WO2005118171A1 - Additive for use to restore polluted soil, groundwater or bottom sediment soil - Google Patents

Additive for use to restore polluted soil, groundwater or bottom sediment soil Download PDF

Info

Publication number
WO2005118171A1
WO2005118171A1 PCT/JP2005/010187 JP2005010187W WO2005118171A1 WO 2005118171 A1 WO2005118171 A1 WO 2005118171A1 JP 2005010187 W JP2005010187 W JP 2005010187W WO 2005118171 A1 WO2005118171 A1 WO 2005118171A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
soil
anaerobic
salt
groundwater
Prior art date
Application number
PCT/JP2005/010187
Other languages
French (fr)
Japanese (ja)
Inventor
Shrihari Chandraghatgi
Shingo Maeda
Kaoru Nogawa
Hideki Himi
Original Assignee
Ecocycle Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecocycle Corporation filed Critical Ecocycle Corporation
Priority to JP2006514137A priority Critical patent/JP3834580B2/en
Publication of WO2005118171A1 publication Critical patent/WO2005118171A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps

Definitions

  • the present invention relates to an organic halogenated compound, particularly to an additive used for repairing soil, groundwater or sediment soil contaminated with an organic chlorine compound.
  • Noremediation is a technology that biologically decomposes harmful organic compounds and converts them into harmless substances such as carbon dioxide, methane, water, inorganic salts, and biomass. It is. More recently, the concept of bioremediation has been extended to techniques for repairing hazardous waste and contaminated soil, groundwater or sediment. Under such circumstances, research and development using aerobic microorganisms has been conducted on bioremediation of black-mouthed carbon pollution in Japan.
  • the neurostimulation is a method that inhabits the site of contamination and promotes the decomposition and removal of contamination by growing and activating certain aerobic microorganisms. This is a method of supplying necessary carbon sources such as methane, air or pure oxygen, and nutrients from the outside.
  • Neuroregulation biological addition method is a method of cultivating a large amount of a single microorganism with excellent resolution and injecting it together with an oxidant into the basement of the contamination site to decompose the contamination. ⁇ It is a method to remove.
  • Patent Document 1 discloses a method in which a distilled liquor waste liquid is applied to soil to purify soil and Z or groundwater contaminated by an organochlorine compound using the action of anaerobic microorganisms. It is disclosed that the distillation residue waste liquid contains organic acids such as lactic acid, acetic acid, citric acid, and succinic acid, sugars such as maltose, glucose, and fructose, and amino acids in a well-balanced manner. ing.
  • Patent Document 2 discloses a method in which an organochlorine compound is decomposed by an organochlorine-decomposing microorganism present in soil and Z or groundwater by adding an amino acid and an electron donor to the source.
  • Patent Document 3 discloses that, in soil and Z or groundwater contaminated with tetrachloroethylene or the like, a carbon source necessary for the growth and survival of microorganisms in the soil, an inorganic reducing agent, a polymer water-absorbing resin and Z or It is disclosed that a water-retaining resin is injected and mixed, and as a carbon source, for example, lactic acid, polypeptone, a sugar-containing organic substance, or the like is described as a nutrient source of a sulfate-reducing microorganism.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-224658
  • Patent Document 2 JP 2003-145131 A
  • Patent Document 3 JP-A-11-2622751
  • Non-patent document 1 Environmental purification technology Vol. 1, No. 1 (pp. 80-84)
  • Patent Documents 1 to 3 have some effects, there has been a strong demand for further improvement in the effects. In other words, there has been a demand for the development of additives that exhibit more remarkable effects.
  • the present invention has been made in view of the above-described problems in the conventional art, and is an organic halogen compound, particularly an organic halogen compound that can repair various soil contamination sites and can perform low-cost repair work.
  • the aim of the present invention is to provide additives for biological remediation of soil, groundwater or sediment contaminated by organochlorine compounds.
  • the inventors of the present application have conducted research on additives having a remarkable effect, and have found that a substance that activates a microorganism consortium, a substance that promotes reductive dehalogenation of anaerobic microorganisms, and an anaerobic state.
  • An additive which has three kinds of material strengths with the material forming the material has been found.
  • the additive used for repairing soil, groundwater or sediment soil contaminated with the organic halogenated conjugate of the present invention is a substance that forms and activates a microbial consortium and reductive removal of anaerobic microorganisms. It is characterized by comprising a substance that promotes halogenation and a substance that creates an anaerobic state.
  • the substance that forms and activates the microbial consortium is peptone
  • the substance that promotes reductive dehalogenation of the anaerobic microorganism is propionic acid, butyric acid, lactic acid, and their salt power.
  • Characterized in that the substance forming the anaerobic state is at least one substance selected from the group consisting of glucose, galactose, fructose, ratatose, sucrose, and maltosca.
  • the restoration method for restoring soil is characterized by adding a substance that creates and activates a microbial consortium, a substance that promotes reductive dehalogenation of anaerobic microorganisms, and a substance that creates an anaerobic state.
  • the substance that forms and activates the microbial consortium is peptone
  • the substance that promotes reductive dehalogenation of the anaerobic microorganism is propionic acid, butyric acid, lactic acid, and their salt power.
  • Characterized in that the substance forming the anaerobic state is at least one substance selected from the group consisting of glucose, galactose, fructose, ratatose, sucrose, and maltosca.
  • the method for repairing soil, groundwater or sediment soil contaminated with the organohalide ligated compound of the present invention is as follows: peptone is added to form a microbial consortium; Lactic acid, and their salt powers. At least one selected substance is added to promote the reductive dehalogenation of anaerobic microorganisms, from the group consisting of glucose, galactose, fructose, ratatose, sucrose, and maltose. An anaerobic state is created by adding at least one selected substance.
  • the additive used for the restoration of soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the invention of the present application has a substance that forms and activates a microbial consortium as described above. It is characterized by.
