WO2018159741A1 - Method for purifying contaminated groundwater - Google Patents

Method for purifying contaminated groundwater Download PDF

Info

Publication number
WO2018159741A1
WO2018159741A1 PCT/JP2018/007709 JP2018007709W WO2018159741A1 WO 2018159741 A1 WO2018159741 A1 WO 2018159741A1 JP 2018007709 W JP2018007709 W JP 2018007709W WO 2018159741 A1 WO2018159741 A1 WO 2018159741A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrolyzable resin
groundwater
contaminated groundwater
soluble organic
Prior art date
Application number
PCT/JP2018/007709
Other languages
French (fr)
Japanese (ja)
Inventor
雅子 伊藤
陽 高畑
傳喜 片山
成志 吉川
幸樹 柴田
Original Assignee
大成建設株式会社
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大成建設株式会社, 東洋製罐グループホールディングス株式会社 filed Critical 大成建設株式会社
Publication of WO2018159741A1 publication Critical patent/WO2018159741A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids

Definitions

  • the present invention relates to a contaminated groundwater purification method for purifying contaminated groundwater or preventing recontamination of groundwater.
  • Groundwater contamination by chemical substances may be regulated by environmental standards, etc., and many countermeasures have been studied and implemented. Among such countermeasures, a method of purifying the groundwater without causing a significant change in the location where groundwater contamination occurs is particularly useful.
  • One of the effective methods for purifying groundwater contamination is a method (bioremediation) of decomposing harmful substances using microorganisms.
  • Various attempts have already been made to purify harmful chemical substances in groundwater by effectively utilizing microorganisms present in the soil in situ.
  • volatile organochlorine compounds such as tetrachlorethylene and trichlorethylene (hereinafter sometimes referred to as “VOCs”) have established groundwater environmental standards, and technologies for their purification are highly demanded. Is.
  • nitrate water and nitrite nitrogen hereinafter sometimes referred to as “nitrate / nitrite nitrogen” have established groundwater environmental standards, and technologies for their purification are required. .
  • Purification technology using anaerobic microorganisms is known as a purification technology for groundwater contamination by VOCs and nitrate / nitrite nitrogen. It purifies VOCs and nitrate / nitrite nitrogen by making the groundwater environment anaerobic and providing a hydrogen donor as an energy source for anaerobic microorganisms that degrade VOCs and nitrate / nitrite nitrogen Technology.
  • the water-soluble organic compound is a substance that becomes a nutrient source or a hydrogen donor for activating the aerobic microorganism and the anaerobic microorganism.
  • Patent Document 1 is characterized in that a purifier is melted by heating, pressurized and injected into contaminated soil or groundwater, diffused, and decomposed by microorganisms grown under anaerobic conditions after solidification. In-situ purification methods for contaminated soil and / or groundwater contamination are disclosed.
  • a high molecular weight resin is suitable for the purpose of maintaining an anaerobic environment for a long period of time because it does not easily collapse even in the soil and gradually decomposes over time.
  • the solid powder organic compound to be injected is preferable because the smaller the particle shape, the better it can be injected into a wide range of ground.
  • the organic compound processed into a fine powder has an increased surface area, it tends to aggregate and it is difficult to uniformly disperse it in water as a medium.
  • a resin in the form of a solid powder generally has a problem that it does not disperse in water only when added to water, but aggregates and becomes non-uniform, and floats on the water surface, resulting in a significant decrease in handling.
  • an object of the present invention is to provide a method for purifying contaminated groundwater that can maintain a low contamination state in a wide area of soil for a long period of time, purify contaminated groundwater, and prevent recontamination of groundwater. It is to be.
  • the present inventors follow the procedure of adding a water-soluble organic compound to a particulate hydrolyzable resin and stirring, then adding water to form a mixed solution, and then pouring the mixed solution into the soil.
  • aggregation of the particulate hydrolyzable resin can be suppressed and a hydrogen donor can be provided over a wide area in the soil.
  • the combined use of a water-soluble organic compound and a hydrolyzable resin as a hydrogen donor makes it possible to maintain an anaerobic environment in the soil and suppress recontamination. .
  • the present invention has been made based on such knowledge. That is, the present invention is a method for purifying contaminated groundwater, which uses anaerobic microorganisms to purify contaminated groundwater or prevents recontamination of groundwater, and as a hydrogen donor, a particulate hydrolyzable resin And the water-soluble organic compound together, the hydrolyzable resin is added to the water-soluble organic compound and stirred, then water is added to form a mixed solution, and then the mixed solution is poured into the soil.
  • This is a purification method for contaminated groundwater.
  • the pollutant in the contaminated groundwater may be at least one of a volatile organochlorine compound, nitrate nitrogen, and nitrite nitrogen.
  • the water-soluble organic compound preferably contains at least one of alcohol, alcohol derivative, carboxylic acid and carboxylic acid derivative.
  • the hydrolyzable resin is preferably an aliphatic polyester.
  • the hydrolyzable resin preferably contains at least one of polylactic acid and polyoxalate.
  • the average particle size of the hydrolyzable resin is preferably 1 to 100 ⁇ m.
  • a packer can be installed in the upper part of the well for injection
  • the method for purifying contaminated groundwater of the present invention can maintain a state of low contamination over a wide area in the soil for a long period of time, thereby purifying the contaminated groundwater or preventing recontamination of the groundwater.
  • This embodiment is a method for purifying contaminated groundwater by using anaerobic microorganisms to purify contaminated groundwater or preventing recontamination of groundwater.
  • Contaminants of contaminated groundwater are not particularly limited, but among the pollutants, groundwater environmental standards are set for VOCs and nitrate / nitrite nitrogen.
  • the purification method of the present embodiment is suitable for contaminated groundwater containing VOCs or nitrate / nitrite nitrogen.
  • the purification method of this embodiment is effective not only for contaminated groundwater but also for the purification of soil recontaminated with VOCs.
  • VOCs have been widely used industrially as solvents and cleaning agents.
  • VOCs include tetrachloroethylene (PCE), trichlorethylene (TCE), cis-1,2-dichloroethylene (cis-1,2-DCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride ( VC or VCM), 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,2-dichloroethane, ethane tetrachloride, carbon tetrachloride, chloroform, dichloromethane and the like.
  • VOCs are dechlorinated using anaerobic microorganisms in an anaerobic environment to change them into compounds that do not contain chlorine.
  • Anaerobic microorganisms that degrade VOCs are activated by the presence of a hydrogen donor in an anaerobic environment.
  • nitrate and nitrite nitrogen Main sources of nitrate and nitrite nitrogen are nitrogen fertilizer, livestock manure and domestic wastewater. Some of these substances are converted into nitrate nitrogen through ammonia nitrogen and nitrite nitrogen by the action of microorganisms in the soil. Nitrate and nitrite nitrogen is easily dissolved in water and is not easily retained in soil, and therefore has a property of being easily dissolved in groundwater.
  • VOCs and nitrate / nitrite nitrogen by anaerobic microorganisms are performed by the following process.
  • the aerobic microorganisms are active in an aerobic environment.
  • nutrient sources and hydrogen donors are injected into the soil to activate aerobic microorganisms and consume oxygen in a limited area of the soil.
  • a water-soluble organic compound is an organic compound containing hydrogen, metabolized by microorganisms to become a nutrient source, and also functions as a hydrogen donor when substituting the chlorine atom of VOCs with a hydrogen atom.
  • water-soluble organic compounds include alcohols, carboxylic acids, amines, esters, and derivatives thereof.
  • the water-soluble organic compound preferably contains at least one of alcohol, alcohol derivative, carboxylic acid and carboxylic acid derivative.
  • the water-soluble organic compound is preferably either a carboxylic acid or a carboxylic acid derivative, and the carboxylic acid derivative is more preferably a carboxylate.
  • the water-soluble organic compound only a specific type may be used, or a plurality of types may be mixed and used. Further, the water-soluble organic compound is preferably an organic compound composed of only carbon atoms and hydrogen atoms, or carbon atoms, hydrogen atoms and oxygen atoms. In addition, the water-soluble organic compound is preferably an organic compound having a low molecular weight that is biodegradable so as not to remain in the soil.
  • water-soluble organic compounds are as follows.
  • the alcohol include ethylene glycol, polyethylene glycol, glycerin and the like.
  • the carboxylic acid include glycolic acid, lactic acid, malic acid, succinic acid, ascorbic acid, acetic acid and the like.
  • the carboxylate include sodium lactate, sodium ascorbate, and sodium succinate.
  • biodegradable nutrient sources such as yeast extract, soy milk, corn milk, peptone, beef tallow, coconut oil, and soybean oil may be added to the water-soluble organic compound.
  • the hydrolyzable resin is a resin that is hydrolyzed in the presence of water to generate a low molecular weight monomer.
  • the generated monomer is an organic compound that contains carbon and hydrogen atoms, as well as water-soluble organic compounds. It is metabolized by microorganisms to become a nutrient source and replaces the chlorine atoms in VOCs with hydrogen atoms. It also functions as a hydrogen donor.
  • the hydrolyzable resin is a high molecular weight resin that is insoluble in water, so it is not susceptible to chemical degradation or microbial degradation, and remains on the contaminated ground for a long period of time, releasing the hydrogen donor continuously. It is possible. In addition, since it does not decompose rapidly, it does not increase the total organic carbon concentration (TOC) and has a low environmental impact.
  • TOC total organic carbon concentration
  • the water-soluble organic compound When a water-soluble organic compound and a hydrolyzable resin are used in combination, the water-soluble organic compound functions as a nutrient source or hydrogen donor that acts on microorganisms in the short term, and a nutrient source on which the hydrolyzable resin acts on microorganisms in the long term. Or it functions as a hydrogen donor.
  • a water-soluble organic compound and a hydrolyzable resin When a water-soluble organic compound and a hydrolyzable resin are used in combination, an anaerobic environment can be maintained continuously. Further, by changing the ratio between the water-soluble organic compound and the hydrolyzable resin, the balance between the activation of the short-term and long-term anaerobic microorganisms can be controlled. Further, since the hydrogen donor is also supplied from the hydrolyzable resin, consumption of the water-soluble organic compound can be suppressed, and the injection amount of the water-soluble organic compound used in the entire purification operation can be reduced.
  • VOCs and nitrate / nitrite nitrogen that have been contained in the surrounding soil will elute, or new VOCs and nitrate / Nitrite nitrogen may flow in or groundwater level may change, causing pollution again. Even in such a case, since the activity of the anaerobic microorganisms is maintained in an anaerobic environment, recontamination can be suppressed.
  • the weight average molecular weight (Mw) of the hydrolyzable resin By changing the weight average molecular weight (Mw) of the hydrolyzable resin, the period during which the hydrolyzable resin remains in the contaminated ground and releases the hydrogen donor can be adjusted. If the weight average molecular weight of the hydrolyzable resin is too small, it will be hydrolyzed within a short period of time, making it difficult to sustain for a long time as a hydrogen donor. Therefore, the weight average molecular weight of the hydrolyzable resin is preferably 12,000 or more. In addition, when the hydrolyzable resin has a weight average molecular weight of 12,000 or more, the hydrolyzable resin can be formed into a pellet shape or a powder shape to maintain the shape.
  • the hydrolysis rate varies depending on the type and pH of the hydrolyzable resin
  • the period during which the hydrolysis rate remains in the contaminated ground and releases the hydrogen donor can be changed by changing the type and pH of the hydrolyzable resin. Can be adjusted.
  • the hydrolyzable resin is a polyester, polyamide, polysaccharide, protein or the like in which monomers are polycondensed by an ester bond, an amide bond, a glycoside bond, a peptide bond, or the like.
  • the monomer constituting the polyester include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, Dicarboxylic acids such as decanedicarboxylic acid and cyclohexanedicarboxylic acid; polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, polyethylene glycol; Hydroxy carboxylic acids such as glycolic acid, lactic acid, malic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid; glycolide,
  • the monomer constituting the polyamide include dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid; hexa Examples include diamines such as methylenediamine, nonanediamine, methylpentadiamine, and phenylenediamine; and lactams such as caprolactam, undecane lactam, and lauryllactam.
  • dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid
  • hexa Examples include diamines such as methylenediamine, nonanediamine
  • monosaccharides such as glucose, fructose and galactose
  • ⁇ -amino acids such as glutamic acid, aspartic acid, glycine and lysine.
  • polysaccharide and protein polycondensed by the glycosidic bond or peptide bond examples include starch, modified starch, cellulose, chitin, chitosan, gluten, gelatin, soybean protein, collagen, keratin and the like.
  • hydrolyzable resins aliphatic polyester is preferable from the viewpoint of easy decomposability.
  • poly ( ⁇ -hydroxy acid), poly ( ⁇ -hydroxyalkanoate), poly ( ⁇ -hydroxyalkanoate), polyalkylene dicarboxylate and the like are preferable from the viewpoint of biodegradability.
  • Specific examples of preferred hydrolyzable resins include polyglycolic acid, polylactic acid, poly ( ⁇ -hydroxybutyric acid), poly ( ⁇ -hydroxyvaleric acid), poly- ⁇ -propiolactone, poly- ⁇ -caprolactone, polyethylene Succinate, polybutylene succinate, polyethylene oxalate, polybutylene oxalate and the like can be mentioned.
  • hydrolyzable resins may be used only in specific types, or a plurality of types may be mixed and used.
  • type of the hydrolyzable resin an appropriate type of hydrolyzable resin can be selected and used according to the soil quality of the ground to be purified.
  • the hydrolyzable resin preferably contains at least one of polylactic acid and polyoxalate because it has an appropriate hydrolysis rate and is excellent in handleability.
  • polylactic acid and polyoxalate are composed of only carbon atoms and hydrogen atoms and are biodegradable.
  • the polyoxalate means a copolymer such as polyethylene oxalate or polybutylene oxalate obtained by copolymerizing oxalic acid and a diol such as ethylene glycol or butylene glycol.
  • polylactic acid When polylactic acid and polyoxalate are used in combination, a new effect can be expressed as described below.
  • Polylactic acid generates lactic acid when hydrolyzed. Lactic acid is particularly useful as a microbial nutrient source and hydrogen donor.
  • the hydrolysis rate of polylactic acid in an anaerobic environment is not large, when it is desired to activate the activity of anaerobic microorganisms, the amount of lactic acid generated may be insufficient.
  • polyoxalate has a higher hydrolysis rate than polylactic acid and generates oxalic acid by hydrolysis. This oxalic acid serves as a catalyst for hydrolysis of polylactic acid.
  • polylactic acid and polyoxalate When polylactic acid and polyoxalate are used in combination, oxalic acid is first generated by hydrolysis of polyoxalate. When the concentration of oxalic acid is increased, hydrolysis of polylactic acid is promoted to generate lactic acid, It works effectively on activation. By changing the amount ratio of polylactic acid and polyoxalate, it is possible to control the elution rate and sustainability of the decomposition product relatively freely.
  • the combined use method of polylactic acid and polyoxalate may be used as a resin that is melt-mixed and combined, or may be used by mixing particles of each resin.
  • the hydrolyzable resin of this embodiment is particulate.
  • the hydrolyzable resin can be retained in the gaps between the soil particles.
  • the hydrolyzable resin stays in the gap between the soil particles, the gap between the soil particles is blocked, so that the flow rate of groundwater can be reduced.
  • the particle size of the hydrolyzable resin can be set to an appropriate particle size according to the soil quality of the ground to be purified.
  • the average particle size of the hydrolyzable resin is preferably 1 to 100 ⁇ m, and more preferably 1 to 10 ⁇ m.
  • the particle size of the hydrolyzable resin can be measured by a dynamic light scattering method or the like.
  • the hydrolyzable resin particles can be formed into an appropriate shape according to the soil quality of the ground to be purified.
  • the average particle size of the hydrolyzable resin is the average particle size of primary particles of the hydrolyzable resin, and is usually measured as a 90% diameter (d90).
  • the 90% diameter is the particle diameter at which the cumulative curve becomes 90% when the cumulative curve is determined with the total volume of the group of particles as 100%.
  • an anaerobic environment can be stably maintained over a long period of time by using a water-soluble organic compound and a particulate hydrolyzable resin in combination as a hydrogen donor. It is. As a result, even if VOCs and nitrate / nitrite nitrogen contained in the surrounding soil elute and cause pollution again, it is possible to suppress recontamination. Furthermore, even when purifying the ground with high water permeability, the particulate hydrolyzable resin functions as a plugging material for the gaps between the soil particles, suppressing the water permeability of the groundwater and reducing the consumption of hydrogen donors. It is possible to suppress and increase the sustainability of purification of groundwater contaminated with anaerobic microorganisms.
  • composition ratio between the particulate hydrolyzable resin and the water-soluble organic compound is not particularly limited, and should be appropriately changed according to the characteristics of each component, the type of the target pollutant, the duration of the anaerobic environment, etc. Can do.
  • the mixing ratio of the hydrolyzable resin and the water-soluble organic compound is 1: 1 to 3 by mass ratio.
  • the contaminated groundwater purification method of this embodiment is performed by injecting a purification agent containing a water-soluble organic compound and a hydrolyzable resin into the soil of the contaminated ground.
  • the surface of the hydrolyzable resin when it is mixed with water, it floats on the water surface or floats in the water as a non-uniform lump. Difficult solution.
  • the particle size of the hydrolyzable resin when the particle size of the hydrolyzable resin is small, the surface area increases, so that it easily aggregates and forms secondary particles that become lumps and difficult to uniformly disperse in water.
  • the inventors of the present invention have studied the method for solving the above problem, and found that the following method is an excellent method.
  • a step of adding a water-soluble organic compound to a particulate hydrolyzable resin and stirring the mixture is performed, and the surface of the hydrolyzable resin particles is made to conform to the water-soluble organic compound.
  • the surface of the hydrolyzable resin particles can be easily adapted to water.
  • a step of adding water is performed as the second step, the particulate hydrolyzable resin is dispersed in water relatively easily. As a result, an aqueous solution in which the hydrolyzable resin particles are relatively uniformly dispersed is formed.
  • the stirring device used in the first step is not particularly limited, and a known mixer, blender, or the like can be used. Conditions for stirring (stirring speed, stirring time, etc.) can also be set as appropriate.
  • the aggregation of the particulate hydrolyzable resin is suppressed, the formation of secondary particles is suppressed, and the particulate hydrolyzable resin is uniformly placed in water. It became possible to disperse.
  • the obtained mixed solution is then poured into the soil as a cleaning agent. Since the particulate hydrolyzable resin is uniformly dispersed in the purifying agent, it becomes possible to supply the purifying agent having a uniform component to a wide area in the soil.
  • a well having a general screen (opening) can be used as a well for injecting into the soil.
  • a water-soluble organic compound is mixed with the hydrolyzable resin and stirred, and the resulting mixture is added to a storage tank storing water and stirred to obtain a mixed solution.
  • an injection pump is provided between the pipes connecting the storage tank and the injection well, and a backflow prevention packer is installed at one upper portion of the injection well.
  • the method for injecting the cleaning agent into the contaminated ground is not particularly limited, and a known method such as a natural injection method from an existing well for injection can be appropriately applied.
  • a known method such as a natural injection method from an existing well for injection can be appropriately applied.
  • water quality monitoring for quantifying the oxygen concentration in the groundwater, the contaminant concentration, and the remaining amount of the purifier is appropriately performed as necessary.
  • FIG. 1 is a view showing a particle size distribution of the hydrolyzable resin particles by a dynamic light scattering method. The particle size distribution was measured using a Laser Micron Sizer LMS-2000e manufactured by Seishin Enterprise Co., Ltd.
  • the particle size at which the cumulative curve becomes 90% is 90% diameter ( ⁇ m).
  • the hydrolyzable resin particles had a 90% diameter of 23 ⁇ m. Accordingly, the average particle size of the primary particles of this hydrolyzable resin was set to 23 ⁇ m, and the following studies were advanced.
  • Lactic acid manufactured by Kanto Chemical Co., Ltd.
  • Reagents Sodium lactate manufactured by Wako Pure Chemical Industries, Ltd.
  • Reagents Sodium ascorbate manufactured by Kanto Chemical Co., Ltd.
  • Reagents Sodium succinate manufactured by Kanto Chemical Co., Reagents
  • the particle size distribution of the particles dispersed in the obtained mixed solution was measured using the following apparatus. Measuring device: ELSZ-1000, manufactured by Otsuka Electronics Co., Ltd.
  • FIG. 2 and 3 are diagrams showing the particle size distribution of the hydrolyzable resin in the mixed solution.
  • FIG. 2 shows, as a comparison, a mixed solution when dispersed in water without adding a water-soluble organic compound to the particulate hydrolyzable resin (hereinafter referred to as “mixture in which the hydrolyzable resin is dispersed only in water”). The particle size distribution in the “solution”).
  • FIG. 3 shows a mixed solution in which sodium lactate is added to a particulate hydrolyzable resin and stirred, and then water is added and dispersed (hereinafter, the hydrolyzable resin to which sodium lactate has been added is dispersed. The particle size distribution in the “mixed solution”).
  • FIG. 4 is a diagram showing the peak distribution (relative ratio) of the primary particles and secondary particles of the hydrolyzable resin in the mixed solution for each type of water-soluble organic compound to be added.
  • the leftmost side of the figure shows a mixed solution in which a hydrolyzable resin is dispersed only in water. It was found that by adding the water-soluble organic compound, the ratio of secondary particles decreased and the ratio of primary particles (first peak) increased. That is, it was found that aggregation of primary particles was suppressed by preliminarily incorporating a water-soluble organic compound into the hydrolyzable resin.
  • FIG. 5 is a diagram showing the average particle diameter of primary particles of the hydrolyzable resin in the mixed solution for each type of water-soluble organic compound to be added.
  • the leftmost side of the figure shows a mixed solution in which a hydrolyzable resin is dispersed only in water. It was found that by adding a water-soluble organic compound, aggregation of primary particles was suppressed and the average particle size of primary particles in a region of 23 ⁇ m or less was reduced.
  • FIG. 6 is a diagram showing the polydispersity index of primary particles of the hydrolyzable resin in the mixed solution for each type of water-soluble organic compound to be added.
  • the leftmost side of the figure shows a mixed solution in which a hydrolyzable resin is dispersed only in water. It was found that by adding the water-soluble organic compound, the aggregation of the primary particles was suppressed and the polydispersity index of the primary particles in the region of 23 ⁇ m or less was reduced.
  • the polydispersity index is a measure of the polydispersity of the particle size distribution, that is, the spread of the particle size distribution.
  • FIG. 7 and FIG. 8 are diagrams showing the reach distance of the particulate hydrolyzable resin in the soil. This figure shows the results of a model experiment on the permeability of the particulate hydrolyzable resin in the soil.
  • the mixed solution in which the hydrolyzable resin was dispersed only in water and the mixed solution in which the hydrolyzable resin to which sodium lactate was added were prepared. A certain amount of each mixed solution was naturally permeated from the top of the glass column filled with silica sand.
  • the distribution of the reachable distance (cm) from the top of the hydrolyzable resin that has moved through the glass column and the amount of resin moved (mg / g) is shown in the figure.
  • FIG. 7 shows the case of a mixed solution in which the hydrolyzable resin is dispersed only in water
  • FIG. 8 shows the case of the mixed solution in which the hydrolyzable resin added with sodium lactate is dispersed. It has been found that the reach of the particulate hydrolyzable resin is increased by adding the water-soluble organic compound.
  • FIG. 9 is a diagram showing an example of a specific method for injecting the mixed solution into the soil.
  • the underground soil structure consists of a pavement 20 on the surface, a buried layer 21 of about 2.5 m below it, an aquifer 22 of about 6.5 m below it, and a silt layer 23 below it. It has become.
  • the aquifer 22 is a layer mainly made of sand, includes groundwater, and has a permeability coefficient k of 10 ⁇ 6 to 10 ⁇ 5 m / s.
  • the silt layer 23 is a layer made of fine-grained soil mainly composed of cohesive soil, and the hydraulic conductivity k was 10 ⁇ 9 to 10 ⁇ 8 m / s.
  • the injection well 10 is installed to a depth that reaches the silt layer 23, and a screen (opening) 11 is formed over the thickness of the aquifer 22 so that the purifier can be injected into the aquifer 22. Have.
  • the in-vehicle injection device 1 mounted on the truck bed was used as an injection device for the cleaning agent into the soil.
  • the water-soluble organic compound is mixed with the hydrolyzable resin and stirred, and the resulting mixture is added to the storage tanks 2 ⁇ / b> A and 2 ⁇ / b> B storing water and stirred, so that a mixed solution for injection Was prepared.
  • the composition of the mixed solution was about 1 kg: about 2 kg: 1 kl of hydrolyzable resin: water-soluble organic compound: water.
  • An injection pump 3, a flow meter 4, and a pressure gauge 5 are installed in a pipe 6 that connects the storage tanks 2 ⁇ / b> A and 2 ⁇ / b> B and the injection well 10.
  • a packer 12 for preventing backflow is installed at one upper portion of the injection well 10.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The purpose of the invention is to provide a method for purifying contaminated groundwater that can purify contaminated groundwater and can prevent the groundwater from recontamination by keeping a large area of ground in a low contamination state over a long period of time. Provided is a method for purifying contaminated groundwater using anaerobic microorganisms to purify contaminated groundwater or to prevent the groundwater from recontamination, wherein the method is characterized in that a particulate hydrolyzable resin and a water-soluble organic compound are used together as the hydrogen donor, and in that a mixed solution is formed by adding the hydrolyzable resin to the water-soluble organic compound, stirring same, and then adding water, and the mixed solution is then injected into the ground.

