KR100461735B1 - Method to making the carbon electrode - Google Patents

Method to making the carbon electrode Download PDF

Info

Publication number
KR100461735B1
KR100461735B1 KR10-2002-0079017A KR20020079017A KR100461735B1 KR 100461735 B1 KR100461735 B1 KR 100461735B1 KR 20020079017 A KR20020079017 A KR 20020079017A KR 100461735 B1 KR100461735 B1 KR 100461735B1
Authority
KR
South Korea
Prior art keywords
electrode
carbon
carbon electrode
mixing
binder
Prior art date
Application number
KR10-2002-0079017A
Other languages
Korean (ko)
Other versions
KR20040051155A (en
Inventor
한상범
Original Assignee
한국정수공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국정수공업 주식회사 filed Critical 한국정수공업 주식회사
Priority to KR10-2002-0079017A priority Critical patent/KR100461735B1/en
Publication of KR20040051155A publication Critical patent/KR20040051155A/en
Application granted granted Critical
Publication of KR100461735B1 publication Critical patent/KR100461735B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus

Abstract

본 발명은 물에 포함되는 각종 용존이온을 흡착하여 정제하는 카본전극에 관한 것으로, 혼련기에 카본파우더 80∼90Wt% - 바인더 5∼10Wt% - 메탈파이버 5∼10 Wt%를 투입하고 상온상태로 믹싱하는 혼합공정과; 압축프레스에서 10∼50Kg/㎠의 압력으로 5∼15분 동안 압축하여 판상으로 성형하는 성형공정 및; 열처리로에서 100∼500℃의 온도로 30∼90분 동안 건조하는 후처리공정으로 이루어져, 카본전극의 전극저항이 낮으면서도 비표면적이 넓어져 용존이온의 흡착에 따른 효율이 증대될 뿐만 아니라, 카본전극의 도전성능 및 기계적강도가 향상되어 수명이 연장됨은 물론 전극의 유지보수에 따른 각종 부대비용이 절감되게 한 것이다.The present invention relates to a carbon electrode for adsorbing and purifying various dissolved ions contained in water, and mixing 80 to 90 Wt%-binder 5 to 10 Wt%-metal fiber 5 to 10 Wt% to a kneader into a kneader at room temperature. Mixing process to make; A molding process of compressing for 5 to 15 minutes at a pressure of 10 to 50 Kg / cm 2 in a compression press to form a plate; It is composed of a post-treatment process that is dried for 30 to 90 minutes at a temperature of 100 to 500 ° C. in a heat treatment furnace, so that the electrode resistance of the carbon electrode is low and the specific surface area is increased, thereby increasing the efficiency of adsorption of dissolved ions, as well as carbon. Electrode performance and mechanical strength of the electrode is improved to extend the life as well as to reduce the various additional costs according to the maintenance of the electrode.

Description

탈염용 카본전극의 제조 방법 {Method to making the carbon electrode}Manufacturing method of carbon electrode for desalination {Method to making the carbon electrode}

본 발명은 물에 포함되는 각종 용존이온을 흡착하여 정제하는 카본전극에 관한 것으로, 특히 카본전극의 전극성능을 향상하여 용존이온의 흡착율을 극대화시킴은 물론 카본전극의 제조단가 및 작업하중을 절감시킬 수 있도록 된 탈염용 카본전극의 제조 방법에 관한 것이다.The present invention relates to a carbon electrode that adsorbs and purifies various dissolved ions contained in water, and in particular, improves the electrode performance of the carbon electrode to maximize the adsorption rate of the dissolved ions, as well as reduce the manufacturing cost and work load of the carbon electrode. It relates to a method for producing a desalting carbon electrode.

일반적으로, 현대사회는 극격한 산업화에 따른 자연환경의 훼손과 기후변화 등의 원인으로 인해 맑은 물이 나날이 고갈되는데 반해 인구증가와 생활수준의 향상으로 인해 정제수의 수요가 많아지고 더욱이 초미세 산업의 발전으로 순수한 물의 제조 방법에 대한 관심이 높아지고 있다.In general, in modern society, clean water is depleted due to the deterioration of the natural environment and climate change due to the rapid industrialization, whereas the demand for purified water is increased due to the increase in population and the standard of living. With advances, there is a growing interest in the preparation of pure water.