  • a microbial consortium refers to the entire indigenous group of microorganisms, including both aerobic and anaerobic, and various anaerobic microorganisms!
  • the substance that forms and activates the microbial consortium is a substance that is effective for the formation, that is, propagation, of both aerobic and anaerobic microorganisms.
  • the object to be repaired becomes anaerobic, it becomes possible for the absolute anaerobic microorganisms to decompose the organic halogen compound, particularly the organic chlorine compound, as an electron acceptor.
  • the organic halogen compound particularly the organic chlorine compound
  • ethylene tetrachloride is converted into trichloroethylene and then dichloroethylene by successive reductive dechlorination reactions, which are eventually decomposed into stable inorganic salts.
  • the harmful intermediate products generated by the anaerobic microorganisms in the process of reductive dechlorination include those that cannot always be decomposed effectively by these anaerobic microorganisms (Shiiro Bul monomer, cis monomer). There is also 1,2-dichloroethylene), but once the entire microbial consortium is activated, other types of microorganisms that make up the microbial consortium can effectively decompose these substances. Therefore, harmful intermediate products are unlikely to remain during repair work using anaerobic microorganisms.
  • the additive used for repairing soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the present invention has a substance that promotes reductive dehalogenation of anaerobic microorganisms. It is characterized by the following.
  • the function of the anaerobic microorganism is effectively exerted by supplying a substance that promotes the anaerobic microorganism to dehalogenate the organic halogenated compound, particularly the organic chlorine compound.
  • the additive used for restoring soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the present invention has a feature of forming a substance that forms an anaerobic state.
  • a substance that forms an anaerobic state that is, a substance that can effectively propagate oxygen-consuming microorganisms such as aerobic microorganisms is also actively supplied. This allows the repair target to be more efficiently Soon become anaerobic.
  • the substance used for repairing soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the present invention is a substance that activates a microbial consortium by peptone. I do.
  • Peptone is a generic name of various proteins obtained by enzymatic degradation or hydrolysis with an acid.
  • the main components are amino acids and oligopeptides, and polypeptides are also mixed as components. All of these components are water-soluble, and when injected into groundwater as an additive, can be easily diffused into the area to be purified. Is a substance.
  • peptone is a desired substance as an organic nitrogen source for growing a large number of microorganisms because peptone is a decomposition product of protein and contains a large amount of nitrogen.
  • peptone is mainly composed of low-molecular substances with a small number of amino acids, and is easily used as a nutrient source even by microorganisms with low protease (proteolytic enzyme) activity, and activates many types of microorganisms. Therefore, it is a desirable substance as a nutrient source for activating a microbial consortium.
  • Amino acids and vitamins produced by the decomposition of peptone by microorganisms are also nutrients of microorganisms constituting the microorganism consortium, and the microbial consortium is effectively activated. Due to the activation of the microbial consortium, the object to be repaired quickly becomes anaerobic, and harmful substances hardly remain in the object to be repaired.
  • propionic acid is a substance that promotes reductive dehalogenation of anaerobic microorganisms in an additive used for repairing soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the present invention.
  • Butyric acid, lactic acid, and salts thereof are excellent electron donating properties and serve as a source of hydrogen in the dehalogenation reaction of the organic halide conjugate. Moreover, they are available stably and at low cost. Therefore, it is a particularly desirable substance as the fatty acid salt used in the present invention.
  • the substance that creates an anaerobic state in an additive used for repairing soil, groundwater, or sediment soil contaminated with the organic halogenated conjugate according to the present invention includes dalucose, galactose, fructose, ratatose, and sucrose. , And at least one substance selected from the group consisting of maltose.
  • the restoration effect can be enhanced by setting the compounding ratio of each substance constituting the additive according to the soil to be restored.
  • the restoration target in the present invention is an organic halogenated compound, particularly soil, groundwater or sediment soil contaminated with an organic chlorine compound.
  • the organic halogenated compound is a substance in which hydrogen of an aliphatic or aromatic hydrocarbon is substituted with halogen (such as fluorine and chlorine).
  • aliphatic organochlorine compounds such as tetrachlorethylene, trichlorethylene and dichloroethylene, dioxins such as polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF), PCBs such as cobraner polychlorinated biphenyl and the like.
  • PCDD polychlorinated dibenzodioxin
  • PCDF polychlorinated dibenzofuran
  • PCBs such as cobraner polychlorinated biphenyl and the like.
  • Aromatic organochlorine compounds such as black benzene correspond to this category.
  • a microcosm study in the laboratory determines a proper microbial community in the contaminated area, that is, an appropriate mixing ratio of the electron donor according to the microbial consortium.
  • Microcosms are formed from soil, groundwater or sediment collected from contaminated areas. The additives are mixed in various ratios, mixed into microcosms and cultured at a constant temperature. Under anaerobic conditions, soil or water is periodically sampled for microcosm power to observe the concentration of organic chlorine compounds, methane, vinyl chloride, chloride ions, dissolved oxygen, redox potential, nitrate ion, and sulfate ion.
  • Organochlorine compounds, methane, vinyl chloride and chloride ions are used to confirm the concentrations of contaminants and their decomposition products.
  • the dissolved oxygen amount and the oxidation reduction potential are for confirming that the microcosm is in an absolutely anaerobic atmosphere.
  • Nitrate ion and sulfate ion are involved in the reduction reaction of anaerobic microorganisms! It is consumed in preference to organic chlorine compounds. Therefore, by measuring the concentrations of nitrate ion and sulfate ion, it can be confirmed that the reduction reaction in the microcosm was started. Based on the results of experiments for a certain period of time, usually about one to two months, the optimal additive ratio for the remediation target in the contaminated area is determined.
  • the additive is added to soil, groundwater or sediment in the contaminated area.
  • the form of the additive may be solid, liquid, slurry, etc., and is determined based on the geological condition of the geological layer in the contaminated area and the contamination status in the contaminated area.
