JPH11267648A - Electrochemical water treatment device - Google Patents

Electrochemical water treatment device

Info

Publication number
JPH11267648A
JPH11267648A JP10095504A JP9550498A JPH11267648A JP H11267648 A JPH11267648 A JP H11267648A JP 10095504 A JP10095504 A JP 10095504A JP 9550498 A JP9550498 A JP 9550498A JP H11267648 A JPH11267648 A JP H11267648A
Authority
JP
Japan
Prior art keywords
particles
water
porous carbon
water treatment
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10095504A
Other languages
Japanese (ja)
Inventor
Mitsuo Enomoto
三男 榎本
Morito Uemura
盛人 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Konica Minolta Inc
Original Assignee
Tokai Carbon Co Ltd
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, Konica Minolta Inc filed Critical Tokai Carbon Co Ltd
Priority to JP10095504A priority Critical patent/JPH11267648A/en
Publication of JPH11267648A publication Critical patent/JPH11267648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical water treatment device capable of effectively sterilizing microorganisms existing in water and stably performing sterilization treatment of water over a long period. SOLUTION: This device is provided with an electrolytic cell 4 loaded with a porous carbon body which is formed by binding carbonaceous particles 14 and insulating particles 15 together, in the space between two terminal electrodes 5 and 6 (i.e., the anode and the cathode) of the cell 4. As the insulating particles 15, particles of a thermoplastic resin, thermosetting resin or ceramic material are used. Preferably, the particle size of each of the carbonaceous particles 14 and insulating particles 15 in 0.3 to 5 mm and the blending radio of (carbonaceous particles 14)/(insulating particles 15) is 10/90 to 50/50. Also preferably, each of the carbonaceous particles 14 has such crystal properties that the average lattice spacing (d002 ) is <=0.35 nm and the constituent crystallite size (Lc (002)) is >=2 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、飲料水、食品分野
における各種処理水、風呂水、生活用水あるいは工業用
水等の水中に存在する微生物を電気化学的に殺菌処理す
る水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment apparatus for electrochemically disinfecting microorganisms existing in water, such as various kinds of treated water in the field of drinking water and food, bath water, domestic water or industrial water.

【0002】[0002]

【従来の技術】水道水や井戸水等の飲料水をはじめ各種
水中には、菌類、原生動物、藻類、細菌等の微生物が存
在している。これらの微生物を殺菌する方法には塩素や
過酸化水素等の薬剤を添加する方法が広く行われてお
り、他に紫外線照射、加熱煮沸等による殺菌法が採用さ
れている。薬剤を添加する方法は簡便ではあるが、例え
ば塩素を添加する方法は残留塩素の処理が必要となる場
合が生じ、残留物が問題とならない過酸化水素やオゾン
を添加する方法はコストが高くなるために大量の水を処
理するのには不適当である。同様に紫外線照射や加熱煮
沸処理による殺菌方法もコストが高くなるために大量の
水を効率良く殺菌処理する手段としては好ましくない。
2. Description of the Related Art Microorganisms such as fungi, protozoa, algae, and bacteria are present in various waters including drinking water such as tap water and well water. As a method for disinfecting these microorganisms, a method of adding a drug such as chlorine or hydrogen peroxide is widely used, and in addition, a disinfection method such as ultraviolet irradiation, heating and boiling is adopted. Although the method of adding a drug is simple, for example, the method of adding chlorine may require the treatment of residual chlorine, and the method of adding hydrogen peroxide or ozone, in which the residue does not matter, increases the cost. Therefore, it is not suitable for treating a large amount of water. Similarly, a sterilization method using ultraviolet irradiation or heating and boiling treatment is also unfavorable as a means for efficiently sterilizing a large amount of water because of high cost.

【0003】そこで近年、大量の水を効率良く、低コス
トで殺菌処理する手段として電気化学的に酸化して微生
物を殺菌する方法が開発されている。この方法は絶縁性
材料を介してメッシュ状金属電極で挟持された多孔質炭
素電極を多段に積層し、上下のメッシュ状金属電極に直
流電圧を印加して多孔質炭素電極を分極させ、微生物を
含む被処理水は多孔質炭素電極の微細気孔中を流通する
過程で分極した陽極部において電気化学的反応、すなわ
ち微生物と電極間で電子の移動が起きて微生物を死滅さ
せるものである。
[0003] In recent years, a method for sterilizing microorganisms by electrochemical oxidation has been developed as a means for sterilizing large amounts of water efficiently and at low cost. In this method, porous carbon electrodes sandwiched between mesh-shaped metal electrodes via an insulating material are stacked in multiple stages, and a DC voltage is applied to the upper and lower mesh-shaped metal electrodes to polarize the porous carbon electrodes, thereby removing microorganisms. The water to be treated contains an electrochemical reaction at the anode portion polarized in the process of flowing through the fine pores of the porous carbon electrode, that is, the transfer of electrons between the microorganism and the electrode to kill the microorganism.

【0004】この電気化学的に水中の微生物を殺菌処理
する方法は、例えば、図2に例示したように貯水タンク
1内の被処理水2をポンプ3により電解槽4の下部に連
続的に供給し、電解槽4内で電気化学的に殺菌処理され
た被処理水2は上部から排出されて貯水タンク1に循環
して殺菌処理を行うものである。電解槽4には、例えば
下部電極5を陰極とし、上部電極6を陽極として、直流
電源7により電圧が印加される。
In this method of electrochemically sterilizing microorganisms in water, for example, as shown in FIG. 2, water 2 to be treated in a water storage tank 1 is continuously supplied to a lower part of an electrolytic cell 4 by a pump 3. The to-be-processed water 2 which has been electrochemically sterilized in the electrolytic cell 4 is discharged from the upper part and circulated to the water storage tank 1 for sterilization. For example, a voltage is applied to the electrolytic cell 4 by a DC power supply 7 using the lower electrode 5 as a cathode and the upper electrode 6 as an anode.