이에 따라, 전위차를 이용하여 용존이온의 선택적 흡착을 통해 물을 정제하는 축전식이온제거법(Capacitive Deionization)이 대두되는 바, 도 1(a).(b)에서와 같이, 축전식이온제거장치(100)는 금속집전체(110)에 각각의 카본전극(120)을 부착하여 용존이온의 양/음이온을 분리하여 제거한다.Accordingly, capacitive deionization, which purifies water through selective adsorption of dissolved ions using a potential difference, is introduced. As shown in FIG. 1 (a). (B), a capacitive ion removal device ( 100 attaches each carbon electrode 120 to the metal current collector 110 to separate and remove the positive / negative ions of the dissolved ions.

즉, 카본전극(120)의 사이에 이온이 용존된 물이 흐를 때 도 1a에서와 같이 낮은 전위차의 직류전원을 인가하면 용존이온중에서 음이온성분을 양극쪽으로 흡착되고 양이온성분은 음극쪽으로 농축흡착되며, 도 1b에서와 같이 직류전원을 중단하면 농축이온들이 전극으로부터 탈착되어 제거된다.That is, when water in which ions are dissolved between the carbon electrodes 120 flows, as shown in FIG. 1A, when a DC power source having a low potential difference is applied, the anion component is adsorbed to the anode side and the cation component is concentrated to the cathode side in the dissolved ion. When the DC power source is stopped as shown in FIG. 1B, the concentrated ions are removed from the electrode and removed.

여기서, 카본전극(120)은 전극저항이 낮고 비표면적이 넓어야만 하는 요구조건이 수반되어야 하므로, 카본전극을 흑연을 판상으로 제조하거나 활성탄섬유를 직조하여 제조하거나 레소시놀포름알데히드(resorcinol formaldehyde)수지를 탄화시킨 후 초임계건조를 거쳐 판상으로 제조한다.Here, the carbon electrode 120 should be accompanied by a requirement that the electrode resistance is low and the specific surface area should be wide, so that the carbon electrode is manufactured by producing graphite in the form of plate, weaving activated carbon fiber, or resorcinol formaldehyde. The resin is carbonized and then supercritically dried to prepare a plate.

그런데, 흑연을 이용한 카본전극은 전극저항이 낮으나 비표면적이 너무 작아 그 이온제거에 따른 효율이 저하되며, 활성탄섬유를 직조한 카본전극은 전극저항이 비교적 낮고 비표면적이 넓은 장점을 가지고 있으나 그 물리적 특성이 열악해 금속집전체(110)로 지지해야 하는 단점이 있다.However, the carbon electrode using graphite has low electrode resistance but the specific surface area is so small that the efficiency of ion removal is reduced, and the carbon electrode woven from activated carbon fiber has the advantages of relatively low electrode resistance and wide specific surface area. There is a disadvantage that the characteristics are poor to support the metal current collector (110).

그리고, 레소시놀포름알데히드수지를 이용한 전극은 전극저항이 낮으면서도 비표면적이 넓어 전극효율이 우수한 장점이 있지만, 그 전극제조에 따른 작업과정이 매우 복잡하고 어려워 제조단가 및 작업하중이 증대될 뿐만 아니라 유지보수에 따른 부대비용이 증대되는 단점이 있다.In addition, the electrode using the resorcinol formaldehyde resin has the advantage of excellent electrode efficiency due to low electrode resistance and wide specific surface area, but the manufacturing process and work load are increased due to the complicated and difficult working process according to the electrode manufacturing. However, there is a disadvantage that the incidental cost of maintenance increases.

이에, 본 발명은 상기한 바와 같은 제문제점을 해결하기 위하여 안출된 것으로서, 카본전극의 전극성능을 향상하여 용존이온의 흡착율을 극대화시킴과 더불어 카본전극의 제조단가 및 작업하중을 절감시킬 수 있도록 된 탈염용 카본전극의 제조 방법을 제공하는 데에 그 목적이 있다.Accordingly, the present invention has been made to solve the problems described above, to improve the electrode performance of the carbon electrode to maximize the adsorption rate of dissolved ions and to reduce the manufacturing cost and work load of the carbon electrode Its purpose is to provide a method for producing a desalting carbon electrode.

