JPH11262751A - Method for in-situ purification of soil and the like - Google Patents

Method for in-situ purification of soil and the like

Info

Publication number
JPH11262751A
JPH11262751A JP6696498A JP6696498A JPH11262751A JP H11262751 A JPH11262751 A JP H11262751A JP 6696498 A JP6696498 A JP 6696498A JP 6696498 A JP6696498 A JP 6696498A JP H11262751 A JPH11262751 A JP H11262751A
Authority
JP
Japan
Prior art keywords
water
soil
contaminated
resin
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6696498A
Other languages
Japanese (ja)
Other versions
JP3640286B2 (en
Inventor
Naoki Seki
直樹 関
Koji Niimura
浩司 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP06696498A priority Critical patent/JP3640286B2/en
Publication of JPH11262751A publication Critical patent/JPH11262751A/en
Application granted granted Critical
Publication of JP3640286B2 publication Critical patent/JP3640286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02W10/12

Abstract

PROBLEM TO BE SOLVED: To keep environment completely for a given time without using a large-sized dedicated apparatus by injecting/mixing a water absorbing resin and/or a water retaining resin into polluted soil and/or underground water area. SOLUTION: Respective amounts of sodium acetate as a carbon source, reduced iron powder as a reducing agent, and a water retaining resin such as the hydrolysis product of a starch-acrylonitrile graft copolymer are added into the tetrachloroethylene (PCE)-polluted soil of a chemical plant, and kneading is done. Immediately after the kneading, sampling is done with a percussion type boring machine, packing into a stainless steel column is done, measuring cylinder is placed below, and the quantity of leachate and a PCE concentration in water are measured. Woreover, after about sixty days, ethylene chloride remaining in the soil in the column and an oxidation-reduction potential are measured, and a water content is measured. The quantity of bleachate can be decreased, and water retention ratio rate after sixty days can be increased. The oxidation-reduction potential can be kept low, and PCE can be decomposed almost completely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する利用分野】本発明は、有害化学物質によ
り汚染された土壌及び/又は地下水(以下、単に土壌と
もいう)を原位置で浄化する工法に関し、特に、土壌中
の微生物(主に嫌気性菌)の増殖及び生存に必要な炭素
源と無機還元剤を用い嫌気条件下で生物学的及び物理化
学的に浄化処理をするにあたり、処理環境を確保すると
ともに汚染物質の拡散を抑止する浄化工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying in situ soil and / or groundwater (hereinafter simply referred to as soil) contaminated with harmful chemical substances, and more particularly, to microorganisms in soil (mainly anaerobic). Biological and physicochemical purification under anaerobic conditions using a carbon source and an inorganic reducing agent necessary for the growth and survival of phytobacterium), a purification environment that secures the treatment environment and suppresses the diffusion of pollutants. Concerning the construction method.

【0002】[0002]

【従来の技術】近年、テトラクロロエチレンなどの有機
塩素化合物を含有する有機溶剤などによる土壌及び地下
水の汚染が深刻な社会問題となっている。これら土壌や
地下水中の汚染物質を有効且つ効率的に除去し無害化す
る処置として、バクテリアの生分解反応を利用すること
により、原位置において浄化しようとする技術(バイオ
レメディエーション)が実用化されつつある。これらの
方法は汚染物質含有土の掘削や汚染物質の抽出の必要が
ないことから、低コストでの浄化処理が可能な技術とし
て期待されている。又、生物学的反応に物理化学的反応
を組み合わせることにより、更に短期間で簡便に有機塩
素化合物を処理する方法も注目されている。
2. Description of the Related Art In recent years, soil and groundwater contamination by an organic solvent containing an organic chlorine compound such as tetrachloroethylene has become a serious social problem. As a treatment for effectively and efficiently removing and detoxifying these contaminants in soil and groundwater, a technology for purifying in situ (bioremediation) by utilizing the biodegradation reaction of bacteria is being put to practical use. is there. Since these methods do not require excavation of pollutant-containing soil or extraction of pollutants, they are expected to be a technology capable of purifying at low cost. Attention has also been paid to a method of treating an organic chlorine compound more simply and in a shorter time by combining a biological reaction with a physicochemical reaction.

【0003】従来、原位置における汚染土壌及び/又は
汚染地下水の処理方法としては、セメントや各種親水性
の樹脂で固定し汚染物質の拡散を防止する方法と、微生
物学的或いは化学的手法により浄化処理する方法が知ら
れている。その内、微生物学的手法(バイオレメディエ
ーション)や化学的手法による浄化処理として、汚染物
質の流れ方向下流側に取水設備を設け汚染水を集水し拡
散を防止すると同時に捕集した汚染水を処理するもの、
同じく流れ方向下流側に汚染水処理エリアを設け、透過
(通過)する汚染物質を処理するもの、汚染源上流に微
生物及び栄養源を注入し汚染エリアに拡散させ汚染物質
を処理する方法などが知られている。
Conventionally, there are two methods of treating contaminated soil and / or contaminated groundwater in situ: a method of preventing the diffusion of contaminants by fixing with cement or various hydrophilic resins, and a method of purifying by microbiological or chemical methods. Methods of processing are known. Among them, as a purification treatment by microbiological method (bioremediation) or chemical method, water intake equipment is installed downstream of the flow direction of pollutants to collect contaminated water and prevent diffusion, and at the same time treat contaminated water collected What to do,
Similarly, a method for treating contaminated water that is provided with a contaminated water treatment area on the downstream side in the flow direction and treating contaminants that permeate (pass), and a method of injecting microorganisms and nutrients upstream of the contaminated source and diffusing the contaminated material into the contaminated area to treat the contaminated material are known. ing.

【0004】しかしながら、前者は地下水に溶出した汚
染物質を処理するに止まり、土壌全体の汚染物質が溶出
するには多大な時間を要する。また、汚染地下水の流れ
は一定均一ではないため、汚染物質のすべてを捕集、処
理することは困難である。又、同様に注入したバクテリ
アや栄養源または化学物質が汚染土壌全体に拡散する可
能性も極めて少ないものと考えられる。さらに注入した
バクテリアや栄養源、または化学物質が原位置に生存し
ないものの場合、周辺土壌にそれらが拡散し弊害を引き
起こす可能性もある。基本的に、従来の原位置における
技術では汚染土壌を根本的に浄化処理することが困難で
あり、汚染が周辺の土壌に拡散することを少なくするた
めのものであり、言わば対処的処理であったと言える。
[0004] However, in the former method, only the contaminants eluted in the groundwater are treated, and it takes a long time to elute the contaminants in the whole soil. Also, the flow of polluted groundwater is not uniform, making it difficult to collect and treat all pollutants. It is also believed that the likelihood that the injected bacteria, nutrients or chemicals will spread throughout the contaminated soil is also very low. In addition, if the injected bacteria, nutrients, or chemicals do not survive in situ, they can diffuse into the surrounding soil and cause harm. Basically, it is difficult to fundamentally purify contaminated soil with conventional in-situ technology, and this is to reduce the diffusion of contamination to surrounding soil. It can be said that.

