked polyethylene insulator layer, and an outer semiconductive layer. Usually, the inner semiconductive layer, the cross-linked polyethylene insulator layer and the outer semiconductive layer are formed by a coextrusion method, and these three layers are integrated. As the insulating material of the main insulator 3, a polymer insulating material for DC resistance (60 to 500 kV) can be used. The main insulator 3 can be formed, for example, by extruding DC cross-linked polyethylene, cross-linked polyethylene with carbon filler, modified polyolefin, and the like.

主絶縁体3の外側には、多数の銅線をらせん巻きした帰路導体4が設けられている。この帰路導体4の外側には、内部半導電層、ポリエチレン絶縁体層及び外部半導電層からなる帰路絶縁体5が設けられている。帰路絶縁体5は、耐直流用(60〜500kV)の高分子絶縁材料を押出し成形することにより形成される。帰路絶縁体5の絶縁材料としては、例えば、直流用の架橋ポリエチレンや、カーボン充填材入り架橋ポリエチレン、非架橋ポリエチレン、変性ポリオレフィン等を使用することができる。   On the outside of the main insulator 3, a return conductor 4 in which a large number of copper wires are spirally wound is provided. Outside the return conductor 4, a return insulator 5 comprising an internal semiconductive layer, a polyethylene insulator layer, and an external semiconductive layer is provided. The return insulator 5 is formed by extruding a polymer insulating material for DC resistance (60 to 500 kV). As the insulating material of the return insulator 5, for example, a cross-linked polyethylene for direct current, a cross-linked polyethylene with a carbon filler, a non-cross-linked polyethylene, a modified polyolefin, or the like can be used.

帰路絶縁体5の外側には、中性線用外部導体6が設けられている。中性線用外部導体6は、多数の銅線をらせん巻きする方法や、金属テープを巻きつける方法や、それらを複合した方法にて形成することができる。   A neutral wire outer conductor 6 is provided outside the return insulator 5. The neutral wire outer conductor 6 can be formed by a method of spirally winding a large number of copper wires, a method of winding a metal tape, or a method of combining them.

中性線用外部導体6の外側には、中性線の絶縁に必要な中性線用絶縁体7が設けられている。この中性線用絶縁体7は、例えば内部半導電層、ポリエチレン絶縁体層及び外部半導電層から構成される。   A neutral wire insulator 7 necessary for neutral wire insulation is provided outside the neutral wire outer conductor 6. The neutral wire insulator 7 includes, for example, an internal semiconductive layer, a polyethylene insulating layer, and an external semiconductive layer.

中性線用絶縁体7の外側には鉛被8が設けられ、鉛被の外側には防食層9が設けられている。鉛被8及び防食層9はケーブル保護層である。なお、このケーブル1を海底ケーブルとして使用する場合には、防食層9の外周に、さらに座床、鉄線鎧装、サービング層が設けられる。   A lead coat 8 is provided outside the neutral wire insulator 7, and an anticorrosion layer 9 is provided outside the lead coat. The lead coating 8 and the anticorrosion layer 9 are cable protection layers. In addition, when using this cable 1 as a submarine cable, a floor, an iron wire armor, and a serving layer are further provided on the outer periphery of the anticorrosion layer 9.

図2は、図1の断面をもつ直流同軸ケーブル1を双極直流送電システムに使用した場合の概略図である。主導体2には正極性の直流が接続され、帰路導体4には負極性の直流が接続され、中性線用外部導体6には順変換器14及び逆変換器15の中性点が接続されている。なお、主導体2に負極性の直流を接続し、帰路導体4に正極性の直流を接続することも可能であることは勿論である。   FIG. 2 is a schematic diagram when the DC coaxial cable 1 having the cross section of FIG. 1 is used in a bipolar DC power transmission system. A positive direct current is connected to the main conductor 2, a negative direct current is connected to the return conductor 4, and a neutral point of the forward converter 14 and the reverse converter 15 is connected to the neutral conductor 6. Has been. It goes without saying that a negative direct current can be connected to the main conductor 2 and a positive direct current can be connected to the return conductor 4.

図2の双極直流送電システムでは、主導体2と帰路導体4に同一電流値で逆向きの電流が同軸状に流れるため、外部への漏れ磁界を理論上ゼロとすることができる。正常運転時には、中性線用外部導体6には両極間のアンバランス電流(定格電流の数%以下)が流れるため、その電流による若干の外部漏れ磁界が発生するが、例えば図3(A)のように正極性の直流ケーブルと負極性の直流ケーブルと中性線ケーブルの計3本のケーブルを近接に布設した場合に比べると、外部漏れ磁界を低減できることは明らかである。   In the bipolar DC power transmission system of FIG. 2, the reverse current flows in the same current value in the main conductor 2 and the return conductor 4 coaxially, so that the leakage magnetic field to the outside can theoretically be zero. During normal operation, an unbalanced current (several percent or less of the rated current) between the two poles flows through the outer conductor 6 for neutral wire, and a slight external leakage magnetic field is generated due to the current. For example, FIG. It is clear that the external leakage magnetic field can be reduced as compared with the case where a total of three cables, ie, a positive DC cable, a negative DC cable, and a neutral cable, are laid close to each other.