Description

汚染地下水の浄化方法Purification method of contaminated groundwater
 本発明は、汚染地下水を浄化する、または地下水の再汚染を防止する、汚染地下水の浄化方法に関する。 The present invention relates to a contaminated groundwater purification method for purifying contaminated groundwater or preventing recontamination of groundwater.
 化学物質による地下水汚染は、環境基準等によって規制されている場合もあり、多くの対策が検討され実行されている。そのような対策の中でも、地下水汚染が発生している原位置において、現状を大きく変えることなく浄化を図る方法が特に有用である。 地下 Groundwater contamination by chemical substances may be regulated by environmental standards, etc., and many countermeasures have been studied and implemented. Among such countermeasures, a method of purifying the groundwater without causing a significant change in the location where groundwater contamination occurs is particularly useful.
 地下水汚染を浄化するための有効な方法の一つが、微生物を用いて有害物質を分解する方法(バイオレメディエーション)である。原位置の土壌中に存在する微生物を有効に活用して、地下水中の有害化学物質を浄化する試みは既に種々行われている。有害化学物質の中でも、テトラクロロエチレン、トリクロロエチレン等の揮発性有機塩素化合物(以下、「VOCs」と記載することがある。)は、地下水環境基準が設定され、その浄化のための技術は要求度の高いものである。また、硝酸性窒素および亜硝酸性窒素(以下、「硝酸性・亜硝酸性窒素」と記載することがある。)も、地下水環境基準が設定され、その浄化のための技術が要求されている。 One of the effective methods for purifying groundwater contamination is a method (bioremediation) of decomposing harmful substances using microorganisms. Various attempts have already been made to purify harmful chemical substances in groundwater by effectively utilizing microorganisms present in the soil in situ. Among hazardous chemical substances, volatile organochlorine compounds such as tetrachlorethylene and trichlorethylene (hereinafter sometimes referred to as “VOCs”) have established groundwater environmental standards, and technologies for their purification are highly demanded. Is. In addition, nitrate water and nitrite nitrogen (hereinafter sometimes referred to as “nitrate / nitrite nitrogen”) have established groundwater environmental standards, and technologies for their purification are required. .
 VOCsおよび硝酸性・亜硝酸性窒素による地下水汚染の浄化技術としては、嫌気性微生物による浄化技術が知られている。これは、地下水環境を嫌気状態にし、VOCsおよび硝酸性・亜硝酸性窒素を分解する嫌気性微生物のエネルギー源となる水素供与体を与えることによって、VOCsおよび硝酸性・亜硝酸性窒素を浄化する技術である。 Purification technology using anaerobic microorganisms is known as a purification technology for groundwater contamination by VOCs and nitrate / nitrite nitrogen. It purifies VOCs and nitrate / nitrite nitrogen by making the groundwater environment anaerobic and providing a hydrogen donor as an energy source for anaerobic microorganisms that degrade VOCs and nitrate / nitrite nitrogen Technology.
 例えば、嫌気性微生物のエネルギー源として、水溶性有機化合物を地中に注入すると、好気性微生物によって酸素が消費されて嫌気性環境が形成される。その結果、嫌気性微生物が活性化され、VOCsおよび硝酸性・亜硝酸性窒素の浄化が進行する。ここで、水溶性有機化合物とは、好気性微生物および嫌気性微生物を活性化させるための栄養源または水素供与体となる物質である。 For example, when a water-soluble organic compound is injected into the ground as an energy source for anaerobic microorganisms, oxygen is consumed by the aerobic microorganisms and an anaerobic environment is formed. As a result, anaerobic microorganisms are activated, and purification of VOCs and nitrate / nitrite nitrogen proceeds. Here, the water-soluble organic compound is a substance that becomes a nutrient source or a hydrogen donor for activating the aerobic microorganism and the anaerobic microorganism.
 水溶性有機化合物は、地下水流速の速い地盤においては、水に溶けて容易に流出するため、浄化が完了するまでに水溶性有機化合物の追加注入が必要となり、時間、手間および費用を要するものであった。さらに、VOCsの濃度が低下したとしても、周辺の土壌中に封じ込められていたVOCsが溶出して、再度汚染を引き起こすことがある。このとき、水溶性有機化合物が消失していると、浄化に必要な十分な嫌気環境が維持できず、嫌気性微生物がVOCsの浄化を行うことが困難な状況となるため、地下水汚染が再発(リバウンド)することとなる。そのため、汚染が発生する可能性がある場所あるいは浄化が完了した場所において、地下水の再汚染が生じないようにする手段が求められていた。 Since water-soluble organic compounds dissolve in water and easily flow out in the ground where the groundwater flow rate is high, additional injection of water-soluble organic compounds is required before purification is completed, which requires time, labor and cost. there were. Furthermore, even if the concentration of VOCs decreases, the VOCs contained in the surrounding soil may elute and cause contamination again. At this time, if water-soluble organic compounds have disappeared, sufficient anaerobic environment necessary for purification cannot be maintained, and it becomes difficult for anaerobic microorganisms to purify VOCs. Rebound). Therefore, there has been a demand for means for preventing re-contamination of groundwater in a place where contamination may occur or where purification has been completed.
 嫌気性微生物を用いてVOCsおよび硝酸性・亜硝酸性窒素を浄化する技術として、種々の方法が開示されている。特許文献1には、浄化剤を加熱によって溶融させ、汚染土壌中または地下水中に加圧注入して、拡散させ、固形化後に、嫌気性条件下で増殖した微生物により分解させることを特徴とする汚染土壌およびまたは地下水汚染の原位置浄化工法が開示されている。 Various methods have been disclosed as techniques for purifying VOCs and nitrate / nitrite nitrogen using anaerobic microorganisms. Patent Document 1 is characterized in that a purifier is melted by heating, pressurized and injected into contaminated soil or groundwater, diffused, and decomposed by microorganisms grown under anaerobic conditions after solidification. In-situ purification methods for contaminated soil and / or groundwater contamination are disclosed.
特許第3694294号公報Japanese Patent No. 3694294
 特許文献1に記載の原位置浄化工法では、浄化剤が土中で固形化されるため、嫌気環境を持続させることが可能であり、地下水汚染が再発することを防止できると考えられる。しかし、適用される環境の温度が低いときは、浄化剤の温度が急速に低下して固形化されるため、注入井戸から浄化剤が到達する範囲が狭くなり、土中の浄化される領域が限定されてしまう。 In the in-situ purification method described in Patent Document 1, since the purification agent is solidified in the soil, it is possible to maintain an anaerobic environment and to prevent recurrence of groundwater contamination. However, when the temperature of the environment to be applied is low, the temperature of the cleaning agent is rapidly lowered and solidified, so that the range in which the cleaning agent reaches from the injection well is narrowed, and the region to be purified in the soil is reduced. It will be limited.
 透水性の高い地盤に対応するためや浄化後のリバウンド抑制のために、長期的に嫌気環境を持続させる目的で、嫌気性微生物の栄養源となる有機化合物を固形粉末の状態で地盤に注入する方法は有効である。特に、高分子量の樹脂は、土壌中にあっても形態が崩れにくく、時間を掛けて徐々に分解していくため、長期的に嫌気環境を持続させるという目的に適性を有している。 In order to keep the anaerobic environment in the long term in order to cope with the highly permeable ground and to suppress the rebound after purification, inject the organic compound that is a nutrient source of anaerobic microorganisms into the ground in the form of solid powder The method is effective. In particular, a high molecular weight resin is suitable for the purpose of maintaining an anaerobic environment for a long period of time because it does not easily collapse even in the soil and gradually decomposes over time.
 注入する固形粉末状の有機化合物は、粒子形状が小さいほど広範囲の地盤に注入することができるため好ましい。一方で、微粉末状に加工した有機化合物は、表面積が増大するため、凝集し易くなり、媒体となる水に均一に分散させることが困難となる。特に、固形粉末状の樹脂は一般に、水に添加しただけでは水中に分散せず、凝集して不均一になり、また、水面上に浮上して、ハンドリングが著しく低下するという問題があった。 The solid powder organic compound to be injected is preferable because the smaller the particle shape, the better it can be injected into a wide range of ground. On the other hand, since the organic compound processed into a fine powder has an increased surface area, it tends to aggregate and it is difficult to uniformly disperse it in water as a medium. In particular, a resin in the form of a solid powder generally has a problem that it does not disperse in water only when added to water, but aggregates and becomes non-uniform, and floats on the water surface, resulting in a significant decrease in handling.
 本発明は、上記の事情に鑑みてなされたものである。すなわち、本発明の課題は、土中の広い領域において汚染の少ない状態を長期間持続させて、汚染地下水を浄化し、さらに地下水の再汚染を防止することが可能な汚染地下水の浄化方法を提供することである。 The present invention has been made in view of the above circumstances. That is, an object of the present invention is to provide a method for purifying contaminated groundwater that can maintain a low contamination state in a wide area of soil for a long period of time, purify contaminated groundwater, and prevent recontamination of groundwater. It is to be.
 本発明者らは、粒子状の加水分解性樹脂に水溶性有機化合物を添加して撹拌し、次に水を添加して混合溶液とし、その後前記混合溶液を土中に注入するという手順を踏むことによって、粒子状の加水分解性樹脂の凝集を抑制して、土中の広い領域に水素供与体を提供することが可能となることを見出した。また、水素供与体として水溶性有機化合物と加水分解性樹脂とを併用することにより、土中の嫌気性環境を持続させることが可能となり、再汚染を抑制することが可能となることを見出した。 The present inventors follow the procedure of adding a water-soluble organic compound to a particulate hydrolyzable resin and stirring, then adding water to form a mixed solution, and then pouring the mixed solution into the soil. Thus, it has been found that aggregation of the particulate hydrolyzable resin can be suppressed and a hydrogen donor can be provided over a wide area in the soil. In addition, it has been found that the combined use of a water-soluble organic compound and a hydrolyzable resin as a hydrogen donor makes it possible to maintain an anaerobic environment in the soil and suppress recontamination. .
 本発明は、このような知見を基になされたものである。すなわち、本発明は、嫌気性微生物を利用して、汚染地下水を浄化する、または地下水の再汚染を防止する、汚染地下水の浄化方法であって、水素供与体として、粒子状の加水分解性樹脂と水溶性有機化合物とを併用し、前記水溶性有機化合物に前記加水分解性樹脂を添加して撹拌し、次に水を添加して混合溶液とし、その後前記混合溶液を土中に注入することを特徴とする汚染地下水の浄化方法である。 The present invention has been made based on such knowledge. That is, the present invention is a method for purifying contaminated groundwater, which uses anaerobic microorganisms to purify contaminated groundwater or prevents recontamination of groundwater, and as a hydrogen donor, a particulate hydrolyzable resin And the water-soluble organic compound together, the hydrolyzable resin is added to the water-soluble organic compound and stirred, then water is added to form a mixed solution, and then the mixed solution is poured into the soil. This is a purification method for contaminated groundwater.
 前記汚染地下水の汚染物質は、揮発性有機塩素化合物、硝酸性窒素および亜硝酸性窒素の少なくとも1つであってよい。
 前記水溶性有機化合物は、アルコール、アルコール誘導体、カルボン酸およびカルボン酸誘導体の少なくとも1つを含有することが好ましい。
 前記加水分解性樹脂は、脂肪族ポリエステルであることが好ましい。
 前記加水分解性樹脂は、ポリ乳酸およびポリオキサレートの少なくとも一方を含有することが好ましい。
 前記加水分解性樹脂の平均粒径が、1~100μmであることが好ましい。
 また、前記混合溶液の土中注入用の井戸の上部にパッカーを設置して、ポンプを用いて前記混合溶液を土中に注入することができる。
The pollutant in the contaminated groundwater may be at least one of a volatile organochlorine compound, nitrate nitrogen, and nitrite nitrogen.
The water-soluble organic compound preferably contains at least one of alcohol, alcohol derivative, carboxylic acid and carboxylic acid derivative.
The hydrolyzable resin is preferably an aliphatic polyester.
The hydrolyzable resin preferably contains at least one of polylactic acid and polyoxalate.
The average particle size of the hydrolyzable resin is preferably 1 to 100 μm.
Moreover, a packer can be installed in the upper part of the well for injection | pouring of the said mixed solution in soil, and the said mixed solution can be inject | poured into soil using a pump.