  • the microbial consortium consumes dissolved oxygen in soil, groundwater or sedimentary soil by decomposing substances contained in additives and using electron donors generated by the decomposition,
  • the environment to be restored is set to an anaerobic state, which is an anaerobic atmosphere.
  • electron acceptors that originally exist in the contaminated area such as ion nitrate and sulfate ions, are also consumed.
  • the anaerobic microorganisms contained in the microbial consortium reduce the organochlorine compounds, which are electron acceptors, in the created anaerobic state by using the electron donors supplied or generated as decomposition products. Decomposes by dechlorination. Decomposition of organochlorine compounds by dechlorination of anaerobic microorganisms occurs sequentially with high chlorination number compounds and eventually decomposes to inorganic chlorides.
  • a laboratory-scale microcosm experiment was conducted to demonstrate the effect of the additive of the present invention in promoting the purification of groundwater contaminated by organochlorine compounds.
  • Groundwater used for the experiment was collected anaerobically at sites contaminated with organochlorine compounds such as trichloroethylene (hereinafter referred to as TCE) and cis 1,2-dichloroethylene (hereinafter referred to as CDCE).
  • TCE trichloroethylene
  • CDCE cis 1,2-dichloroethylene
  • No. 1 Carapella 43 in Table 1 relates to a case where the additive of the present invention was prepared, and was changed from Example to Example 43.
  • Nos. 1 to 29 in Table 2 show that some of the components of the present invention are not Or, when additives different from those of the invention of the present application were added, comparative examples 1 to 29 were used.
  • No. 30 in Table 2 is a control sample in which no additive was added, and Comparative Example 30 was used.
  • the unpurified components were 0.1mg / L, 0.1mg / L, 0.3mg / L, 0mg respectively. It was extremely low at 3 mg / L.
  • TCE, C—DCE, and VC remained unpurified and remained in the system.
  • Comparative Examples 2 to 7 contain peptone and the saccharide according to claim 1, and contain an organic acid salt. In this case, TCE, C-DCE, and VC remained unpurified and remained in the system.
  • Comparative Examples 8 to 13 show the power obtained when peptone and the organic acid salt according to claim 1 are used, but no saccharides. In this case also, TCE, C-DCE, and VC are purified. The system remained.
  • Comparative Examples 14 to 19 each include a saccharide according to claim 1 and an organic acid salt according to claim 1 and a force that does not include peptone. In this case also, TCE, C-DCE, and VC was not purified and remained in the system.
  • Comparative Examples 20 to 23 each include peptone, a saccharide, and an organic hydrochloric acid, but have a saccharide having a force different from the component described in claim 1.
  • TCE is 7
  • Comparative Examples 24 to 26 include peptone, saccharides, and organic hydrochloric acid, but the organic hydrochloric acid is a component different from the component according to claim 1.
  • the force is TCE, CDCE , And VC were not purified and remained in the system.
  • Comparative Examples 27 to 29 each include peptone, a saccharide, and an organic hydrochloric acid, but each of the saccharides and the organic hydrochloric acid is different from the component according to claim 1. , C—DCE, and VC remained unpurified and remained in the system.
  • Comparative Example 30 was a case in which nothing was added. In this case, TCE and C-CDE were not purified and remained in the system. In addition, it was not detected about VC.
  • the additive according to the present application can be used for the restoration work of soil, groundwater or sediment soil contaminated with an organic halogen compound.
  • FIG. 1 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 1.
  • FIG. 2 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 2.
  • FIG. 3 is a graph showing changes in the concentration of an organic chlorine compound, a salt-forming butyl monomer, and ethylene in Example 3.
  • FIG. 4 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 4.
  • FIG. 5 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 5.
  • FIG. 6 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 6.
  • FIG. 7 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 7.
  • FIG. 8 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 8.
  • FIG. 9 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 9.
  • FIG. 10 is a graph showing changes in the concentration of an organic chlorine compound, a salt-forming butyl monomer, and ethylene in Example 10.
  • FIG. 11 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 11.
  • FIG. 12 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 12.
  • FIG. 13 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 13.
  • Fig. 14 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 14.
  • FIG. 15 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 15.
  • Fig. 16 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 16.
  • Fig. 17 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 17.
  • FIG. 18 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 18.
  • Fig. 19 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 19.
  • Fig. 20 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 20.
  • Fig. 21 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 21.
  • Fig. 22 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Example 22.
  • FIG. 23 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 23.
  • Fig. 24 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 24.
  • FIG. 25 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 25.
  • FIG. 26 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 26.
  • FIG. 27 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 27.
  • Fig. 28 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 28.
  • Fig. 29 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 29.
  • Fig. 30 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 30.
  • Fig. 31 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 31.
  • Fig. 32 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 32.
  • Fig. 33 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 33.
  • Fig. 34 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 34.
  • Fig. 35 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 35.
  • Fig. 36 is a graph showing changes in the concentration of an organic chlorine compound, a salt-forming bulle monomer and ethylene in the case of Example 36.
  • Fig. 37 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Example 37.
  • Fig. 38 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 38.
  • Fig. 39 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Example 39.
  • FIG. 40 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 40.
  • FIG. 41 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 41.
  • FIG. 42 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Example 42.
  • FIG. 43 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 43.
  • FIG. 44 is a graph showing a change in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 1.
  • FIG. 45 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 2.
  • FIG. 46 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 3.
  • FIG. 47 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 4.
  • FIG. 48 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 5.
  • FIG. 49 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 6.
  • FIG. 50 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Comparative Example 7.
  • FIG. 51 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 8.
  • FIG. 52 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 9.
  • FIG. 53 is a graph showing a change in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 10.
  • FIG. 54 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 11.
  • FIG. 55 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 12.
  • FIG. 56 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 13.
  • FIG. 57 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 14.
  • Fig. 58 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 15.
  • Fig. 59 is a graph showing changes in the concentration of an organic chlorine compound, a salted butyl monomer and ethylene in Comparative Example 16.