また図2の双極直流送電システムにおいて、片極性で故障が発生した場合には、他方の極性の導体(主導体あるいは帰路導体)と中性線用外部導体を用いて正常運転時の50%の電力を単極直流送電することが可能であり、電力供給の信頼度向上が期待できる。この場合、中性線用外部導体6を接地側帰路電流回路として利用するが、他方の極性の導体と中性線用外部導体には同一電流値で逆向きの電流が同軸状に流れるため、外部への漏れ磁界を理論上ゼロとすることができる。この時、中性線用外部導体6には、直流電流の電圧降下分に相当する直流電圧が生じるため、中性線用外部導体6とその外側の鉛被8との間には中性線用の絶縁体7が設けられる。中性線用外部導体6に誘起される直流電圧は、中性線用外部導体に流れる電流と導体抵抗(中性線用外部導体の断面積と送電距離で決まる)及び送電距離に依存するが、通常では高々10kV程度である。そこで、中性線用絶縁体7は、例えば非架橋ポリエチレンを押出し成形することにより形成することができる。   In addition, in the bipolar DC power transmission system of FIG. 2, when a failure occurs in one polarity, 50% of normal operation is performed using the other polarity conductor (main conductor or return conductor) and the neutral conductor outer conductor. Electric power can be transmitted in a single pole direct current, and the reliability of power supply can be improved. In this case, the neutral wire outer conductor 6 is used as a ground-side return current circuit. However, since the opposite current flows coaxially in the other polarity conductor and the neutral wire outer conductor, The leakage magnetic field to the outside can theoretically be zero. At this time, since a DC voltage corresponding to the voltage drop of the DC current is generated in the neutral wire outer conductor 6, the neutral wire is interposed between the neutral wire outer conductor 6 and the outer lead sheath 8. Insulator 7 is provided. The DC voltage induced in the neutral wire outer conductor 6 depends on the current flowing through the neutral wire outer conductor, the conductor resistance (determined by the cross-sectional area of the neutral wire outer conductor and the power transmission distance), and the power transmission distance. Usually, it is about 10 kV at most. Therefore, the neutral wire insulator 7 can be formed, for example, by extruding non-crosslinked polyethylene.

また、片極故障時に中性線用外部導体7を接地側帰路電流回路として利用して単極直流送電を行うことを想定した場合、正常運転時と片極故障による単極運転時のいずれに対しても、主導体、帰路導体及び中性線用外部導体の最高許容温度を上回らないように各導体断面積を選択すればよい。   In addition, when it is assumed that unipolar DC power transmission is performed by using the neutral conductor 7 as a return current circuit on the ground side when a unipolar failure occurs, either during normal operation or during unipolar operation due to a unipolar failure In contrast, each conductor cross-sectional area may be selected so as not to exceed the maximum allowable temperature of the main conductor, the return conductor, and the neutral wire outer conductor.

本発明に係る双極直流送電用同軸ケーブルの一実施形態を示す断面図。Sectional drawing which shows one Embodiment of the coaxial cable for bipolar DC power transmission which concerns on this invention. 図1のケーブルを双極直流送電システムに使用した場合の概略構成図。The schematic block diagram at the time of using the cable of FIG. 1 for a bipolar DC power transmission system. (A)〜(C)はそれぞれ従来の双極直流送電システムの概略構成図。(A)-(C) is a schematic block diagram of the conventional bipolar DC power transmission system, respectively.

符号の説明Explanation of symbols

1:双極直流送電用同軸ケーブル
2:主導体
3:主絶縁体
4:帰路導体
5:帰路絶縁体
6:中性線用外部導体
7:中性線用絶縁体
8:鉛被
9:防食層
1: Coaxial cable for bipolar DC power transmission 2: Main conductor 3: Main insulator 4: Return conductor 5: Return insulator 6: Neutral wire outer conductor 7: Neutral wire insulator 8: Lead coating 9: Anticorrosion layer

Claims (3)

