JP2004345921A - Mesoporous activated carbon - Google Patents

Mesoporous activated carbon Download PDF

Info

Publication number
JP2004345921A
JP2004345921A JP2003146517A JP2003146517A JP2004345921A JP 2004345921 A JP2004345921 A JP 2004345921A JP 2003146517 A JP2003146517 A JP 2003146517A JP 2003146517 A JP2003146517 A JP 2003146517A JP 2004345921 A JP2004345921 A JP 2004345921A
Authority
JP
Japan
Prior art keywords
activated carbon
metal
pore
diameter
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003146517A
Other languages
Japanese (ja)
Inventor
Hisashi Tamai
久司 玉井
Hajime Yasuda
源 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2003146517A priority Critical patent/JP2004345921A/en
Publication of JP2004345921A publication Critical patent/JP2004345921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activated carbon having a high ratio of mesopores and macropores and excellent in uniformity, and its manufacturing method. <P>SOLUTION: This mesoporous activated carbon has not lower than 10% ratio of pores having not smaller than 2 nm pore diameter to the total pores of the activated carbon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メソポーラス活性炭及びその製造方法に関し、特に、主としてメソポアを有するメソポーラス活性炭及びその製造方法に関する。
【0002】
【従来の技術】
活性炭は、上水用、廃水処理用、食品精製用、キャパシタ用など広範囲にわたる用途を有し、これらの活性炭は、具体的に、浄水器、脱臭装置、電極等に用いられている。特に、電気二重層コンデンサーは、電気二重層キャパシターとも呼ばれ、近年、バックアップ電源、補助電源等として注目を浴びている。多孔性炭素である活性炭を分極性電極とした電気二重層キャパシターは、性能が優れているため、エレクトロニクス分野の発展と共に、需要も急成長している、といわれている。
【0003】
従来の活性炭は、主として炭素を水蒸気存在下で賦活して製造されてきた。このような方法によれば、生産された活性炭は、主としてミクロポア(口径:0.8〜2nm)及びサブミクロポア(口径:0.8nm以下)のポアを有するものからなっていた。当該活性炭は、比表面積が大きく吸着能力が優れている反面、活性炭に吸着される物質の大きさは、活性炭のポアの大きさによって制限されるので、従来の活性炭は、2nm以下の口径内に入り得る小さい分子の吸着は適していたが、より大きな分子を効率的に吸着することができなかった。
【0004】
また、活性炭の比表面積の増加は、水蒸気、薬品等による賦活処理によって行われてきたが、電気二重層キャパシターに用いられる活性炭は、ある特定の細孔直径以上の比表面積を利用するため、効率的な細孔分布をもつ活性炭が望まれてきた。すなわち、電気二重層キャパシター等に好適に用いられる活性炭の性能向上の鍵は、窒素吸着等温線から求める細孔分布における細孔直径2nm以上の比表面積部分が多い活性炭を、いかに効率よく製造するかにある。
【0005】
従来より、活性炭を高比表面積化して、二重層容量の増加を図ってきたが、一般的には高比表面積活性炭は、ミクロポアが多いが2nm以上のメソポアが少なく、賦活を進めることによってメソポアが増大するものの、全比表面積が減少する傾向にあった。このため、大容量キャパシターとして必要なメソポア領域の比表面積を大きく、且つ性能に対して寄与度の低いミクロポア領域が徹底的に小さくて、効率的な表面積の利用を果たした活性炭が望まれていた。
【0006】
このようなことから、窒素吸着等温線から求める細孔分布において、細孔直径2nm以上の比表面積が1000m/g以上で、かつこれと全比表面積との比が0.45以上である活性炭が知られている(特開平8−119614)
【0007】
【(非)特許文献1】
特開平8−119614
【0008】
【発明が解決しようとする課題】
しかしながら、従来技術においては、2nm以上のポアの比率を、全活性炭のポア割合に対して10%以上に高めることは困難であり、また、そのように形成されたポアの均一性を図ることも困難であった。
【0009】
したがって、2nm以上のポアの比率が高く、ポアの均一性が優れた活性炭及び当該活性炭を制御よく提供する方法が望まれていた。
【0010】
そこで、本発明の目的は、メソポア及びマクロポアなどの比率が高く、かつ、均一性に優れた活性炭及びその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
発明者らは、活性炭が、浄水器、脱臭装置、二次電池など広範囲にわたり有用であることに着目し、炭素質微粒子、活性炭素繊維など鋭意の研究開発を重ねた結果、本発明の活性炭及びその製造方法を見出すに至った。
【0012】
すなわち、本発明のメソポーラス活性炭は、2nm以上の口径を有するポアの比率が、全活性炭のポア割合に対して10%以上であることを特徴とする。
【0013】
また、本発明のメソポーラス活性炭の好ましい実施態様において、2nm以上の口径を有するポアが、メソポアであることを特徴とする。
【0014】
また、本発明のメソポーラス活性炭の好ましい実施態様において、2nm以上の口径を有するポアが、メソポア及びマクロポアであることを特徴とする。
【0015】
また、ポアのサイズ分布が、2〜10nmの範囲内に最大値を有することを特徴とする。
【0016】
また、本発明のメソポーラス活性炭の好ましい実施態様において、さらに、金属の酸化物を含有することを特徴とする。
【0017】
また、本発明メソポーラス活性炭の製造方法は、金属を含有する炭素質原料を炭化した後、水蒸気賦活することを特徴とする。
【0018】
また、本発明メソポーラス活性炭の製造方法の好ましい実施態様において、炭素質原料が、塩化ビニリデン及び/又はその共重合体であることを特徴とする。
【0019】
また、本発明のメソポーラス活性炭の製造方法の好ましい実施態様において、金属が、希土類金属、マンガン、バナジウム、チタニウムからなる群から選択される少なくとも1種であることを特徴とする。
【0020】
また、本発明のメソポーラス活性炭の製造方法の好ましい実施態様において、金属が、金属錯体として存在することを特徴とする。
【0021】
また、本発明のメソポーラス活性炭の製造方法の好ましい実施態様において、希土類金属が、イットリウムであることを特徴とする。
【0022】
また、本発明の多孔質炭素材料は、請求項1〜4のいずれか1項に記載の活性炭からなることを特徴とする。
【0023】
【発明の実施の形態】