【0005】[0005]

【発明が解決しようとする課題】現在、有害化学物質に
より汚染された土壌及び/又は地下水の処理方法とし
て、原位置で施工できると同時に周囲の環境に対する負
荷の少ない技術が求められている。しかし、前項のよう
に原位置における汚染土壌及び/又は汚染地下水の浄化
処理技術は、被汚染エリアを一様に浄化するには不完全
なものであった。そこで、本発明は、従来の技術では成
し得なかった、原位置における汚染土壌及び/又は汚染
地下水の浄化処理を行うに当たり、土壌中の微生物(主
に嫌気性菌)の増殖及び生存に必要な炭素源と無機還元
剤を用い嫌気条件下で生物学的及び物理化学的に浄化処
理する環境を、低コストで完全にしかも大掛かりな専用
機器を用いずに一定時間保つ事を目的とし、被汚染エリ
ア全体を一様に直接浄化処理しようとするものである。
At present, as a method for treating soil and / or groundwater contaminated by harmful chemical substances, there is a demand for a technique which can be constructed in situ and has a small impact on the surrounding environment. However, as described in the preceding section, the purification technology of the in-situ contaminated soil and / or contaminated groundwater is incomplete for uniformly purifying the contaminated area. Therefore, the present invention is required for the growth and survival of microorganisms (mainly anaerobic bacteria) in soil when performing purification treatment of contaminated soil and / or contaminated groundwater in situ, which could not be achieved by conventional techniques. The purpose of this study is to maintain an environment for purifying biologically and physicochemically under anaerobic conditions using an inexpensive carbon source and an inorganic reducing agent for a certain period of time without using large-scale dedicated equipment. It is intended to purify the entire contaminated area uniformly and directly.

【0006】[0006]

【課題を解決するための手段】本発明者らは、従来技術
の問題点を克服すべく鋭意検討を行った結果、下記に示
す方法を見出した。すなわち、本発明は以下の通りであ
る。 (1)有害化学物質により汚染された土壌及び/又は地
下水を、土壌中の微生物の増殖及び生存に必要な炭素源
と無機還元剤を用い嫌気条件下で生物学的及び物理化学
的に浄化する方法において、汚染された土壌及び/又は
地下水の領域に高分子吸水性樹脂及び/又は保水性樹脂
を注入、混合することを特徴とする浄化工法。
The present inventors have made intensive studies to overcome the problems of the prior art, and as a result, have found the following method. That is, the present invention is as follows. (1) Biological and physicochemical purification of soil and / or groundwater contaminated by harmful chemicals under anaerobic conditions using a carbon source and an inorganic reducing agent necessary for the growth and survival of microorganisms in the soil. A method of cleaning, characterized by injecting and mixing a polymeric water-absorbing resin and / or a water-retaining resin into a contaminated soil and / or groundwater region.

【0007】(2)有害化学物質により汚染された土壌
及び/又は地下水を、土壌中の微生物の増殖及び生存に
必要な炭素源と無機還元剤を用い嫌気条件下で生物学的
及び物理化学的に浄化する方法において、汚染された土
壌及び/又は地下水の領域の周囲に不透水性樹脂を添加
攪拌して配置し、周囲の環境と処理エリアを遮蔽するこ
とを特徴とする浄化工法。 (3)有害化学物質により汚染された土壌及び/又は地
下水を、土壌中の微生物の増殖及び生存に必要な炭素源
と無機還元剤を用い嫌気条件下で生物学的及び物理化学
的に浄化する方法において、汚染された土壌及び/又は
地下水の領域に高分子吸水性樹脂及び/又は保水性樹脂
を注入、混合し、かつ、該領域の周囲に不透水性樹脂を
添加攪拌して配置することを特徴とする浄化工法。
(2) Soil and / or groundwater contaminated with harmful chemicals is subjected to biological and physicochemical analysis under anaerobic conditions using a carbon source and an inorganic reducing agent necessary for the growth and survival of microorganisms in the soil. A method of cleaning, characterized in that a water-impermeable resin is added and stirred around a contaminated soil and / or groundwater area to shield the surrounding environment and the treatment area. (3) Biologically and physicochemically purify soil and / or groundwater contaminated with harmful chemicals under anaerobic conditions using a carbon source and an inorganic reducing agent necessary for the growth and survival of microorganisms in the soil. In the method, a polymer water-absorbent resin and / or a water-retentive resin is injected and mixed into a contaminated soil and / or groundwater area, and a water-impermeable resin is added around the area and placed with stirring. Purification method characterized by the following.

【0008】(4)汚染された土壌及び/又は地下水に
樹脂を注入、混合、添加攪拌を行うに際し、土木工事に
おける地盤改良用の機械攪拌工法、高圧噴射工法または
これらの併用工法で使用される改良装置を用いることを
特徴とする前記(1)〜(3)のいずれかの浄化工法。 (5)使用する吸水性、保水性または不透水性樹脂が、
無害または生分解性のものであることを特徴とする前記
(1)〜(3)のいずれかに記載の浄化工法。
(4) Injecting, mixing, and adding and stirring resin to contaminated soil and / or groundwater, it is used in a mechanical stirring method, a high-pressure injection method, or a combination method for soil improvement in civil engineering works. The purification method according to any one of the above (1) to (3), wherein an improvement device is used. (5) The water-absorbing, water-retaining or impermeable resin used is
The purification method according to any one of (1) to (3), which is harmless or biodegradable.

【0009】前記(1)により、嫌気的処理の諸条件を
確保すると同時に、汚染の拡散を防止することができ
る。また、前記(2)の周囲の環境と処理エリアを遮蔽
することにより、浄化処理の諸条件を確保すると同時に
汚染の拡散を防止する。また、前記(3)により 前記
(1)および(2)の効果の更なる向上がなされる。な
お前記(1)〜(3)は、液水面の重力による降下の防
止・下方、側面からの地下水の侵入防止・雨水の侵入防
止・周辺土壌による処理溶液の吸水防止・空気の侵入防
止・汚染物質の拡散防止に関する事項である。
According to the above (1), various conditions of the anaerobic treatment can be secured, and at the same time, the diffusion of the contamination can be prevented. Further, by shielding the surrounding environment and the processing area of the above (2), various conditions of the purification processing are secured and at the same time, the diffusion of the contamination is prevented. Further, the effect of the above (1) and (2) is further improved by the above (3). The above (1) to (3) are for prevention of descent of the liquid water surface due to gravity, prevention of intrusion of groundwater from below and side surfaces, prevention of infiltration of rainwater, prevention of water absorption of the treatment solution by surrounding soil, prevention of air intrusion, and contamination. Matters related to the prevention of substance diffusion.

【0010】また、前記(4)の汚染された土壌等に樹
脂を注入、混合、添加攪拌を行うに際し、土木工事にお
ける地盤改良用の機械攪拌工法、高圧噴射工法またはこ
れらの併用工法で使用される改良装置を用いることによ
り、汎用性を考慮することができ、攪拌効率とコストダ
ウンの両立ができる。さらに、前記(5)の使用する吸
水性、保水性または不透水性樹脂を無害または生分解性
のものとすることにより、処理後の土壌中に有害残存物
を残すことがなく、周囲環境に与える影響を少なくでき
る。
In addition, when the resin is injected, mixed, and added to the contaminated soil or the like in (4) above, the resin is used in a mechanical stirring method for improving the ground in civil engineering work, a high-pressure injection method, or a combination method thereof. By using such an improved apparatus, versatility can be considered, and both agitation efficiency and cost reduction can be achieved. Further, by making the water-absorbing, water-retaining or water-impermeable resin used in the above (5) harmless or biodegradable, no harmful residue is left in the soil after the treatment, and The effect can be reduced.