 本発明の汚染地下水の浄化方法は、土中の広い領域において汚染の少ない状態を長期間持続させて、汚染地下水を浄化する、または地下水の再汚染を防止することが可能である。 The method for purifying contaminated groundwater of the present invention can maintain a state of low contamination over a wide area in the soil for a long period of time, thereby purifying the contaminated groundwater or preventing recontamination of the groundwater.
加水分解性樹脂の粒子の動的光散乱法による粒度分布を示した図である。It is the figure which showed the particle size distribution by the dynamic light scattering method of the particle | grains of a hydrolysable resin. 水のみに加水分解性樹脂を分散させた混合溶液中の加水分解性樹脂の粒度分布を示す図である。It is a figure which shows the particle size distribution of the hydrolysable resin in the mixed solution which disperse | distributed hydrolyzable resin only to water. 乳酸ナトリウムを添加した加水分解性樹脂を分散させた混合溶液中の加水分解性樹脂の粒度分布を示す図である。It is a figure which shows the particle size distribution of the hydrolysable resin in the mixed solution which disperse | distributed the hydrolyzable resin which added sodium lactate. 混合溶液中の加水分解性樹脂の1次粒子と2次粒子のピーク分布を、添加する水溶性有機化合物の種類ごとに示した図である。It is the figure which showed the peak distribution of the primary particle and secondary particle | grains of the hydrolysable resin in a mixed solution for every kind of water-soluble organic compound to add. 混合溶液中の加水分解性樹脂の1次粒子の平均粒径を、添加する水溶性有機化合物の種類ごとに示した図である。It is the figure which showed the average particle diameter of the primary particle | grains of the hydrolysable resin in a mixed solution for every kind of water-soluble organic compound to add. 混合溶液中の加水分解性樹脂の1次粒子の多分散指数を、添加する水溶性有機化合物の種類ごとに示した図である。It is the figure which showed the polydispersity index of the primary particle | grains of the hydrolyzable resin in a mixed solution for every kind of water-soluble organic compound to add. 土中における粒子状の加水分解性樹脂の到達距離を示した図である(水のみに加水分解性樹脂を分散させた混合溶液の場合)。It is the figure which showed the reach | attainment distance of the particulate hydrolyzable resin in the soil (in the case of the mixed solution which disperse | distributed hydrolyzable resin only in water). 土中における粒子状の加水分解性樹脂の到達距離を示した図である(乳酸ナトリウムを添加した加水分解性樹脂を分散させた混合溶液の場合)。It is the figure which showed the reach | attainment distance of the particulate hydrolyzable resin in soil (in the case of the mixed solution which disperse | distributed the hydrolyzable resin which added sodium lactate). 混合溶液を土中に注入するときの具体的な方法の一例を示した図である。It is the figure which showed an example of the concrete method when inject | pouring a mixed solution in soil.
 本発明の実施形態について、以下詳細に説明する。但し、以下に記載する実施形態は、本発明の実施態様の一例であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Embodiments of the present invention will be described in detail below. However, the embodiment described below is an example of the embodiment of the present invention, and the present invention is not limited to these contents, and various modifications can be made within the scope of the gist.
 本実施形態は、嫌気性微生物を利用して、汚染地下水を浄化する、または地下水の再汚染を防止する、汚染地下水の浄化方法である。汚染地下水の汚染物質は、特に限定されないが、汚染物質の中では、VOCsおよび硝酸性・亜硝酸性窒素は、地下水環境基準が設定されている。本実施形態の浄化方法は、VOCsまたは硝酸性・亜硝酸性窒素を含む汚染地下水に好適である。また、本実施形態の浄化方法は、汚染地下水だけでなく、VOCsで再汚染された土壌の浄化にも有効なものである。 This embodiment is a method for purifying contaminated groundwater by using anaerobic microorganisms to purify contaminated groundwater or preventing recontamination of groundwater. Contaminants of contaminated groundwater are not particularly limited, but among the pollutants, groundwater environmental standards are set for VOCs and nitrate / nitrite nitrogen. The purification method of the present embodiment is suitable for contaminated groundwater containing VOCs or nitrate / nitrite nitrogen. Moreover, the purification method of this embodiment is effective not only for contaminated groundwater but also for the purification of soil recontaminated with VOCs.
(汚染物質)
 VOCsは、従来から溶剤や洗浄剤として工業的に広く使用されている。VOCsの具体例としては、テトラクロロエチレン(PCE)、トリクロロエチレン(TCE)、シス-1,2-ジクロロエチレン(cis-1,2-DCE)、1,1-ジクロロエチレン(1,1-DCE)、塩化ビニル(VCまたはVCM)、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,2-ジクロロエタン、四塩化エタン、四塩化炭素、クロロホルム、ジクロロメタン等を挙げることができる。
(Pollutant)
VOCs have been widely used industrially as solvents and cleaning agents. Specific examples of VOCs include tetrachloroethylene (PCE), trichlorethylene (TCE), cis-1,2-dichloroethylene (cis-1,2-DCE), 1,1-dichloroethylene (1,1-DCE), vinyl chloride ( VC or VCM), 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,2-dichloroethane, ethane tetrachloride, carbon tetrachloride, chloroform, dichloromethane and the like.
 VOCsを含む汚染地下水の浄化においては、嫌気性環境下で嫌気性微生物を用いてVOCsを脱塩素化して、塩素を含まない化合物に変化させる。VOCsを分解する嫌気性微生物は、嫌気性環境下において、水素供与体が存在することによって活性化される。 In the purification of contaminated groundwater containing VOCs, VOCs are dechlorinated using anaerobic microorganisms in an anaerobic environment to change them into compounds that do not contain chlorine. Anaerobic microorganisms that degrade VOCs are activated by the presence of a hydrogen donor in an anaerobic environment.
 硝酸性・亜硝酸性窒素の主な発生源は、窒素肥料、家畜の糞尿、生活排水である。これらの物質の一部は、土壌中で微生物の働きによりアンモニア性窒素、さらに亜硝酸性窒素を経て、最終的に硝酸性窒素に変化する。硝酸性・亜硝酸性窒素は、水に溶け易く、土壌に保持されにくいため、地下水中に溶け出し易い性質を有している。 Main sources of nitrate and nitrite nitrogen are nitrogen fertilizer, livestock manure and domestic wastewater. Some of these substances are converted into nitrate nitrogen through ammonia nitrogen and nitrite nitrogen by the action of microorganisms in the soil. Nitrate and nitrite nitrogen is easily dissolved in water and is not easily retained in soil, and therefore has a property of being easily dissolved in groundwater.
 嫌気性微生物によるVOCsおよび硝酸性・亜硝酸性窒素の浄化は次のような工程によって行われる。
(i)嫌気性微生物が存在する土中であっても、好気性環境下においては、好気性微生物が活発に活動している。嫌気性微生物を活性化させるためには、環境中の酸素を除去して、嫌気性環境にすることが必要となる。嫌気性環境を形成するには、土中に栄養源や水素供与体を注入して、好気性微生物を活性化させて、土中のある限られた区域内の酸素を消費させる。
Purification of VOCs and nitrate / nitrite nitrogen by anaerobic microorganisms is performed by the following process.
(I) Even in the soil where anaerobic microorganisms are present, the aerobic microorganisms are active in an aerobic environment. In order to activate anaerobic microorganisms, it is necessary to remove oxygen in the environment to make an anaerobic environment. To create an anaerobic environment, nutrient sources and hydrogen donors are injected into the soil to activate aerobic microorganisms and consume oxygen in a limited area of the soil.
(ii)酸素のない嫌気性環境において、水素供与体が存在すると、嫌気性微生物の活動が活発となる。硝酸性・亜硝酸性窒素は嫌気性の脱窒菌によって最終的に無害な窒素へと変換される。また、VOCsは、嫌気性の脱塩素細菌によって塩素が水素に置換され、最終的に塩素を含まないエチレンやエタンなどの無害な物質に変換される。 (Ii) In the anaerobic environment without oxygen, the presence of a hydrogen donor activates anaerobic microorganisms. Nitrate and nitrite nitrogen is finally converted into harmless nitrogen by anaerobic denitrifying bacteria. VOCs are replaced with hydrogen by anaerobic dechlorinating bacteria, and finally converted into harmless substances such as ethylene and ethane that do not contain chlorine.
(水溶性有機化合物)
 水溶性有機化合物は、水素を含有する有機化合物であり、微生物によって代謝されて、栄養源になるとともに、VOCsの塩素原子を水素原子に置換する際の水素供与体としても機能する。水溶性有機化合物としては、アルコール、カルボン酸、アミン、エステルおよびそれらの誘導体を挙げることができる。さらに水溶性有機化合物は、アルコール、アルコール誘導体、カルボン酸およびカルボン酸誘導体の少なくとも1つを含有することが好ましい。特に、水溶性有機化合物は、カルボン酸およびカルボン酸誘導体のいずれかであることが好ましく、カルボン酸誘導体としては、カルボン酸塩がより好ましい。水溶性有機化合物は、特定の種類のみを用いてもよいし、複数の種類を混合して用いてもよい。また、水溶性有機化合物は、炭素原子と水素原子のみ、または炭素原子、水素原子および酸素原子からなる有機化合物が好ましい。また、水溶性有機化合物は、土中に残存することがないように、生分解される程度に低分子量の有機化合物であることが好ましい。
(Water-soluble organic compounds)
A water-soluble organic compound is an organic compound containing hydrogen, metabolized by microorganisms to become a nutrient source, and also functions as a hydrogen donor when substituting the chlorine atom of VOCs with a hydrogen atom. Examples of water-soluble organic compounds include alcohols, carboxylic acids, amines, esters, and derivatives thereof. Further, the water-soluble organic compound preferably contains at least one of alcohol, alcohol derivative, carboxylic acid and carboxylic acid derivative. In particular, the water-soluble organic compound is preferably either a carboxylic acid or a carboxylic acid derivative, and the carboxylic acid derivative is more preferably a carboxylate. As the water-soluble organic compound, only a specific type may be used, or a plurality of types may be mixed and used. Further, the water-soluble organic compound is preferably an organic compound composed of only carbon atoms and hydrogen atoms, or carbon atoms, hydrogen atoms and oxygen atoms. In addition, the water-soluble organic compound is preferably an organic compound having a low molecular weight that is biodegradable so as not to remain in the soil.
 水溶性有機化合物の具体例は次のとおりである。アルコールとしては、エチレングリコール、ポリエチレングリコール、グリセリン等が挙げられる。カルボン酸としては、グリコール酸、乳酸、リンゴ酸、こはく酸、アスコルビン酸、酢酸等が挙げられる。カルボン酸塩としては、乳酸ナトリウム、アスコルビン酸ナトリウム、こはく酸ナトリウム等が挙げられる。また、水溶性有機化合物に、酵母エキス、豆乳、コーン乳、ペプトン、牛脂、ヤシ油、大豆油等の生分解性の栄養源を添加してもよい。 Specific examples of water-soluble organic compounds are as follows. Examples of the alcohol include ethylene glycol, polyethylene glycol, glycerin and the like. Examples of the carboxylic acid include glycolic acid, lactic acid, malic acid, succinic acid, ascorbic acid, acetic acid and the like. Examples of the carboxylate include sodium lactate, sodium ascorbate, and sodium succinate. In addition, biodegradable nutrient sources such as yeast extract, soy milk, corn milk, peptone, beef tallow, coconut oil, and soybean oil may be added to the water-soluble organic compound.
(加水分解性樹脂)
 加水分解性樹脂は、水の存在下で加水分解されて、低分子量の単量体を発生させる樹脂である。発生した単量体は、水溶性有機化合物と同様に、炭素原子と水素原子を含有する有機化合物であり、微生物によって代謝されて、栄養源になるとともに、VOCsの塩素原子を水素原子に置換する際の水素供与体としても機能する。
(Hydrolyzable resin)
The hydrolyzable resin is a resin that is hydrolyzed in the presence of water to generate a low molecular weight monomer. The generated monomer is an organic compound that contains carbon and hydrogen atoms, as well as water-soluble organic compounds. It is metabolized by microorganisms to become a nutrient source and replaces the chlorine atoms in VOCs with hydrogen atoms. It also functions as a hydrogen donor.
 加水分解性樹脂は、水に不溶な高分子量の樹脂であることから、化学分解や微生物による分解を受けにくく、長期間に亘って汚染地盤に残存して、水素供与体を持続的に放出することが可能である。また、急激に分解するものではないため、全有機炭素濃度(TOC)を増大させることもなく、環境に与える負荷が少ないものである。 The hydrolyzable resin is a high molecular weight resin that is insoluble in water, so it is not susceptible to chemical degradation or microbial degradation, and remains on the contaminated ground for a long period of time, releasing the hydrogen donor continuously. It is possible. In addition, since it does not decompose rapidly, it does not increase the total organic carbon concentration (TOC) and has a low environmental impact.