상기한 바와 같은 목적을 달성하기 위한 본 발명은, 혼련기에 카본파우더 80∼90Wt% - 바인더 5∼10Wt% - 메탈파이버 5∼10 Wt%를 투입하고 상온상태로 믹싱하는 혼합공정과; 혼합공정에서 제조된 혼합물을 압축프레스에서 10∼50Kg/㎠의 압력으로 5∼15분 동안 압축하여 판상으로 성형하는 성형공정 및; 성형공정에서 제조된 판상전극을 열처리로에서 100∼500℃의 온도로 30∼90분 동안 건조하는 후처리공정으로 이루어진 것을 특징으로 한다.The present invention for achieving the above object is a mixing step of mixing 80 to 90 Wt%-binder 5 to 10 Wt%-metal fiber 5 to 10 Wt% of carbon powder in the kneader and mixing at room temperature; A molding step of compressing the mixture prepared in the mixing step for 5 to 15 minutes at a pressure of 10 to 50 Kg / cm 2 in a compression press to form a plate; It characterized in that the post-processing step of drying the plate-shaped electrode manufactured in the molding process for 30 to 90 minutes at a temperature of 100 ~ 500 ℃ in a heat treatment furnace.

도 1(a),(b)는 일반적인 기술에 따른 축전식이온장치의 탈염공정과 전극재생1 (a), (b) is a desalination process and electrode regeneration of a capacitive ion device according to a general technique

공정을 도시한 개략도,Schematic diagram showing the process,

도 2는 본 발명에 따른 축전식이온장치의 카본전극의 제조공정을 도시한 개Figure 2 shows a manufacturing process of the carbon electrode of the capacitive ion device according to the present invention

략적인 모식도이다.It is a schematic diagram.

* 도면 중 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100 : 축전식이온제거장치 110 : 금속집전체100: capacitive ion removal device 110: metal current collector

120 : 카본전극120: carbon electrode

이하, 본 발명에 따른 실시예를 첨부된 예시도면을 참고로하여 상세하게 설명하면 다음과 같다.Hereinafter, an embodiment according to the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 축전식카본전극의 제조공정을 도시한 모식도로서, 전극제조공정은, 혼련기에 카본파우더 80∼90Wt% - 바인더 5∼10Wt% - 메탈파이버 5∼10Wt%를 투입하고 상온상태로 믹싱하는 혼합공정과; 압축프레스에서 10∼50Kg/㎠의 압력으로 5∼15분 동안 압축하여 판상으로 성형하는 성형공정 및; 열처리로에서 100∼500℃의 온도로 30∼90분 동안 건조하는 후처리공정으로 구성된다.Figure 2 is a schematic diagram showing the manufacturing process of the capacitive carbon electrode according to the present invention, the electrode manufacturing process is a carbon powder 80 to 90 Wt%-binder 5 to 10 Wt%-metal fiber 5 to 10 Wt% in a room temperature A mixing step of mixing in a state; A molding process of compressing for 5 to 15 minutes at a pressure of 10 to 50 Kg / cm 2 in a compression press to form a plate; It is composed of a post-treatment step of drying for 30 to 90 minutes at a temperature of 100 to 500 ℃ in a heat treatment furnace.

먼저, 본원 발명은 카본파우더의 흡착특성에 전극성능 및 집전능력의 향상수단으로 규정량의 바인더와 규정량의 메탈파이버를 혼합한 후, 이러한 혼합물을 판상으로 성형한 다음 열처리와 같은 후처리공정을 거쳐 축전식이온제거장치의 카본전극으로 사용하는 것임을 첨언한다.First, the present invention mixes a prescribed amount of binder and a specified amount of metal fiber as a means for improving electrode performance and current collecting ability to adsorption characteristics of a carbon powder, and then forms the mixture into a plate shape and then performs a post-treatment process such as heat treatment. In addition, it is used as a carbon electrode of the capacitive ion removal device.