  • FIG. 60 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 17.
  • Fig. 61 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 18.
  • FIG. 62 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 19.
  • Fig. 64 is a graph illustrating changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in the case of Comparative Example 21.
  • Fig. 65 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 22.
  • Fig. 66 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 23.
  • FIG. 67 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 24.
  • Fig. 68 is a graph illustrating changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 25.
  • FIG. 69 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Comparative Example 26.
  • FIG. 70 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 27.
  • FIG. 71 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Comparative Example 28.
  • FIG. 72 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 29.
  • FIG. 73 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 30.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Abstract

[PROBLEMS] To provide an additive that is capable of restoring various geological polluted sites and can realize low-cost restoration work, and that is used in biological restoration of soil, groundwater or bottom sediment soil polluted by organic halogenated compounds, especially organic chlorinated compounds. [MEANS FOR SOLVING PROBLEMS] An additive comprising a substance capable of formation/activation of microbial consortiums, a substance capable of accelerating reductive dehalogenation by anaerobic microbes and a substance capable of generating anaerobic condition is added to soil, groundwater or bottom sediment soil polluted by organic chlorinated compounds. As a result, native microbial consortiums consume oxygen to thereby create an anaerobic atmosphere (anaerobic condition) in the restoration object. In the created anaerobic atmosphere, anaerobic microbes decompose organic halogenated compounds as electron acceptors, finally to inorganic halides, through reductive dehalogenation using a supplied electron donor or an electron donor produced by decomposition of supplied other additive.

Description

汚染された土壌、地下水或いは底質土の修復に使用する添加剤 技術分野  Additives used to repair contaminated soil, groundwater or sediment
[0001] 本発明は、有機ハロゲンィ匕合物、特には有機塩素化合物によって汚染された土壌、 地下水或いは底質土の修復に使用する添加剤に関する。  [0001] The present invention relates to an organic halogenated compound, particularly to an additive used for repairing soil, groundwater or sediment soil contaminated with an organic chlorine compound.
背景技術  Background art
[0002] 近年、テトラクロロエチレン、トリクロロエチレン、ジクロロエチレン、ダイォキシン類、ポ リ塩素化ビフ ニル類などの有機塩素化合物に代表される有機ハロゲンィ匕合物によ る土壌、地下水或いは底質土の汚染が深刻な問題となっている。  [0002] In recent years, soil, groundwater or sediment soil is seriously contaminated by organic halogenated compounds represented by organic chlorine compounds such as tetrachloroethylene, trichloroethylene, dichloroethylene, dioxins, and polychlorinated biphenyls. Has become a problem.
[0003] 現在、このような有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質土 などの修復技術として、汚染地下水を汲み上げた後、その汲み上げた地下水に活性 炭や榭脂を投入することによる汚染物の吸着や、汚染された土壌の風乾による揮散 除去などの物理的処理法が有効とされている (例えば、非特許文献 1参照)。しかし、 いずれも初期設備投資や動力コストが高ぐ汚染物質を完全に無害化する技術では ないため根本的な対処策とはならない。そこで、微生物を活用して土壌、地下水或い は底質土などに含まれる難分解性の有害物質を分解して汚染を除去するバイオレメ ディエーシヨン技術の開発が期待されて 、る。  [0003] At present, as a restoration technique for soil, groundwater or sediment soil contaminated by such an organic halogenated compound, after pumping contaminated groundwater, activated carbon or resin is injected into the pumped groundwater. Physical treatment methods such as adsorption of contaminants due to the contamination and volatilization and removal of the contaminated soil by air drying have been considered effective (for example, see Non-Patent Document 1). However, neither is a fundamental solution because it is not a technology to completely detoxify pollutants with high initial capital investment and high power costs. Therefore, the development of a bioremediation technology that utilizes microorganisms to decompose hard-to-decompose harmful substances contained in soil, groundwater or sedimentary soil to remove contamination is expected.
[0004] ノ ィォレメディエーシヨン (生物修復法)は、有害な有機化合物を生物学的に分解し 、炭酸ガスやメタン、水、無機塩、バイオマスなどのような無害な物質に変換する技術 である。最近では、バイオレメディエーシヨンの概念は有害廃棄物や汚染された土壌 、地下水或いは底質土を修復する技術に拡大している。そうした中、国内でのクロ口 カーボン汚染のバイオレメディエーシヨンについてこれまで好気性微生物を利用した 研究開発が行われてきた。  [0004] Noremediation (bioremediation method) is a technology that biologically decomposes harmful organic compounds and converts them into harmless substances such as carbon dioxide, methane, water, inorganic salts, and biomass. It is. More recently, the concept of bioremediation has been extended to techniques for repairing hazardous waste and contaminated soil, groundwater or sediment. Under such circumstances, research and development using aerobic microorganisms has been conducted on bioremediation of black-mouthed carbon pollution in Japan.
[0005] ノィォスティミュレーシヨン (生物活性法)は、汚染現場に生息して!/、る特定の好気 性微生物を増殖'活性化させることにより汚染の分解 ·除去を促進させるため、外部 からメタンなどの炭素源物質、空気又は純酸素、栄養塩等の必要物質を供給する手 法である。 [0006] ノィォォーギュメンテーシヨン (生物添加法)は、優れた分解能を持つ単一の微生 物を大量に培養'活性化し、これを酸化剤とともに汚染現場の地下に注入して汚染を 分解 ·除去させる手法である。 [0005] The neurostimulation (bioactivity method) is a method that inhabits the site of contamination and promotes the decomposition and removal of contamination by growing and activating certain aerobic microorganisms. This is a method of supplying necessary carbon sources such as methane, air or pure oxygen, and nutrients from the outside. [0006] Neuroregulation (biological addition method) is a method of cultivating a large amount of a single microorganism with excellent resolution and injecting it together with an oxidant into the basement of the contamination site to decompose the contamination. · It is a method to remove.