【0005】図3は、電解槽4の構成を例示した縦断面
略図である。図3において円筒形状のケース8は合成樹
脂等の電気絶縁性の材料で作製され、ケース8内部の上
下両端部には陽陰のターミナル電極となる下部電極5
(陰極)および上部電極6(陽極)が設けられている。
上下部の両電極の間には多孔質炭素電極9が電気絶縁性
を保つためのリング状スペーサー10を介して複数個が
積層され、また多孔質炭素電極9の上面および下面には
チタン、白金等の金属のメッシュ状電極11が被着され
ている。下部電極5と上部電極6の間に直流電圧を印加
すると多孔質炭素電極9は分極し、水処理装置4の下部
入口12から供給した微生物を含む被処理水2は多孔質
炭素電極9内部の多数の微細気孔中を流通する過程で分
極した陽極における電気化学的反応により微生物と電極
間で電子の移動が起こり、酸化還元反応によって微生物
が死滅する。殺菌処理された被処理水2は電解槽4の上
部出口13から排出される。
FIG. 3 is a schematic vertical sectional view illustrating the configuration of the electrolytic cell 4. In FIG. 3, a cylindrical case 8 is made of an electrically insulating material such as a synthetic resin, and a lower electrode 5 serving as a positive / negative terminal electrode is provided on both upper and lower ends inside the case 8.
(Cathode) and an upper electrode 6 (anode).
A plurality of porous carbon electrodes 9 are laminated between the upper and lower electrodes via a ring-shaped spacer 10 for maintaining electrical insulation. Titanium, platinum are provided on the upper and lower surfaces of the porous carbon electrode 9. A metal mesh electrode 11 such as that described above is applied. When a DC voltage is applied between the lower electrode 5 and the upper electrode 6, the porous carbon electrode 9 is polarized, and the water to be treated 2 containing the microorganisms supplied from the lower inlet 12 of the water treatment device 4 is supplied to the inside of the porous carbon electrode 9. Electrons are transferred between the microorganism and the electrode by an electrochemical reaction at the polarized anode in the process of flowing through the many fine pores, and the microorganism is killed by the redox reaction. The water 2 to be sterilized is discharged from the upper outlet 13 of the electrolytic cell 4.

【0006】この水処理用の多孔質炭素電極として、例
えば特開平8−126888号公報には有機質バインダ
ーを使用して積層した複数の植物繊維製シートを熱処理
し炭化した多孔質炭素電極板を含んで成る多孔質炭素電
極が開示されている。これは被処理水中に生息する微生
物の殺菌効率(電解効率)を高めるとともに多孔質炭素
電極板の陽極酸化崩落特性、耐閉塞性の改善を図るもの
である。
As the porous carbon electrode for water treatment, for example, Japanese Patent Application Laid-Open No. 8-126888 includes a porous carbon electrode plate obtained by heat-treating and carbonizing a plurality of plant fiber sheets laminated using an organic binder. Is disclosed. This is intended to enhance the bactericidal efficiency (electrolytic efficiency) of microorganisms living in the water to be treated and to improve the anodic oxidation collapse characteristics and blocking resistance of the porous carbon electrode plate.

【0007】また、電気化学的な水処理における腐食電
流が小さく、殺菌作用及び曲げ強度が大きい多孔質炭素
電極及び製造法として、特開平8−173972号公報
には炭素繊維が有機高分子物質の炭化物で一体に結合さ
れてなる電気化学的な水処理用多孔質炭素電極、及び炭
素繊維又は炭化により炭素繊維となる有機高分子繊維の
シートに有機高分子物質を含浸し、該シートを積層し、
加熱して炭化する製造法が開示されている。
Japanese Patent Application Laid-Open No. 8-173972 discloses a porous carbon electrode having a small corrosion current in electrochemical water treatment, a large bactericidal action, and a high bending strength. An organic polymer substance is impregnated into a sheet of an electrochemical water treatment porous carbon electrode integrally bonded with a carbide, and a carbon fiber or a sheet of an organic polymer fiber that becomes a carbon fiber by carbonization, and the sheet is laminated. ,
A production method of heating and carbonizing is disclosed.

【0008】これらの多孔質炭素電極は、繊維の炭化物
が絡み合った組織構造からなるために気孔の形態も複雑
化し、気孔内を流れる被処理水は気孔面すなわち電極表
面と充分に接触しながら流通するので高い殺菌効率が得
られる利点がある。反面、圧損が増大し、また被処理水
中に浮遊物やカルシウムやマグネシウム等が多く存在す
る場合には、これらの浮遊物やカルシウム、マグネシウ
ム等によりスケールが発生して気孔を閉塞する難点があ
る。
[0008] These porous carbon electrodes have a structure in which pores are complicated because they have a texture structure in which carbides of fibers are entangled, and water to be treated flowing in the pores flows while sufficiently contacting the pore surface, that is, the electrode surface. Therefore, there is an advantage that high sterilization efficiency can be obtained. On the other hand, when the pressure loss increases and there are many suspended matters, calcium, magnesium, etc. in the water to be treated, there is a problem that scales are generated by these suspended matters, calcium, magnesium, etc., and pores are blocked.