 水溶性有機化合物と加水分解性樹脂とを併用すると、短期的には水溶性有機化合物が微生物に働く栄養源または水素供与体として機能し、長期的には加水分解性樹脂が微生物に働く栄養源または水素供与体として機能する。水溶性有機化合物と加水分解性樹脂とを併用すると、嫌気性の環境を持続的に維持することができる。また、水溶性有機化合物と加水分解性樹脂との比率を変えることによって、短期と長期の嫌気性微生物の活性化のバランスを制御することができる。また、加水分解性樹脂からも水素供与体が供給されるため、水溶性有機化合物の消費を抑制することができ、浄化作業全体で用いる水溶性有機化合物の注入量を低減させることができる。 When a water-soluble organic compound and a hydrolyzable resin are used in combination, the water-soluble organic compound functions as a nutrient source or hydrogen donor that acts on microorganisms in the short term, and a nutrient source on which the hydrolyzable resin acts on microorganisms in the long term. Or it functions as a hydrogen donor. When a water-soluble organic compound and a hydrolyzable resin are used in combination, an anaerobic environment can be maintained continuously. Further, by changing the ratio between the water-soluble organic compound and the hydrolyzable resin, the balance between the activation of the short-term and long-term anaerobic microorganisms can be controlled. Further, since the hydrogen donor is also supplied from the hydrolyzable resin, consumption of the water-soluble organic compound can be suppressed, and the injection amount of the water-soluble organic compound used in the entire purification operation can be reduced.
 さらに、一旦対象区域が浄化された後、時間が経過してから、周辺の土壌中に封じ込められていたVOCsや硝酸性・亜硝酸性窒素が溶出したり、外部から新たにVOCsや硝酸性・亜硝酸性窒素が流入したり、地下水水位の変動が生じて、再度汚染を引き起こすようなことがある。このような場合であっても、嫌気性環境下で嫌気性微生物の活動が維持されているため、再汚染が引き起こされることを抑制することができる。 Furthermore, once the target area has been purified, VOCs and nitrate / nitrite nitrogen that have been contained in the surrounding soil will elute, or new VOCs and nitrate / Nitrite nitrogen may flow in or groundwater level may change, causing pollution again. Even in such a case, since the activity of the anaerobic microorganisms is maintained in an anaerobic environment, recontamination can be suppressed.
 加水分解性樹脂の重量平均分子量(Mw)を変えることによって、加水分解性樹脂が汚染地盤に残存して、水素供与体を放出する期間を調整することができる。なお、加水分解性樹脂の重量平均分子量が小さ過ぎると、短期間のうちに加水分解されてしまうため、水素供与体として長期間持続することが困難となる。そのため、加水分解性樹脂の重量平均分子量は、12,000以上であることが好ましい。また、加水分解性樹脂の重量平均分子量が12,000以上であると、加水分解性樹脂をペレット形状や粉体形状に成形して、形状を保持することができる。また、加水分解性樹脂の種類やpHによって加水分解速度が異なるため、加水分解性樹脂の種類やpHを変えることによっても、加水分解速度が汚染地盤に残存して水素供与体を放出する期間を調整することができる。 By changing the weight average molecular weight (Mw) of the hydrolyzable resin, the period during which the hydrolyzable resin remains in the contaminated ground and releases the hydrogen donor can be adjusted. If the weight average molecular weight of the hydrolyzable resin is too small, it will be hydrolyzed within a short period of time, making it difficult to sustain for a long time as a hydrogen donor. Therefore, the weight average molecular weight of the hydrolyzable resin is preferably 12,000 or more. In addition, when the hydrolyzable resin has a weight average molecular weight of 12,000 or more, the hydrolyzable resin can be formed into a pellet shape or a powder shape to maintain the shape. In addition, since the hydrolysis rate varies depending on the type and pH of the hydrolyzable resin, the period during which the hydrolysis rate remains in the contaminated ground and releases the hydrogen donor can be changed by changing the type and pH of the hydrolyzable resin. Can be adjusted.
 加水分解性樹脂は、具体的には、単量体がエステル結合、アミド結合、グリコシド結合、ペプチド結合等によって重縮合しているポリエステル、ポリアミド、多糖類、蛋白質等である。前記ポリエステルを構成する単量体の具体例としては、シュウ酸、マロン酸、こはく酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、デカンジカルボン酸、シクロヘキサンジカルボン酸などのジカルボン酸類;エチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール類;グリコール酸、乳酸、リンゴ酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸類;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトンなどのラクトン類等が挙げられる。 Specifically, the hydrolyzable resin is a polyester, polyamide, polysaccharide, protein or the like in which monomers are polycondensed by an ester bond, an amide bond, a glycoside bond, a peptide bond, or the like. Specific examples of the monomer constituting the polyester include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, Dicarboxylic acids such as decanedicarboxylic acid and cyclohexanedicarboxylic acid; polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, polyethylene glycol; Hydroxy carboxylic acids such as glycolic acid, lactic acid, malic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid; glycolide, caprola Ton, butyrolactone, valerolactone, propiolactone, lactones, such as undecalactone, and the like.
 前記ポリアミドを構成する単量体の具体例としては、こはく酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸類;ヘキサメチレンジアミン、ノナンジアミン、メチルペンタジアミン、フェニレンジアミンなどのジアミン類;カプロラクタム、ウンデカンラクタム、ラウリルラクタムなどのラクタム類等が挙げられる。また、前記多糖類、蛋白質を構成する単量体の具体例としては、グルコース、フルクトース、ガラクトースなどの単糖類;グルタミン酸、アスパラギン酸、グリシン、リジンなどのα-アミノ酸等が挙げられる。 Specific examples of the monomer constituting the polyamide include dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid; hexa Examples include diamines such as methylenediamine, nonanediamine, methylpentadiamine, and phenylenediamine; and lactams such as caprolactam, undecane lactam, and lauryllactam. Specific examples of the monomers constituting the polysaccharide and protein include monosaccharides such as glucose, fructose and galactose; α-amino acids such as glutamic acid, aspartic acid, glycine and lysine.
 前記グリコシド結合やペプチド結合によって重縮合している多糖類および蛋白質としては、デンプン、変性デンプン、セルロース、キチン、キトサン、グルテン、ゼラチン、大豆タンパク、コラーゲン、ケラチン等が挙げられる。 Examples of the polysaccharide and protein polycondensed by the glycosidic bond or peptide bond include starch, modified starch, cellulose, chitin, chitosan, gluten, gelatin, soybean protein, collagen, keratin and the like.
 加水分解性樹脂の中でも、易分解性の観点から、脂肪族ポリエステルが好ましい。脂肪族ポリエステルの中でも、生分解性の観点から、ポリ(α-ヒドロキシ酸)、ポリ(β-ヒドロキシアルカノエート)、ポリ(ω-ヒドロキシアルカノエート)、ポリアルキレンジカルボキシレート等が好ましい。好ましい加水分解性樹脂の具体例としては、ポリグルコール酸、ポリ乳酸、ポリ(β-ヒドロキシ酪酸)、ポリ(β-ヒドロキシ吉草酸)、ポリ-β-プロピオラクトン、ポリ-ε-カプロラクトン、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリエチレンオキサレート、ポリブチレンオキサレート等が挙げられる。これらの加水分解性樹脂は、特定の種類のみを用いてもよいし、複数の種類を混合して用いてもよい。加水分解性樹脂の種類は、浄化の対象となる地盤の土質に応じて、適切な種類の加水分解性樹脂を選択して使用することができる。 Among hydrolyzable resins, aliphatic polyester is preferable from the viewpoint of easy decomposability. Among the aliphatic polyesters, poly (α-hydroxy acid), poly (β-hydroxyalkanoate), poly (ω-hydroxyalkanoate), polyalkylene dicarboxylate and the like are preferable from the viewpoint of biodegradability. Specific examples of preferred hydrolyzable resins include polyglycolic acid, polylactic acid, poly (β-hydroxybutyric acid), poly (β-hydroxyvaleric acid), poly-β-propiolactone, poly-ε-caprolactone, polyethylene Succinate, polybutylene succinate, polyethylene oxalate, polybutylene oxalate and the like can be mentioned. These hydrolyzable resins may be used only in specific types, or a plurality of types may be mixed and used. As the type of the hydrolyzable resin, an appropriate type of hydrolyzable resin can be selected and used according to the soil quality of the ground to be purified.
 加水分解性樹脂としては、適度の加水分解速度を有し、取扱性に優れることから、ポリ乳酸およびポリオキサレートの少なくとも一方を含有することが好ましい。ポリ乳酸とポリオキサレートは、いずれも炭素原子と水素原子とのみからなり、生分解性である。ここで、ポリオキサレートとは、シュウ酸とエチレングリコールやブチレングリコール等のジオールとが共重合したポリエチレンオキサレート、ポリブチレンオキサレート等の共重合体のことを意味している。 The hydrolyzable resin preferably contains at least one of polylactic acid and polyoxalate because it has an appropriate hydrolysis rate and is excellent in handleability. Both polylactic acid and polyoxalate are composed of only carbon atoms and hydrogen atoms and are biodegradable. Here, the polyoxalate means a copolymer such as polyethylene oxalate or polybutylene oxalate obtained by copolymerizing oxalic acid and a diol such as ethylene glycol or butylene glycol.
 ポリ乳酸とポリオキサレートとを併用すると、以下に記載するように新たな効果を発現させることができる。
 ポリ乳酸は、加水分解すると乳酸を発生する。乳酸は、微生物の栄養源および水素供与体として特に有用なものである。しかし、ポリ乳酸の嫌気性環境下における加水分解速度は大きいものではないため、嫌気性微生物の活動を活発化させたいときに、乳酸の発生量が不十分となるおそれがある。
 一方、ポリオキサレートは、ポリ乳酸よりも加水分解速度が速いものであり、かつ加水分解によってシュウ酸を発生させる。このシュウ酸はポリ乳酸の加水分解の触媒となる。
When polylactic acid and polyoxalate are used in combination, a new effect can be expressed as described below.
Polylactic acid generates lactic acid when hydrolyzed. Lactic acid is particularly useful as a microbial nutrient source and hydrogen donor. However, since the hydrolysis rate of polylactic acid in an anaerobic environment is not large, when it is desired to activate the activity of anaerobic microorganisms, the amount of lactic acid generated may be insufficient.
On the other hand, polyoxalate has a higher hydrolysis rate than polylactic acid and generates oxalic acid by hydrolysis. This oxalic acid serves as a catalyst for hydrolysis of polylactic acid.
 ポリ乳酸とポリオキサレートとを併用すると、まずポリオキサレートの加水分解によりシュウ酸が発生し、シュウ酸の濃度が高まると、ポリ乳酸の加水分解が促進されて、乳酸が発生し、微生物の活性化に有効に作用する。ポリ乳酸とポリオキサレートとの量比を変えることによって、分解生成物の溶出速度や持続性を比較的自由に制御することが可能である。ポリ乳酸とポリオキサレートとの併用の方法は、溶融混合して複合化させた樹脂として用いてもよいし、それぞれの樹脂の粒子を混合して用いてもよい。 When polylactic acid and polyoxalate are used in combination, oxalic acid is first generated by hydrolysis of polyoxalate. When the concentration of oxalic acid is increased, hydrolysis of polylactic acid is promoted to generate lactic acid, It works effectively on activation. By changing the amount ratio of polylactic acid and polyoxalate, it is possible to control the elution rate and sustainability of the decomposition product relatively freely. The combined use method of polylactic acid and polyoxalate may be used as a resin that is melt-mixed and combined, or may be used by mixing particles of each resin.
 地下水の流速が大きい地盤にあっては、土中に水溶性有機化合物を注入しても、水溶性有機化合物が地下水に溶けて、地下水とともに流出し易いため、長期間浄化された状態を継続させることは困難なものであった。
 これに対して、本実施形態の加水分解性樹脂は、粒子状である。加水分解性樹脂が粒子状であると、加水分解性樹脂を土粒子の間隙に滞留させることが可能となる。また、加水分解性樹脂が土粒子の間隙に滞留すると、土粒子の間隙が閉塞されるため、地下水の流速を低下させることも可能となる。つまり、粒子状の加水分解性樹脂を使用すると、浄化対象区域内の地下水の流速を低下させ、地下水の流速が速い地盤であっても加水分解性樹脂が土中に留まり、本来の水素供与体としての機能を発揮することができる。また、加水分解性樹脂が粒子状であると、流入地下水の成分として、酸素、硝酸イオン、硫酸イオン等が流入してきても、粒子の内部まで酸化作用等を受けることはないため、これらの成分の影響を受けにくい。
In the ground where the flow rate of groundwater is large, even if water-soluble organic compounds are injected into the soil, the water-soluble organic compounds dissolve in the groundwater and are likely to flow out together with the groundwater, so the state of being purified for a long time is continued. That was difficult.