그리고, 카본파우더는 물에 포함되는 각종 용존이온중의 양/음이온을 흡착하여 제거하는 분말체로서, 특히 카본나노파이버나 카본나노튜브 등과 같은 카본을 주성분으로하는 재질을 사용함이 바람직하다.The carbon powder is a powder that adsorbs and removes positive and negative ions in various dissolved ions contained in water, and it is particularly preferable to use a carbon-based material such as carbon nanofibers or carbon nanotubes.

그리고, 바인더는 카본파우더에 일정량 첨가되어 전극성능을 향상하는 분말체로서, 특히 폴리에틸렌수지(PE) 또는 폴리비닐알콜(PVA) 또는 폴리테트라플루오르에틸렌(PTFE)을 사용함이 바람직하다.In addition, the binder is added to the carbon powder in a certain amount to improve the electrode performance, it is particularly preferred to use polyethylene resin (PE) or polyvinyl alcohol (PVA) or polytetrafluoroethylene (PTFE).

이때, 바인더는, 그 함유량이 너무 많은 경우 파우더 계면에서의 저항이 크게 증가하므로, 10Wt%이하의 함량으로 첨가함이 바람직하다.At this time, when the content is too much, the resistance at the powder interface is greatly increased, and therefore, the binder is preferably added at a content of 10 Wt% or less.

그리고, 메탈파이버는 카본파우더와 바인더에 포함되어 도전성능 및 기계적강도를 향상하는 분말체로서, 특히 스테인레스스틸이나 타타늄 등과 같은 강도 및 경도가 우수한 재질을 사용함이 바람직하다.In addition, the metal fiber is included in the carbon powder and the binder to improve the electrical conductivity and mechanical strength, it is particularly preferable to use a material having excellent strength and hardness, such as stainless steel or titanium.

이때. 메탈파이버는, 그 함유량이 너무 많은 경우 도전성이 증가하여 축전능이 저하되므로 10Wt%이하의 함량으로 첨가함이 바람직하다.At this time. The metal fiber is preferably added at a content of 10 Wt% or less because its conductivity increases when its content is too large, and the electrical storage ability is lowered.

그리고, 바인더로서 폴리에틸렌을 사용하는 경우, 본원발명에서 청구하고자 하는 성형공정과 후처리공정을 삭제하고, 대신에 혼합공정에서 120∼150℃의 온도범위로 5∼7시간 혼합한 후 압출기에서 압출하여 판상으로 제조하는 이른바 압출공정이 더 추가되어야 함을 첨언한다.In the case of using polyethylene as a binder, the molding process and the post-treatment process to be claimed in the present invention are eliminated, and instead, the mixture is mixed at a temperature range of 120 to 150 ° C. for 5 to 7 hours and then extruded in an extruder. It is to be noted that a so-called extrusion process for producing plates is to be added.

이하, 본 발명에 따른 작용을 상세하게 설명하면 다음과 같다.Hereinafter, the operation according to the present invention will be described in detail.

먼저, 카본전극(120)을 제조하기 위해서는, 카본파우더에 바인더와 메탈파이버를 평량하여 10Wt%이하의 함량으로 투입한 다음, 교반기 등의 혼합수단을 통해 골고루 섞는 혼합과정이 선결되어야 한다.First, in order to manufacture the carbon electrode 120, a binder and a metal fiber are added to the carbon powder in an amount of 10 Wt% or less, and a mixing process of mixing evenly through a mixing means such as a stirrer should be made in advance.

이때, 혼합과정에서 혼합시간을 세팅하지 않은 이유는, 각 재료의 함량이 다를 뿐만 아니라 교반기 등의 회전속도가 서로 다르기 때문이다.In this case, the reason why the mixing time is not set in the mixing process is that not only the content of each material is different, but also the rotation speed of the stirrer is different from each other.