【0009】また、水処理用の多孔質炭素電極としては
従来から黒鉛質の炭素電極も用いられている。黒鉛質炭
素電極はコークス粉粒等の骨材に石炭系や石油系のピッ
チをバインダーとして加えて混練し、成形、焼成黒鉛化
することにより製造される粒子結合型の多孔質組織性状
からなるものである。この黒鉛質多孔性炭素電極は強度
が高くまた骨材粒子の粒度調整により気孔性状の制御が
可能であるが、被処理水の通水量を上げて処理能率を高
めるために気孔径や気孔率を大きくすると、被処理水の
流路が直線的でかつ短くなるために殺菌効率が低下し、
強度も低いものとなる。したがって、水処理時の通水圧
力により黒鉛粒子の脱落が起こり易く、また陽極酸化に
よる黒鉛の腐食も均等に進行し難いので黒鉛粒子の脱落
も生じ、被処理水が汚染される問題点もある。
As a porous carbon electrode for water treatment, a graphite carbon electrode has been used. Graphitic carbon electrodes are made of particle-bonded porous texture produced by adding coal-based or petroleum-based pitch as a binder to aggregates such as coke powder, kneading, molding, and firing graphite. It is. This graphite porous carbon electrode has high strength and can control the porosity by adjusting the particle size of the aggregate particles.However, in order to increase the flow rate of the water to be treated and increase the treatment efficiency, the pore diameter and porosity are increased. If it is large, the sterilization efficiency decreases because the flow path of the water to be treated is linear and short,
The strength is also low. Therefore, the graphite particles are apt to fall off due to the water flow pressure during the water treatment, and the corrosion of the graphite due to anodic oxidation hardly progresses evenly. .

【0010】[0010]

【発明が解決しようとする課題】このように、電気化学
的水処理装置の処理能率を高めるために多孔質炭素電極
の気孔径や気孔率を大きくすると殺菌効率の低下を招
き、また強度も低くなる。一方、殺菌効率を高くするた
めには気孔内を流れる被処理水は気孔面すなわち電極表
面と充分に接触しながら流通することが必要であり、気
孔の形態が複雑で気孔径や気孔率が小さいことが望まれ
る。しかしながら、このような気孔性状であると被処理
水の流通時の圧損が大きくなり、また気孔の閉塞も生じ
易く処理能率の低下を招くこととなる。
As described above, if the pore diameter and the porosity of the porous carbon electrode are increased in order to increase the treatment efficiency of the electrochemical water treatment apparatus, the sterilization efficiency is reduced and the strength is also reduced. Become. On the other hand, in order to increase the sterilization efficiency, the water to be treated flowing in the pores needs to flow while being in sufficient contact with the pore surface, that is, the electrode surface, and the pore form is complicated and the pore diameter and porosity are small. It is desired. However, with such a porous property, the pressure loss during the flow of the water to be treated increases, and the pores are easily blocked, resulting in a reduction in the processing efficiency.

【0011】本発明は、これらの問題点を解消し、その
目的とするところは微生物を効率よく殺菌することがで
きるとともに、気孔の閉塞が起こり難く高い処理能率で
水中に存在する微生物を電気化学的に殺菌処理すること
のできる水処理装置を提供することにある。
The present invention solves these problems and aims to efficiently sterilize microorganisms and to electrochemically remove microorganisms existing in water at a high treatment efficiency with less stomata clogging. An object of the present invention is to provide a water treatment apparatus capable of performing a sterilization process.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の電気化学的水処理装置は、陽陰のターミナ
ル電極間に炭素質粒子と絶縁性粒子とが結着してなる多
孔質炭素体を装着した電解槽を備えることを構成上の特
徴とする。
In order to achieve the above object, an electrochemical water treatment apparatus according to the present invention is a porous water treatment apparatus in which carbonaceous particles and insulating particles are bound between positive and negative terminal electrodes. It is characterized by having an electrolytic cell equipped with a porous carbon body.

【0013】[0013]

【発明の実施の形態】電気化学的に微生物を殺菌処理す
る水処理装置は、多孔質炭素体の気孔内を通過する被処
理水の通水抵抗が小さいこと、被処理水と多孔質炭素体
との接触面積が大きいこと、また耐蝕性及び強度が高
く、電解腐食(陽極酸化)を受け難いこと、等の特性が
要求される。
BEST MODE FOR CARRYING OUT THE INVENTION A water treatment apparatus for electrochemically disinfecting microorganisms has a low resistance to flow of the water to be treated passing through the pores of the porous carbon body, and the water to be treated and the porous carbon body Characteristics such as a large contact area with the metal, high corrosion resistance and high strength, and low resistance to electrolytic corrosion (anodic oxidation).

【0014】これらの特性のうち被処理水の通水抵抗及
び多孔質炭素体との接触面積は多孔質炭素体の気孔性状
に影響されるところが大きい。本発明は、この気孔性状
を炭素質粒子と絶縁性粒子とが結着して形成される空隙
によって制御し、通水抵抗の低下及び接触面積の増大を
図るものである。炭素質粒子及び絶縁性粒子の形状は球
状、楕円状、円柱状など種々の形状のものを用いること
ができるが、空隙の形態を制御するためには粒子径の揃
った球状が好ましい。
Among these properties, the flow resistance of the water to be treated and the contact area with the porous carbon body are largely affected by the pore properties of the porous carbon body. In the present invention, the porosity is controlled by the voids formed by binding the carbonaceous particles and the insulating particles to reduce the water flow resistance and increase the contact area. The carbonaceous particles and the insulating particles may have various shapes such as a sphere, an ellipse, and a column. However, in order to control the shape of the voids, a sphere having a uniform particle diameter is preferable.