On the other hand, the hydrolyzable resin of this embodiment is particulate. When the hydrolyzable resin is particulate, the hydrolyzable resin can be retained in the gaps between the soil particles. In addition, when the hydrolyzable resin stays in the gap between the soil particles, the gap between the soil particles is blocked, so that the flow rate of groundwater can be reduced. In other words, when particulate hydrolyzable resin is used, the flow rate of groundwater in the purification target area is reduced, and the hydrolyzable resin stays in the soil even in the ground where the flow rate of groundwater is high, and the original hydrogen donor The function can be demonstrated. In addition, when the hydrolyzable resin is in the form of particles, even if oxygen, nitrate ions, sulfate ions, etc. flow in as components of the inflowing groundwater, these components are not affected by the oxidation action etc. It is hard to be affected by.
 加水分解性樹脂の粒径は、浄化の対象となる地盤の土質に応じて、適切な粒径に設定することが可能である。しかし、土中の注入井戸から加水分解性樹脂を含む浄化剤を注入する際に、加水分解性樹脂の粒径が小さいと、注入作業によって注入井戸を中心に加水分解性樹脂が到達する距離が長くなり、土中の広い領域を浄化することが可能となる。そのため、加水分解性樹脂の平均粒径は、1~100μmであることが好ましく、1~10μmであることがより好ましい。加水分解性樹脂の粒径は、動的光散乱法等によって測定することができる。また、加水分解性樹脂の粒子は、浄化の対象となる地盤の土質に応じて、適切な形状に成形することができる。なお、加水分解性樹脂の平均粒径とは、加水分解性樹脂の1次粒子の平均粒径であり、通常、90%径(d90)として測定する。90%径とは、粒子の集団の全体積を100%として累積カーブを求めたときに、その累積カーブが90%となる点の粒径である。 The particle size of the hydrolyzable resin can be set to an appropriate particle size according to the soil quality of the ground to be purified. However, when injecting a cleaning agent containing hydrolyzable resin from the injection well in the soil, if the particle size of the hydrolyzable resin is small, the distance that the hydrolyzable resin reaches around the injection well by the injection operation It becomes long and it becomes possible to purify a wide area in the soil. Therefore, the average particle size of the hydrolyzable resin is preferably 1 to 100 μm, and more preferably 1 to 10 μm. The particle size of the hydrolyzable resin can be measured by a dynamic light scattering method or the like. Further, the hydrolyzable resin particles can be formed into an appropriate shape according to the soil quality of the ground to be purified. The average particle size of the hydrolyzable resin is the average particle size of primary particles of the hydrolyzable resin, and is usually measured as a 90% diameter (d90). The 90% diameter is the particle diameter at which the cumulative curve becomes 90% when the cumulative curve is determined with the total volume of the group of particles as 100%.
 前記のように、本実施形態では、水素供与体として水溶性有機化合物と粒子状の加水分解性樹脂とを併用することによって、長期間に亘って安定的に嫌気性環境を維持することが可能である。その結果、周辺の土壌中に封じ込められていたVOCsや硝酸性・亜硝酸性窒素が溶出して再度汚染を引き起こすようなことがあっても、再汚染を抑制することが可能である。さらに、透水性の高い地盤を浄化するときであっても、粒子状の加水分解性樹脂が土粒子の間隙の閉塞材料として機能し、地下水の透水性を抑制して、水素供与体の消費を抑制し、嫌気性微生物による汚染地下水浄化の持続性を高めることができる。 As described above, in this embodiment, an anaerobic environment can be stably maintained over a long period of time by using a water-soluble organic compound and a particulate hydrolyzable resin in combination as a hydrogen donor. It is. As a result, even if VOCs and nitrate / nitrite nitrogen contained in the surrounding soil elute and cause pollution again, it is possible to suppress recontamination. Furthermore, even when purifying the ground with high water permeability, the particulate hydrolyzable resin functions as a plugging material for the gaps between the soil particles, suppressing the water permeability of the groundwater and reducing the consumption of hydrogen donors. It is possible to suppress and increase the sustainability of purification of groundwater contaminated with anaerobic microorganisms.
 粒子状の加水分解性樹脂と水溶性有機化合物の組成比は、特に限定されず、それぞれの成分の特性、対象となる汚染物質の種類、嫌気性環境の持続期間等に応じて適宜変更することができる。代表的な組成としては、例えば、加水分解性樹脂と水溶性有機化合物の混合比率が質量比で1:1~3である。 The composition ratio between the particulate hydrolyzable resin and the water-soluble organic compound is not particularly limited, and should be appropriately changed according to the characteristics of each component, the type of the target pollutant, the duration of the anaerobic environment, etc. Can do. As a typical composition, for example, the mixing ratio of the hydrolyzable resin and the water-soluble organic compound is 1: 1 to 3 by mass ratio.
 次に、本実施形態の汚染地下水浄化方法の手順について説明する。
 本実施形態の汚染地下水浄化方法は、水溶性有機化合物と加水分解性樹脂を含む浄化剤を汚染地盤の土中に注入することによって行う。
Next, the procedure of the contaminated groundwater purification method of this embodiment will be described.
The contaminated groundwater purification method of this embodiment is performed by injecting a purification agent containing a water-soluble organic compound and a hydrolyzable resin into the soil of the contaminated ground.
 ここで、粒子状の加水分解性樹脂は、表面が疎水性の場合は、水と混合したときに、水面上に浮上したり、水中に不均一な塊となって浮遊したりして、均一な溶液とすることが困難である。また、加水分解性樹脂の粒径が小さいと、表面積が増大するため、凝集し易くなり、2次粒子を形成してダマとなって、水に均一に分散させることが困難となる Here, when the surface of the hydrolyzable resin is hydrophobic, when it is mixed with water, it floats on the water surface or floats in the water as a non-uniform lump. Difficult solution. In addition, when the particle size of the hydrolyzable resin is small, the surface area increases, so that it easily aggregates and forms secondary particles that become lumps and difficult to uniformly disperse in water.
 粒子状の加水分解性樹脂を水に均一に分散させる方法として、界面活性剤等の分散剤を添加する方法がある。しかし、分散剤には環境保全の観点から適用できない種類のものが多い。また、環境に安全な生分解性の高い分散剤は価格が高いものである。 As a method for uniformly dispersing the particulate hydrolyzable resin in water, there is a method of adding a dispersant such as a surfactant. However, many types of dispersants are not applicable from the viewpoint of environmental protection. Also, environmentally safe and highly biodegradable dispersants are expensive.
 本発明者らは、上記の問題を解消するための方法について検討を加えたところ、以下の方法が優れた方法であることを見出した。まず、第1工程として、粒子状の加水分解性樹脂に水溶性有機化合物を添加して撹拌する工程を行い、加水分解性樹脂の粒子の表面に水溶性有機化合物を馴染ませる。このことによって、加水分解性樹脂の粒子の表面は、水に馴染み易くなる。次に、第2工程として、水を添加する工程を行うと、粒子状の加水分解性樹脂は比較的容易に水中に分散していく。その結果、加水分解性樹脂の粒子が比較的均一に分散した水溶液が形成される。 The inventors of the present invention have studied the method for solving the above problem, and found that the following method is an excellent method. First, as a first step, a step of adding a water-soluble organic compound to a particulate hydrolyzable resin and stirring the mixture is performed, and the surface of the hydrolyzable resin particles is made to conform to the water-soluble organic compound. As a result, the surface of the hydrolyzable resin particles can be easily adapted to water. Next, when a step of adding water is performed as the second step, the particulate hydrolyzable resin is dispersed in water relatively easily. As a result, an aqueous solution in which the hydrolyzable resin particles are relatively uniformly dispersed is formed.
 第1工程で使用する撹拌装置は、特に限定されず、公知のミキサー、ブレンダー等を用いることができる。撹拌するときの条件(撹拌速度、撹拌時間等)も適宜設定することができる。 The stirring device used in the first step is not particularly limited, and a known mixer, blender, or the like can be used. Conditions for stirring (stirring speed, stirring time, etc.) can also be set as appropriate.
 浄化剤の製造に際し、上記の2工程を行うことによって、粒子状の加水分解性樹脂の凝集が抑制され、2次粒子の形成が抑制されて、粒子状の加水分解性樹脂を水中に均一に分散させることが可能となった。得られた混合溶液は、その後、浄化剤として土中に注入される。浄化剤は粒子状の加水分解性樹脂が均一に分散しているため、土中の広い領域に均一な成分の浄化剤を供給することが可能となる。 In the production of the purifier, by performing the above two steps, the aggregation of the particulate hydrolyzable resin is suppressed, the formation of secondary particles is suppressed, and the particulate hydrolyzable resin is uniformly placed in water. It became possible to disperse. The obtained mixed solution is then poured into the soil as a cleaning agent. Since the particulate hydrolyzable resin is uniformly dispersed in the purifying agent, it becomes possible to supply the purifying agent having a uniform component to a wide area in the soil.
 また、上記の手順であれば、第三の成分として、分散剤等を添加する必要が無いため、必須成分のみでよく、簡便であり、製造コストの低減を図ることができる。 In the above procedure, since it is not necessary to add a dispersant or the like as the third component, only the essential component is necessary, which is simple and can reduce the manufacturing cost.
 浄化剤を土中に注入するには、一般的なスクリーン(開口部)を有する井戸を土中注入用の井戸として使用することができる。加水分解性樹脂に水溶性有機化合物を混合して撹拌し、得られた混合物を、水を貯めた貯留槽に添加して撹拌し、混合溶液とする。その後、貯留槽と注入用井戸とを繋ぐ配管の間に注入用のポンプを設け、注入用井戸の上部1箇所に逆流防止用のパッカーを設置する。ポンプを用いて貯留槽中の混合溶液を送水することによって、浄化剤は井戸のスクリーンを通じて土中に注入される。この方法では、注入用井戸の周辺の浸透性の高い場所に浄化剤が優先して注入されるため、地下水の流速を低下させることを効率的に実施することができる。なお、汚染地盤に浄化剤を注入する方法は、特に限定される訳ではなく、既存の注入用井戸からの自然注入法等の公知の方法を適宜適用することができる。
 なお、汚染地下水の浄化を行うに際して、地下水中の酸素濃度や汚染物質濃度や浄化剤の残存量を定量するための水質モニタリングは必要に応じて適宜行われる。
In order to inject the cleaning agent into the soil, a well having a general screen (opening) can be used as a well for injecting into the soil. A water-soluble organic compound is mixed with the hydrolyzable resin and stirred, and the resulting mixture is added to a storage tank storing water and stirred to obtain a mixed solution. Thereafter, an injection pump is provided between the pipes connecting the storage tank and the injection well, and a backflow prevention packer is installed at one upper portion of the injection well. By pumping the mixed solution in the storage tank using a pump, the cleaning agent is injected into the soil through the screen of the well. In this method, since the cleaning agent is preferentially injected into a highly permeable area around the injection well, it is possible to efficiently reduce the flow rate of groundwater. The method for injecting the cleaning agent into the contaminated ground is not particularly limited, and a known method such as a natural injection method from an existing well for injection can be appropriately applied.
In addition, when purifying contaminated groundwater, water quality monitoring for quantifying the oxygen concentration in the groundwater, the contaminant concentration, and the remaining amount of the purifier is appropriately performed as necessary.
 以下、本発明を試験例によって具体的に説明する。
 粒子状の加水分解性樹脂として、ポリオキサレートを10%ブレンドしたポリ乳酸樹脂(重量平均分子量15,000)を用いた。図1は、この加水分解性樹脂の粒子の動的光散乱法による粒度分布を示した図である。粒度分布の測定には、株式会社セイシン企業社製、レーザーマイクロンサイザー LMS-2000eを用いて測定した。
Hereinafter, the present invention will be specifically described with reference to test examples.
As a particulate hydrolyzable resin, a polylactic acid resin (weight average molecular weight 15,000) blended with 10% polyoxalate was used. FIG. 1 is a view showing a particle size distribution of the hydrolyzable resin particles by a dynamic light scattering method. The particle size distribution was measured using a Laser Micron Sizer LMS-2000e manufactured by Seishin Enterprise Co., Ltd.