[0007] また、特に有機塩素化合物を分解する手段として、嫌気性微生物による還元的脱 塩素化がある (例えば、非特許文献 1参照)。嫌気性微生物は、有機酸などの電子供 与体が供給されると、有機塩素化合物を電子受容体とする還元的脱塩素化により有 機塩素化合物を分解する。したがって、このプロセスを有機塩素化合物による汚染の 修復に応用する場合、汚染地域を嫌気状態とする手段が必要となる。  [0007] In particular, as a means for decomposing organic chlorine compounds, there is reductive dechlorination by anaerobic microorganisms (for example, see Non-Patent Document 1). When an anaerobic microorganism is supplied with an electron donor such as an organic acid, the anaerobic microorganism decomposes the organic chlorine compound by reductive dechlorination using the organic chlorine compound as an electron acceptor. Therefore, if this process is applied to the remediation of pollution by organochlorine compounds, it is necessary to provide a means to make the contaminated area anaerobic.
[0008] これに関連して特許文献 1には、蒸留粕廃液を土壌に適用して有機塩素化合物に よって汚染された土壌及び Z又は地下水を嫌気性微生物の作用を利用して浄ィ匕す ることが開示されており、蒸留粕廃液には、乳酸、酢酸、クェン酸、コハク酸等の有機 酸、マルトース、グルコース、フルクトースなどの糖類、アミノ酸等をバランス良く含有 していることが記載されている。また、特許文献 2には、アミノ酸と電子供与源を添カロ して、土壌及び Z又は地下水中に存在する有機塩素化合物分解微生物により有機 塩素化合物を分解する方法が開示されており、電子供与源として乳酸、ショ糖等が 列挙されている。さらに、特許文献 3には、テトラクロロエチレン等で汚染された土壌 及び Z又は地下水に、土壌中の微生物の増殖及び生存に必要な炭素源と、無機還 元剤、高分子吸水性榭脂および Z又は保水性榭脂を注入、混合することが開示され ており、炭素源としては、例えば硫酸還元微生物の栄養源として乳酸、ポリペプトン、 糖含有有機物等が記載されて ヽる。  [0008] In this connection, Patent Document 1 discloses a method in which a distilled liquor waste liquid is applied to soil to purify soil and Z or groundwater contaminated by an organochlorine compound using the action of anaerobic microorganisms. It is disclosed that the distillation residue waste liquid contains organic acids such as lactic acid, acetic acid, citric acid, and succinic acid, sugars such as maltose, glucose, and fructose, and amino acids in a well-balanced manner. ing. Patent Document 2 discloses a method in which an organochlorine compound is decomposed by an organochlorine-decomposing microorganism present in soil and Z or groundwater by adding an amino acid and an electron donor to the source. Lactic acid, sucrose and the like are listed. Further, Patent Document 3 discloses that, in soil and Z or groundwater contaminated with tetrachloroethylene or the like, a carbon source necessary for the growth and survival of microorganisms in the soil, an inorganic reducing agent, a polymer water-absorbing resin and Z or It is disclosed that a water-retaining resin is injected and mixed, and as a carbon source, for example, lactic acid, polypeptone, a sugar-containing organic substance, or the like is described as a nutrient source of a sulfate-reducing microorganism.
[0009] 特許文献 1:特開 2002— 224658号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-224658
特許文献 2 :特開 2003— 145131号公報  Patent Document 2: JP 2003-145131 A
特許文献 3:特開平 11― 262751号公報  Patent Document 3: JP-A-11-2622751
非特許文献 1 :環境浄化技術 Vol. 1, No. 1 (第 80— 84頁)  Non-patent document 1: Environmental purification technology Vol. 1, No. 1 (pp. 80-84)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] し力し、これらの方法には以下のような問題があった。バイオスティミュレ一シヨンは[0010] However, these methods have the following problems. Biostimulation is
、酸化剤や大量の空気の導入に多額の設備投資と修復コストを要するという問題が あった。また、ノィォォーギュメンテーシヨンは、微生物の分解能が注入された汚染 地域の環境に依存し、必ずしも注入した微生物の能力が十分に発揮されないという 問題があった。また、嫌気性微生物による還元的脱塩素化は、有機ハロゲンィ匕合物 の分解能を持つ嫌気性微生物を利用するために修復対象地域を嫌気性状態にする 手段が考慮されていないなどという問題があった。このように、これまでに開発された ノ ィォレメディエーシヨン技術のいずれもが問題を内包しており、それらを解消する修 復技術の開発が求められてきた。 The introduction of oxidizers and large volumes of air requires significant capital and repair costs. there were. In addition, the neuroregulation has a problem that the resolution of microorganisms depends on the environment of the contaminated area where the microorganisms are injected, and the ability of the injected microorganisms is not always sufficiently exhibited. In addition, reductive dechlorination by anaerobic microorganisms has a problem that means for making the area to be restored an anaerobic state in order to utilize anaerobic microorganisms having the resolution of organic halogenated compounds is not considered. Was. As described above, all of the no-remediation technologies that have been developed up to now contain problems, and there is a need for the development of repair technologies that resolve them.
[0011] また、特許文献 1〜3による方法では、ある程度の効果は認められるものの、その効 果の点ではさらに改良を図りたいという要望が強力つた。即ち、より顕著な効果を示 す添加剤の開発が求められて ヽた。  [0011] Further, although the methods according to Patent Documents 1 to 3 have some effects, there has been a strong demand for further improvement in the effects. In other words, there has been a demand for the development of additives that exhibit more remarkable effects.