【0015】炭素質粒子としてはコークス粒子を炭化、
黒鉛化した粒状物を用いることができるが、例えばフェ
ノール樹脂やフラン樹脂などの易炭化性の樹脂を球状化
した樹脂球を非酸化性雰囲気中で焼成炭化、黒鉛化処理
したものが好ましく用いられる。また、絶縁性粒子には
ポリ塩化ビニル、ポリエチレンなどの熱可塑性樹脂、フ
ェノール樹脂、エポキシ樹脂などの熱硬化性樹脂、シリ
カ、アルミナなどのセラミックスの球状粒子が用いるこ
とが好ましい。
As carbonaceous particles, coke particles are carbonized,
Graphitized granules can be used, but for example, those obtained by calcining and graphitizing resin spheres obtained by spheroidizing easily carbonizable resin such as phenol resin or furan resin in a non-oxidizing atmosphere are preferably used. . Further, it is preferable to use spherical particles of a thermoplastic resin such as polyvinyl chloride or polyethylene, a thermosetting resin such as a phenol resin or an epoxy resin, or ceramics such as silica or alumina as the insulating particles.

【0016】本発明は、これらの炭素質粒子と絶縁性粒
子とを結着して形成した多孔質炭素体を被処理水が流通
し、電気化学的反応により微生物を殺菌処理する電解槽
に装着した点に特徴を有するものである。被処理水の通
水抵抗や殺菌効率は多孔質炭素体の気孔性状に影響され
る点が大きいので、本発明においては炭素質粒子と絶縁
性粒子とにより形成される空隙性状を制御するために、
炭素質粒子及び絶縁性粒子は球形で粒子径の揃った粒子
を用いることが好ましく、粒子径0.3〜5mmの球状粒
子が好ましく用いられる。
According to the present invention, a porous carbon body formed by binding these carbonaceous particles and insulating particles is mounted in an electrolytic cell in which water to be treated flows and a microorganism is sterilized by an electrochemical reaction. It is characterized by the following points. Since the flow resistance and sterilization efficiency of the water to be treated are greatly affected by the pore properties of the porous carbon body, in the present invention, in order to control the void properties formed by the carbonaceous particles and the insulating particles. ,
As the carbonaceous particles and the insulating particles, spherical particles having a uniform particle diameter are preferably used, and spherical particles having a particle diameter of 0.3 to 5 mm are preferably used.

【0017】炭素質粒子と絶縁性粒子との混合比は、重
量比で10/90〜50/50の割合に設定することが
好ましい。個々の炭素質粒子は印加された電圧によって
分極し、分極した陽極面において微生物を殺菌するもの
であるから炭素質粒子の混合比が10%未満では電気化
学的反応が起きる分極面が少なくなり、殺菌効率や殺菌
能率などの殺菌効果が低下するためである。しかしなが
ら、炭素質粒子の混合比が50%を越えると炭素質粒子
相互間に短絡が生じ易く、分極させ難くなるためであ
る。
The mixing ratio between the carbonaceous particles and the insulating particles is preferably set to a weight ratio of 10/90 to 50/50. Since the individual carbonaceous particles are polarized by the applied voltage and sterilize microorganisms on the polarized anode surface, if the mixing ratio of the carbonaceous particles is less than 10%, the number of polarized surfaces on which an electrochemical reaction occurs decreases. This is because sterilization effects such as sterilization efficiency and sterilization efficiency are reduced. However, if the mixing ratio of the carbonaceous particles exceeds 50%, a short circuit is likely to occur between the carbonaceous particles, making it difficult to polarize.

【0018】また、殺菌効果を高め、高耐蝕性の性能を
付与するためには炭素質粒子の表面活性が高いこと、す
なわち黒鉛化度が高く黒鉛の結晶化が進んでいることが
必要である。表面活性が低い場合には、印加した電圧に
対して流れる電流が著しく少ないために殺菌効果が小さ
くなり、殺菌効果を高くするために印加電圧を上げると
陽極酸化による電解腐食が大きくなって炭素質粒子の崩
落を招く結果となるためである。
Further, in order to enhance the bactericidal effect and to impart high corrosion resistance, it is necessary that the surface activity of the carbonaceous particles is high, that is, the degree of graphitization is high and the crystallization of graphite is advanced. . When the surface activity is low, the germicidal effect is reduced because the current flowing with respect to the applied voltage is extremely small, and when the applied voltage is increased to enhance the germicidal effect, electrolytic corrosion due to anodic oxidation increases and carbonaceous material is increased. This is because the particles may collapse.

【0019】そのため、炭素質粒子は黒鉛の結晶化が進
んだ特定の結晶構造を備えたものが好ましく、具体的に
は平均格子面間隔d002 の値が0.35nm以下、結晶子
の大きさLc(002)の値が2nm以上の結晶性状を備えたも
のが好ましい。黒鉛六角網面層の平均格子面間隔d002
の値が0.35nmを越え、結晶子の大きさLc(002)の値
が2nmを下回る結晶性状の場合には、黒鉛化が不充分と
なって表面の活性度が小さくなり、殺菌効果や耐蝕性が
低下するためである。このような炭素質粒子の結晶性状
は、例えば炭素質粒子を調製する際の樹脂球の焼成炭化
温度を調整することにより制御することができる。な
お、平均格子面間隔d002 の値及び結晶子の大きさLc
(002)の値は粉末X線回折により測定した値が用いられ
る。
Therefore, it is preferable that the carbonaceous particles have a specific crystal structure in which the crystallization of graphite is advanced. Specifically, the value of the average lattice spacing d 002 is 0.35 nm or less, and the size of the crystallite is Those having a crystal property with a value of Lc (002) of 2 nm or more are preferred. Average lattice spacing d 002 of the hexagonal graphite layer
Is greater than 0.35 nm and the crystallite size Lc (002) is less than 2 nm, the graphitization becomes insufficient and the activity of the surface becomes small, and the bactericidal effect and This is because the corrosion resistance is reduced. The crystal properties of such carbonaceous particles can be controlled, for example, by adjusting the firing carbonization temperature of the resin spheres when preparing the carbonaceous particles. The value of the average lattice spacing d 002 and the crystallite size Lc
As the value of (002), a value measured by powder X-ray diffraction is used.