 粒子の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが90%となる点の粒径を90%径(μm)とする。この加水分解性樹脂の粒子は、90%径が23μmであった。したがって、この加水分解性樹脂の1次粒子の平均粒径を23μmとして、以下検討を進めた。 When the cumulative curve is determined with the total volume of the particle population as 100%, the particle size at which the cumulative curve becomes 90% is 90% diameter (μm). The hydrolyzable resin particles had a 90% diameter of 23 μm. Accordingly, the average particle size of the primary particles of this hydrolyzable resin was set to 23 μm, and the following studies were advanced.
 水溶性有機化合物として、以下のものを用いた。
 乳酸:関東化学社製、試薬
 乳酸ナトリウム:和光純薬工業社製、試薬
 アスコルビン酸ナトリウム:関東化学社製、試薬
 こはく酸ナトリウム:関東化学社製、試薬
The following were used as water-soluble organic compounds.
Lactic acid: manufactured by Kanto Chemical Co., Ltd. Reagents Sodium lactate: manufactured by Wako Pure Chemical Industries, Ltd. Reagents Sodium ascorbate: manufactured by Kanto Chemical Co., Ltd. Reagents Sodium succinate: manufactured by Kanto Chemical Co., Reagents
 粒子状の加水分解性樹脂1.0gに、上記の水溶性有機化合物を2.0g添加して、乳鉢を用いて撹拌した。 2.0 g of the above water-soluble organic compound was added to 1.0 g of the particulate hydrolyzable resin and stirred using a mortar.
 次に、水を10ml添加してさらに撹拌し、加水分解性樹脂と水溶性有機化合物をマグネチックスターラーで攪拌しながら水中に分散させて、混合溶液とした。 Next, 10 ml of water was added and further stirred, and the hydrolyzable resin and the water-soluble organic compound were dispersed in water while stirring with a magnetic stirrer to obtain a mixed solution.
 得られた混合溶液中に分散している粒子の粒径分布を以下の装置を用いて測定した。
 測定装置:大塚電子社製、ELSZ-1000
The particle size distribution of the particles dispersed in the obtained mixed solution was measured using the following apparatus.
Measuring device: ELSZ-1000, manufactured by Otsuka Electronics Co., Ltd.
 図2と図3は、混合溶液中の加水分解性樹脂の粒度分布を示す図である。図2は、比較として、粒子状の加水分解性樹脂に水溶性有機化合物を添加することなく、水に分散させたときの混合溶液(以下、「水のみに加水分解性樹脂を分散させた混合溶液」という。)中の粒度分布を示す。図3は、粒子状の加水分解性樹脂に乳酸ナトリウムを添加して撹拌し、その後水を添加して分散させたときの混合溶液(以下、「乳酸ナトリウムを添加した加水分解性樹脂を分散させた混合溶液」という。)中の粒度分布を示す。 2 and 3 are diagrams showing the particle size distribution of the hydrolyzable resin in the mixed solution. FIG. 2 shows, as a comparison, a mixed solution when dispersed in water without adding a water-soluble organic compound to the particulate hydrolyzable resin (hereinafter referred to as “mixture in which the hydrolyzable resin is dispersed only in water”). The particle size distribution in the “solution”). FIG. 3 shows a mixed solution in which sodium lactate is added to a particulate hydrolyzable resin and stirred, and then water is added and dispersed (hereinafter, the hydrolyzable resin to which sodium lactate has been added is dispersed. The particle size distribution in the “mixed solution”).
 図2に示すように、水のみに加水分解性樹脂を分散させた混合溶液のときは、23μm(23,000nm)より粒径が大きい2次粒子の比率が大きいのに対して、図3に示すように、乳酸ナトリウムを添加した加水分解性樹脂を分散させた混合溶液のときは、23μmより粒径が小さい1次粒子の比率が大きいことが分かる。すなわち、1次粒子の凝集が抑制されていることが分かる。尚、23μmより粒径が小さい粒子がすべて1次粒子という訳ではなく、統計上、2次粒子も一部混在している。 As shown in FIG. 2, in the case of a mixed solution in which a hydrolyzable resin is dispersed only in water, the ratio of secondary particles having a particle size larger than 23 μm (23,000 nm) is large, whereas in FIG. As shown, in the case of a mixed solution in which a hydrolyzable resin added with sodium lactate is dispersed, the ratio of primary particles having a particle size smaller than 23 μm is large. That is, it can be seen that aggregation of primary particles is suppressed. Note that not all particles having a particle size smaller than 23 μm are primary particles, and statistically, secondary particles are also partially mixed.
 図4は、混合溶液中の加水分解性樹脂の1次粒子と2次粒子のピーク分布(相対比率)を、添加する水溶性有機化合物の種類ごとに示した図である。図中、一番左側には、比較として、水のみに加水分解性樹脂を分散させた混合溶液の場合を示した。水溶性有機化合物を添加することによって、2次粒子の比率が減少し、1次粒子(ファーストピーク)の比率が増大していることが分かった。すなわち、加水分解性樹脂に予め水溶性有機化合物を馴染ませることによって、1次粒子の凝集が抑制されていることが分かった。 FIG. 4 is a diagram showing the peak distribution (relative ratio) of the primary particles and secondary particles of the hydrolyzable resin in the mixed solution for each type of water-soluble organic compound to be added. For comparison, the leftmost side of the figure shows a mixed solution in which a hydrolyzable resin is dispersed only in water. It was found that by adding the water-soluble organic compound, the ratio of secondary particles decreased and the ratio of primary particles (first peak) increased. That is, it was found that aggregation of primary particles was suppressed by preliminarily incorporating a water-soluble organic compound into the hydrolyzable resin.
 図5は、混合溶液中の加水分解性樹脂の1次粒子の平均粒径を、添加する水溶性有機化合物の種類ごとに示した図である。図中、一番左側には、比較として、水のみに加水分解性樹脂を分散させた混合溶液の場合を示した。水溶性有機化合物を添加することによって、1次粒子の凝集が抑制されて、23μm以下の領域における1次粒子の平均粒径が小さくなっていることが分かった。 FIG. 5 is a diagram showing the average particle diameter of primary particles of the hydrolyzable resin in the mixed solution for each type of water-soluble organic compound to be added. For comparison, the leftmost side of the figure shows a mixed solution in which a hydrolyzable resin is dispersed only in water. It was found that by adding a water-soluble organic compound, aggregation of primary particles was suppressed and the average particle size of primary particles in a region of 23 μm or less was reduced.
 図6は、混合溶液中の加水分解性樹脂の1次粒子の多分散指数を、添加する水溶性有機化合物の種類ごとに示した図である。図中、一番左側には、比較として、水のみに加水分解性樹脂を分散させた混合溶液の場合を示した。水溶性有機化合物を添加することによって、1次粒子の凝集が抑制されて、23μm以下の領域における1次粒子の多分散指数が小さくなっていることが分かった。ここで、多分散指数とは、粒子径分布の多分散性、すなわち粒子径分布の広がりの尺度である。 FIG. 6 is a diagram showing the polydispersity index of primary particles of the hydrolyzable resin in the mixed solution for each type of water-soluble organic compound to be added. For comparison, the leftmost side of the figure shows a mixed solution in which a hydrolyzable resin is dispersed only in water. It was found that by adding the water-soluble organic compound, the aggregation of the primary particles was suppressed and the polydispersity index of the primary particles in the region of 23 μm or less was reduced. Here, the polydispersity index is a measure of the polydispersity of the particle size distribution, that is, the spread of the particle size distribution.
 図7と図8は、土中における粒子状の加水分解性樹脂の到達距離を示した図である。この図には、土中における粒子状の加水分解性樹脂の浸透性について、モデル実験を行った結果を示している。上記実験で用いた、水のみに加水分解性樹脂を分散させた混合溶液と、乳酸ナトリウムを添加した加水分解性樹脂を分散させた混合溶液を用意した。珪砂を充填したガラスカラムの最上部から、各混合溶液を一定量自然浸透させた。ガラスカラム内を移動した加水分解性樹脂の最上部からの到達距離(cm)と移動した樹脂量(mg/g)の分布を図示した。図7は、水のみに加水分解性樹脂を分散させた混合溶液の場合であり、図8は、乳酸ナトリウムを添加した加水分解性樹脂を分散させた混合溶液の場合である。水溶性有機化合物を添加することによって、粒子状の加水分解性樹脂の到達距離が延びることが分かった。 FIG. 7 and FIG. 8 are diagrams showing the reach distance of the particulate hydrolyzable resin in the soil. This figure shows the results of a model experiment on the permeability of the particulate hydrolyzable resin in the soil. The mixed solution in which the hydrolyzable resin was dispersed only in water and the mixed solution in which the hydrolyzable resin to which sodium lactate was added were prepared. A certain amount of each mixed solution was naturally permeated from the top of the glass column filled with silica sand. The distribution of the reachable distance (cm) from the top of the hydrolyzable resin that has moved through the glass column and the amount of resin moved (mg / g) is shown in the figure. FIG. 7 shows the case of a mixed solution in which the hydrolyzable resin is dispersed only in water, and FIG. 8 shows the case of the mixed solution in which the hydrolyzable resin added with sodium lactate is dispersed. It has been found that the reach of the particulate hydrolyzable resin is increased by adding the water-soluble organic compound.
 図9は、混合溶液を土中に注入するときの具体的な方法の一例を示した図である。地下の土壌構成は、表層に舗装部20、その下に約2.5m厚さの埋土層21、その下に約6.5m厚さの帯水層22、さらにその下にシルト層23からなっている。帯水層22は、主に砂からなる層であり、地下水を含み、透水係数kは10-6~10-5m/sであった。また、シルト層23は、粘性土を主体とした細粒土からなる層であり、透水係数kは10-9~10-8m/sであった。注入用井戸10は、シルト層23に達する深さまで設置されており、帯水層22に浄化剤を注入できるように、帯水層22の層の厚さに亘ってスクリーン(開口部)11を有している。 FIG. 9 is a diagram showing an example of a specific method for injecting the mixed solution into the soil. The underground soil structure consists of a pavement 20 on the surface, a buried layer 21 of about 2.5 m below it, an aquifer 22 of about 6.5 m below it, and a silt layer 23 below it. It has become. The aquifer 22 is a layer mainly made of sand, includes groundwater, and has a permeability coefficient k of 10 −6 to 10 −5 m / s. The silt layer 23 is a layer made of fine-grained soil mainly composed of cohesive soil, and the hydraulic conductivity k was 10 −9 to 10 −8 m / s. The injection well 10 is installed to a depth that reaches the silt layer 23, and a screen (opening) 11 is formed over the thickness of the aquifer 22 so that the purifier can be injected into the aquifer 22. Have.
 土中への浄化剤の注入装置として、トラックの荷台に載せられた車載型注入装置1を用いた。車載型注入装置1において、加水分解性樹脂に水溶性有機化合物を混合して撹拌し、得られた混合物を、水を貯めた貯留槽2A、2Bに添加して撹拌し、注入用の混合溶液を調製した。混合溶液の組成は、加水分解性樹脂:水溶性有機化合物:水が、約1kg:約2kg:1klであった。貯留槽2A、2Bと注入用井戸10とを繋ぐ配管6には、注入用ポンプ3、流量計4、圧力計5が設置されている。また、注入用井戸10の上部1箇所には逆流防止用のパッカー12が設置されている。 The in-vehicle injection device 1 mounted on the truck bed was used as an injection device for the cleaning agent into the soil. In the vehicle-mounted injection device 1, the water-soluble organic compound is mixed with the hydrolyzable resin and stirred, and the resulting mixture is added to the storage tanks 2 </ b> A and 2 </ b> B storing water and stirred, so that a mixed solution for injection Was prepared. The composition of the mixed solution was about 1 kg: about 2 kg: 1 kl of hydrolyzable resin: water-soluble organic compound: water. An injection pump 3, a flow meter 4, and a pressure gauge 5 are installed in a pipe 6 that connects the storage tanks 2 </ b> A and 2 </ b> B and the injection well 10. In addition, a packer 12 for preventing backflow is installed at one upper portion of the injection well 10.
 注入用ポンプ3を用いて混合液を土中に約40l/minで9kl注入し、その間の管頭での注入圧を測定した。その結果、粒子状の加水分解性樹脂は貯留槽2A、2B内にダマ状になって残ることなく、注入用井戸10から土中に供給された。注入期間を通じて、注入圧は0.0MPaであって、注入圧の上昇はみられず、注入用井戸10周辺に容易に浄化剤を注入できることを確認した。 9 ml of the mixed solution was injected into the soil at about 40 l / min using the injection pump 3, and the injection pressure at the tube head during that time was measured. As a result, the particulate hydrolyzable resin was supplied into the soil from the injection well 10 without remaining in the storage tanks 2A and 2B in a dull form. Throughout the injection period, the injection pressure was 0.0 MPa, and no increase in the injection pressure was observed, and it was confirmed that the purifier could be easily injected around the injection well 10.