[0012] 本発明は以上の従来技術における問題に鑑みてなされたものであって、様々な土 質の汚染サイトを修復することができ、低コストの修復工事が可能となる有機ハロゲン 化合物、特には有機塩素化合物によって汚染された土壌、地下水或いは底質土な どの生物学的修復に用いる添加剤を提供することを目的とする。  [0012] The present invention has been made in view of the above-described problems in the conventional art, and is an organic halogen compound, particularly an organic halogen compound that can repair various soil contamination sites and can perform low-cost repair work. The aim of the present invention is to provide additives for biological remediation of soil, groundwater or sediment contaminated by organochlorine compounds.
課題を解決するための手段  Means for solving the problem
[0013] 本出願の発明者らは、顕著な効果を示す添加剤の研究を重ね、微生物コンソーシ アムを造成'活性化する物質と嫌気性微生物の還元的脱ハロゲン化を促進する物質 と嫌気状態を造成する物質との三種類の物質力もなる添加剤を見いだした。  [0013] The inventors of the present application have conducted research on additives having a remarkable effect, and have found that a substance that activates a microorganism consortium, a substance that promotes reductive dehalogenation of anaerobic microorganisms, and an anaerobic state. An additive which has three kinds of material strengths with the material forming the material has been found.
[0014] 即ち、本願発明の有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質 土の修復に使用する添加剤は、微生物コンソーシアムを造成 ·活性化する物質と嫌 気性微生物の還元的脱ハロゲン化を促進する物質と嫌気状態を造成する物質とから 成ることを特徴とする。  [0014] That is, the additive used for repairing soil, groundwater or sediment soil contaminated with the organic halogenated conjugate of the present invention is a substance that forms and activates a microbial consortium and reductive removal of anaerobic microorganisms. It is characterized by comprising a substance that promotes halogenation and a substance that creates an anaerobic state.
[0015] 前記微生物コンソーシアムを造成 ·活性ィ匕する物質がペプトンであり、前記嫌気性 微生物の還元的脱ハロゲンィ匕を促進する物質がプロピオン酸、酪酸、乳酸、および それらの塩力 なる群力 選択される少なくとも一の物質であり、前記嫌気状態を造 成する物質がグルコース、ガラクトース、フルクトース、ラタトース、スクロース、および マルトースカもなる群力も選択される少なくとも一の物質であることを特徴とする。  [0015] The substance that forms and activates the microbial consortium is peptone, and the substance that promotes reductive dehalogenation of the anaerobic microorganism is propionic acid, butyric acid, lactic acid, and their salt power. Characterized in that the substance forming the anaerobic state is at least one substance selected from the group consisting of glucose, galactose, fructose, ratatose, sucrose, and maltosca.
[0016] また、本願発明の有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質 土を修復する修復方法は、微生物コンソーシアムを造成'活性化する物質と嫌気性 微生物の還元的脱ハロゲン化を促進する物質と嫌気状態を造成する物質とを添カロ することを特徴とする。 [0016] In addition, soil, groundwater or sediment contaminated by the organic halogenated compound of the present invention The restoration method for restoring soil is characterized by adding a substance that creates and activates a microbial consortium, a substance that promotes reductive dehalogenation of anaerobic microorganisms, and a substance that creates an anaerobic state.
[0017] 前記微生物コンソーシアムを造成 ·活性ィ匕する物質がペプトンであり、前記嫌気性 微生物の還元的脱ハロゲンィ匕を促進する物質がプロピオン酸、酪酸、乳酸、および それらの塩力 なる群力 選択される少なくとも一の物質であり、前記嫌気状態を造 成する物質がグルコース、ガラクトース、フルクトース、ラタトース、スクロース、および マルトースカもなる群力も選択される少なくとも一の物質であることを特徴とする。  [0017] The substance that forms and activates the microbial consortium is peptone, and the substance that promotes reductive dehalogenation of the anaerobic microorganism is propionic acid, butyric acid, lactic acid, and their salt power. Characterized in that the substance forming the anaerobic state is at least one substance selected from the group consisting of glucose, galactose, fructose, ratatose, sucrose, and maltosca.
[0018] さらに、本願発明の有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質 土の修復方法は、ペプトンを添加して微生物コンソーシアムを造成'活性ィ匕し、プロピ オン酸、酪酸、乳酸、およびそれらの塩力 なる群力 選択される少なくとも一の物質 を添加して嫌気性微生物の還元的脱ハロゲン化を促進し、グルコース、ガラクトース 、フルクトース、ラタトース、スクロース、およびマルトースからなる群から選択される少 なくとも一の物質を添加して嫌気状態を造成することを特徴とする。  [0018] Further, the method for repairing soil, groundwater or sediment soil contaminated with the organohalide ligated compound of the present invention is as follows: peptone is added to form a microbial consortium; Lactic acid, and their salt powers. At least one selected substance is added to promote the reductive dehalogenation of anaerobic microorganisms, from the group consisting of glucose, galactose, fructose, ratatose, sucrose, and maltose. An anaerobic state is created by adding at least one selected substance.
[0019] 本出願の発明に係る有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底 質土の修復に使用する添加剤は、前述のように微生物コンソーシアムを造成 ·活性 化する物質を有することを特徴とする。微生物コンソーシアムとは、好気性と嫌気性の 両方を含み、かつ種々の嫌気性微生物群を含む土着の微生物群全体のことを!、う。 また、微生物コンソーシアムを造成'活性ィ匕する物質とは、好気性と嫌気性とのどちら の微生物にとっても、その造成、即ち繁殖に有効な物質である。  [0019] The additive used for the restoration of soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the invention of the present application has a substance that forms and activates a microbial consortium as described above. It is characterized by. A microbial consortium refers to the entire indigenous group of microorganisms, including both aerobic and anaerobic, and various anaerobic microorganisms! The substance that forms and activates the microbial consortium is a substance that is effective for the formation, that is, propagation, of both aerobic and anaerobic microorganisms.
[0020] 有機ハロゲンィ匕合物、特には有機塩素化合物によって汚染された地域の土壌、地下 水或いは底質土を微生物によって修復するには、複数種類の性質の異なる微生物 を有効に機能させることが効果的である。  [0020] In order to restore the soil, groundwater or sedimentary soil of an area contaminated with an organic halogenated compound, particularly an organic chlorine compound, microorganisms having a plurality of different properties can be effectively used. It is effective.