【0020】これらの炭素質粒子と絶縁性粒子とを結着
することにより多孔質炭素体が形成される。両粒子を結
着する方法は、フェノール樹脂やエポキシ樹脂などの樹
脂を有機溶媒に溶解した溶液を絶縁粒子表面に被覆し、
乾燥後ブロック状に成形して熱処理することにより結着
させることができる。また、絶縁性粒子が熱可塑性樹脂
やシリカなどの場合には絶縁性粒子のガラス転移点近く
の温度に加熱することによって結着させることもでき
る。このようにして、炭素質粒子と絶縁性粒子の粒子
径、混合比、更に炭素質粒子の結晶性状などを調節して
両粒子を結着することにより空隙性状を制御することが
でき、電解槽に装着する多孔質炭素体が得られる。
By bonding these carbonaceous particles and insulating particles, a porous carbon body is formed. The method of binding both particles is to cover the surface of the insulating particles with a solution of a resin such as phenolic resin or epoxy resin dissolved in an organic solvent,
After drying, it can be bound in a block shape and heat-treated. When the insulating particles are made of a thermoplastic resin or silica, they can be bound by heating to a temperature near the glass transition point of the insulating particles. In this way, the particle size and the mixing ratio of the carbonaceous particles and the insulating particles, the crystal properties of the carbonaceous particles, and the like can be adjusted to control the void properties by binding the two particles, and the electrolytic cell Thus, a porous carbon body to be attached to the device is obtained.

【0021】図1は、本発明の電気化学的水処理装置の
電解槽4の構成を例示した縦断面略図である。図1にお
いて円筒形状のケース8の上下両端部に設けた陽陰のタ
ーミナル電極となる下部電極5(陰極)及び上部電極6
(陽極)間に上記の炭素質粒子14と絶縁性粒子15と
が結着した多孔質炭素体が装着されて電解槽4が構成さ
れている。16は炭素質粒子と絶縁性粒子とによって形
成された空隙である。多孔質炭素体は陽陰のターミナル
電極5、6間に装着されている。なお、多孔質炭素体は
図1に例示したように1段に設ける他に、ケース8内に
多段に積層して設置することも可能である。
FIG. 1 is a schematic longitudinal sectional view illustrating the configuration of an electrolytic cell 4 of an electrochemical water treatment apparatus according to the present invention. In FIG. 1, a lower electrode 5 (cathode) and an upper electrode 6 serving as positive and negative terminal electrodes provided at both upper and lower ends of a cylindrical case 8.
The electrolytic cell 4 is formed by mounting a porous carbon body in which the carbonaceous particles 14 and the insulating particles 15 are bound between (anode). Reference numeral 16 denotes a void formed by the carbonaceous particles and the insulating particles. The porous carbon body is mounted between the positive and negative terminal electrodes 5 and 6. In addition to the porous carbon body provided in one stage as illustrated in FIG. 1, the porous carbon body may be provided in a multi-layered manner in the case 8.

【0022】[0022]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0023】実施例1〜5 平均粒子径1mmの球状のフェノール樹脂をアルゴンガス
雰囲気中2500℃の温度で焼成炭化して、平均粒子径
0.8mmの炭素質粒子を作製した。この炭素質粒子の平
均格子面間隔d002 の値は0.345nm、結晶子の大き
さLc(002)の値は3nmであった。絶縁性粒子として平均
粒子径0.8mmのポリアミド粒子を用い、ポリアミド粒
子の表面にエタノールに溶解したフェノール樹脂溶液を
薄く被覆して乾燥した。この炭素質粒子と絶縁性粒子と
を混合比を変えて水中に分散させて混合したのち、円筒
ケースに入れて濾過、乾燥し、次いで、0.1Kg/cm2
加圧力をかけながら150℃の温度に加熱して炭素質粒
子と絶縁性粒子とを結着させ、直径76mm、高さ70mm
の多孔質炭素体を作製した。
Examples 1-5 A spherical phenol resin having an average particle diameter of 1 mm was calcined and carbonized in an argon gas atmosphere at a temperature of 2500 ° C. to produce carbonaceous particles having an average particle diameter of 0.8 mm. The average lattice spacing d 002 of the carbonaceous particles was 0.345 nm, and the crystallite size Lc (002) was 3 nm. Polyamide particles having an average particle diameter of 0.8 mm were used as insulating particles, and the surface of the polyamide particles was thinly coated with a phenol resin solution dissolved in ethanol and dried. After dispersing and mixing the carbonaceous particles and the insulating particles in water while changing the mixing ratio, put in a cylindrical case, filter and dry, and then apply a pressing force of 0.1 kg / cm 2 to 150 ° C. Heated to a temperature of 70 to bind the carbonaceous particles and the insulating particles to a diameter of 76 mm and a height of 70 mm
Was prepared.

【0024】実施例6 平均粒子径0.2mmの炭素質粒子及び絶縁性粒子を用い
たほかは実施例2と同一の条件で多孔質炭素体を作製し
た。
Example 6 A porous carbon body was produced under the same conditions as in Example 2 except that carbonaceous particles having an average particle diameter of 0.2 mm and insulating particles were used.