【0011】本発明者らは、有機塩素化合物に汚染され
た土壌及び/又は地下水を生物化学的に浄化する方法に
焦点を当て、原位置におけて施工する方法を検討し、ま
ず始めに、生物化学的脱塩素反応が行われる環境条件を
調査し、必須条件を明確化し、その条件を確保する事で
本発明に到達した。すなわち、本発明の課題となる必須
条件は下記の通りである。 (1)生物化学的に浄化する為に必要な炭素源及び無機
還元剤等と土壌粒子及び地下水が均一に混練されるこ
と。 (2)上記のごとく混練された土壌中の地下水が処理期
間中(1〜4カ月間)流出せず土壌を浸していること。
The present inventors have focused on a method of biochemically purifying soil and / or groundwater contaminated with an organochlorine compound, and have studied a method of performing in situ construction. The present invention has been achieved by investigating environmental conditions under which a biochemical dechlorination reaction is performed, clarifying essential conditions, and securing the conditions. That is, the essential conditions that are the subject of the present invention are as follows. (1) A carbon source, an inorganic reducing agent, and the like necessary for biochemical purification are uniformly kneaded with soil particles and groundwater. (2) The groundwater in the soil kneaded as described above does not flow out during the treatment period (for 1 to 4 months) and soaks the soil.

【0012】(3)同上に混練された土壌及び地下水中
に雨水及び地下水が処理期間中混入し及び/又は置換し
ないこと。 (4)同上に、空気が処理期間中混入しないこと。 (5)処理エリア内が炭素源及び無機還元剤等と混練調
整された環境(pH4.5〜9.0、酸化還元電位が+
130〜−1000mV)が処理期間中維持されるこ
と。 (6)原位置での処理環境を維持するために添加する物
質が、微生物の活動・増殖を含む生物化学的脱塩素反応
を阻害しないこと。 (7)原位置での処理環境を維持するために添加する物
質は毒性が無く、恒久的に環境に悪影響を及ぼさないも
の及び/又は経時的に分解されてしまう物であること。
(3) Rainwater and groundwater do not mix and / or replace during the treatment period into the soil and groundwater kneaded as described above. (4) As above, no air is mixed during the treatment period. (5) An environment in which the inside of the treatment area is kneaded and adjusted with a carbon source, an inorganic reducing agent, and the like (pH 4.5 to 9.0, the oxidation-reduction potential is +
130 to -1000 mV) during the treatment. (6) Substances added to maintain the processing environment in situ do not inhibit the biochemical dechlorination reaction including the activity and growth of microorganisms. (7) Substances added to maintain the processing environment in situ are non-toxic, do not permanently affect the environment, and / or are decomposed over time.

【0013】[0013]

【発明の実施の形態】以上の条件を解決するにあたり、
まず、原位置で土壌と添加物(添加水を含む)及び地下
水を効率よく注入混練する手段として、地盤改良用のセ
メント系深層混合処理工法用機器、高圧ジェットグラウ
ト工法用機器、チェーンカッター型混合機器(スタビラ
イザ等)を使用することができる。これらの機器は任意
の位置を任意の深さまで混合することが可能である。さ
らに処理開始時(注入混練完了時)の環境を維持するた
めに、吸水性樹脂及び/又は保水性樹脂及び添加物を同
時に注入混練することにより、被汚染地下水及び注入す
る水分を吸収及び/又はゲル化させ、被汚染土粒子及び
地中の水分全体を、微生物の活動・増殖を含む生物化学
的脱塩素反応を阻害する事なく包埋し緩やかに固定する
ことを見いだした。これにより汚染部周囲の地下水及び
雨水と空気の侵入を防ぎ、又汚染物質及び添加した物質
の流出を防止することができ、その結果、上記条件の
(1)〜(7)を解決した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In solving the above conditions,
First, as a means for efficiently injecting and kneading soil, additives (including added water) and groundwater in situ, equipment for cement-based deep mixing method for ground improvement, equipment for high-pressure jet grouting method, chain cutter type mixing Equipment (such as a stabilizer) can be used. These devices can mix any location to any depth. Further, in order to maintain the environment at the start of the treatment (at the completion of the kneading and kneading), the water-absorbing resin and / or the water-retaining resin and the additives are simultaneously kneaded to absorb the contaminated groundwater and the water to be injected. It has been found that the gel is formed and the contaminated soil particles and the entire underground water are embedded and loosely fixed without inhibiting the biochemical dechlorination reaction including the activity and proliferation of microorganisms. As a result, infiltration of groundwater, rainwater and air around the contaminated portion and air can be prevented, and outflow of contaminants and added substances can be prevented. As a result, the above conditions (1) to (7) have been solved.

【0014】汚染土質に間隙が多く、透水性に富む場合
で、吸水性樹脂及び/又は保水性樹脂では保水性を維持
しきれない場合には、汚染エリア周囲(側面及び底面)
に遮水剤として親水性ポリウレタン樹脂などを注入配置
しその効果を助けることにより、より確実性を増すこと
が可能となる。それとは逆に、汚染土質に間隙が少な
く、保水性に富む場合は汚染エリア周囲(側面及び底
面)に遮水剤として親水性ポリウレタン樹脂などを注入
配置する事により吸水性樹脂及び/又は保水性樹脂を使
用すること無しに当初の汚染土壌中の環境を維持するこ
とが可能となる。
[0014] When the contaminated soil has many gaps and high water permeability, and the water-absorbing resin and / or the water-retentive resin cannot maintain the water retention, the surroundings of the contaminated area (side and bottom)
By injecting and arranging a hydrophilic polyurethane resin or the like as a water barrier agent to help the effect, it is possible to further increase the certainty. Conversely, when the contaminated soil has few gaps and is highly water-retentive, a hydrophilic polyurethane resin or the like is injected and disposed as a water-blocking agent around the contaminated area (side surface and bottom surface) to make it water-absorbent and / or water-retentive. The environment in the initially contaminated soil can be maintained without using a resin.

【0015】本発明で使用する樹脂は、土壌中に注入し
て使用するため、土壌粒子の間隙によく馴染むように柔
軟性を有するもので、pHや塩濃度の変化にも耐性を持
つものが好ましい。農園芸分野及び土木分野で使用され
ているものであれば基本的には使用できると思われる。
具体的には、吸水性及び保水性樹脂として、デンプンア
クリロニトリルグラフト重合体加水分解物、デンプンア
クリル酸グラフト重合体、デンプンスチレンスルホン酸
グラフト重合体、デンプンビニルスルホン酸グラフト重
合体、デンプンアクリルアミドグラフト重合体、セルロ
ースアクリロニトリルグラフト重合体、カルボキシメチ
ルセルロース架橋体、ヒアルロン酸、アガロース、ポリ
ビニルアルコール架橋重合体、ポリアクリル酸ナトリウ
ム架橋体、アクリル酸ナトリウム架橋体、アクリル酸ナ
トリウムビニルアルコール共重合体、ポリアクリロニト
リル系重合体ケン化物、その他セルロース系親水樹脂等
があげられる。一方、遮水性樹脂として、親水性ポリウ
レタン樹脂(水に容易に溶解・乳化し、水と反応しハイ
ドロゲルを作るタイプ)、疎水性加水反応型ポリウレタ
ン樹脂があげられる。
Since the resin used in the present invention is used by injecting it into the soil, it has flexibility so as to be well adapted to the interstices of the soil particles, and has a resistance to changes in pH and salt concentration. preferable. It can be basically used if it is used in the fields of agriculture and horticulture and the field of civil engineering.
Specifically, as a water absorbing and water retaining resin, starch acrylonitrile graft polymer hydrolyzate, starch acrylic acid graft polymer, starch styrene sulfonic acid graft polymer, starch vinyl sulfonic acid graft polymer, starch acrylamide graft polymer , Cellulose acrylonitrile graft polymer, carboxymethyl cellulose crosslinked product, hyaluronic acid, agarose, polyvinyl alcohol crosslinked polymer, sodium polyacrylate crosslinked product, sodium acrylate crosslinked product, sodium acrylate vinyl alcohol copolymer, polyacrylonitrile polymer Examples thereof include saponified products and other cellulose-based hydrophilic resins. On the other hand, examples of the water-blocking resin include a hydrophilic polyurethane resin (a type that easily dissolves and emulsifies in water and reacts with water to form a hydrogel) and a hydrophobic hydrolysis-type polyurethane resin.