[0021] 微生物コンソーシアムを造成 ·活性ィ匕する物質を土壌、地下水或いは底質土に添 加すれば、土着の好気性微生物或いは通性嫌気性微生物は、添加剤に含まれる物 質を分解し、その分解で生成した電子供与体を利用することによって、土壌等に存 在する硝酸イオン、硫酸イオン等を電子受容体として消費する。またそれと同時に、 酸素を電子受容体として消費し、土壌、地下水或いは底質土を嫌気条件にする。 [0022] そして、修復対象が嫌気状態になると、絶対嫌気性微生物が有機ハロゲン化合物、 特には有機塩素化合物を電子受容体として分解することが可能となる。例えば、テト ラクロ口エチレンは、逐次的に起こる還元的脱塩素化反応によりトリクロロエチレン、さ らにはジクロ口エチレンとなり、最終的には安定な無機塩にまで分解される。 [0021] If a substance that creates and activates a microbial consortium is added to soil, groundwater, or sedimentary soil, indigenous aerobic microorganisms or facultative anaerobic microorganisms degrade the substances contained in the additives. By utilizing the electron donor generated by the decomposition, nitrate ions, sulfate ions, and the like existing in soil and the like are consumed as electron acceptors. At the same time, it consumes oxygen as an electron acceptor and puts soil, groundwater or sediment under anaerobic conditions. [0022] When the object to be repaired becomes anaerobic, it becomes possible for the absolute anaerobic microorganisms to decompose the organic halogen compound, particularly the organic chlorine compound, as an electron acceptor. For example, ethylene tetrachloride is converted into trichloroethylene and then dichloroethylene by successive reductive dechlorination reactions, which are eventually decomposed into stable inorganic salts.
[0023] このように、微生物コンソーシアム全体を造成'活性化する物質を供給することによ つて、嫌気性微生物により還元的脱ハロゲンィ匕を行う環境が速やかに提供され、修 復作業が効率的に進行する。  [0023] As described above, by supplying the substance that creates and activates the entire microbial consortium, an environment in which anaerobic microorganisms perform reductive dehalogenation quickly is provided, and repair work is efficiently performed. proceed.
[0024] すなわち、絶対嫌気性微生物が還元的脱塩素化の過程で生成する有害な中間生 成物には、これら絶対嫌気性微生物では必ずしも効果的に分解できないもの (塩ィ匕 ビュルモノマー、シス一 1, 2—ジクロロエチレン)もあるが、微生物コンソーシアム全 体が活性化して ヽれば、微生物コンソーシアムを構成する他の種類の微生物がこれ らの物質を効果的に分解することができる。従って、嫌気性微生物を用いる修復作業 にお 1、て有害な中間生成物が残留しにく!、。  [0024] That is, the harmful intermediate products generated by the anaerobic microorganisms in the process of reductive dechlorination include those that cannot always be decomposed effectively by these anaerobic microorganisms (Shiiro Bul monomer, cis monomer). There is also 1,2-dichloroethylene), but once the entire microbial consortium is activated, other types of microorganisms that make up the microbial consortium can effectively decompose these substances. Therefore, harmful intermediate products are unlikely to remain during repair work using anaerobic microorganisms.
[0025] 以上のように、有機ハロゲンィ匕合物、特には有機塩素化合物を分解するためには、 好気性と嫌気性の両方を含む土着の微生物群全体を活性化させて嫌気状態にする ことが特に重要である。  [0025] As described above, in order to decompose an organic halogenated compound, in particular, an organic chlorine compound, it is necessary to activate the entire indigenous group of microorganisms including both aerobic and anaerobic to bring them into an anaerobic state. Is particularly important.
[0026] また、本発明に係る有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質 土の修復に使用する添加剤は、嫌気性微生物の還元的脱ハロゲン化を促進する物 質を有することを特徴とする。  [0026] Further, the additive used for repairing soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the present invention has a substance that promotes reductive dehalogenation of anaerobic microorganisms. It is characterized by the following.
[0027] 嫌気性微生物が有機ハロゲンィ匕合物、特には有機塩素化合物の脱ハロゲン化す ることを促進する物質を供給することで、嫌気性微生物の機能が効果的に発揮され る。 [0027] The function of the anaerobic microorganism is effectively exerted by supplying a substance that promotes the anaerobic microorganism to dehalogenate the organic halogenated compound, particularly the organic chlorine compound.
[0028] また、本発明に係る有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質 土の修復に使用する添加剤は、嫌気状態を造成する物質を有することを特徴とする  [0028] Further, the additive used for restoring soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the present invention has a feature of forming a substance that forms an anaerobic state.
[0029] 微生物コンソーシアム全体を造成'活性化する物質以外に、嫌気状態を造成する 物質、即ち好気性微生物など酸素を消費する微生物を効果的に繁殖させることがで きる物質も積極的に供給することで、修復対象はさらに効率よく酸素が除去されて速 やかに嫌気状態となる。 [0029] In addition to a substance that forms and activates the entire microbial consortium, a substance that forms an anaerobic state, that is, a substance that can effectively propagate oxygen-consuming microorganisms such as aerobic microorganisms is also actively supplied. This allows the repair target to be more efficiently Soon become anaerobic.
[0030] このように、有機ハロゲン化合物、特に有機塩素化合物を分解する過程で関与する 微生物コンソーシアム全体の働きを考慮して、複数種類の異なった機能を有する物 質を添加剤として供給することで、効率的であって、しかも有害物質が残留しにくい ノィォレメディエーシヨン工法が可能となる。さらに、修復に利用する微生物が嫌気 性であることから酸化剤や空気の供給を必要とせず、低コストでの修復工事が可能で ある。  [0030] As described above, in consideration of the function of the entire microbial consortium involved in the process of decomposing an organic halogen compound, particularly an organic chlorine compound, it is possible to supply a plurality of types of substances having different functions as additives. This makes it possible to use a no-remediation method that is efficient and hardly causes harmful substances to remain. Furthermore, since the microorganisms used for restoration are anaerobic, no oxidizing agent or air supply is required, and restoration work can be performed at low cost.