Claims (7)

  1.  嫌気性微生物を利用して、汚染地下水を浄化する、または地下水の再汚染を防止する、汚染地下水の浄化方法であって、
     水素供与体として、粒子状の加水分解性樹脂と水溶性有機化合物とを併用し、
     前記水溶性有機化合物に前記加水分解性樹脂を添加して撹拌し、次に水を添加して混合溶液とし、その後前記混合溶液を土中に注入することを特徴とする汚染地下水の浄化方法。
    A method for purifying contaminated groundwater that uses anaerobic microorganisms to purify contaminated groundwater or prevent recontamination of groundwater,
    As a hydrogen donor, a particulate hydrolyzable resin and a water-soluble organic compound are used in combination,
    A method for purifying contaminated groundwater, comprising adding the hydrolyzable resin to the water-soluble organic compound and stirring, then adding water to form a mixed solution, and then pouring the mixed solution into the soil.
  2.  前記汚染地下水の汚染物質が、揮発性有機塩素化合物、硝酸性窒素および亜硝酸性窒素の少なくとも1つである請求項1に記載の汚染地下水の浄化方法。 The method for purifying contaminated groundwater according to claim 1, wherein the contaminant of the contaminated groundwater is at least one of a volatile organic chlorine compound, nitrate nitrogen and nitrite nitrogen.
  3.  前記水溶性有機化合物が、アルコール、アルコール誘導体、カルボン酸およびカルボン酸誘導体の少なくとも1つを含有することを特徴とする請求項1または請求項2に記載の汚染地下水の浄化方法。 The method for purifying contaminated groundwater according to claim 1 or 2, wherein the water-soluble organic compound contains at least one of alcohol, an alcohol derivative, a carboxylic acid, and a carboxylic acid derivative.
  4.  前記加水分解性樹脂が、脂肪族ポリエステルであることを特徴とする請求項1~3のいずれか1項に記載の汚染地下水の浄化方法。 The method for purifying contaminated groundwater according to any one of claims 1 to 3, wherein the hydrolyzable resin is an aliphatic polyester.
  5.  前記加水分解性樹脂が、ポリ乳酸およびポリオキサレートの少なくとも一方を含有することを特徴とする請求項1~4のいずれか1項に記載の汚染地下水の浄化方法。 The method for purifying contaminated groundwater according to any one of claims 1 to 4, wherein the hydrolyzable resin contains at least one of polylactic acid and polyoxalate.
  6.  前記加水分解性樹脂の平均粒径が、1~100μmであることを特徴とする請求項1~5のいずれか1項に記載の汚染地下水の浄化方法。 6. The method for purifying contaminated groundwater according to claim 1, wherein the hydrolyzable resin has an average particle size of 1 to 100 μm.
  7.  前記混合溶液の土中注入用の井戸の上部にパッカーを設置して、ポンプを用いて前記混合溶液を土中に注入することを特徴とする請求項1~6のいずれか1項に記載の汚染地下水の浄化方法。 The packer is installed above the well for injecting the mixed solution into the soil, and the mixed solution is injected into the soil using a pump. How to purify contaminated groundwater.
PCT/JP2018/007709 2017-03-01 2018-03-01 Method for purifying contaminated groundwater WO2018159741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-038466 2017-03-01
JP2017038466A JP6906330B2 (en) 2017-03-01 2017-03-01 How to purify contaminated groundwater