【0016】本明細書中に示す酸化還元部位はすべて、
水素標準電極を比較電極として用いて測定した場合の標
準電位値に換算している。処理する汚染物が土壌、汚泥
などの固形物である場合、それの含水率は少なくとも2
5%(Wt)以上であることが好ましい。理想的には、
40%(Wt)以上が望ましい。これは目的とする微生
物の増殖に好適であるとともに、土壌、汚泥などの内部
に外気が入りにくく、還元状態を維持しやすい条件であ
る。なお、この含水率の定義としては、(水分重量/湿
潤土壌重量)×100によって求められる値を含水率
(%)として表した。
All of the redox sites shown herein are:
It is converted to a standard potential value when measured using a hydrogen standard electrode as a reference electrode. If the contaminant to be treated is a solid such as soil or sludge, its moisture content should be at least 2
It is preferably at least 5% (Wt). Ideally,
40% (Wt) or more is desirable. This is a condition that is suitable for the propagation of the target microorganism, and that makes it difficult for outside air to enter the inside of soil, sludge, etc., and that the reduced state is easily maintained. As a definition of the water content, a value obtained by (weight of water / weight of wet soil) × 100 was expressed as a water content (%).

【0017】本発明の方法において、土壌等の浄化に用
いる微生物としては、主に嫌気性のものである。また本
発明の方法において、微生物の増殖及び生存に必要な炭
素源としては、糖類、有機酸若しくはその誘導体、低級
アルコール、モラセス廃液、若しくは、醸造廃液又はこ
れらの混合物であることが好ましい。従属栄養型嫌気性
微生物の栄養源は、汚染物中の微生物特性に応じて、適
宜選択される。例えば、メタン生成微生物用培地、硫酸
還元微生物培地、硝酸還元微生物培地などのいずれかを
選択すればよく、その選択に際しては浄化トリータビリ
ティテスト(浄化適用性試験)によってハロゲン化有機
化合物の浄化効率を調べて決定することができる。
In the method of the present invention, microorganisms used for purification of soil and the like are mainly anaerobic. In the method of the present invention, the carbon source necessary for the growth and survival of the microorganism is preferably a saccharide, an organic acid or a derivative thereof, a lower alcohol, a molasses waste liquid, a brewery waste liquid, or a mixture thereof. The nutrient source of the heterotrophic anaerobic microorganism is appropriately selected according to the microbial characteristics in the contaminant. For example, a medium for methane-producing microorganisms, a medium for sulfate-reducing microorganisms, a medium for nitrate-reducing microorganisms, or the like may be selected. In the selection, the purification efficiency of halogenated organic compounds is determined by a purification treatability test (purification applicability test). You can examine and decide.

【0018】メタン生成微生物の栄養源としては、乳
酸、メタノール、エタノール、酢酸、クエン酸、ピルビ
ン酸、ポリペプトン等に代表されるメタン生成微生物の
増殖栄養源として一般に知られている栄養素でよい。ま
た、硫酸還元微生物の増殖栄養源としては、乳酸、メタ
ノール、エタノール、酢酸、クエン酸、ピルビン酸、ポ
リペプトン、糖含有有機物等に代表される硫酸還元微生
物の増殖栄養源として一般に知られている栄養素でよ
い。さらには、従属栄養型嫌気性微生物の増殖栄養源と
して、メタン発酵処理の対象となっている有機性廃水・
廃棄物は効果的であり、例えば、ビール醸造廃水、でん
粉廃水、酪農廃水、製糖廃水や、ビール粕、オカラ、汚
泥等が挙げられる。
As nutrients for the methane-producing microorganisms, nutrients generally known as growth nutrients for methane-producing microorganisms represented by lactic acid, methanol, ethanol, acetic acid, citric acid, pyruvic acid, polypeptone and the like may be used. In addition, as a growth nutrient of sulfate-reducing microorganisms, lactic acid, methanol, ethanol, acetic acid, citric acid, pyruvic acid, polypeptone, a nutrient generally known as a growth nutrient of sulfate-reducing microorganisms represented by sugar-containing organic substances and the like Is fine. Furthermore, as a growth nutrient for heterotrophic anaerobic microorganisms, organic wastewater and methane fermentation
The waste is effective and includes, for example, beer brewing wastewater, starch wastewater, dairy wastewater, sugarmaking wastewater, beer lees, okara, sludge, and the like.

【0019】また本発明の方法において用いる無機還元
剤としては、還元鉄、鋳鉄、鉄−シリコン合金、チタン
合金、亜鉛合金、マンガン合金、アルミニウム合金、マ
グネシウム合金、カルシウム合金及び水溶性化合物から
なる群から選ばれた少なくとも1種である方法が提供さ
れる。このような還元剤の存在下において、化学反応及
び微生物の組み合わせによる還元性ハロゲン化を促進す
ることができる。還元鉄、鋳鉄、鉄−シリコン合金、チ
タン合金、亜鉛合金、マンガン合金、アルミニウム合
金、マグネシウム合金、及び、カルシウム合金から選ば
れた少なくとも一種であることが好ましい。また、前記
還元剤が、還元鉄を含むことが好ましい。あるいは、前
記還元剤が、鋳鉄を含むことが好ましい。あるいは、前
記還元剤が、鉄−シリコン合金、チタン−シリコン合
金、チタン−アルミニウム合金、亜鉛−アルミニウム合
金、マンガン−マグネシウム合金、アルミニウム−亜鉛
−カルシウム合金、アルミニウム−スズ合金、アルミニ
ウム−シリコン合金、マグネシウム−マンガン合金、及
び、カルシウム−シリコン合金からなる群から選ばれた
少なくとも1種であることが好ましい。
The inorganic reducing agent used in the method of the present invention includes a group consisting of reduced iron, cast iron, iron-silicon alloy, titanium alloy, zinc alloy, manganese alloy, aluminum alloy, magnesium alloy, calcium alloy and water-soluble compound. A method is provided that is at least one selected from: In the presence of such a reducing agent, reductive halogenation by a combination of a chemical reaction and a microorganism can be promoted. It is preferably at least one selected from reduced iron, cast iron, iron-silicon alloy, titanium alloy, zinc alloy, manganese alloy, aluminum alloy, magnesium alloy, and calcium alloy. Further, it is preferable that the reducing agent contains reduced iron. Alternatively, it is preferable that the reducing agent contains cast iron. Alternatively, the reducing agent is an iron-silicon alloy, a titanium-silicon alloy, a titanium-aluminum alloy, a zinc-aluminum alloy, a manganese-magnesium alloy, an aluminum-zinc-calcium alloy, an aluminum-tin alloy, an aluminum-silicon alloy, magnesium It is preferably at least one selected from the group consisting of a manganese alloy and a calcium-silicon alloy.