이어서, 혼합공정에서 각 재료들이 완전히 섞여 균질한 상태로 혼합되는 경우, 압축프레스의 압축개소에 규정량의 혼합물을 안착한 다음 10∼50 Kg/㎠의 압력을 가하면서 5∼15분 동안 압축한다.Subsequently, in the mixing process, when each material is completely mixed and mixed in a homogeneous state, the mixture is placed in a compression portion of the compression press and then compressed for 5 to 15 minutes while applying a pressure of 10 to 50 Kg / cm 2.

이때, 압축프레스의 압축압력이 규정치 이하인 경우 압축시간이 증대되며, 압축압력이 규정치 이상인 경우 성형과정에서 결함이 발생될 우려가 있다.At this time, when the compression pressure of the compression press is below the prescribed value, the compression time is increased, and when the compression pressure is above the prescribed value, there is a fear that a defect occurs in the molding process.

이어서, 성형공정에서 제조되는 판상형태의 물질을 열처리로에 장입한 다음 100∼500℃의 온도범위로 30∼90분 정도 건조하는 작업을 수행하여 카본전극의 후처리공정을 완료한다.Subsequently, the plate-shaped material manufactured in the molding process is charged to a heat treatment furnace, followed by drying for about 30 to 90 minutes at a temperature range of 100 to 500 ° C. to complete the post-treatment of the carbon electrode.

이어서, 축전식이온제거장치의 용량에 적합한 크기로 카본전극을 절단하면 일련의 작업공정이 완료되는 것이다.Subsequently, when the carbon electrode is cut to a size suitable for the capacity of the capacitive ion removing device, a series of work processes are completed.

만일, 폴리에틸렌을 바인더로 사용하는 경우, 혼합공정에서 고온상태 즉 120∼150℃의 온도범위에서 5∼7시간 혼합한 다음, 압출기를 이용하여 판상으로 압출하여 카본전극으로 제조한다.If polyethylene is used as a binder, the mixture is mixed at a high temperature, that is, in a temperature range of 120 to 150 ° C. for 5 to 7 hours, and then extruded into a plate using an extruder to produce a carbon electrode.

이렇게 하면, 카본전극(120)이 전극저항이 비교적 낮으면서도 비표면적이 비교적 넓어 이온제거효율이 증대될 뿐만 아니라 제조과정 및 작업공수가 단순화되어 제조단가가 절감될 수 있는 것이다.In this way, the carbon electrode 120 has a relatively low electrode resistance and a relatively large specific surface area, which not only increases ion removal efficiency but also simplifies the manufacturing process and labor, thereby reducing manufacturing costs.

이상에서 설명한 바와 같이 본 발명에 따른 탈염용 카본전극의 제조 방법에 의하면, 카본파우더에 바인더와 메탈파이버를 혼합하고 성형공정과 후처리공정을 통해 카본전극으로 제조하므로, 카본전극의 전극저항이 낮으면서도 비표면적이 넓어져 용존이온의 흡착에 따른 효율이 증대될 뿐만 아니라, 카본전극의 도전성능 및 기계적강도가 향상되어 수명이 연장됨은 물론 전극의 유지보수에 따른 각종 부대비용이 절감되는 것이다.As described above, according to the method for manufacturing the desalination carbon electrode according to the present invention, since the binder and the metal fiber are mixed with the carbon powder and manufactured as a carbon electrode through a molding process and a post-treatment process, the electrode resistance of the carbon electrode is low. While the specific surface area is wider, the efficiency of the adsorption of dissolved ions is not only increased, but the conductivity and mechanical strength of the carbon electrode are improved, thereby extending the life and reducing various additional costs due to the maintenance of the electrode.

Claims (5)