【0025】実施例7 炭素質粒子として黒鉛六角網面層の平均格子面間隔d
002 が0.337nm、結晶子の大きさLc(002)が35nm
の黒鉛結晶性状を有する直径3mm、高さ3mmの円柱状人
造黒鉛粒子を用いたほかは実施例2と同一の条件で多孔
質炭素体を作製した。
Example 7 The average lattice spacing d of the hexagonal mesh layer of graphite as carbonaceous particles
002 is 0.337 nm, crystallite size Lc (002) is 35 nm
A porous carbon body was produced under the same conditions as in Example 2 except that cylindrical artificial graphite particles having a diameter of 3 mm and a height of 3 mm having the graphite crystalline properties described above were used.

【0026】実施例8 炭素質粒子として黒鉛六角網面層の平均格子面間隔d
002 が0.337nm、結晶子の大きさLc(002)が35nm
の黒鉛結晶性状を有する直径6mm、高さ6mmの円柱状人
造黒鉛粒子を用いたほかは実施例2と同一の条件で多孔
質炭素体を作製した。
Example 8 The average lattice spacing d of a hexagonal reticular layer of graphite as carbonaceous particles
002 is 0.337 nm, crystallite size Lc (002) is 35 nm
A porous carbon body was produced under the same conditions as in Example 2 except that cylindrical artificial graphite particles having a diameter of 6 mm and a height of 6 mm having the graphite crystalline properties described above were used.

【0027】 実施例9フェノール樹脂球をアルゴンガス雰囲気中15
00℃の温度で焼成炭化して作製した平均粒子径0.8
mmの炭素質粒子を用いたほかは、実施例2と同一の条件
で多孔質炭素体を作製した。
Example 9 A phenol resin ball was placed in an argon gas atmosphere for 15 hours.
Average particle size 0.8 produced by firing and carbonizing at a temperature of 00 ° C
A porous carbon body was produced under the same conditions as in Example 2 except that carbonaceous particles of mm were used.

【0028】このようにして作製した多孔質炭素体の作
製条件を対比して表1に示した。
Table 1 shows a comparison of the conditions for producing the porous carbon body thus produced.

【0029】[0029]

【表1】 [Table 1]

【0030】これらの多孔質炭素体を陽陰のターミナル
電極間に装着して図1に示した電解槽を組み立てた。電
解槽は水漏れのないように充分にシールした後、直流電
源から35Vの定電圧を印加し、1.0Kg/cm2の水圧で
貯水タンク内の水温20℃の被処理水(井戸水)を通水
循環して殺菌試験を行った。このようにして2ヶ月間水
処理試験を行った際の通水量の変化及び多孔質炭素体の
状態、ならびに1パス殺菌率〔{1−(出口側生菌数/
入口側生菌数)}×100(%)〕と24時間経過後の
貯水タンク内の水の殺菌率を測定した。得られた結果を
表2に示した。
These porous carbon bodies were mounted between positive and negative terminal electrodes to assemble the electrolytic cell shown in FIG. After sufficiently sealing the electrolytic cell so as not to leak water, a constant voltage of 35 V is applied from a DC power supply, and the water to be treated (well water) having a water temperature of 20 ° C. in the water storage tank is applied at a water pressure of 1.0 kg / cm 2. A sterilization test was performed by circulating water. In this way, when the water treatment test was performed for two months, the change in the water flow rate, the state of the porous carbon body, and the 1-pass sterilization rate [{1- (the number of viable bacteria on the exit side /
The number of living bacteria on the inlet side)} × 100 (%)] and the sterilization rate of water in the water storage tank after 24 hours were measured. Table 2 shows the obtained results.

【0031】比較例1 コークス粒子をピッチバインダーで捏合し、成形、焼成
炭化して直径76mm、厚さ9mmの円板状の粒子結合型多
孔質炭素体を作製した。この多孔質炭素体の上下両面に
メッシュ状金網を被着し、リング状スペーサーを介して
陽陰のターミナル電極間に8段に積層して、図2に示し
た電解槽を組み立てた。この電解槽により実施例と同一
の条件で殺菌試験を行って、その結果を表2に併載し
た。
Comparative Example 1 Coke particles were kneaded with a pitch binder, molded and calcined to produce a disk-shaped particle-bonded porous carbon body having a diameter of 76 mm and a thickness of 9 mm. A mesh-shaped wire net was attached to the upper and lower surfaces of the porous carbon body, and was stacked in eight stages between positive and negative terminal electrodes via a ring-shaped spacer to assemble the electrolytic cell shown in FIG. A sterilization test was performed using this electrolytic cell under the same conditions as in the examples, and the results are shown in Table 2.