【0020】前記還元剤が、水溶性化合物であることが
好ましい。前記還元剤が、有機酸若しくはその誘導体、
次亜リン酸若しくはその誘導体、又は、硫化物塩が挙げ
られる。有機酸としては、カルボン酸、スルホン酸、フ
ェノール若しくはその誘導体等が挙げられる。カルボン
酸としては、例えば、1〜20の炭素原子を有し、か
つ、水酸基で置換されていてもよい、モノカルボン酸、
ジカルボン酸、トリカルボン酸、又は、テトラカルボン
酸が挙げられる。具体的には、蟻酸、酢酸、クエン酸、
シュウ酸、テレフタル酸等が好ましく、特に、クエン
酸、シュウ酸等の2〜10の炭素原子を有する脂肪族ジ
カルボン酸が好ましい。
Preferably, the reducing agent is a water-soluble compound. The reducing agent is an organic acid or a derivative thereof,
Hypophosphorous acid or a derivative thereof, or a sulfide salt is exemplified. Examples of the organic acid include carboxylic acid, sulfonic acid, phenol and derivatives thereof. As the carboxylic acid, for example, a monocarboxylic acid having 1 to 20 carbon atoms and optionally substituted with a hydroxyl group,
Examples thereof include dicarboxylic acid, tricarboxylic acid, and tetracarboxylic acid. Specifically, formic acid, acetic acid, citric acid,
Oxalic acid, terephthalic acid and the like are preferable, and aliphatic dicarboxylic acids having 2 to 10 carbon atoms such as citric acid and oxalic acid are particularly preferable.

【0021】フェノール誘導体としては、ポリヒドロキ
シアリールが好ましい。ポリヒドロキシアリールとは、
2以上の水酸基で置換されたアリールをいい、アリール
としては、ベンゼン、ナフタレン、アントラセン等が挙
げられる。また、ナフタレン、インデンのように縮合環
が形成されていてもよい。ポリヒドロキシアリールとし
ては、例えば、1,2,3−トリヒドロキシベンゼン、
1,4−ジヒドロキシベンゼンが好ましい。ここで、
1,2,3−トリヒドロキシベンゼンは、焦性没食子
酸、ピロガロールとも呼ばれる。そのアルカリ性溶液
は、酸素と反応して酸化物を生成する。
As the phenol derivative, polyhydroxyaryl is preferable. Polyhydroxyaryl is
An aryl substituted with two or more hydroxyl groups is mentioned, and the aryl includes benzene, naphthalene, anthracene and the like. Further, a condensed ring may be formed like naphthalene or indene. Examples of the polyhydroxyaryl include 1,2,3-trihydroxybenzene,
1,4-dihydroxybenzene is preferred. here,
1,2,3-Trihydroxybenzene is also called pyrogallic acid, pyrogallol. The alkaline solution reacts with oxygen to form an oxide.

【0022】有機酸の誘導体としては、塩、エステル、
アミド、酸無水物等が挙げられ、塩が好ましい。反対イ
オンとしては、特に制限がなく、ナトリウムイオン等の
アルカリ金属イオン:カルシウムイオン等のアルカリ土
類金属イオン;鉄イオン、チタンイオン等の遷移金属イ
オン等の無機イオン、又は、テトラアルキルアンモニウ
ムイオン等の有機イオンであってもよい。次亜リン酸の
誘導体としては、塩、エステル等が挙げられ、塩が好ま
しい。反対イオンとしては、特に制限がなく、ナトリウ
ムイオン等のアルカリ金属イオン:カルシウムイオン等
のアルカリ土類金属イオン;鉄イオン、チタンイオン等
の遷移金属イオン等の無機イオン、又は、テトラアルキ
ルアンモニウムイオン等の有機イオンであってもよい。
As the derivatives of organic acids, salts, esters,
Examples include amides and acid anhydrides, and salts are preferred. The counter ion is not particularly limited, and may be an alkali metal ion such as a sodium ion: an alkaline earth metal ion such as a calcium ion; an inorganic ion such as a transition metal ion such as an iron ion or a titanium ion; or a tetraalkylammonium ion Organic ions may be used. Derivatives of hypophosphorous acid include salts, esters and the like, with salts being preferred. The counter ion is not particularly limited, and may be an alkali metal ion such as a sodium ion: an alkaline earth metal ion such as a calcium ion; an inorganic ion such as a transition metal ion such as an iron ion or a titanium ion; or a tetraalkylammonium ion Organic ions may be used.

【0023】また、前記還元剤が、有機酸又は次亜リン
酸と、鉄、チタン、亜鉛、マンガン、アルミニウム又は
マグネシウムとからなる塩であってもよい。還元剤の使
用量は、汚染物が土壌の場合、土壌100g当たり0.
01〜20gが好ましく、更に好ましくは0.05〜1
0gである。また汚染物が水の場合、水100ml当た
り0.1〜30gが好ましく、更に好ましくは0.2〜
20gである。いずれの場合も、脱ハロゲン化の対象と
なるハロゲン化有機化合物の汚染濃度が50mg/kg
(または50mg/l)を越える場合には、ハロゲン化
有機化合物1mgに対し、0.05〜0.1gの比率で
金属粉末等の還元剤の添加量を増加させることが必要と
なる。ただしこれはあくまでも理想条件下での数値であ
り、実際の汚染現場においては、微生物による酸素消費
が順調に行われなかった場合には還元剤の還元力がむだ
に消耗されることも起こりうる。また、雨水や外気によ
る酸素等の供給によっても還元剤の還元力は容易に消耗
するため、実施に当たっては現場で予備試験を行い、現
場の条件に合わせて個々に添加濃度を決定すべきであ
る。
Further, the reducing agent may be a salt comprising an organic acid or hypophosphorous acid and iron, titanium, zinc, manganese, aluminum or magnesium. When the contaminant is soil, the amount of the reducing agent used is 0.
01-20 g is preferable, and 0.05-1 is more preferable.
0 g. When the contaminant is water, the amount is preferably 0.1 to 30 g, more preferably 0.2 to 30 g per 100 ml of water.
20 g. In each case, the contamination concentration of the halogenated organic compound to be dehalogenated is 50 mg / kg.
If it exceeds (or 50 mg / l), it is necessary to increase the amount of the reducing agent such as metal powder added at a ratio of 0.05 to 0.1 g per 1 mg of the halogenated organic compound. However, this is only a value under ideal conditions, and in an actual pollution site, if oxygen consumption by microorganisms is not performed smoothly, the reducing power of the reducing agent may be wasted. In addition, since the reducing power of the reducing agent is easily consumed even by the supply of oxygen or the like from rainwater or the outside air, a preliminary test should be performed on site at the time of implementation, and the addition concentration should be determined individually according to the conditions at the site. .