Publications (1)

Publication Number Publication Date
WO2018159741A1 true WO2018159741A1 (en) 2018-09-07

Family

ID=63371418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007709 WO2018159741A1 (en) 2017-03-01 2018-03-01 Method for purifying contaminated groundwater

Country Status (2)

Country Link
JP (1) JP6906330B2 (en)
WO (1) WO2018159741A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825571A (en) * 2019-05-16 2021-12-21 东洋制罐集团控股株式会社 Organic solvent dispersions of hydrolyzable polymers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262751A (en) * 1998-03-17 1999-09-28 Ebara Corp Method for in-situ purification of soil and the like
JP2000254687A (en) * 1999-03-08 2000-09-19 Taisei Corp Method for cleaning ground water
JP2005081158A (en) * 2003-09-04 2005-03-31 Matsushita Electric Ind Co Ltd Soil/ground water cleaning composition
JP2006161017A (en) * 2004-04-22 2006-06-22 Ube Ind Ltd Novel polyoxalate
US20110262559A1 (en) * 2007-10-17 2011-10-27 North Carolina A&T State University Controlled release remediation system and composition
JP2013158697A (en) * 2012-02-03 2013-08-19 Toyohashi Univ Of Technology Electron donor supply agent and environment cleaning method using the same
JP2017042737A (en) * 2015-08-28 2017-03-02 大成建設株式会社 Contaminated groundwater cleanup method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262751A (en) * 1998-03-17 1999-09-28 Ebara Corp Method for in-situ purification of soil and the like
JP2000254687A (en) * 1999-03-08 2000-09-19 Taisei Corp Method for cleaning ground water
JP2005081158A (en) * 2003-09-04 2005-03-31 Matsushita Electric Ind Co Ltd Soil/ground water cleaning composition
JP2006161017A (en) * 2004-04-22 2006-06-22 Ube Ind Ltd Novel polyoxalate
US20110262559A1 (en) * 2007-10-17 2011-10-27 North Carolina A&T State University Controlled release remediation system and composition
JP2013158697A (en) * 2012-02-03 2013-08-19 Toyohashi Univ Of Technology Electron donor supply agent and environment cleaning method using the same
JP2017042737A (en) * 2015-08-28 2017-03-02 大成建設株式会社 Contaminated groundwater cleanup method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, JIANLONG ET AL.: "Biological nitrate removal from water and wastewater by solid-phase denitrification process", BIOTECHNOLOGY ADVANCES, vol. 34, no. 6, 1 November 2016 (2016-11-01), pages 1103 - 1112, XP029702745, DOI: doi:10.1016/j.biotechadv.2016.07.001 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825571A (en) * 2019-05-16 2021-12-21 东洋制罐集团控股株式会社 Organic solvent dispersions of hydrolyzable polymers
JP7415333B2 (en) 2019-05-16 2024-01-17 東洋製罐グループホールディングス株式会社 Organic solvent dispersion of hydrolyzable resin

Also Published As

Publication number Publication date
JP2018143918A (en) 2018-09-20
JP6906330B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
O'Connor et al. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review
MXPA05000466A (en) Compositions for removing hydrocarbons and halogenated hydrocarbons from contaminated environments.
Baric et al. Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers
US10479711B2 (en) Composition with a time release material for removing halogenated hydrocarbons from contaminated environments
CN112960765A (en) Biological permeable reactive barrier slow-release filler capable of removing trichloroethylene in underground water in situ and having core-shell structure and preparation method thereof
CN105518078A (en) Biodegradable resin composition having a porous structure and method for surface treatment of same
JP4079976B2 (en) Purification agent and organic chlorine compound purification method using the purification agent
JP2011080224A (en) Grouting method
JP2006218456A (en) Soil purifying method utilizing biodegradable resin
WO2018159741A1 (en) Method for purifying contaminated groundwater
US20070025820A1 (en) Composite material for a permeable reactive barrier
JP2019534692A (en) Bioremediation method for water contaminated with hydrocarbons
JP2017042737A (en) Contaminated groundwater cleanup method
Wang et al. A review of slow-release materials for remediation of organically contaminated groundwater-material preparation, applications and prospects for practical application
TWI398310B (en) Degradable and slow-releasing material for enhancing chemical oxidation of contaminated soil and groundwater
JP6911684B2 (en) Manufacturing method of nutrient solution for microorganisms
TWI411585B (en) Gel material for treating chloric pollution and the application thereof
CN115959775A (en) Composite sustained-release agent for repairing organic pollutants and preparation method thereof
JP5909836B2 (en) Electron donor supply agent and environmental purification method using the same
JP3815464B2 (en) Soil and groundwater purification composition
TWI700355B (en) Gel composition used for soil remediation
KR101551456B1 (en) Manufacturing method of slow release substrate activated carbon for petroleum-contaminated dredged soils stabilization and remediation method using the activated carbon
CN113275367B (en) Carboxymethyl cellulose emulsified carbon-releasing matrix and soil remediation method
JP7415333B2 (en) Organic solvent dispersion of hydrolyzable resin
JP2003260456A (en) Soil purifying agent and method for purifying soil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761915

Country of ref document: EP

Kind code of ref document: A1