【0032】[0032]

【表2】 [Table 2]

【0033】表1、2の結果から、炭素質粒子と絶縁性
粒子とが結着して形成した多孔質炭素体を陽陰のターミ
ナル電極間に装着した電解槽による実施例の電気化学的
水処理装置は、空隙に生じる目詰まりが少なく2ヶ月に
亘る通水試験後にも通水量の低下が少なく、粒子脱落な
どの損傷も少ないことが認められる。また、1パス殺菌
率も高く、貯水タンク内の水も高率で殺菌処理されてい
ることが判る。これに対し、比較例1の電気化学的水処
理装置は粒子結合型多孔質炭素体を装着した電解槽を用
いたものであるから強度が高く、2ヶ月間の通水試験後
にも何の異常も認められないが、気孔の目詰まりによる
通水量の低下がやや大きいことが認められる。それに伴
って殺菌率も低位にある。
From the results shown in Tables 1 and 2, it can be seen from the results that the electrochemical water of the embodiment was prepared by using an electrolytic cell having a porous carbon body formed by binding carbonaceous particles and insulating particles between positive and negative terminal electrodes. It is recognized that the treatment apparatus has little clogging generated in the voids, has a small decrease in the amount of flowing water even after the water-passing test for two months, and has little damage such as falling off of particles. In addition, the one-pass sterilization rate is high, and it can be seen that the water in the water storage tank is also sterilized at a high rate. On the other hand, the electrochemical water treatment apparatus of Comparative Example 1 used an electrolytic cell equipped with a particle-bonded porous carbon body, and thus had high strength and no abnormality even after a two-month water flow test. However, it is recognized that the decrease in water flow rate due to clogging of pores is somewhat large. Accordingly, the sterilization rate is low.

【0034】また、実施例において、多孔質炭素体を構
成する炭素質粒子及び絶縁性粒子の粒子径が0.3mmよ
り小さい場合には形成される空隙径も小さくなるために
通水量が低下傾向にあり、一方5mmを越える大粒子径で
は形成する空隙が大きいので被処理水が通過し易くな
り、分極した陽極面における電気化学的反応が減少し殺
菌効率が低下する傾向が認められる。同様に、炭素質粒
子の混合比が10%未満では分極界面が少なくなるので
殺菌効率が低下する。更に、炭素質粒子の結晶性状の黒
鉛化度が進み、平均格子面間隔d002 の値が0.35nm
以下、結晶子の大きさLc(002)の値が2nm以上の結晶性
状を備えると殺菌効率が高く、耐蝕性も向上するので目
詰まりも生じ難くなり通水量の低下も少ないことが判明
する。
In the examples, when the particle size of the carbonaceous particles and the insulating particles constituting the porous carbon body is smaller than 0.3 mm, the pore size formed is also small, so that the water flow rate tends to decrease. On the other hand, in the case of a large particle diameter exceeding 5 mm, the pores formed are large, so that the water to be treated easily passes therethrough, and the electrochemical reaction on the polarized anode surface decreases, and the sterilization efficiency tends to decrease. Similarly, when the mixing ratio of the carbonaceous particles is less than 10%, the number of polarization interfaces decreases, and the sterilization efficiency decreases. Further, the degree of graphitization of the crystalline state of the carbonaceous particles progresses, and the value of the average lattice spacing d 002 becomes 0.35 nm.
Hereinafter, it will be understood that when the crystallite size Lc (002) has a crystalline property of 2 nm or more, the sterilization efficiency is high and the corrosion resistance is improved, so that clogging is hardly caused and the decrease in water flow is small.

【0035】[0035]

【発明の効果】以上のとおり、本発明の電気化学的水処
理装置によれば、炭素質粒子と絶縁性粒子とが結着した
多孔質炭素体を陽陰のターミナル電極間に装着した電解
槽により水処理を行うものであるから、多孔質炭素体に
形成される空隙において電気化学的反応が円滑に進行す
るため被処理水中の微生物を効率よく死滅させることが
できる。更に、炭素質粒子及び絶縁性粒子の粒子径、混
合比、炭素質粒子の黒鉛化度を示す結晶性状等を特定の
範囲に設定することにより、耐蝕性に優れ、目詰まりが
生じ難く、長期に亘って高い殺菌効率で水処理すること
が可能である。したがって、飲料水、食品分野における
各種処理水、工業用水等の水中に存在する微生物を、電
気化学的に殺菌処理する水処理装置として極めて有用で
ある。
As described above, according to the electrochemical water treatment apparatus of the present invention, an electrolytic cell in which a porous carbon body in which carbonaceous particles and insulating particles are bonded is mounted between positive and negative terminal electrodes. Therefore, the electrochemical reaction proceeds smoothly in the voids formed in the porous carbon body, so that the microorganisms in the water to be treated can be efficiently killed. Furthermore, by setting the particle size of the carbonaceous particles and the insulating particles, the mixing ratio, and the crystallinity indicating the degree of graphitization of the carbonaceous particles to a specific range, the corrosion resistance is excellent, the clogging hardly occurs, and the long term. Water treatment with high sterilization efficiency. Therefore, it is extremely useful as a water treatment apparatus for electrochemically sterilizing microorganisms existing in water such as drinking water, various kinds of treated water in the food field, and industrial water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学的水処理装置の電解槽の構成
を例示した縦断面略図である。
FIG. 1 is a schematic longitudinal sectional view illustrating the configuration of an electrolytic cell of an electrochemical water treatment apparatus according to the present invention.

【図2】電気化学的水処理の一例を示した工程図であ
る。
FIG. 2 is a process chart showing an example of an electrochemical water treatment.

【図3】従来の電解槽の構成を例示した縦断面略図であ
る。
FIG. 3 is a schematic longitudinal sectional view illustrating the configuration of a conventional electrolytic cell.