【0024】[0024]

【実施例】以下に、本発明を実施例により具体的に説明
する。ただしこれら実施例により本発明が限定されるも
のではない。本実施例で記すテトラクロロエチレン(P
CB)汚染土壌浄化実験においては炭素源として酢酸ナ
トリウムを、還元剤として還元鉄粉末を用いた。浄化試
験は室温(12〜23℃)にて実施した。また、酸化還
元電位(ORP)の測定では、土壌:無酸素水=1:1
(Wt)に調整し、セントラル科学製ORPメータUK
−2030にて電極を浸して30分放置後に測定した。
なお、本実施例で示す酸化還元電位は、水素標準電極を
比較電極として用いて測定した場合の標準電位値に換算
して示している。土壌中塩化エチレン類の分析は横浜国
立大学で開発された方法(宮本健一ら、「土壌の低沸点
有機塩素化合物含有量の測定方法」、水環境学会誌、1
995年、第18巻、第6号、477−488頁)に従
い、エタノール抽出後にデカンへ転換して日立ガスクロ
マトグラフG−5000型、FID検出器にて20%T
CP Chromosorb WAW DMCS60−
80meshカラムにより分析した。
The present invention will be described below in more detail with reference to examples. However, the present invention is not limited by these examples. In this example, tetrachloroethylene (P
CB) In a soil remediation experiment, sodium acetate was used as a carbon source, and reduced iron powder was used as a reducing agent. The purification test was performed at room temperature (12 to 23 ° C.). In the measurement of the oxidation-reduction potential (ORP), soil: oxygen-free water = 1: 1
(Wt), Central Science ORP meter UK
The measurement was performed after the electrode was immersed at −2030 and left for 30 minutes.
Note that the oxidation-reduction potential shown in this example is shown in terms of a standard potential value measured using a hydrogen standard electrode as a reference electrode. Analysis of ethylene chloride in soil was carried out by a method developed at Yokohama National University (Kenichi Miyamoto et al., "Method for measuring the content of low-boiling organochlorine compounds in soil", Journal of Japan Society on Water Environment, 1
995, Vol. 18, No. 6, pp. 474-488), extraction with ethanol, conversion to decane, Hitachi Gas Chromatograph Model G-5000, 20% T with FID detector.
CP Chromosorb WAW DMCS60-
The analysis was performed using an 80 mesh column.

【0025】実施例1 化学工場のPCE汚染土壌(汚染濃度約30mg/kg
・乾燥土壌)について浄化実験を行なった。汚染土壌は
シルト混じりの細砂質土壌であった。実験は、セメント
系深層混合処理工法用機器を用い、現場にて汚染土壌地
盤に炭素源、還元剤、各種樹脂を以下に示す条件で注入
し、同時に混練した。混合直後にパーカッション式ボー
リング機を用いて混練した土壌コアをサンプリングし、
各サンプルの深度60cmから120cmまでを乱さぬ
ように取り出してステンレス製カラムに充填した。ステ
ンレス製カラムは直径8cm、長さ60cmのものを計
6本用意し、各試験系につきカラムを1本作成した。コ
ーキング剤を用いて土壌コアサンプルとカラムとの間の
間隙を塞いだ。カラムの下部にガラス製のフィルターを
設けて土壌サンプルを支持し、滲出してくる水分は透過
できるようにした。カラムの上部を開放して垂直に立
て、カラムの下にメスシリンダーを置いて滲出水量と、
水中のPCE濃度を測定した。60日後にカラムを開い
て土壌中の残留している塩化エチレン類の測定、酸化還
元電位の測定および含水率の測定を行った。
Example 1 PCE-contaminated soil at a chemical plant (contamination concentration about 30 mg / kg
・ Dry soil) was subjected to a purification experiment. The contaminated soil was fine sandy soil mixed with silt. In the experiment, a carbon source, a reducing agent, and various resins were injected into the contaminated soil ground at the site under the following conditions using a cement-based deep mixing method, and were simultaneously kneaded. Immediately after mixing, the kneaded soil core was sampled using a percussion boring machine,
The depth of each sample from 60 cm to 120 cm was taken out without disturbing and packed into a stainless steel column. A total of six stainless steel columns having a diameter of 8 cm and a length of 60 cm were prepared, and one column was prepared for each test system. The gap between the soil core sample and the column was plugged with a caulking agent. A glass filter was provided at the bottom of the column to support the soil sample and allow the exuding moisture to pass. Open the top of the column, stand upright, place a graduated cylinder under the column,
The PCE concentration in the water was measured. After 60 days, the column was opened to measure ethylene chloride remaining in the soil, measure the oxidation-reduction potential, and measure the water content.

【0026】酢酸ナトリウム及び還元鉄粉末は和光純薬
製の試薬1級のものを使用した。保水性樹脂はダイセル
化学工業製のCMCダイセル1170を使用した。吸水
性樹脂は日本触媒製のアクアリックCA−K4を使用し
た。遮水性樹脂は東邦化学工業製のハイセルOH−1A
を使用した。コーキング剤は信越化学工業製KE45を
使用した。
As the sodium acetate and reduced iron powder, the first grade reagent manufactured by Wako Pure Chemical Industries was used. The water retention resin used was CMC Daicel 1170 manufactured by Daicel Chemical Industries. Aqualic CA-K4 manufactured by Nippon Shokubai was used as the water absorbent resin. The water-impervious resin is high-cell OH-1A manufactured by Toho Chemical Industry
It was used. As a caulking agent, KE45 manufactured by Shin-Etsu Chemical Co., Ltd. was used.

【0027】実験条件 深度0〜2mの区間を、汚染土壌1m3 に対し酢酸ナ
トリウム1.7kg、還元鉄3kg、保水性樹脂4k
g、水0.3m3 を添加し混練 深度0〜2mの区間を、汚染土壌1m3 に対し酢酸ナ
トリウム1.7kg、還元鉄3kg、吸水性樹脂2k
g、水0.3m3 を添加し混練 深度0〜1mの区間を、汚染土壌1m3 に対し酢酸ナ
トリウム1.7kg、還元鉄3kg、水0.3m3 を添
加し混練し、引き続き深度1〜2mの区間を、汚染土壌
1m3 に対し酢酸ナトリウム1.7kg、還元鉄3k
g、遮水性樹脂10kg、水0.3m3 を添加し混練 深度0〜1mの区間を、汚染土壌1m3 に対し酢酸ナ
トリウム1.7kg、還元鉄3kg、保水性樹脂4k
g、水0.3m3 を添加し混練し、引き続き深度1〜2
mの区間を、汚染土壌1m3 に対し酢酸ナトリウム1.
7kg、還元鉄3kg、遮水性樹脂10kg、水0.3
3 を添加し混練 深度0〜2mの区間を、汚染土壌1m3 に対し酢酸ナ
トリウム1.7kg、還元鉄3kg、水0.3m3 を添
加し混練(対照試験) 深度0〜2mの区間を、汚染土壌1m3 に対し水0.
3を添加し混練(空試験)
Experimental conditions A section at a depth of 0 to 2 m was subjected to 1.7 kg of sodium acetate, 3 kg of reduced iron, and 4 k of water-retaining resin per 1 m 3 of contaminated soil.
g, adding a section of the kneading depth 0~2m water 0.3 m 3, contaminated soil 1 m 3 to sodium acetate 1.7 kg, reduced iron 3 kg, the water-absorbing resin 2k
g, 0.3 m 3 of water and kneading, 1.7 kg of sodium acetate, 3 kg of reduced iron and 0.3 m 3 of water were added to 1 m 3 of contaminated soil and kneaded in a section of 0 m to 1 m 3 contaminated soil. the 2m section of contamination to the soil 1 m 3 of sodium acetate 1.7 kg, reduced iron 3k
g, 10 kg of water-impervious resin, and 0.3 m 3 of water are added and kneaded. For a section of 0 m to 1 m 3, 1.7 kg of sodium acetate, 3 kg of reduced iron, and 4 k of water-retaining resin are applied to 1 m 3 of contaminated soil.
g, 0.3 m 3 of water and kneading, followed by a depth of 1-2
m section of contaminated soil per 1 m 3 of sodium acetate 1.
7 kg, reduced iron 3 kg, water-blocking resin 10 kg, water 0.3
a section of the added kneading depth 0~2m the m 3, contaminated soil 1 m 3 to sodium acetate 1.7 kg, reduced iron 3 kg, the addition of water 0.3 m 3 kneading (control test) depth 0~2m section Water per 1 m 3 of contaminated soil.
Add 3 and knead (blank test)