혼련기에 카본파우더 80∼90Wt% - 바인더 5∼10Wt% - 메탈파이버 5∼10 Wt%를 투입하고 상온상태로 믹싱하는 혼합공정과; 압축프레스에서 10∼50Kg/㎠의 압력으로 5∼15분 동안 판상으로 압축하는 성형공정 및; 열처리로에서 100∼500℃의 온도로 30∼90분 동안 건조하는 후처리공정으로 이루어진 것을 특징으로 하는 탈염용 카본전극의 제조 방법.A mixing step of adding 80 to 90 Wt% of carbon powder, 5 to 10 Wt% of binder, and 5 to 10 Wt% of metal fiber to the kneader and mixing at room temperature; A molding step of compressing into a plate for 5 to 15 minutes at a pressure of 10 to 50 Kg / cm 2 in a compression press; A post-treatment step of drying for 30 to 90 minutes at a temperature of 100 to 500 ° C. in a heat treatment furnace. 제 1항에 있어서, 카본파우더는, 카본나노파이버 또는 카본나노튜브 중 어느 하나인 것을 특징으로 하는 탈염용 카본전극의 제조 방법.The method of manufacturing a desalting carbon electrode according to claim 1, wherein the carbon powder is either carbon nanofibers or carbon nanotubes. 제 1항에 있어서, 바인더는, 폴리에틸렌수지 또는 폴리비닐알콜 또는 폴리테트라플루오르에틸렌 중 어느 하나인 것을 특징으로 하는 탈염용 카본전극의 제조 방법.The method for producing a desalting carbon electrode according to claim 1, wherein the binder is any one of polyethylene resin, polyvinyl alcohol or polytetrafluoroethylene. 제 1항에 있어서, 메탈파이버는, 스테인레스스틸 또는 타타늄 중 어느 하나인 것을 특징으로 하는 탈염용 카본전극의 제조 방법.The method of manufacturing a desalting carbon electrode according to claim 1, wherein the metal fiber is any one of stainless steel and titanium. 제 1항 또는 제3항에 있어서, 바인더로서 폴리에틸렌이 사용되는 경우, 혼합공정에서 120∼150℃의 온도로 5∼7시간 혼합한 후 판상으로 압출하는 공정을 더포함하는 것을 특징으로 하는 탈염용 카본전극의 제조 방법.4. The desalination according to claim 1 or 3, further comprising a step of mixing polyethylene for 5 to 7 hours at a temperature of 120 to 150 DEG C and then extruding it into a plate when the polyethylene is used as a binder. Method for producing a carbon electrode.
KR10-2002-0079017A 2002-12-12 2002-12-12 Method to making the carbon electrode KR100461735B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079017A KR100461735B1 (en) 2002-12-12 2002-12-12 Method to making the carbon electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079017A KR100461735B1 (en) 2002-12-12 2002-12-12 Method to making the carbon electrode

Publications (2)

Publication Number Publication Date
KR20040051155A KR20040051155A (en) 2004-06-18
KR100461735B1 true KR100461735B1 (en) 2004-12-17

Family

ID=37345152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0079017A KR100461735B1 (en) 2002-12-12 2002-12-12 Method to making the carbon electrode

Country Status (1)

Country Link
KR (1) KR100461735B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063913B1 (en) 2009-01-12 2011-09-16 (주) 시온텍 Capacitive Deionization Electrode and Its Manufacturing Method Thereof
KR101421782B1 (en) * 2011-12-12 2014-07-23 재단법인 포항산업과학연구원 Electro plating equipment using carbon virtual cathode
KR101690543B1 (en) 2015-07-29 2016-12-28 창원대학교 산학협력단 Method for Preparing Polymer Coated Fludized Bed Carbon Electrode, and Fludized Bed Carbon Electrode By The Same
KR20200070560A (en) 2018-12-10 2020-06-18 충남대학교산학협력단 Porous carbon material using CDI with high capacity and efficiency and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896436B1 (en) * 2008-11-07 2009-05-12 황부성 A hydrogen-oxygen generating apparatus
KR100894288B1 (en) * 2008-12-02 2009-04-21 황부성 A hydrogen-oxygen generating apparatus
KR101104085B1 (en) * 2011-01-05 2012-01-12 박강훈 A pipe connector
CN116061510B (en) * 2022-12-07 2023-12-05 南通大学 Multilayer self-adjusting composite non-woven material, preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898564A (en) * 1995-02-21 1999-04-27 Regents Of The University Of California Capacitor with a composite carbon foam electrode
JP2000007683A (en) * 1998-06-18 2000-01-11 Fuji Photo Film Co Ltd Preparation of silver salt of fatty acid and heat developing photosensitive material
KR200277007Y1 (en) * 2002-02-28 2002-05-30 한국정수공업 주식회사 Desalinization device using porosity carbon electrode and porosity insulator
KR20030012351A (en) * 2001-07-31 2003-02-12 한국정수공업 주식회사 Method and Device for manufacturing the electrode cell of electrophoresis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898564A (en) * 1995-02-21 1999-04-27 Regents Of The University Of California Capacitor with a composite carbon foam electrode
JP2000007683A (en) * 1998-06-18 2000-01-11 Fuji Photo Film Co Ltd Preparation of silver salt of fatty acid and heat developing photosensitive material
KR20030012351A (en) * 2001-07-31 2003-02-12 한국정수공업 주식회사 Method and Device for manufacturing the electrode cell of electrophoresis
KR200277007Y1 (en) * 2002-02-28 2002-05-30 한국정수공업 주식회사 Desalinization device using porosity carbon electrode and porosity insulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063913B1 (en) 2009-01-12 2011-09-16 (주) 시온텍 Capacitive Deionization Electrode and Its Manufacturing Method Thereof
KR101421782B1 (en) * 2011-12-12 2014-07-23 재단법인 포항산업과학연구원 Electro plating equipment using carbon virtual cathode
KR101690543B1 (en) 2015-07-29 2016-12-28 창원대학교 산학협력단 Method for Preparing Polymer Coated Fludized Bed Carbon Electrode, and Fludized Bed Carbon Electrode By The Same
KR20200070560A (en) 2018-12-10 2020-06-18 충남대학교산학협력단 Porous carbon material using CDI with high capacity and efficiency and manufacturing method thereof

Also Published As

Publication number Publication date
KR20040051155A (en) 2004-06-18

Similar Documents

Publication Publication Date Title
KR100547455B1 (en) Electrode material
JP3446339B2 (en) Activated carbon production method
Kumar et al. Electrode materials for desalination of water via capacitive deionization
KR100461735B1 (en) Method to making the carbon electrode
US20080029395A1 (en) Multi-functional filtration and ultra-pure water generator
KR101029090B1 (en) Capacitive Deionization Electrode using ion-exchangeable engineering plastic and Its Manufacturing Method Thereof
CN103936116A (en) Manganese dioxide/carbon combined electrode and electric adsorption method for electrically adsorbing heavy metal ions from water
KR101477802B1 (en) Activated carbon for electrode, preparation method thereof and water softener system for comprising the same
Zhang et al. Polypyrrole nanowire modified graphite (PPy/G) electrode used in capacitive deionization
CN110668438A (en) Novel porous carbon electrode material for capacitive deionization technology and application thereof
CN1278439C (en) Electrochemical cell
KR102151994B1 (en) Method for manufacturing capacitive deionization electrode
CN107739031B (en) Method for preparing lithium ion carbon negative electrode material from mushroom residue waste
KR101963964B1 (en) Method for manufacturing capacitive deionization electrode, and capacitive deionization electrode manufactured by the same
Zhang et al. Biomass-derived S, P, Cl tri-doped porous carbon for high-performance supercapacitor
JP2000021421A (en) Separator member for solid high molecular fuel cell and manufacture thereof
KR20150035265A (en) Capacitive deionization electrodes and production methods thereof, and capacitive deionization apparatus including the same
JP3602933B2 (en) Activated carbon substrate
CN103922445A (en) Micro-nano hierarchical porous carbon electrode and preparation method and application
KR101604890B1 (en) A preparation method of an electroconductive membrane for water purification, a membrane prepared thereby, and a method of water purification by using the membrane
KR20130134187A (en) Electrochemical cell for capacitive deionization containing carbon electrode having patterned channel and method for preparing the same
KR101094240B1 (en) Manufacturing method of porous activated carbon and non-porous carbon material composite electrode for capacitive deionization
KR102173845B1 (en) Porous carbon material using CDI with high capacity and efficiency and manufacturing method thereof
KR101948020B1 (en) Method for manufacturing activated carbon for electrode material
JP4579939B2 (en) Method for purifying activated carbon

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121116

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131114

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141117

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151111

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171201

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20191114

Year of fee payment: 16