本発明のメソポーラス活性炭は、2nm 以上の口径を有するポアの比率が、全活性炭のポア割合に対して10%以上である。通常の活性炭は、炭素を水蒸気賦活して得られるが、このような方法によれば、主としてミクロポア(口径:0.8〜2nm)およびサブミクロポア(口径:0.8nm以下)の発達した活性炭が製造される。
【0024】
これに対して、本発明のメソポーラス活性炭は、メソポア(口径:2〜50nm)及び、マクロポア(口径:50nm以上)が発達したものである。このようなメソポーラス活性炭は、より大きな分子をも効率的に吸着できるという優れた効果をもつ。なぜなら、活性炭に吸着される物質の大きさは、主に、活性炭のポアの大きさによって制限されるからである。本発明の活性炭は、高比表面積を有し巨大分子が細孔内を容易に移動できるという観点から、好ましくは、2nm以上の口径を有するポアが、メソポアである。さらに、より大きな分子を吸着する場合には、本発明のメソポーラス活性炭の好ましい実施態様において、2nm以上の口径を有するポアが、メソポア及びマクロポアである。
【0025】
また、細孔サイズ分布が均一であるという観点から、ポアのサイズ分布が、2〜10nmの範囲内に最大値を有する。このような均一なメソポアを有する活性炭によれば、例えば、より高性能な電気二重層キャパシター(EDLC)電極材料を提供することができる。
【0026】
好ましい実施態様において、本発明の活性炭は、さらに、金属の酸化物を含有していてもよい。これは、賦活前の炭素質原料中に金属を含んでいる場合、当該炭素質原料を炭化すると、得られた活性炭中に金属酸化物が残存するからである。賦活前の炭素質原料中の金属の存在は、賦活後の活性炭のポア口径にも影響を与える場合があり、重要な要素の1つである。
【0027】
炭素質原料中に存在し得る金属として、例えば、希土類金属、マンガン、バナジウム、チタンなどを挙げることができる。また、金属は、炭素質原料に均一に含有させるという観点から、錯体として存在することが好ましい。
【0028】
このような錯体を例示すると、希土類金属錯体の他、マンガン、バナジウム、チタニウム錯体などを挙げることができる(これらの実験例があれば、お知らせ下さい)。
【0029】
炭素質原料としては、メソポア生成の効果が大きいという観点から、適当な溶媒に溶解し得る塩化ビニリデン及びその共重合体、フェノール樹脂、(その前駆体であるノボラック樹脂を含む)、ポリアクリロニトリルなどの炭素の前駆体(高分子)が好ましい。メソポアの細孔サイズを制御し易いという観点から、塩化ビニリデン及びその共重合体を挙げることができる。
【0030】
次に、本発明のメソポーラス活性炭の製造方法について説明する。本発明の活性炭の製造方法は、金属を含有する塩化ビニリデン及び/又はその共重合体などの炭素質原料を炭化した後、水蒸気賦活する。より詳細には、イットリウム錯体(希土類錯体)などの金属錯体と、炭素質原料とを、適当な溶媒、例えば、テトラヒドロフラン(THF)、トルエン、ヘキサン、ベンゼン、キシレン等を用いて均一に混合し、炭化、水蒸気賦活することにより活性炭を調製することができる。
【0031】
金属としては、上述したもの、すなわち、例えば、希土類金属、マンガン、バナジウム、チタンなどからなる群から選択される少なくとも1種を挙げることができる。均一な細孔サイズのメソポアの生成という観点から、好ましくは、希土類金属を挙げることができ、より好ましくは、イットリウム、ランタン、サマリウムなどの希土類金属を例示することができる。また、金属は、適当な溶媒に溶解できるという観点から、錯体として存在することが好ましい。
【0032】
このような錯体を例示すると、希土類金属錯体の他、マンガン、バナジウム、チタニウム錯体などを挙げることができる。
【0033】
また、金属の使用量について、炭素前駆体に対して重量比で、0.1〜7.0%程度で良いが、好ましくは、0.2〜0.3重量%の少量を用いることにより、細孔サイズ分布の小さいメソポーラス活性炭を得ることができる。
【0034】
本発明において、炭化の方法は、常法により、特に限定されるものではない。
【0035】
また、本発明に用いることが可能な炭素質原料としては、適当な溶媒に溶解し得る塩化ビニリデン及びその共重合体、フェノール樹脂(その前駆体であるノボラック樹脂を含む)、塩化ビニリデン及び/又はその共重合体を挙げることができる。塩化ビニリデン及びその共重合体として、塩化ビニリデンと、アクリル酸メチル共重合体又はアクリル酸エステル共重合体を挙げることができる。その他、炭化及び賦活後の収率が高いという観点から、塩化ビニリデンとアクリロニトリル共重合体を挙げることができる。
【0036】
また、本発明の多孔質炭素材料は、上述に説明した本発明の活性炭からなる。かかる多孔質炭素材料は、本発明の活性炭の優れた効果、すなわち、高比表面積、かつ均一なメソポア、マクロポアを有し、より大きな分子を効率的に吸着し得るという効果を引き続き有する。
【0037】
本発明の活性炭の用途としては、多孔質体材料、浄水器(フミン等の除去)、脱臭装置、電気二重層キャパシトル(燃料電池の始動や加速時用、瞬時停電用対応電源)など広範囲にわたって適用可能である。
【0038】
【実施例】
以下、本発明を実施例により更に具体的に説明するが、本発明は、下記実施例に限定して解釈される意図ではない。
【0039】
実施例1
本実施例において、金属錯体としてY(acac)を、炭素質原料として塩化ビニリデン/アクリル酸メチル共重合体[poly(VDC/MA)]を、用いた。
【0040】
具体的には、活性炭はY(acac)を含有する塩化ビニリデン/アクリル酸メチル共重合体[poly(VDC/MA)]をAr下1時間炭化(400〜600℃)した後、水蒸気賦活(900℃)することによって調製した。さらに得られた活性炭を1MHNOで4時間処理した後、Ar下2時間熱処理(1400℃)した炭素も得た。活性炭の細孔構造は77Kでの窒素脱着測定により評価した。
【0041】
ELDC電極は活性炭にPTFEを5wt%混合させ混錬した後、直径10mmのディスク状に成形したものを用いた。測定は2極式セルを用いて行い、電解質には1M(C)4NBF/propylene carbonate(TEABF4/PC)を使用した。
【0042】
調製した活性炭の窒素吸脱着等温線を図1に、BET法、BJH法より求めた細孔特性、細孔径分布をそれぞれ表1、図2に示す。Poly(VDC/MA)のみから調製した活性炭(AC)はI型の等温線を示し、高比表面積を有するミクロポーラス活性炭であった。一方、Y(acac)を含有させた活性炭(Y−AC)はIV型の等温線を示し、また高相対圧側でヒステリシスを有することから著しいメソポアの発達が示唆された。さらにBET法、BJH法により求めたYACの比表面積は、それぞれ1750m/g、1250m/gと高い値を示した。これよりY−ACの細孔構造はかなり発達していることが認められる。また熱処理後における細孔構造においても、殆どの細孔が維持されていることが認められた。
【0043】
活性炭の電気二重層容量と放電電流の関係を図3に示す。測定は3Vまで充電した後、定電流放電を行なった。電気二重層容量を比較した場合、ミクロポアが発達したACにおいては低電流密度側で高い容量を示したのに対し、メソポアが発達したAT−AC、HT−ACにおいて高電流密度側まで一定の容量を示した。主としてミクロポアを有するACは(図2)、低電流放電時は、細孔内まで電解質イオンの拡散が起こることにより高い容量を示したと考えられる。しかし高電流で放電を行なった場合、ミクロポア構造がイオン拡散の障壁となるため容量が低下したと考えられる。しかしながら、低電流放電時における電気二重層容量は、ACに比較して低いことから、メソポアは電気二重層容量の向上に大きく影響せず、高放電電流時におけるイオン拡散に優れた効果を示すと考えられる。
【0044】
実施例2
次に、金属錯体の量を変化させた場合の活性炭の性質について調べた。金属錯体として、実施例1と同様にイットリウム錯体を用いた。試験は、実施例1に記載の方法と同様に行なった。炭化条件、活性化条件等を下記表1に示す。
【0045】
【表1】

Figure 2004345921
【0046】
なお、表1中、BET‐SSAは、得られた活性炭の比表面積を示し、MP−SSAは、メソポアの比表面積を示す。また、比表面積、メソポア比表面積は、図4の窒素ガス吸着等温線を基にして算出した。
【0047】
また、図5に、得られた活性炭の細孔分布を求めた結果を示す。これにより、イットリウム含有活性炭からは、メソポアが発達した活性炭が得られるのが分かる。
【0048】
実施例3
次に、マンガンアセチルアセトナート錯体[Mn(acac)]、バナジウムアセチルアセトナート錯体[V(acac)3]、チタニウムオキシアセチルアセトナート錯体[TiO(acac)]、チタニウムイソプロポキシド錯体[Ti(OiPr)]錯体等を実施例1と同様に、THFに溶解後、炭青前駆体と混合し、炭化、賦活しメソポーラス活性炭を調製した。
その結果、いずれの錯体を用いた場合も、2〜10nmに最大値を有する均一に分布したメソポーラス活性炭を得ることができた。
【0049】
【発明の効果】
本発明の活性炭によれば、高比表面積、かつ均一なポアを有し、より大きな分子を効率的に吸着することができるという有利な効果を奏する。
【0050】
また、本発明の活性炭の製造方法によれば、高比表面積、かつ均一なポアを有し、より大きな分子を効率的に吸着することができる活性炭を容易に提供することができるという有利な効果を奏する。
【図面の簡単な説明】
【図1】調製した活性炭の窒素吸脱着等温線を示す。
【図2】BJH法より求めた細孔特性、細孔径分布を示す。
【図3】活性炭の電気二重層容量と放電電流の関係を示す。
【図4】窒素ガス吸着等温線を示す。
【図5】窒素ガス吸着等温線を基に活性炭の細孔分布を求めた結果を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mesoporous activated carbon and a method for producing the same, and more particularly, to a mesoporous activated carbon having mainly mesopores and a method for producing the same.
[0002]
[Prior art]
Activated carbon has a wide range of uses, such as for tap water, wastewater treatment, food purification, and capacitors, and these activated carbons are specifically used for water purifiers, deodorizers, electrodes, and the like. In particular, the electric double layer capacitor is also called an electric double layer capacitor, and has recently been receiving attention as a backup power supply, an auxiliary power supply, and the like. It is said that an electric double layer capacitor using activated carbon, which is porous carbon, as a polarizable electrode has excellent performance, and accordingly, demand for the electric double layer capacitor is growing rapidly with the development of the electronics field.
[0003]
Conventional activated carbon has been produced mainly by activating carbon in the presence of steam. According to such a method, the activated carbon produced mainly consisted of micropores (diameter: 0.8 to 2 nm) and submicropores (diameter: 0.8 nm or less). Although the activated carbon has a large specific surface area and excellent adsorption capacity, the size of the substance adsorbed on the activated carbon is limited by the size of the pores of the activated carbon, so that the conventional activated carbon has a diameter of 2 nm or less. The adsorption of small molecules that could enter was suitable, but the larger molecules could not be adsorbed efficiently.
[0004]
The specific surface area of activated carbon has been increased by activation treatment with water vapor, chemicals, etc., but activated carbon used for electric double layer capacitors uses a specific surface area of a specific pore diameter or more. Activated carbon with a specific pore distribution has been desired. That is, the key to improving the performance of activated carbon suitably used for electric double layer capacitors and the like is how to efficiently produce activated carbon having a large specific surface area with a pore diameter of 2 nm or more in the pore distribution obtained from the nitrogen adsorption isotherm. It is in.
[0005]
Conventionally, activated carbon has been increased in specific surface area to increase the double layer capacity. Generally, activated carbon with high specific surface area has many micropores, but few mesopores of 2 nm or more. Although increasing, the total specific surface area tended to decrease. For this reason, there has been a demand for an activated carbon which has a large specific surface area of a mesopore region required as a large-capacity capacitor, and a micropore region which does not greatly contribute to performance, has a drastically small micropore region, and achieves efficient use of the surface area. .
[0006]
For this reason, in the pore distribution determined from the nitrogen adsorption isotherm, activated carbon having a specific surface area with a pore diameter of 2 nm or more of 1000 m 2 / g or more and a ratio of this to the total specific surface area of 0.45 or more Is known (JP-A-8-119614).
[0007]
[(Non-Patent Document 1)]
JP-A-8-119614
[0008]
[Problems to be solved by the invention]
However, in the prior art, it is difficult to increase the ratio of the pores of 2 nm or more to 10% or more of the pore ratio of all the activated carbons, and it is also possible to improve the uniformity of the pores thus formed. It was difficult.
[0009]
Therefore, there has been a demand for an activated carbon having a high ratio of pores of 2 nm or more and having excellent pore uniformity, and a method for providing the activated carbon with good control.
[0010]
Therefore, an object of the present invention is to provide an activated carbon having a high ratio of mesopores and macropores and having excellent uniformity, and a method for producing the same.
[0011]
[Means for Solving the Problems]
The inventors have focused on the fact that activated carbon is useful over a wide range such as water purifiers, deodorizers, and secondary batteries, and as a result of intensive research and development on carbonaceous fine particles, activated carbon fibers and the like, the activated carbon of the present invention and We have found a manufacturing method.
[0012]
That is, the mesoporous activated carbon of the present invention is characterized in that the ratio of pores having a diameter of 2 nm or more is 10% or more with respect to the pore ratio of all activated carbons.
[0013]
In a preferred embodiment of the mesoporous activated carbon of the present invention, the pore having a diameter of 2 nm or more is a mesopore.
[0014]
In a preferred embodiment of the mesoporous activated carbon according to the present invention, the pores having a diameter of 2 nm or more are mesopores and macropores.
[0015]
Further, the pore size distribution has a maximum value within a range of 2 to 10 nm.
[0016]
In a preferred embodiment of the mesoporous activated carbon of the present invention, the mesoporous activated carbon further comprises a metal oxide.
[0017]
Further, the method for producing mesoporous activated carbon of the present invention is characterized in that after carbonizing a carbonaceous raw material containing a metal, steam activation is performed.
[0018]
In a preferred embodiment of the method for producing mesoporous activated carbon of the present invention, the carbonaceous raw material is vinylidene chloride and / or a copolymer thereof.
[0019]
In a preferred embodiment of the method for producing a mesoporous activated carbon of the present invention, the metal is at least one selected from the group consisting of rare earth metals, manganese, vanadium, and titanium.
[0020]
In a preferred embodiment of the method for producing mesoporous activated carbon of the present invention, the metal is present as a metal complex.
[0021]
In a preferred embodiment of the method for producing a mesoporous activated carbon according to the present invention, the rare earth metal is yttrium.
[0022]
Further, a porous carbon material of the present invention comprises the activated carbon according to any one of claims 1 to 4.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
In the mesoporous activated carbon of the present invention, the ratio of pores having a diameter of 2 nm or more is 10% or more based on the pore ratio of all activated carbons. Normal activated carbon is obtained by activating carbon by steam. According to such a method, activated carbon having mainly developed micropores (diameter: 0.8 to 2 nm) and sub-micropores (diameter: 0.8 nm or less) is obtained. Manufactured.
[0024]
In contrast, the mesoporous activated carbon of the present invention has developed mesopores (diameter: 2 to 50 nm) and macropores (diameter: 50 nm or more). Such mesoporous activated carbon has an excellent effect that even larger molecules can be efficiently adsorbed. This is because the size of the substance adsorbed on the activated carbon is mainly limited by the pore size of the activated carbon. From the viewpoint that the activated carbon of the present invention has a high specific surface area and macromolecules can easily move in the pores, the pores having a diameter of 2 nm or more are preferably mesopores. Furthermore, when adsorbing larger molecules, in a preferred embodiment of the mesoporous activated carbon of the present invention, the pores having a diameter of 2 nm or more are mesopores and macropores.
[0025]
Further, from the viewpoint that the pore size distribution is uniform, the pore size distribution has a maximum value in the range of 2 to 10 nm. According to the activated carbon having such uniform mesopores, for example, a higher-performance electric double layer capacitor (EDLC) electrode material can be provided.
[0026]
In a preferred embodiment, the activated carbon of the present invention may further contain a metal oxide. This is because, when the carbonaceous raw material before activation contains a metal, if the carbonaceous raw material is carbonized, the metal oxide remains in the obtained activated carbon. The presence of the metal in the carbonaceous raw material before activation may affect the pore diameter of the activated carbon after activation, and is one of the important factors.
[0027]
Examples of metals that may be present in the carbonaceous raw material include rare earth metals, manganese, vanadium, titanium, and the like. In addition, the metal is preferably present as a complex from the viewpoint of uniformly containing the metal in the carbonaceous raw material.
[0028]
Examples of such complexes include manganese, vanadium, and titanium complexes in addition to rare earth metal complexes (if there are experimental examples, please let us know).
[0029]
As the carbonaceous raw material, from the viewpoint that the mesopore generation effect is large, vinylidene chloride and its copolymer, phenol resin, (including novolak resin that is a precursor thereof), and polyacrylonitrile that can be dissolved in an appropriate solvent are used. Carbon precursors (polymers) are preferred. From the viewpoint of easily controlling the pore size of the mesopore, vinylidene chloride and its copolymer can be mentioned.
[0030]
Next, a method for producing the mesoporous activated carbon of the present invention will be described. In the method for producing activated carbon of the present invention, after carbonizing a carbonaceous raw material such as metal-containing vinylidene chloride and / or a copolymer thereof, steam activation is performed. More specifically, a metal complex such as an yttrium complex (a rare earth complex) and a carbonaceous raw material are uniformly mixed using an appropriate solvent, for example, tetrahydrofuran (THF), toluene, hexane, benzene, xylene, or the like, Activated carbon can be prepared by carbonization and steam activation.
[0031]
Examples of the metal include those described above, that is, at least one selected from the group consisting of rare earth metals, manganese, vanadium, titanium, and the like. From the viewpoint of producing mesopores having a uniform pore size, preferably, a rare earth metal can be used, and more preferably, a rare earth metal such as yttrium, lanthanum, or samarium can be used. Further, the metal is preferably present as a complex from the viewpoint that it can be dissolved in an appropriate solvent.
[0032]
Examples of such a complex include a manganese, vanadium, titanium complex and the like in addition to the rare earth metal complex.
[0033]
In addition, the amount of metal used may be about 0.1 to 7.0% by weight relative to the carbon precursor, but preferably, by using a small amount of 0.2 to 0.3% by weight, A mesoporous activated carbon having a small pore size distribution can be obtained.
[0034]
In the present invention, the carbonization method is not particularly limited by a conventional method.
[0035]
Examples of the carbonaceous raw material that can be used in the present invention include vinylidene chloride and a copolymer thereof that can be dissolved in an appropriate solvent, a phenol resin (including a novolak resin that is a precursor thereof), vinylidene chloride, and / or The copolymer can be mentioned. Examples of vinylidene chloride and a copolymer thereof include vinylidene chloride and a methyl acrylate copolymer or an acrylate ester copolymer. In addition, from the viewpoint that the yield after carbonization and activation is high, vinylidene chloride and acrylonitrile copolymer can be mentioned.
[0036]
Further, the porous carbon material of the present invention comprises the activated carbon of the present invention described above. Such a porous carbon material continues to have the excellent effect of the activated carbon of the present invention, that is, the high specific surface area, uniform mesopores and macropores, and the ability to efficiently adsorb larger molecules.
[0037]
The activated carbon of the present invention can be used in a wide range of applications, such as porous materials, water purifiers (removal of humin, etc.), deodorizers, electric double-layer capacitors (power supplies for starting and accelerating fuel cells, and for instantaneous power outages). It is possible.
[0038]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not intended to be construed as being limited to the following examples.
[0039]
Example 1
In this example, Y (acac) 3 was used as a metal complex, and vinylidene chloride / methyl acrylate copolymer [poly (VDC / MA)] was used as a carbonaceous raw material.
[0040]
Specifically, activated carbon is obtained by carbonizing a vinylidene chloride / methyl acrylate copolymer [poly (VDC / MA)] containing Y (acac) 3 under Ar for 1 hour (400 to 600 ° C.), and then activating steam ( 900 ° C.). Furthermore, after the obtained activated carbon was treated with 1 MHNO 3 for 4 hours, carbon that had been heat-treated (1400 ° C.) under Ar for 2 hours was also obtained. The pore structure of the activated carbon was evaluated by nitrogen desorption measurement at 77K.
[0041]
The ELDC electrode used was a mixture of activated carbon and PTFE mixed at 5 wt%, kneaded, and formed into a disk having a diameter of 10 mm. The measurement was performed using a bipolar cell, and 1 M (C 2 H 5 ) 4 NBF 4 / propylene carbonate (TEABF 4 / PC) was used as the electrolyte.
[0042]
FIG. 1 shows a nitrogen adsorption / desorption isotherm of the prepared activated carbon, and Table 1 and FIG. 2 show pore characteristics and pore diameter distribution obtained by the BET method and the BJH method, respectively. Activated carbon (AC) prepared from only Poly (VDC / MA) showed a type I isotherm and was a microporous activated carbon having a high specific surface area. On the other hand, activated carbon (Y-AC) containing Y (acac) 3 showed an IV type isotherm and had hysteresis on the high relative pressure side, suggesting the development of remarkable mesopores. Further BET method, specific surface area of YAC determined by BJH method showed 1750m 2 / g, 1250m 2 / g and higher values, respectively. This indicates that the pore structure of Y-AC is considerably developed. It was also found that most pores were maintained in the pore structure after the heat treatment.
[0043]
FIG. 3 shows the relationship between the electric double layer capacity of the activated carbon and the discharge current. In the measurement, after charging to 3V, constant current discharging was performed. When the electric double layer capacity was compared, AC with micropores developed showed a high capacity on the low current density side, whereas AT-AC and HT-AC with mesopores developed showed a constant capacity up to the high current density side. showed that. It is considered that AC having mainly micropores (FIG. 2) exhibited a high capacity during low current discharge due to diffusion of electrolyte ions into the pores. However, when the discharge was performed at a high current, the capacity was considered to be reduced because the micropore structure became a barrier to ion diffusion. However, since the electric double layer capacity at low current discharge is lower than that of AC, mesopores do not significantly affect the improvement of electric double layer capacity and show an excellent effect on ion diffusion at high discharge current. Conceivable.
[0044]
Example 2
Next, the properties of the activated carbon when the amount of the metal complex was changed were examined. As the metal complex, an yttrium complex was used as in Example 1. The test was performed in the same manner as described in Example 1. Table 1 below shows the conditions for carbonization and activation.
[0045]
[Table 1]
Figure 2004345921
[0046]
In Table 1, BET-SSA indicates the specific surface area of the obtained activated carbon, and MP-SSA indicates the specific surface area of mesopore. Further, the specific surface area and the mesopore specific surface area were calculated based on the nitrogen gas adsorption isotherm in FIG.
[0047]
FIG. 5 shows the result of obtaining the pore distribution of the obtained activated carbon. Thus, it can be seen that activated carbon with developed mesopores can be obtained from yttrium-containing activated carbon.
[0048]
Example 3
Next, a manganese acetylacetonate complex [Mn (acac) 2 ], a vanadium acetylacetonate complex [V (acac) 3], a titanium oxyacetylacetonate complex [TiO (acac) 3 ], a titanium isopropoxide complex [Ti (OiPr) 4 ] complex and the like were dissolved in THF in the same manner as in Example 1, mixed with a carbon blue precursor, carbonized and activated to prepare mesoporous activated carbon.
As a result, even when any of the complexes was used, uniformly distributed mesoporous activated carbon having a maximum value in the range of 2 to 10 nm could be obtained.
[0049]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the activated carbon of this invention, it has a high specific surface area and a uniform pore, and has the advantageous effect that a larger molecule can be adsorbed efficiently.
[0050]
Further, according to the method for producing activated carbon of the present invention, it is possible to easily provide activated carbon having a high specific surface area and uniform pores and capable of efficiently adsorbing larger molecules. To play.
[Brief description of the drawings]
FIG. 1 shows a nitrogen adsorption / desorption isotherm of a prepared activated carbon.
FIG. 2 shows pore characteristics and pore diameter distribution determined by the BJH method.
FIG. 3 shows the relationship between electric double layer capacity of activated carbon and discharge current.
FIG. 4 shows a nitrogen gas adsorption isotherm.
FIG. 5 shows a result of obtaining a pore distribution of activated carbon based on a nitrogen gas adsorption isotherm.

Claims (11)

2nm以上の口径を有するポアの比率が、全活性炭のポア割合に対して10%以上であるメソポーラス活性炭。Mesoporous activated carbon wherein the ratio of pores having a diameter of 2 nm or more is 10% or more based on the pore ratio of all activated carbons. 2nm以上の口径を有するポアが、メソポアであることを特徴とする請求項1記載の活性炭。The activated carbon according to claim 1, wherein the pore having a diameter of 2 nm or more is a mesopore. 2nm以上の口径を有するポアが、メソポア及びマクロポアであることを特徴とする請求項1記載の活性炭。The activated carbon according to claim 1, wherein the pores having a diameter of 2 nm or more are mesopores and macropores. ポアのサイズ分布が、2〜10nmの範囲内に最大値を有する請求項1〜3項のいずれか1項に記載の活性炭。The activated carbon according to any one of claims 1 to 3, wherein the pore size distribution has a maximum value in a range of 2 to 10 nm. さらに、金属の酸化物を含有する請求項1〜4項記載のいずれか1項に記載の活性炭。The activated carbon according to any one of claims 1 to 4, further comprising a metal oxide. 金属を含有する炭素質原料を炭化した後、水蒸気賦活することを特徴とするメソポーラス活性炭の製造方法。A method for producing mesoporous activated carbon, comprising carbonizing a carbonaceous raw material containing a metal and then activating steam. 炭素質原料が、塩化ビニリデン及び/又はその共重合体である請求項6記載の方法。The method according to claim 6, wherein the carbonaceous raw material is vinylidene chloride and / or a copolymer thereof. 金属が、希土類金属、マンガン、バナジウム、チタニウムからなる群から選択される少なくとも1種である請求項6又は7記載の方法。8. The method according to claim 6, wherein the metal is at least one selected from the group consisting of rare earth metals, manganese, vanadium, and titanium. 金属が、金属錯体として存在することを特徴とする請求項6〜8項のいずれか1項に記載の方法。The method according to any one of claims 6 to 8, wherein the metal is present as a metal complex. 希土類金属が、イットリウムであることを特徴とする請求項8又は9項に記載の製造方法。The method according to claim 8, wherein the rare earth metal is yttrium. 請求項1〜4のいずれか1項に記載の活性炭からなる多孔質炭素材料。A porous carbon material comprising the activated carbon according to claim 1.
JP2003146517A 2003-05-23 2003-05-23 Mesoporous activated carbon Pending JP2004345921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146517A JP2004345921A (en) 2003-05-23 2003-05-23 Mesoporous activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146517A JP2004345921A (en) 2003-05-23 2003-05-23 Mesoporous activated carbon

Publications (1)

Publication Number Publication Date
JP2004345921A true JP2004345921A (en) 2004-12-09

Family

ID=33533347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146517A Pending JP2004345921A (en) 2003-05-23 2003-05-23 Mesoporous activated carbon

Country Status (1)

Country Link
JP (1) JP2004345921A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039289A (en) * 2005-08-04 2007-02-15 Toda Kogyo Corp Spherical porous carbon particle powder and method for producing the same
JP2007269552A (en) * 2006-03-31 2007-10-18 Teijin Ltd Activated carbon and method of manufacturing the same
WO2008081851A1 (en) * 2006-12-27 2008-07-10 Tokyo Institute Of Technology Carbon composite materials and process for production thereof
JP2008535754A (en) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Porous carbon material and smoking article and smoke filter containing the material
JP2010253246A (en) * 2009-03-30 2010-11-11 Ando Corp Deodorizing device
WO2016110942A1 (en) * 2015-01-06 2016-07-14 三菱重工業株式会社 Filter medium, process for producing filter medium, filtration device, method for operating filtration device, and filtration system
US9421515B2 (en) 2011-03-31 2016-08-23 Sony Corporation Porous carbon material, adsorbent, oral adsorbent, medical adsorbent, filler for blood purification column, water purification adsorbent, cleansing agent, carrier, sustained release pharmaceutical, cell culture scaffold, mask, carbon/polymer composite, adsorbent sheet and functional food
JP2016168544A (en) * 2015-03-12 2016-09-23 株式会社豊田中央研究所 Adsorbent compact
CN106185928A (en) * 2016-07-15 2016-12-07 宋玉琴 The preparation method of the activated carbon containing cerium
CN106185926A (en) * 2016-07-15 2016-12-07 宋玉琴 The preparation method of the mineral activated carbon containing rare earth
CN106185925A (en) * 2016-07-15 2016-12-07 宋玉琴 The preparation method of the cocoanut active charcoal containing rare earth
CN106185927A (en) * 2016-07-15 2016-12-07 宋玉琴 The preparation method of the wood activated charcoal containing cerium
CN106219544A (en) * 2016-07-15 2016-12-14 宋玉琴 The preparation method of the wood activated charcoal containing lanthanum
JP2017154923A (en) * 2016-03-01 2017-09-07 株式会社豊田中央研究所 Carbon porous body and manufacturing method therefor
WO2018116858A1 (en) * 2016-12-19 2018-06-28 株式会社アドール Active carbon and production method thereof
JP2018133423A (en) * 2017-02-15 2018-08-23 株式会社豊田中央研究所 Electrode for power storage device, and power storage device
CN109437197A (en) * 2018-12-15 2019-03-08 东莞理工学院 A kind of mesoporous prosperity method for preparation of active carbon
US10418187B2 (en) 2016-03-01 2019-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon porous body, method for producing the same, electrode for storage device, and storage device
CN110669979A (en) * 2019-09-20 2020-01-10 江西理工大学 Mesoporous carbon reinforced iron-based composite material and preparation method and application thereof
CN116440297A (en) * 2022-12-13 2023-07-18 北京普尔伟业生物科技有限公司 Radioactive carbon microsphere and its preparation method and application

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535754A (en) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Porous carbon material and smoking article and smoke filter containing the material
JP2007039289A (en) * 2005-08-04 2007-02-15 Toda Kogyo Corp Spherical porous carbon particle powder and method for producing the same
JP2007269552A (en) * 2006-03-31 2007-10-18 Teijin Ltd Activated carbon and method of manufacturing the same
WO2008081851A1 (en) * 2006-12-27 2008-07-10 Tokyo Institute Of Technology Carbon composite materials and process for production thereof
JP2008162821A (en) * 2006-12-27 2008-07-17 Tokyo Institute Of Technology Carbon composite material and its manufacturing method
JP2010253246A (en) * 2009-03-30 2010-11-11 Ando Corp Deodorizing device
US9421515B2 (en) 2011-03-31 2016-08-23 Sony Corporation Porous carbon material, adsorbent, oral adsorbent, medical adsorbent, filler for blood purification column, water purification adsorbent, cleansing agent, carrier, sustained release pharmaceutical, cell culture scaffold, mask, carbon/polymer composite, adsorbent sheet and functional food
WO2016110942A1 (en) * 2015-01-06 2016-07-14 三菱重工業株式会社 Filter medium, process for producing filter medium, filtration device, method for operating filtration device, and filtration system
JP2016168544A (en) * 2015-03-12 2016-09-23 株式会社豊田中央研究所 Adsorbent compact
US10418187B2 (en) 2016-03-01 2019-09-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon porous body, method for producing the same, electrode for storage device, and storage device
JP2017154923A (en) * 2016-03-01 2017-09-07 株式会社豊田中央研究所 Carbon porous body and manufacturing method therefor
CN106185927A (en) * 2016-07-15 2016-12-07 宋玉琴 The preparation method of the wood activated charcoal containing cerium
CN106185925A (en) * 2016-07-15 2016-12-07 宋玉琴 The preparation method of the cocoanut active charcoal containing rare earth
CN106219544A (en) * 2016-07-15 2016-12-14 宋玉琴 The preparation method of the wood activated charcoal containing lanthanum
CN106185926A (en) * 2016-07-15 2016-12-07 宋玉琴 The preparation method of the mineral activated carbon containing rare earth
CN106185928A (en) * 2016-07-15 2016-12-07 宋玉琴 The preparation method of the activated carbon containing cerium
WO2018116858A1 (en) * 2016-12-19 2018-06-28 株式会社アドール Active carbon and production method thereof
JP6379324B1 (en) * 2016-12-19 2018-08-22 株式会社アドール Activated carbon and manufacturing method thereof
JP2018133423A (en) * 2017-02-15 2018-08-23 株式会社豊田中央研究所 Electrode for power storage device, and power storage device
CN109437197A (en) * 2018-12-15 2019-03-08 东莞理工学院 A kind of mesoporous prosperity method for preparation of active carbon
CN110669979A (en) * 2019-09-20 2020-01-10 江西理工大学 Mesoporous carbon reinforced iron-based composite material and preparation method and application thereof
CN110669979B (en) * 2019-09-20 2021-11-26 江西理工大学 Mesoporous carbon reinforced iron-based composite material and preparation method and application thereof
CN116440297A (en) * 2022-12-13 2023-07-18 北京普尔伟业生物科技有限公司 Radioactive carbon microsphere and its preparation method and application
CN116440297B (en) * 2022-12-13 2023-10-13 北京普尔伟业生物科技有限公司 Radioactive carbon microsphere and its preparation method and application

Similar Documents

Publication Publication Date Title
JP2004345921A (en) Mesoporous activated carbon
JP5191483B2 (en) Porous conductive carbon materials and their use
KR100702156B1 (en) Porous ultrafine graphitical carbon fiber and their preparation method
JP5202460B2 (en) Activated carbon and electric double layer capacitor using the activated carbon
KR102113719B1 (en) Activated carbon and its manufacturing method
JPH08119614A (en) Activated carbon, its production and electrode for electric-double-layer capacitor
JPH09328308A (en) Activated carbon, its production and capacitor using the same
JP2014036113A (en) Capacitor
JP4576374B2 (en) Activated carbon, its production method and its use
JPH09320906A (en) Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
KR102181729B1 (en) Activated carbon and its manufacturing method
Wang et al. Co2SiO4/CoO heterostructure anchored on graphitized carbon derived from rice husks with hierarchical pore as electrode material for supercapacitor
KR102177976B1 (en) Method for manufacturing graphene composite, eletrode active material and secondary battery including the same
JP5563239B2 (en) Method for producing porous carbon material
CN114300274B (en) Boron-sulfur co-doped porous carbon material and preparation method and application thereof
KR100603022B1 (en) Porous carbon nanofiber prepared using halogenated polymers and preparation method thereof
KR101094240B1 (en) Manufacturing method of porous activated carbon and non-porous carbon material composite electrode for capacitive deionization
KR102040379B1 (en) Method for manufacturing activated carbon for electrode material
Jun et al. Effects of Heat Treatment on the Hierarchical Porous Structure and Electro‐Capacitive Properties of RuO2/Activated Carbon Nanofiber Composites
JP2000340470A (en) Electric double-layer capacitor and electrode material therefor
Wang et al. Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers
KR101948020B1 (en) Method for manufacturing activated carbon for electrode material
JP2010114356A (en) Electrochemical capacitor
JPH11307405A (en) Electric double layer capacitor and electrode and activated carbon and its manufacture
JP7130750B2 (en) Manufacturing method of activated carbon for electrode material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403