【0028】試験結果を表−1に示す。、、、
の系では滲出水量が少なく、60日後まで含水率が高く
保たれた結果、酸化還元電位が低く保たれ、PCEがほ
ぼ完全に分解された。これに対しての系では、滲出水
量が多かったために土壌中の含水率が低下し、酸化還元
電位が低く維持できなかったためにPCEが5.3mg
/kg残留していた。またの系では炭素源、還元剤も
加えていないため殆ど分解が生じなかった。
The test results are shown in Table 1. ,,,
In the system (1), the amount of exuded water was small, and the water content was kept high until after 60 days. As a result, the oxidation-reduction potential was kept low, and PCE was almost completely decomposed. On the other hand, in the system in which the amount of exuded water was large, the water content in the soil was reduced, and the oxidation-reduction potential could not be maintained low.
/ Kg remained. In the other system, almost no decomposition occurred because neither the carbon source nor the reducing agent was added.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例2 ペンタクロロフェノール(PCP)分解試験例 本発明によりハロゲン化芳香族化合物が分解できること
を示す。製材所跡地のPCP汚染土壌(汚染濃度約5m
g/kg−乾燥土壌)について浄化実験を行なった。汚
染土壌はローム質土壌であり、最大汚染深度は1mであ
った。チェーンカッター型混合機器(スタビライザ)を
用い、現場にて汚染土壌地盤に汚染土壌1m3 に対し酢
酸ナトリウム0.5kg、還元鉄1.5kg、保水性樹
脂4kg、水0.25m3 を添加し注入し、同時に混練
した。混練終了後に土壌表面をブルーシートで覆い、4
0日間そのまま放置した。40日後に深度0.2m、
0.5m、0.9mの土壌サンプルを採取し、PCP汚
染濃度、酸化還元電位と含水率を測定した。結果を表−
2に示す。
Example 2 Pentachlorophenol (PCP) Decomposition Test Example It is shown that a halogenated aromatic compound can be decomposed by the present invention. PCP contaminated soil at the site of the sawmill (contamination concentration about 5m
g / kg-dry soil). The contaminated soil was loamy soil with a maximum depth of contamination of 1 m. Using a chain cutter type mixing device (stabilizer), add 0.5 kg of sodium acetate, 1.5 kg of reduced iron, 4 kg of water-retaining resin, and 0.25 m 3 of water to 1 m 3 of the contaminated soil at the site and into the contaminated soil ground. And kneaded at the same time. After completion of kneading, cover the soil surface with a blue sheet.
Left for 0 days. After 40 days, depth 0.2m,
0.5 m and 0.9 m soil samples were collected, and the PCP contamination concentration, oxidation-reduction potential and water content were measured. Table-Results
It is shown in FIG.

【0031】[0031]

【表2】 [Table 2]

【0032】また、その他のハロゲン化芳香族化合物の
蓄積は認められなかった。
No accumulation of other halogenated aromatic compounds was observed.

【0033】[0033]

【発明の効果】本発明の方法によれば、原位置における
汚染土壌及び/又は汚染地下水の浄化処理を行うに当た
り、土壌中の微生物(主に嫌気性菌)の増殖及び生存に
必要な炭素源と無機還元剤を用い嫌気条件下で生物学的
及び物理化学的に浄化処理する環境を、低コストで完全
にしかも大掛かりな専用機器を用いずに一定時間保つこ
とが可能であり、被汚染エリア全体を一様に直接浄化処
理できるものである。
According to the method of the present invention, a carbon source necessary for the growth and survival of microorganisms (mainly anaerobic bacteria) in soil when purifying contaminated soil and / or contaminated groundwater in situ. The environment where biological and physicochemical purification treatments are performed under anaerobic conditions using an inorganic reducing agent can be maintained for a certain period of time at low cost and completely without using specialized equipment. The whole can be directly and uniformly purified.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有害化学物質により汚染された土壌及び
/又は地下水を、土壌中の微生物の増殖及び生存に必要
な炭素源と無機還元剤を用い嫌気条件下で生物学的及び
物理化学的に浄化する方法において、汚染された土壌及
び/又は地下水の領域に高分子吸水性樹脂及び/又は保
水性樹脂を注入、混合することを特徴とする浄化工法。
Claims: 1. Soil and / or groundwater contaminated by harmful chemicals are biologically and physicochemically analyzed under anaerobic conditions using a carbon source and an inorganic reducing agent necessary for the growth and survival of microorganisms in the soil. A method for purifying, comprising injecting and mixing a polymeric water-absorbent resin and / or a water-retentive resin into a contaminated soil and / or groundwater region.
【請求項2】 有害化学物質により汚染された土壌及び
/又は地下水を、土壌中の微生物の増殖及び生存に必要
な炭素源と無機還元剤を用い嫌気条件下で生物学的及び
物理化学的に浄化する方法において、汚染された土壌及
び/又は地下水の領域の周囲に不透水性樹脂を添加攪拌
して配置、周囲の環境と処理エリアを遮蔽することを特
徴とする浄化工法。
2. Soil and / or groundwater contaminated with harmful chemicals are biologically and physicochemically analyzed under anaerobic conditions using a carbon source and an inorganic reducing agent necessary for the growth and survival of microorganisms in the soil. A method of cleaning, wherein a water-impermeable resin is added around a region of contaminated soil and / or groundwater with stirring, and the surrounding environment and a treatment area are shielded.
【請求項3】 有害化学物質により汚染された土壌及び
/又は地下水を、土壌中の微生物の増殖及び生存に必要
な炭素源と無機還元剤を用い嫌気条件下で生物学的及び
物理化学的に浄化する方法において、汚染された土壌及
び/又は地下水の領域に高分子吸水性樹脂及び/又は保
水性樹脂を注入、混合し、かつ、該領域の周囲に不透水
性樹脂を添加攪拌して配置することを特徴とする浄化工
法。
3. Soil and / or groundwater contaminated with harmful chemicals is biologically and physicochemically analyzed under anaerobic conditions using a carbon source and an inorganic reducing agent necessary for the growth and survival of microorganisms in the soil. In the purification method, a polymer water-absorbent resin and / or a water-retentive resin is injected and mixed into a contaminated soil and / or groundwater region, and a water-impermeable resin is added around the region and stirred and arranged. Purification method characterized by doing.
【請求項4】 汚染された土壌及び/又は地下水に樹脂
を注入、混合、添加攪拌を行うに際し、土木工事におけ
る地盤改良用の機械攪拌工法、高圧噴射工法またはこれ
らの併用工法で使用される改良装置を用いることを特徴
とする請求項1〜3のいずれかに記載の浄化工法。
4. Injecting, mixing, and adding resin to contaminated soil and / or groundwater, and performing agitation using a mechanical stirring method, a high-pressure injection method, or a combination thereof for soil improvement in civil engineering work. The purification method according to any one of claims 1 to 3, wherein an apparatus is used.
【請求項5】 使用する吸水性、保水性または不透水性
樹脂が、無害または生分解性のものであることを特徴と
する請求項1〜3のいずれかに記載の浄化工法。
5. The purification method according to claim 1, wherein the water-absorbing, water-retaining or water-impermeable resin used is harmless or biodegradable.
JP06696498A 1998-03-17 1998-03-17 Purification method for soil, etc. in situ Expired - Lifetime JP3640286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06696498A JP3640286B2 (en) 1998-03-17 1998-03-17 Purification method for soil, etc. in situ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06696498A JP3640286B2 (en) 1998-03-17 1998-03-17 Purification method for soil, etc. in situ

Publications (2)

Publication Number Publication Date
JPH11262751A true JPH11262751A (en) 1999-09-28
JP3640286B2 JP3640286B2 (en) 2005-04-20

Family

ID=13331226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06696498A Expired - Lifetime JP3640286B2 (en) 1998-03-17 1998-03-17 Purification method for soil, etc. in situ

Country Status (1)

Country Link
JP (1) JP3640286B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186928A (en) * 2000-12-20 2002-07-02 Taiyo Kogyo Corp Alternative covering material at industrial waste diposal plant and method for forming layer to cover industrial wastes by using the covering material
JP2005058838A (en) * 2003-08-19 2005-03-10 Matsushita Environment Airconditioning Eng Co Ltd Method for decomposing tetrachloroethylene contained in pollutant
JP2005224760A (en) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd Soil and ground water processing method
WO2005118171A1 (en) * 2004-06-02 2005-12-15 Ecocycle Corporation Additive for use to restore polluted soil, groundwater or bottom sediment soil
US7030287B2 (en) 2001-04-13 2006-04-18 Matsushita Electric Industrial Co., Ltd. Method of decreasing nitrate nitrogen and volatile organic compound in soil and groundwater
JP2007222737A (en) * 2006-02-22 2007-09-06 Shimizu Corp Contaminated soil cleaning method
JP2008173557A (en) * 2007-01-17 2008-07-31 Petroleum Energy Center Water-permeable purifying wall and purification treatment method of polluted underground water
JP2008173558A (en) * 2007-01-17 2008-07-31 Petroleum Energy Center Water-permeable purifying wall and purification treatment method of polluted underground water
JP2008296176A (en) * 2007-06-01 2008-12-11 Panasonic Corp Method for purification of groundwater pollution
JP2009011947A (en) * 2007-07-05 2009-01-22 Taisei Corp Purification ground and method for soil saturation water
JP2012101201A (en) * 2010-11-12 2012-05-31 Taisei Corp Purification promoting material and purification promoting method
WO2018159741A1 (en) * 2017-03-01 2018-09-07 大成建設株式会社 Method for purifying contaminated groundwater
CN111744954A (en) * 2020-06-11 2020-10-09 昆明学院 Soil prosthetic devices based on microbial remediation
CN112845549A (en) * 2020-12-22 2021-05-28 山西大学 Soil hydrological property restoration method for ecological fragile area

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186928A (en) * 2000-12-20 2002-07-02 Taiyo Kogyo Corp Alternative covering material at industrial waste diposal plant and method for forming layer to cover industrial wastes by using the covering material
US7030287B2 (en) 2001-04-13 2006-04-18 Matsushita Electric Industrial Co., Ltd. Method of decreasing nitrate nitrogen and volatile organic compound in soil and groundwater
JP4530196B2 (en) * 2003-08-19 2010-08-25 パナソニック環境エンジニアリング株式会社 Method for decomposing tetrachlorethylene contained in pollutants
JP2005058838A (en) * 2003-08-19 2005-03-10 Matsushita Environment Airconditioning Eng Co Ltd Method for decomposing tetrachloroethylene contained in pollutant
JP2005224760A (en) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd Soil and ground water processing method
WO2005118171A1 (en) * 2004-06-02 2005-12-15 Ecocycle Corporation Additive for use to restore polluted soil, groundwater or bottom sediment soil
JP2007222737A (en) * 2006-02-22 2007-09-06 Shimizu Corp Contaminated soil cleaning method
JP2008173557A (en) * 2007-01-17 2008-07-31 Petroleum Energy Center Water-permeable purifying wall and purification treatment method of polluted underground water
JP2008173558A (en) * 2007-01-17 2008-07-31 Petroleum Energy Center Water-permeable purifying wall and purification treatment method of polluted underground water
JP2008296176A (en) * 2007-06-01 2008-12-11 Panasonic Corp Method for purification of groundwater pollution
JP2009011947A (en) * 2007-07-05 2009-01-22 Taisei Corp Purification ground and method for soil saturation water
JP2012101201A (en) * 2010-11-12 2012-05-31 Taisei Corp Purification promoting material and purification promoting method
WO2018159741A1 (en) * 2017-03-01 2018-09-07 大成建設株式会社 Method for purifying contaminated groundwater
JP2018143918A (en) * 2017-03-01 2018-09-20 大成建設株式会社 Method for purifying polluted groundwater
CN111744954A (en) * 2020-06-11 2020-10-09 昆明学院 Soil prosthetic devices based on microbial remediation
CN112845549A (en) * 2020-12-22 2021-05-28 山西大学 Soil hydrological property restoration method for ecological fragile area

Also Published As

Publication number Publication date
JP3640286B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
You et al. Fluoroquinolones and β-lactam antibiotics and antibiotic resistance genes in autumn leachates of seven major municipal solid waste landfills in China
Laine et al. Effective and safe composting of chlorophenol-contaminated soil in pilot scale
Moore et al. Biodegradation of trans-1, 2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator
JP3640286B2 (en) Purification method for soil, etc. in situ
Simantiraki et al. Qualitative determination and application of sewage sludge and municipal solid waste compost for BTEX removal from groundwater
WO1998034740A1 (en) Processes for purifying substances polluted with organohalogen compounds
Williams et al. Changes in enantiomeric fraction as evidence of natural attenuation of mecoprop in a limestone aquifer
Lin et al. Effectiveness and mode of action of calcium nitrate and Phoslock® in phosphorus control in contaminated sediment, a microcosm study
Semkiw et al. Field study of enhanced TCE reductive dechlorination by a full‐scale whey PRB
CN107891060B (en) Method for restoring petroleum hydrocarbon polluted soil
JP4021511B2 (en) Purification method for organic chlorine compound contaminants
Langenhoff et al. Stimulation of hexachlorocyclohexane (HCH) biodegradation in a full scale in situ bioscreen
Kosson et al. Interactions of aniline with soil and groundwater at an industrial spill site.
Church et al. Effects of environmental conditions on MTBE degradation in model column aquifers
JP3401191B2 (en) Method for purifying contaminants by halogenated organic compounds
Mohammed et al. State‐of‐the‐art review of bioremediation studies
JP2006198476A (en) Method for making contaminated deposit harmless
JP2006116420A (en) Method for treating chemical contaminant
Vera et al. Evaluation of different polymeric organic materials for creating conditions that favor reductive processes in groundwater
Harrison et al. Sorption and enhanced biodegradation of trace organics in a groundwater reclamation scheme—Gloucester site, Ottawa, Canada
Hickman et al. Effects of site variations on subsurface biodegradation potential
Yuan et al. Pharmaceuticals and personal care products transference-transformation in aquifer system.
Zheng et al. Fate and transport of TNT, RDX, and HMX in streambed sediments: Implications for riverbank filtration
Karim et al. Biosorption of nitrophenols on anaerobic granular sludge
JP2009154152A (en) Method for clarifying contaminated soil or ground water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term