【符号の説明】[Explanation of symbols]

1 貯水タンク 2 被処理水 3 ポンプ 4 電解槽 5 下部電極 6 上部電極 7 直流電源 8 電解槽ケース 9 多孔質炭素電極 10 リング状スペーサー 11 メッシュ状電極 12 被処理水入口 13 被処理水出口 14 炭素質粒子 15 絶縁性粒子 16 空隙 DESCRIPTION OF SYMBOLS 1 Water storage tank 2 Treated water 3 Pump 4 Electrolyzer 5 Lower electrode 6 Upper electrode 7 DC power supply 8 Electrolyzer case 9 Porous carbon electrode 10 Ring spacer 11 Mesh electrode 12 Treated water inlet 13 Treated water outlet 14 Carbon Particles 15 insulating particles 16 voids

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽陰のターミナル電極間に炭素質粒子と
絶縁性粒子とが結着してなる多孔質炭素体を装着した電
解槽を備えることを特徴とする電気化学的水処理装置。
1. An electrochemical water treatment apparatus comprising: an electrolytic cell having a porous carbon body formed by binding carbonaceous particles and insulating particles between positive and negative terminal electrodes.
【請求項2】 絶縁性粒子が熱可塑性樹脂、熱硬化性樹
脂またはセラミックスの粒子である、請求項1記載の電
気化学的水処理装置。
2. The electrochemical water treatment apparatus according to claim 1, wherein the insulating particles are particles of a thermoplastic resin, a thermosetting resin, or ceramics.
【請求項3】 炭素質粒子と絶縁性粒子の粒子径が0.
3〜5mmである、請求項1記載の電気化学的水処理装
置。
3. The carbonaceous particles and the insulating particles having a particle size of 0.
2. The electrochemical water treatment device according to claim 1, wherein the size is 3 to 5 mm.
【請求項4】 多孔質炭素体を構成する炭素質粒子と絶
縁性粒子との混合比が10/90〜50/50である、
請求項1記載の電気化学的水処理装置。
4. The mixing ratio of carbonaceous particles and insulating particles constituting the porous carbon body is from 10/90 to 50/50.
The electrochemical water treatment device according to claim 1.
【請求項5】 炭素質粒子が平均格子面間隔d002 の値
が0.35nm以下、結晶子の大きさLc(002)の値が2nm
以上の結晶性状を備えたものである、請求項1記載の電
気化学的水処理装置。
5. The carbonaceous particle has an average lattice spacing d 002 of 0.35 nm or less and a crystallite size Lc (002) of 2 nm.
2. The electrochemical water treatment apparatus according to claim 1, wherein the apparatus has the above crystal properties.
JP10095504A 1998-03-24 1998-03-24 Electrochemical water treatment device Pending JPH11267648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10095504A JPH11267648A (en) 1998-03-24 1998-03-24 Electrochemical water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10095504A JPH11267648A (en) 1998-03-24 1998-03-24 Electrochemical water treatment device

Publications (1)

Publication Number Publication Date
JPH11267648A true JPH11267648A (en) 1999-10-05

Family

ID=14139436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10095504A Pending JPH11267648A (en) 1998-03-24 1998-03-24 Electrochemical water treatment device

Country Status (1)

Country Link
JP (1) JPH11267648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8075988B2 (en) 2006-08-07 2011-12-13 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
KR101094731B1 (en) * 2009-09-30 2011-12-16 한국전력공사 Electrochemical water treatment apparatus using carbon electrodes
US8811162B2 (en) 2006-01-27 2014-08-19 Siemens Aktiengesellschaft Network element for allocating at least one payload data connection to at least one multiplex connection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811162B2 (en) 2006-01-27 2014-08-19 Siemens Aktiengesellschaft Network element for allocating at least one payload data connection to at least one multiplex connection
US8075988B2 (en) 2006-08-07 2011-12-13 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8137798B2 (en) 2006-08-07 2012-03-20 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US8394491B2 (en) 2006-08-07 2013-03-12 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9221955B2 (en) 2006-08-07 2015-12-29 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
US9822228B2 (en) 2006-08-07 2017-11-21 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite materials
KR101094731B1 (en) * 2009-09-30 2011-12-16 한국전력공사 Electrochemical water treatment apparatus using carbon electrodes

Similar Documents

Publication Publication Date Title
US4265727A (en) Composite electrodes
Manickam et al. Activated carbon nanofiber anodes for microbial fuel cells
JP2003508192A (en) Ion removal from water using activated carbon electrode
KR20100026432A (en) Method of fabricating carbon nano tube plate
KR101477802B1 (en) Activated carbon for electrode, preparation method thereof and water softener system for comprising the same
JP4844321B2 (en) Hydrogen peroxide production apparatus and air conditioner, air purifier and humidifier using the same
JP2004345921A (en) Mesoporous activated carbon
JP4001673B2 (en) Porous carbon electrode for water treatment
JPH11267648A (en) Electrochemical water treatment device
JPH11140681A (en) Porous carbon electrode for water treatment
KR20190047868A (en) Method of manufacturing electrode for water treatment
Vukčević et al. Surface characteristics and antibacterial activity of a silver-doped carbon monolith
CN103922445A (en) Micro-nano hierarchical porous carbon electrode and preparation method and application
KR100461735B1 (en) Method to making the carbon electrode
JP2019160641A (en) Microbial fuel cell and anode carbon electrode used therefor
KR20150035265A (en) Capacitive deionization electrodes and production methods thereof, and capacitive deionization apparatus including the same
EP2537168A1 (en) Double-layer capacitor
CN111252866B (en) CDI electrode active material and preparation and application thereof
CN114843527A (en) Bioelectrochemical electrode, manufacturing method and application thereof in methane preparation
KR101408133B1 (en) Electrode for sterilization and process for water treatment using the same
JP5004427B2 (en) Processing method of methane fermentation digestive juice
KR101584859B1 (en) Anion for bioelectrochemical cell
KR102333920B1 (en) Manufactuing method of electrolysis electrode with improved electrolysis efficiency at low cost and electrolysis apparatus including the electrolysis electrode
CN113023874A (en) Bioelectrochemical electrode with arc-shaped structure and application thereof
JPH091151A (en) Carbon electrode for water treatment