ケーブル中心に正又は負の一方の極性の直流送電経路となる主導体を設け、この主導体の外側に、主絶縁体、前記主導体とは逆極性の直流送電経路となる帰路導体、帰路絶縁体、中性線用外部導体、中性線用絶縁体、鉛被を、順次同軸状に設けたことを特徴とする双極直流送電用同軸ケーブル。 A main conductor serving as a positive or negative polarity DC power transmission path is provided at the center of the cable, and a main insulator, a return conductor serving as a DC power transmission path having a polarity opposite to that of the main conductor, and return insulation are provided outside the main conductor. A coaxial cable for bipolar DC power transmission, characterized in that a body, a neutral wire outer conductor, a neutral wire insulator, and a lead sheath are sequentially provided coaxially. 主絶縁体及び帰路絶縁体が、耐直流用の高分子絶縁材料からなる請求項1記載の双極直流送電用同軸ケーブル。   The coaxial cable for bipolar DC power transmission according to claim 1, wherein the main insulator and the return insulator are made of a polymer insulating material for DC resistance. 主絶縁体が耐直流用の架橋ポリエチレンからなり、帰路絶縁体が耐直流用の非架橋ポリエチレンからなる請求項2記載の双極直流送電用同軸ケーブル。   3. The coaxial cable for bipolar DC power transmission according to claim 2, wherein the main insulator is made of a cross-linked polyethylene for DC resistance and the return insulator is made of non-cross-linked polyethylene for DC resistance.
JP2005239909A 2005-08-22 2005-08-22 Coaxial cable for bipolar DC power transmission Expired - Fee Related JP4668003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239909A JP4668003B2 (en) 2005-08-22 2005-08-22 Coaxial cable for bipolar DC power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239909A JP4668003B2 (en) 2005-08-22 2005-08-22 Coaxial cable for bipolar DC power transmission

Publications (2)

Publication Number Publication Date
JP2007059085A JP2007059085A (en) 2007-03-08
JP4668003B2 true JP4668003B2 (en) 2011-04-13

Family

ID=37922404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239909A Expired - Fee Related JP4668003B2 (en) 2005-08-22 2005-08-22 Coaxial cable for bipolar DC power transmission

Country Status (1)

Country Link
JP (1) JP4668003B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258014B2 (en) * 2007-05-30 2013-08-07 株式会社ビスキャス DC coaxial cable for power
WO2011024262A1 (en) * 2009-08-26 2011-03-03 太陽ケーブルテック株式会社 Electric cable
JP5978509B2 (en) 2011-07-25 2016-08-24 矢崎総業株式会社 High voltage conductive path and wire harness
JP5864228B2 (en) * 2011-11-21 2016-02-17 矢崎総業株式会社 High voltage conductive path and wire harness
JP5986812B2 (en) 2011-11-21 2016-09-06 矢崎総業株式会社 Wire harness

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296606A (en) * 1985-06-25 1986-12-27 日立電線株式会社 Coaxial type feeder cable
JPH11111071A (en) * 1997-10-07 1999-04-23 Fujikura Ltd Submarine power cable
JPH11120833A (en) * 1997-10-09 1999-04-30 Fujikura Ltd Neutral wire composite cable for direct current power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296606A (en) * 1985-06-25 1986-12-27 日立電線株式会社 Coaxial type feeder cable
JPH11111071A (en) * 1997-10-07 1999-04-23 Fujikura Ltd Submarine power cable
JPH11120833A (en) * 1997-10-09 1999-04-30 Fujikura Ltd Neutral wire composite cable for direct current power

Also Published As

Publication number Publication date
JP2007059085A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
US8686290B2 (en) Submarine electric power transmission cable armour transition
JP4668003B2 (en) Coaxial cable for bipolar DC power transmission
JP4801236B2 (en) High voltage DC power cable and its submarine cable laying method
KR102086194B1 (en) Submarine cable having bimetallic armours
US11006484B2 (en) Shielded fluoropolymer wire for high temperature skin effect trace heating
WO2021123373A1 (en) Ac submarine power cable with reduced losses
US20180374613A1 (en) Electrical cables
JP3822331B2 (en) Neutral wire composite DC power cable and DC power cable line
US10535448B2 (en) Stainless steel screen and non-insulating jacket arrangement for power cables
KR102499648B1 (en) High voltage DC power cable joint system
CN110828052A (en) Direct current submarine cable
JP3107302B2 (en) DC solid power cable, DC solid power cable line, and method for monitoring DC solid power cable line
JP3792861B2 (en) Neutral wire composite DC power cable
JP5258014B2 (en) DC coaxial cable for power
JP3417590B2 (en) DC submarine power cable line
JP3792860B2 (en) Neutral wire composite DC power cable
JP3792862B2 (en) Neutral wire composite DC power cable
KR102604898B1 (en) High voltage DC power cable system
EP4220668A1 (en) High voltage ac cable
US20230178268A1 (en) HVAC-cable with composite conductor
CN213635499U (en) Novel corrosion-resistant termite-proof high-voltage cable
KR102505579B1 (en) Joint For Ultra High Voltage Cable And Ultra High Voltage Cable System Having The Same
JP2002042570A (en) Rubber or plastic insulated power subaqueous cable
KR20170104780A (en) Submarine cable
JP2002251921A (en) Dc power cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees