JPH11266151A - Potential conversion circuit - Google Patents

Potential conversion circuit

Info

Publication number
JPH11266151A
JPH11266151A JP10067997A JP6799798A JPH11266151A JP H11266151 A JPH11266151 A JP H11266151A JP 10067997 A JP10067997 A JP 10067997A JP 6799798 A JP6799798 A JP 6799798A JP H11266151 A JPH11266151 A JP H11266151A
Authority
JP
Japan
Prior art keywords
potential
mos transistor
power supply
signal processing
processing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10067997A
Other languages
Japanese (ja)
Inventor
Takaaki Nozaki
孝明 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP10067997A priority Critical patent/JPH11266151A/en
Publication of JPH11266151A publication Critical patent/JPH11266151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a potential conversion circuit for having a signal processing circuit, which is operated by a rocking power source controlled by a logical signal of the signal processing circuit which is operated by a constant potential power source. SOLUTION: This device is equipped with a first MOS transistor 1, a second MOS transistor 2, a first load element 3 and a second load element 4. The gate terminal of this first MOS transistor 1 is connected to the source terminal of the second MOS transistor 2, the drain terminal is connected to a rocking power source through the first load element 3, the source terminal is connected to the gate terminal of the second MOS transistor 2, and the gate terminal of the second MOS transistor 2 is connected to the source terminal of the first MOS transistor 1. Then, the drain terminal is connected to the rocking power source through the second load element 3, the source terminal is connected to the gate terminal of the first MOS transistor 1, and the gate terminals of the first MOS transistor 1 and the second MOS transistor 2 are set as input for a potential conversion circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は接地に対し電位が動
揺する動揺電源で動作する動揺電源動作の信号処理回路
と、該動揺電源に対接地電位がより緩やかな変化あるい
は定常的電位で動作する信号処理回路の間で論理信号を
交換するための電位変換回路、あるいはレベルシフタ回
路の構成および使用法で、特に時分割マトリックス表示
を行う液晶表示装置の走査線ドライバーを制御する論理
信号の伝播方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal processing circuit which operates with a fluctuation power supply whose potential fluctuates with respect to the ground, and which operates with a more gradual change or a steady potential with respect to the ground. The configuration and use of a potential conversion circuit or a level shifter circuit for exchanging logic signals between signal processing circuits, and particularly to a method of propagating a logic signal for controlling a scanning line driver of a liquid crystal display device performing time-division matrix display. .

【0002】[0002]

【従来の技術】従来、表示素子やアクチュエータ素子の
駆動においては50Vから150Vといった高駆動電圧
が要求され、駆動回路の集積回路化に難があったりチッ
プ面積の増加によるコスト増加を招いていたりしてい
た。しかし動揺電源駆動方式を採用することで半導体集
積回路の動作電圧を半分程度に低下させる技術が開発さ
れ集積回路化が容易になり、コストも低下した。ここで
動揺電源を使った駆動回路を制御するための制御信号
は、低電圧の論理回路で作成した制御信号を用いるのが
使いやすさの点から望まれる。ここで、低電圧の制御信
号で動揺電源を用いた信号処理回路を制御するために
は、動揺電源に対応した電位変換回路を使う必要があ
る。始めに動揺電源の説明を行い、次に電位変換回路の
従来例をしめす。
2. Description of the Related Art Hitherto, a high driving voltage of 50 V to 150 V has been required for driving a display element or an actuator element, which makes it difficult to integrate a driving circuit into an integrated circuit or increases the cost due to an increase in chip area. I was However, adopting the oscillating power supply driving method has developed a technology for lowering the operating voltage of the semiconductor integrated circuit to about half, thereby facilitating integration into an integrated circuit and reducing the cost. Here, it is desirable to use a control signal generated by a low-voltage logic circuit as a control signal for controlling the drive circuit using the oscillating power supply in terms of ease of use. Here, in order to control a signal processing circuit using an oscillating power supply with a low-voltage control signal, it is necessary to use a potential conversion circuit corresponding to the oscillating power supply. First, an oscillating power supply will be described, and then a conventional example of a potential conversion circuit will be described.

【0003】図2は時分割数nのマトリックス表示を行
う液晶表示装置の走査線ドライバーのタイミング図を示
す。走査線ドライバーは行走査クロックLP(Line
Pulse)と先頭走査線を示す制御信号FLM(F
irst Line Marker)とを与えると、n行
分の走査線出力S1〜Snに順次走査信号が出力され
る。出力される走査信号のパルス極性は、液晶素子への
直流電流成分印可による分極を防ぐために行ごとに反転
させる交流化駆動が一般的である。ここで正パルスの電
位をV1、負パルスの電位をV4、比選択時の走査線電
位をVMとする。奇数走査線が選択される時は必ず正パ
ルスが出力され、偶数走査線が選択される場合には負パ
ルスV4が出力される。640分割程度の液晶表示装置
の場合、V1〜V4間は50V程度、VMは中間の25
V程度に設定するのが普通であるから、走査線ドライバ
ーが取り扱う最大電圧は50Vとかなり高い耐圧が必要
となる。しかし奇数走査線が選択されている期間をよく
見ると全走査線出力の最高電位はV1であり最低電位は
VMでる。一方偶数走査線が選択されている期間につい
ても最高電位はVM、最低電位はV4である。したがっ
て、駆動回路自体が真に必要とする耐圧はV1〜VM間
電位、あるいはVM〜V4間電位で動作可能であること
がわかる。そこで、接地電位に対して矩形あるいは台形
状に動揺する電源VDDとVSSを用いる。動揺電源V
DDは走査線出力に正パルスが必要な期間では動揺電源
を高電位側に動揺させてV1に一致さる。一方負パルス
が必要な期間では動揺電源を低電位側に動揺させてV4
に一致させる。この時、VDD〜VSS間電位は常に一
定電位を保ち、かつ行ドライバを制御する論理信号の高
電位レベルをV2、定電位レベルをV3として、高電位
側に動揺した場合のVSSをV3に、低電位側に動揺し
た場合のVDDをV2に一致させる。このような動揺電
源VDDとVSSを用意しておき、走査線ドライバーは
この動揺電源VDD、VSSを電源として動作させる。
すなわち、正パルスが必要な奇数走査線選択期間では走
査線出力にVDDを出力し、負パルスが必要な偶数走査
線選択期間では走査線出力にVSSを、その他の非選択
期間にはVMを出力するように走査線ドライバーを構成
することにより、走査線ドライバー自体はV1〜V3あ
るいはV2〜V4の電位を扱い、走査線出力にはV1〜
V4の電位を供給することが可能となる。このように動
揺電源を用いることで駆動回路に必要な耐圧をおよそ半
分程度に低減することが可能である。
FIG. 2 is a timing chart of a scanning line driver of a liquid crystal display device for performing a matrix display of a time division number n. The scanning line driver uses a row scanning clock LP (Line
Pulse) and a control signal FLM (F
(first line marker), the scanning signals are sequentially output to the scanning line outputs S1 to Sn for n rows. In general, an alternating drive in which the pulse polarity of the output scanning signal is inverted for each row in order to prevent polarization due to application of a direct current component to the liquid crystal element. Here, the potential of the positive pulse is V1, the potential of the negative pulse is V4, and the scanning line potential at the time of selecting the ratio is VM. A positive pulse is always output when an odd scan line is selected, and a negative pulse V4 is output when an even scan line is selected. In the case of a liquid crystal display device of about 640 divisions, about 50 V is applied between V1 and V4, and VM is 25
Since the voltage is normally set to about V, the maximum voltage handled by the scanning line driver is required to be as high as 50 V, which is a considerably high withstand voltage. However, looking closely at the period in which the odd-numbered scanning lines are selected, the highest potential of all the scanning line outputs is V1 and the lowest potential is VM. On the other hand, the maximum potential is VM and the minimum potential is V4 also during the period in which the even-numbered scanning line is selected. Therefore, it can be seen that the withstand voltage that the drive circuit itself really needs can operate at a potential between V1 and VM or a potential between VM and V4. Therefore, power supplies VDD and VSS that swing in a rectangular or trapezoidal shape with respect to the ground potential are used. Shaking power supply V
In the period during which a positive pulse is required for the scanning line output, DD swings the swing power supply to the high potential side, and becomes equal to V1. On the other hand, during the period in which a negative pulse is required,
To match. At this time, the potential between VDD and VSS is always kept constant, and the high potential level of the logic signal for controlling the row driver is V2, the constant potential level is V3, and the VSS when swinging to the high potential side is V3. VDD when swinging to the low potential side is made equal to V2. Such fluctuation power supplies VDD and VSS are prepared, and the scanning line driver operates using the fluctuation power supplies VDD and VSS as power supplies.
That is, VDD is output to the scanning line output during the odd scanning line selection period requiring a positive pulse, VSS is output to the scanning line output during the even scanning line selection period requiring a negative pulse, and VM is output during the other non-selection periods. The scanning line driver itself handles the potentials of V1 to V3 or V2 to V4, and the scanning line driver outputs V1 to V1.
V4 potential can be supplied. By using such a swing power supply, the withstand voltage required for the drive circuit can be reduced to about half.

【0004】図3は動揺電源対応の電位変換回路に要求
される電位関係を示している。ラインパルスLPとファ
ーストラインマーカーは外部より走査線ドライバーを制
御するための制御信号で論理レベルは高電位側V2、低
電位側V3の電位を持つ。これらに対し、動揺電源VD
D、VSSで動作する走査線ドライバー内部においては
LPはLP’に、FLMはFLM’に変換する必要があ
る。動揺電源が高電位側に動揺した期間では、制御信号
の高電位側レベルV2をV1へ、逆に動揺電源が低電位
側に動揺した期間では、制御信号の低電位側レベルV3
をV4へと、動揺状態によって変換するレベルが変わっ
てくる必要がある。
FIG. 3 shows a potential relationship required for a potential conversion circuit corresponding to an oscillating power supply. The line pulse LP and the first line marker are control signals for externally controlling the scanning line driver, and have logical levels of a high potential side V2 and a low potential side V3. In contrast, the swing power supply VD
LP and LPM need to be converted to LP 'and FLM', respectively, inside the scanning line driver operating at D and VSS. During the period when the oscillating power supply oscillates to the high potential side, the high potential side level V2 of the control signal is changed to V1, and conversely, during the period when the oscillating power supply oscillates to the low potential side, the low potential side level V3 of the control signal is used.
Needs to be changed to V4 depending on the rocking state.

【0005】[0005]

【発明が解決しようとする課題】揺動電源動作の論理回
路に制御信号を入力するために、揺動電源動作の接地レ
ベルから見た論理回路の最高電位と同最低電位からなる
大振幅信号を、揺動電源回路の外部の固定電源回路で作
成し、揺動源現回路の入力端子に接続する方法が技術的
に可能である。しかし、通常のICの構造では該外部レ
ベル変換回路の出力信号電位が揺動電源動作の集積回路
の電源電位の間になければ揺動電源動作ICの保護回路
が起動し、消費電流増の問題を生じる。保護回路電流増
問題に対処して保護回路での電流増加を防いだ場合にお
いても、揺動電源の最高電亥から最低電亥までの論理振
幅を出力する高電圧電源と高電圧動作論理振幅増幅回路
が必要になり、これは回路の消費電力増加と回路コスト
増加をもたらす。また、揺動電位がパルス状あるいは台
形状に変化する場合は、論理値電位が変化しない高電位
位相あるいは低電位位相で定電位電源動作の論理電位の
レベル変換回路を形成する手法が利用できるが、揺動電
位が変動している途中の位相において固定電位系の論理
レベルから変動電位系の論理レベルへの情報伝達あるい
は逆方向への雑音発生のない伝達の簡潔な回路の構成は
容易でない。
In order to input a control signal to the logic circuit of the swing power supply operation, a large amplitude signal having the same maximum potential and the lowest potential of the logic circuit as viewed from the ground level of the swing power supply operation is used. It is technically possible to create a fixed power supply circuit outside the swing power supply circuit and connect it to the input terminal of the swing power supply current circuit. However, in the structure of a normal IC, if the output signal potential of the external level conversion circuit is not between the power supply potentials of the integrated circuit of the swing power supply operation, the protection circuit of the swing power supply operation IC is activated, and the current consumption increases. Is generated. High voltage power supply and high voltage operation logic amplitude amplification that output the logic amplitude from the highest power supply to the lowest power supply of the oscillating power supply even if the current increase in the protection circuit is prevented by addressing the protection circuit current increase problem Circuits are required, which results in increased power consumption and increased circuit costs. When the oscillating potential changes in a pulsed or trapezoidal shape, a method of forming a logic potential level conversion circuit of a constant potential power supply operation at a high potential phase or a low potential phase where the logic value potential does not change can be used. However, it is not easy to configure a simple circuit for transmitting information from the logic level of the fixed potential system to the logic level of the fluctuating potential system or transmitting without noise in the reverse direction during the phase in which the oscillating potential is fluctuating.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成する
為、本発明の電位変換回路は一定電位差を保ちつつ対接
地電位が動揺する動揺電源回路と対接地電位が一定の定
電位電源回路とを共に備えた複電源動作の第一の信号処
理回路と、対接地電位が一定の定電位電源で動作の第二
の信号処理回路とを備え、該第二の信号処理回路は定電
位電源と接地電位からなる第一の論理情報を該第一の信
号処理回路に論理情報を伝達し、該第一の複電源構造の
信号処理回路には第一のMOSトランジスタと第二のM
OSトランジスタと第一負荷素子と第二の負荷素子とを
備え、該第一のMOSトランジスタのゲート端子は該第
二のMOSトランジスタのソース端子に接続され、ドレ
イン端子は該第一の負荷素子を通して動揺電源に接続さ
れ、ソース端子は該第二のMOSトランジスタのゲート
端子に接続され、該第二のMOSトランジスタのゲート
端子は該第一のMOSトランジスタのソース端子に接続
され、ドレイン端子は該第二の負荷素子を通して動揺電
源に接続し、ソース端子は該第一のMOSトランジスタ
のゲート端子に接続され、該第二の信号処理回路に入力
された論理情報信号が該第一のMOSトランジスタのゲ
ート端子に加えられ、該論理情報信号とは逆論理の論理
情報信号が該第二のMOSトランジスタのゲート端子に
加えられ、該第一の負荷素子または該第二の負荷素子に
生じる電位を第一の信号処理回路の論理信号出力とし、
該論理信号出力を任意位相で該第二の信号処理回路の論
理信号により制御する構造を備えたことを特徴とする。
In order to achieve the above object, a potential conversion circuit according to the present invention comprises a swing power supply circuit in which a ground potential fluctuates while maintaining a constant potential difference, and a constant potential power supply circuit in which a ground potential is constant. A first signal processing circuit for dual power supply operation and a second signal processing circuit for operation with a constant potential power supply having a constant ground potential, wherein the second signal processing circuit is provided with a constant potential power supply. The first logic information consisting of the ground potential is transmitted to the first signal processing circuit, and the first dual power supply signal processing circuit is provided with a first MOS transistor and a second M transistor.
An OS transistor, a first load element, and a second load element, wherein a gate terminal of the first MOS transistor is connected to a source terminal of the second MOS transistor, and a drain terminal is connected through the first load element. A source terminal connected to the gate terminal of the second MOS transistor, a gate terminal of the second MOS transistor connected to a source terminal of the first MOS transistor, and a drain terminal connected to the source terminal of the first MOS transistor. A source terminal connected to the gate terminal of the first MOS transistor, and a logic information signal input to the second signal processing circuit is connected to the gate terminal of the first MOS transistor. A logic information signal having a logic opposite to that of the logic information signal is applied to the gate terminal of the second MOS transistor, The potential generated in the load element or said second load element and the logic signal output of the first signal processing circuit,
The logic signal output is controlled by a logic signal of the second signal processing circuit at an arbitrary phase.

【0007】また、本発明の電位変換回路は一定電位差
を保ちつつ対接地電位が動揺する動揺電源回路と対接地
電位が一定の定電位電源回路とを共に備えた複電源動作
の第一の信号処理回路と、対接地電位が一定の定電位電
源で動作の第二の信号処理回路とを備え、該第二の信号
処理回路は定電位電源と接地電位からなる第一の論理情
報を該第一の信号処理回路に論理情報を伝達し、該第一
の複電源構造の信号処理回路には第一のMOSトランジ
スタと第二のMOSトランジスタと第一負荷素子と第二
の負荷素子とを備え、該第一のMOSトランジスタのゲ
ート端子は該第二のMOSトランジスタのソース端子に
接続され、ドレイン端子は該第一の負荷素子を通して動
揺電源に接続され、ソース端子は該第二のMOSトラン
ジスタのゲート端子に接続され、該第二のMOSトラン
ジスタのゲート端子は該第一のMOSトランジスタのソ
ース端子に接続され、ドレイン端子は該第二の負荷素子
を通して動揺電源に接続し、ソース端子は該第一のMO
Sトランジスタのゲート端子に接続され、該第二の信号
処理回路に入力された論理情報信号が該第一のMOSト
ランジスタのゲート端子に加えられ、該論理情報信号が
真論理の時の電位と偽論理の時の電位の中間に相当する
電位を該第二のMOSトランジスタのゲート端子に加え
られ、該第一の負荷素子または該第二の負荷素子に生じ
る電位を第一の信号処理回路の論理信号出力とし、該論
理信号出力を任意位相で該第二の信号処理回路の論理信
号により制御する構造を備えたことを特徴とする。
Further, the potential conversion circuit of the present invention is a first signal of a dual power supply operation having both a fluctuation power supply circuit in which a ground potential fluctuates while maintaining a constant potential difference and a constant potential power supply circuit having a constant ground potential. Processing circuit, and a second signal processing circuit that operates with a constant potential power supply having a constant ground potential, wherein the second signal processing circuit transmits first logic information consisting of a constant potential power supply and a ground potential to the first logic information. The logic information is transmitted to one signal processing circuit, and the first dual power supply signal processing circuit includes a first MOS transistor, a second MOS transistor, a first load element, and a second load element. , A gate terminal of the first MOS transistor is connected to a source terminal of the second MOS transistor, a drain terminal is connected to an oscillating power supply through the first load element, and a source terminal is connected to the second MOS transistor. Gate edge , The gate terminal of the second MOS transistor is connected to the source terminal of the first MOS transistor, the drain terminal is connected to the oscillating power supply through the second load element, the source terminal is the first MO
The logic information signal connected to the gate terminal of the S transistor and input to the second signal processing circuit is applied to the gate terminal of the first MOS transistor, and the potential when the logic information signal is true logic and the potential A potential corresponding to the middle of the potential at the time of logic is applied to the gate terminal of the second MOS transistor, and the potential generated at the first load element or the second load element is determined by the logic of the first signal processing circuit. A signal output, wherein the logic signal output is controlled at an arbitrary phase by a logic signal of the second signal processing circuit.

【0008】また、本発明の電位変換回路は該第一の負
荷素子と該第二の負荷素子は該第一のMOSトランジス
タとは逆極性の基板上に設けられた第三のMOSトラン
ジスタと第四のMOSトランジスタとから構成され、該
第三のMOSトランジスタのゲート端子は該第二のMO
Sトランジスタのドレイン端子に接続し、ドレイン端子
は該第一のMOSトランジスタのドレイン端子に接続
し、ソース端子は動揺電源に接続し、該第四のMOSト
ランジスタのゲート端子は該第一のMOSトランジスタ
のドレイン端子に接続し、ドレイン端子は該第二のMO
Sトランジスタのドレイン端子に接続し、ソース端子は
動揺電源に接続したことを特徴とする。
Further, in the potential conversion circuit according to the present invention, the first load element and the second load element may be connected to a third MOS transistor provided on a substrate having a polarity opposite to that of the first MOS transistor. Four MOS transistors, and the gate terminal of the third MOS transistor is connected to the second MOS transistor.
The drain terminal of the S transistor is connected, the drain terminal is connected to the drain terminal of the first MOS transistor, the source terminal is connected to the oscillation power supply, and the gate terminal of the fourth MOS transistor is connected to the first MOS transistor. Connected to the drain terminal of the second MO.
The drain terminal of the S transistor is connected, and the source terminal is connected to an oscillating power supply.

【0009】また、本発明の電位変換回路は該第一の信
号処理回路を同一半導体集積回路チップ上に形成し、外
部に設けた該第二の信号処理回路からの情報を入力して
動揺電源電位からなる論理情報に電位変換し、該第一の
信号処理回路を制御することを特徴とする。
Further, in the potential conversion circuit according to the present invention, the first signal processing circuit is formed on the same semiconductor integrated circuit chip, and information from the second signal processing circuit provided outside is input to the power conversion circuit. It is characterized in that the potential is converted into logic information consisting of a potential and the first signal processing circuit is controlled.

【0010】入力信号の電位と反転入力信号の電位の高
低により二つの負荷素子の何れかの側のみ電流が流れて
電圧降下が生じこの電圧降下を論理信号として利用可能
である。変動電源自体が変動しても、入力信号の電位と
反転入力信号の電位の高低に変化はないので、動揺電源
に対応可能である。反転入力信号の代わりに入力信号の
論理振幅の中間電位を使うことで反転信号の代わりとす
ることが可能である。また、負荷素子にMOSトランジ
スタたすき掛け回路を使うことで、より高速動作させる
ことが可能である。
[0010] Depending on the level of the potential of the input signal and the level of the potential of the inverted input signal, a current flows on either side of the two load elements, causing a voltage drop. This voltage drop can be used as a logic signal. Even if the fluctuating power supply itself fluctuates, the level of the potential of the input signal and the level of the potential of the inverted input signal do not change, so that it is possible to cope with the fluctuation power supply. By using the intermediate potential of the logical amplitude of the input signal instead of the inverted input signal, it is possible to substitute for the inverted signal. In addition, by using a cross circuit of a MOS transistor as a load element, higher-speed operation can be performed.

【0011】[0011]

【発明の実施の形態】図1に本発明の電位変換回路の実
施の形態例をしめす。N型MOS(Metal Oxi
de Semiconductor)トランジスタ1、
2を使用し、負荷素子としては抵抗素子を用いている。
高電位側変動電源VDDは高電位に動揺した場合は25
V、低電位側に動揺した場合は5V、また低電位側変動
電源VSSは高電位動揺時に0V、定電位動揺時に−2
0Vとする。動揺振幅自体は20Vである。また、一定
電位の定電位電源で動作する論理信号は高レベル時は5
V、低レベル時は0Vとする。動揺電源動作の信号処理
回路を制御するために外部から与えられる論理信号INは
トランジスタ1のゲート端子Gに与えられると同時にト
ランジスタ2のソース端子Sにも与えられ、また、論理
信号INの反転信号INB はトランジスタ1のゲート端子G
に与えられると同時にトランジスタ1のソース端子Sに
も与えられる。論理信号5が反転論理信号6より高電位
の場合、トランジスタ1はゲート電位ソース電位よりも
高電位に保たれるのでトランジスタはオン状態となり、
負荷抵抗2には変動電源から電流が流れ、負荷抵抗素子
に電位降下が生じる。一方、トランジスタ2はゲート電
位がソース電位より小さいため、トランジスタはオフ状
態のままであり、負荷素子には電流が流れない。回路構
成が入力信号と反転入力信号に対して対称的に構成され
ているため、反転論理信号6が論理信号5よりの高電位
の場合は、トランジスタ2がオンし、負荷抵抗素子1に
電流が流れる。負荷抵抗素子の抵抗値を適当に設定すれ
ば出力端子7、8には動揺電源VDDから低レベル論理
信号電位0Vまでの電位振幅をもつ論理信号が得られ
る。このように、本発明の電位変換回路は論理信号と反
転論理信号の電位を比較することで電位変換を行う構成
となっている。
FIG. 1 shows an embodiment of a potential conversion circuit according to the present invention. N-type MOS (Metal Oxi
de Semiconductor) transistor 1,
2 and a resistance element is used as a load element.
The high-potential-side variable power supply VDD is 25 when it swings to a high potential.
V, 5 V when swinging to the low potential side, and the low potential side fluctuation power supply VSS is 0 V when swinging at the high potential, and −2 when swinging at the constant potential.
0V. The oscillation amplitude itself is 20V. A logic signal operating with a constant potential power supply of a constant potential is 5 at a high level.
V, 0 V at low level. A logic signal IN externally supplied to control the signal processing circuit of the oscillation power supply operation is supplied to the gate terminal G of the transistor 1 and the source terminal S of the transistor 2 at the same time. INB is the gate terminal G of transistor 1.
To the source terminal S of the transistor 1 at the same time. When the logic signal 5 has a higher potential than the inverted logic signal 6, the transistor 1 is kept at a higher potential than the gate potential and the source potential, so that the transistor is turned on.
A current flows from the variable power supply to the load resistance 2, and a potential drop occurs in the load resistance element. On the other hand, since the gate potential of the transistor 2 is lower than the source potential, the transistor remains off and no current flows to the load element. Since the circuit configuration is symmetrical with respect to the input signal and the inverted input signal, when the inverted logic signal 6 has a higher potential than the logic signal 5, the transistor 2 is turned on, and a current flows through the load resistance element 1. Flows. By appropriately setting the resistance value of the load resistance element, a logic signal having a potential amplitude from the fluctuation power supply VDD to the low-level logic signal potential 0 V can be obtained at the output terminals 7 and 8. As described above, the potential conversion circuit of the present invention is configured to perform the potential conversion by comparing the potentials of the logic signal and the inverted logic signal.

【0012】図2は抵抗負荷素子の代わりにP型MOS
トランジスタのたすき掛け負荷12、13を使用してい
る例を示している。さらに動揺電源が低電位側に動揺し
た場合に、このままでは対応できないので、通常用いら
れるたすき掛け構成の第二の電位変換回路9を用いるこ
とで論理信号の振幅をVDDからVSSまでに広げるこ
とも可能である。出力端14、15には論理振幅VDD
〜VSSの論理信号が得られ、変動電源で動作するCM
OS構成の信号処理回路を直接駆動することが可能とな
る。
FIG. 2 shows a P-type MOS in place of a resistance load element.
An example in which cross loads 12 and 13 of transistors are used is shown. Further, when the swing power source swings to the lower potential side, it is not possible to cope with the situation as it is. Therefore, the amplitude of the logic signal may be expanded from VDD to VSS by using the second potential conversion circuit 9 having a cross configuration which is generally used. It is possible. Output terminals 14 and 15 have logic amplitude VDD.
~ VSS logic signal is obtained, and the CM
It is possible to directly drive the signal processing circuit having the OS configuration.

【0013】図3に動作タイミング図を示す。論理信号
5と反転論理信号6を与えると、VDD〜V3間を振幅
とする論理信号7、8が得られ、さらに第二の電位変換
回路によってVDDからVSSを振幅とする論理信号が
えられる。
FIG. 3 shows an operation timing chart. When the logic signal 5 and the inverted logic signal 6 are given, logic signals 7 and 8 having an amplitude between VDD and V3 are obtained, and a logic signal having an amplitude from VDD to VSS is obtained by the second potential conversion circuit.

【0014】また、走査線ドライバーに応用する場合に
反転論理信号を用いる代わりに非選択時の走査線の出力
電位である中間電位電源VMを用いることも可能であ
る。走査線ドライバーにおいては中間電位電源は、制御
信号の論理振幅の中間電圧と一致して用いるので、この
電位と論理信号電位の高低を比較することで論理信号の
電位変換を行うことが可能である。
When applied to a scanning line driver, it is possible to use an intermediate potential power supply VM which is the output potential of the scanning line when not selected, instead of using the inverted logic signal. In the scanning line driver, the intermediate potential power supply is used in accordance with the intermediate voltage of the logic amplitude of the control signal. Therefore, the potential of the logic signal can be converted by comparing the potential with the logic signal potential. .

【0015】[0015]

【発明の効果】本発明の電位変換回路は揺動電源動作論
理回路に任意位相でデータを伝送出来る。これによって
揺動電源動作の高電圧出力駆動回路の駆動波形を、外部
の低定電圧回路の駆動情報に応じて任意に制御作成出来
る。揺動電源構成によって、揺動動作集積回路の電源電
圧振幅よりも大電圧振幅出力を得る事が出来る。例えば
低定電圧回路電圧を5vの論理回路とし、揺動電源電圧
を25vとし、揺動電圧を20vにして揺動正電位の最
低電位を+5v、同揺動負電位の最高電位を0vとする
と、25v動作の駆動ICからー20vから+25vま
での45vの論理振幅の駆動信号を出力する事が可能に
なる。任意位相で出力位相を制御できる事によって複雑
な駆動波形を出力する事が出来る。
The potential conversion circuit of the present invention can transmit data at an arbitrary phase to the swing power supply operation logic circuit. This makes it possible to arbitrarily control and create the drive waveform of the high-voltage output drive circuit of the swing power supply operation according to the drive information of the external low-constant voltage circuit. With the oscillating power supply configuration, it is possible to obtain a voltage amplitude output larger than the power supply voltage amplitude of the oscillating operation integrated circuit. For example, assuming that the low constant voltage circuit voltage is a logic circuit of 5 V, the swing power supply voltage is 25 V, the swing voltage is 20 V, the minimum swing positive potential is +5 V, and the maximum swing negative potential is 0 V. , 25V operation, it is possible to output a drive signal having a logic amplitude of 45V from -20V to + 25V. By controlling the output phase at an arbitrary phase, a complex drive waveform can be output.

【0016】また、本発明の電位変換回路は、少ない素
子数で回路を実現できるので、半導体集積回路の面積が
減少し、コストが低減する。
Further, since the potential conversion circuit of the present invention can be realized with a small number of elements, the area of the semiconductor integrated circuit is reduced and the cost is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における電位変換回路の回
路図である。
FIG. 1 is a circuit diagram of a potential conversion circuit according to an embodiment of the present invention.

【図2】負荷素子にMOSトランジスタを用いた場合の
電位変換回路の回路図である。
FIG. 2 is a circuit diagram of a potential conversion circuit when a MOS transistor is used as a load element.

【図3】本発明の実施例における電位変換回路のタイミ
ング図である。
FIG. 3 is a timing chart of the potential conversion circuit in the embodiment of the present invention.

【図4】走査線ドライバーの動作を説明するタイミング
図である。
FIG. 4 is a timing chart illustrating the operation of a scanning line driver.

【図5】電位変換回路に要求される変換レベルを示す図
である。
FIG. 5 is a diagram illustrating a conversion level required for a potential conversion circuit.

【符号の説明】[Explanation of symbols]

1、2 第一および第二のMOSトランジスタ 3、4 第一および第二の負荷素子 5、6 論理入力信号および反転論理入力信号 7、8 電位変換回路の出力 9 第二の電位変換回路 10、11 第二の電位変換回路を構成するMOSトラ
ンジスタ 12、13 第二の電位変換回路を構成する負荷MOS
トランジスタ 14、15 第二の電位変換回路の出力 VDD 高電位側動揺電源 VSS 低電位側動揺電源 LP、FLM 走査線ドライバーを駆動する制御信号 VM 非選択時の走査線出力電位 V1 高電位動揺時の高電位側動揺電源電位 V2 低電位動揺時の高電位側動揺電源電位 V3 高電位動揺時の低電位側動揺電源電位 V4 低電位動揺時の低電位側動揺電源電位
1, 2 First and second MOS transistors 3, 4 First and second load elements 5, 6 Logical input signal and inverted logical input signal 7, 8 Output of potential conversion circuit 9 Second potential conversion circuit 10, 11 MOS transistor constituting a second potential conversion circuit 12, 13 Load MOS constituting a second potential conversion circuit
Transistors 14 and 15 Output of second potential conversion circuit VDD High-potential-side fluctuation power supply VSS Low-potential-side fluctuation power supply LP, FLM Control signal for driving scan line driver VM Scan line output potential when VM is not selected V1 High-potential fluctuation High potential side power supply potential V2 High potential side power supply potential at low potential fluctuation V3 Low potential side power supply potential at high potential fluctuation V4 Low potential side power supply potential at low potential fluctuation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一定電位差を保ちつつ対接地電位が動揺
する動揺電源回路と対接地電位が一定の定電位電源回路
とを共に備えた複電源動作の第一の信号処理回路と、対
接地電位が一定の定電位電源で動作の第二の信号処理回
路とを備え、該第二の信号処理回路は定電位電源と接地
電位からなる第一の論理情報を該第一の信号処理回路に
論理情報を伝達し、該第一の複電源構造の信号処理回路
には第一のMOSトランジスタと第二のMOSトランジ
スタと第一負荷素子と第二の負荷素子とを備え、該第一
のMOSトランジスタのゲート端子は該第二のMOSト
ランジスタのソース端子に接続され、ドレイン端子は該
第一の負荷素子を通して動揺電源に接続され、ソース端
子は該第二のMOSトランジスタのゲート端子に接続さ
れ、該第二のMOSトランジスタのゲート端子は該第一
のMOSトランジスタのソース端子に接続され、ドレイ
ン端子は該第二の負荷素子を通して動揺電源に接続し、
ソース端子は該第一のMOSトランジスタのゲート端子
に接続され、該第二の信号処理回路に入力された論理情
報信号が該第一のMOSトランジスタのゲート端子に加
えられ、該論理情報信号とは逆論理の論理情報信号が該
第二のMOSトランジスタのゲート端子に加えられ、該
第一の負荷素子または該第二の負荷素子に生じる電位を
第一の信号処理回路の論理信号出力とし、該論理信号出
力を任意位相で該第二の信号処理回路の論理信号により
制御する構造を備えた論理回路信号の電位変換回路。
1. A first signal processing circuit of a dual power supply operation, comprising both a swing power supply circuit in which a ground potential fluctuates while maintaining a constant potential difference, and a constant potential power supply circuit having a constant ground potential, and a ground potential. Comprises a second signal processing circuit operable with a constant constant-potential power supply, wherein the second signal processing circuit logically transmits first logic information comprising a constant-potential power supply and a ground potential to the first signal processing circuit. A first MOS transistor, a second MOS transistor, a first load element, and a second load element, wherein the signal processing circuit has a first MOS transistor; The gate terminal of the second MOS transistor is connected to the source terminal of the second MOS transistor, the drain terminal is connected to the oscillating power supply through the first load element, the source terminal is connected to the gate terminal of the second MOS transistor, Second MOS A gate terminal of the transistor is connected to a source terminal of the first MOS transistor, a drain terminal is connected to an oscillating power supply through the second load element,
The source terminal is connected to the gate terminal of the first MOS transistor, and the logical information signal input to the second signal processing circuit is applied to the gate terminal of the first MOS transistor. A logic information signal of reverse logic is applied to the gate terminal of the second MOS transistor, and a potential generated in the first load element or the second load element is used as a logic signal output of a first signal processing circuit. A potential conversion circuit for a logic circuit signal having a structure for controlling a logic signal output at an arbitrary phase by a logic signal of the second signal processing circuit.
【請求項2】 一定電位差を保ちつつ対接地電位が動揺
する動揺電源回路と対接地電位が一定の定電位電源回路
とを共に備えた複電源動作の第一の信号処理回路と、対
接地電位が一定の定電位電源で動作の第二の信号処理回
路とを備え、該第二の信号処理回路は定電位電源と接地
電位からなる第一の論理情報を該第一の信号処理回路に
論理情報を伝達し、該第一の複電源構造の信号処理回路
には第一のMOSトランジスタと第二のMOSトランジ
スタと第一負荷素子と第二の負荷素子とを備え、該第一
のMOSトランジスタのゲート端子は該第二のMOSト
ランジスタのソース端子に接続され、ドレイン端子は該
第一の負荷素子を通して動揺電源に接続され、ソース端
子は該第二のMOSトランジスタのゲート端子に接続さ
れ、該第二のMOSトランジスタのゲート端子は該第一
のMOSトランジスタのソース端子に接続され、ドレイ
ン端子は該第二の負荷素子を通して動揺電源に接続し、
ソース端子は該第一のMOSトランジスタのゲート端子
に接続され、該第二の信号処理回路に入力された論理情
報信号が該第一のMOSトランジスタのゲート端子に加
えられ、該論理情報信号が真論理の時の電位と偽論理の
時の電位の中間に相当する電位を該第二のMOSトラン
ジスタのゲート端子に加えられ、該第一の負荷素子また
は該第二の負荷素子に生じる電位を第一の信号処理回路
の論理信号出力とし、該論理信号出力を任意位相で該第
二の信号処理回路の論理信号により制御する構造を備え
た論理回路信号の電位変換回路。
2. A first signal processing circuit for dual power supply operation, comprising both a swing power supply circuit in which a ground potential fluctuates while maintaining a constant potential difference and a constant potential power supply circuit having a constant ground potential, and a ground potential. Comprises a second signal processing circuit operable with a constant constant-potential power supply, wherein the second signal processing circuit logically transmits first logic information comprising a constant-potential power supply and a ground potential to the first signal processing circuit. A first MOS transistor, a second MOS transistor, a first load element, and a second load element, wherein the signal processing circuit has a first MOS transistor; The gate terminal of the second MOS transistor is connected to the source terminal of the second MOS transistor, the drain terminal is connected to the oscillating power supply through the first load element, the source terminal is connected to the gate terminal of the second MOS transistor, Second MOS A gate terminal of the transistor is connected to a source terminal of the first MOS transistor, a drain terminal is connected to an oscillating power supply through the second load element,
The source terminal is connected to the gate terminal of the first MOS transistor, the logical information signal input to the second signal processing circuit is applied to the gate terminal of the first MOS transistor, and the logical information signal is set to true. A potential corresponding to an intermediate between the potential at the time of logic and the potential at the time of false logic is applied to the gate terminal of the second MOS transistor, and the potential generated at the first load element or the second load element is reduced to the first load element. A potential conversion circuit for a logic circuit signal, comprising: a logic signal output of one signal processing circuit, wherein the logic signal output is controlled at an arbitrary phase by a logic signal of the second signal processing circuit.
【請求項3】 該第一の負荷素子と該第二の負荷素子は
該第一のMOSトランジスタとは逆極性の基板上に設け
られた第三のMOSトランジスタと第四のMOSトラン
ジスタとから構成され、該第三のMOSトランジスタの
ゲート端子は該第二のMOSトランジスタのドレイン端
子に接続し、ドレイン端子は該第一のMOSトランジス
タのドレイン端子に接続し、ソース端子は動揺電源に接
続し、該第四のMOSトランジスタのゲート端子は該第
一のMOSトランジスタのドレイン端子に接続し、ドレ
イン端子は該第二のMOSトランジスタのドレイン端子
に接続し、ソース端子は動揺電源に接続した範囲第一項
および請求範囲第二項記載の電位変換回路。
3. The first load element and the second load element include a third MOS transistor and a fourth MOS transistor provided on a substrate having a polarity opposite to that of the first MOS transistor. The gate terminal of the third MOS transistor is connected to the drain terminal of the second MOS transistor, the drain terminal is connected to the drain terminal of the first MOS transistor, the source terminal is connected to the oscillation power supply, The gate terminal of the fourth MOS transistor is connected to the drain terminal of the first MOS transistor, the drain terminal is connected to the drain terminal of the second MOS transistor, and the source terminal is connected to an oscillating power supply. The potential conversion circuit according to claim 2 or claim 2.
【請求項4】 該第一の信号処理回路を同一半導体集積
回路チップ上に形成し、外部に設けた該第二の信号処理
回路からの情報を入力して動揺電源電位からなる論理情
報に電位変換し、該第一の信号処理回路を制御する特許
請求の範囲第一項および請求範囲第二項記載の電位変換
回路。
4. The first signal processing circuit is formed on the same semiconductor integrated circuit chip, and information from the second signal processing circuit provided externally is input to generate logical information consisting of an oscillating power supply potential. 3. The potential conversion circuit according to claim 1, wherein the potential conversion circuit converts the potential and controls the first signal processing circuit.
JP10067997A 1998-03-18 1998-03-18 Potential conversion circuit Pending JPH11266151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10067997A JPH11266151A (en) 1998-03-18 1998-03-18 Potential conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10067997A JPH11266151A (en) 1998-03-18 1998-03-18 Potential conversion circuit

Publications (1)

Publication Number Publication Date
JPH11266151A true JPH11266151A (en) 1999-09-28

Family

ID=13361118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10067997A Pending JPH11266151A (en) 1998-03-18 1998-03-18 Potential conversion circuit

Country Status (1)

Country Link
JP (1) JPH11266151A (en)

Similar Documents

Publication Publication Date Title
US7098882B2 (en) Bidirectional shift register shifting pulse in both forward and backward directions
US6724361B1 (en) Shift register and image display device
JP3851302B2 (en) Buffer circuit and active matrix display device using the same
JP4576652B2 (en) Liquid crystal display
KR101037120B1 (en) Shift resistor and method for driving same
JP3588033B2 (en) Shift register and image display device having the same
JP2011002841A (en) Liquid crystal drive device
JP2017098813A (en) Level shift circuit and display driver
JP4831657B2 (en) Semiconductor integrated circuit for liquid crystal display drive
US7283116B2 (en) Scan driver and scan driving system with low input voltage, and their level shift voltage circuit
US20030218605A1 (en) Drive circuit and display unit for driving a display device and portable equipment
JP4389284B2 (en) Latch circuit and liquid crystal display device incorporating the same
JP3407447B2 (en) Liquid crystal display system and power supply method
JP2005311790A (en) Signal level conversion circuit and liquid crystal display device using this circuit
JPH11266151A (en) Potential conversion circuit
JP3573055B2 (en) Display drive device, display device, and portable electronic device
US7355579B2 (en) Display
JP3109438B2 (en) Semiconductor integrated circuit device
JP4602364B2 (en) Liquid crystal drive device and liquid crystal display system
KR100707022B1 (en) Liquid Crystal Display
JPH11150452A (en) Level conversion circuit and liquid crystal display device
JP2006135384A (en) Level shifter
JP2002314400A (en) Signal level conversion circuit, signal level converter and image display applied apparatus
JPH06161394A (en) Liquid crystal driving circuit
JP3425926B2 (en) Output circuit

Legal Events

Date Code Title Description
RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD14 Notification of resignation of power of sub attorney

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A7434

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9