[0031] また、本発明に係る有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質 土の修復に使用する添加剤における微生物コンソーシアムを造成'活性化する物質 がペプトンであることを特徴とする。  [0031] Further, the substance used for repairing soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the present invention is a substance that activates a microbial consortium by peptone. I do.
[0032] ペプトンは、各種の蛋白質を酵素分解または酸で加水分解したものの総称で、主成 分がアミノ酸、オリゴペプチドであり、さらにポリペプチドも成分として混在している。こ れらの成分は、いずれも水溶性であり、添加剤として地下水に注入した場合に浄ィ匕 対象の範囲内に拡散させることが容易なので、汚染の浄化に使用する添加剤の成分 として望ましい物質である。また、ペプトンは、蛋白質の分解生成物であり多くの窒素 を含有して 、るので、多数の微生物を増殖させるための有機窒素源として望ま U、物 質である。さらに、ペプトンは、少数のアミノ酸が結合した低分子の物質が主体となつ ており、プロテアーゼ (タンパク質分解酵素)活性が低い微生物によっても栄養源とし て容易に利用され、多くの種類の微生物を活性化させることができるので、微生物コ ンソーシアムを活性ィ匕させるための栄養源として望ましい物質である。また、ペプトン が微生物により分解されて生成したアミノ酸、およびビタミン類もまた微生物コンソ一 シアムを構成する微生物の栄養源であり、効果的に微生物コンソーシアムが活性ィ匕 される。微生物コンソーシアムが活性ィ匕することによって修復対象が速やかに嫌気性 になり、修復対象に有害物質が残留しにくい。  [0032] Peptone is a generic name of various proteins obtained by enzymatic degradation or hydrolysis with an acid. The main components are amino acids and oligopeptides, and polypeptides are also mixed as components. All of these components are water-soluble, and when injected into groundwater as an additive, can be easily diffused into the area to be purified. Is a substance. Further, peptone is a desired substance as an organic nitrogen source for growing a large number of microorganisms because peptone is a decomposition product of protein and contains a large amount of nitrogen. In addition, peptone is mainly composed of low-molecular substances with a small number of amino acids, and is easily used as a nutrient source even by microorganisms with low protease (proteolytic enzyme) activity, and activates many types of microorganisms. Therefore, it is a desirable substance as a nutrient source for activating a microbial consortium. Amino acids and vitamins produced by the decomposition of peptone by microorganisms are also nutrients of microorganisms constituting the microorganism consortium, and the microbial consortium is effectively activated. Due to the activation of the microbial consortium, the object to be repaired quickly becomes anaerobic, and harmful substances hardly remain in the object to be repaired.
[0033] また、本発明に係る有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質 土の修復に使用する添加剤における嫌気性微生物の還元的脱ハロゲン化を促進す る物質がプロピオン酸、酪酸、乳酸、およびそれらの塩からなる群から選択される少 なくとも一の物質であることを特徴とする。 [0034] プロピオン酸、酪酸、乳酸、およびそれらの塩は優れた電子供与性を有し、かつ有機 ハロゲンィ匕合物の脱ハロゲンィ匕反応において水素の供給源となる。しかも、安定的 にか且つ安価に入手可能である。よって本発明で用いる脂肪酸塩として特に望まし い物質である。 [0033] In addition, propionic acid is a substance that promotes reductive dehalogenation of anaerobic microorganisms in an additive used for repairing soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to the present invention. , Butyric acid, lactic acid, and salts thereof. [0034] Propionic acid, butyric acid, lactic acid, and salts thereof have excellent electron donating properties and serve as a source of hydrogen in the dehalogenation reaction of the organic halide conjugate. Moreover, they are available stably and at low cost. Therefore, it is a particularly desirable substance as the fatty acid salt used in the present invention.
[0035] また、本発明に係る有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質 土の修復に使用する添加剤における嫌気状態を造成する物質がダルコース、ガラク トース、フルクトース、ラタトース、スクロース、およびマルトースからなる群から選択さ れる少なくとも一の物質であることを特徴とする。  [0035] In addition, the substance that creates an anaerobic state in an additive used for repairing soil, groundwater, or sediment soil contaminated with the organic halogenated conjugate according to the present invention includes dalucose, galactose, fructose, ratatose, and sucrose. , And at least one substance selected from the group consisting of maltose.
グルコース、ガラクトース、フルクトース、ラタトース、スクロース、およびマルトースは Glucose, galactose, fructose, ratatose, sucrose, and maltose
、好気性微生物にとって有効な栄養源である糖類の一種であり、その中でも分解さ れやすく、しかも安定的にかつ安価に入手可能である。 It is a kind of saccharide that is an effective nutrient for aerobic microorganisms. Among them, it is easily decomposed, and can be obtained stably and at low cost.
[0036] 添加剤を構成するそれぞれの物質の配合比は修復対象の土質に合わせて設定す ることで修復の効果を高めることができる。また、本発明における修復対象は、有機 ハロゲンィ匕合物、特には有機塩素化合物により汚染された土壌、地下水或いは底質 土などである。また、有機ハロゲンィ匕合物とは、脂肪族、または芳香族炭化水素の水 素とハロゲン (フッ素、塩素など)が置換した物質である。例えば、テトラクロロエチレン 、トリクロロエチレン及びジクロロエチレンなどの脂肪族有機塩素化合物、ポリ塩素化 ジベンゾジォキシン(PCDD)及びポリ塩素化ジベンゾフラン(PCDF)などのダイォキ シン類、コブラナーポリ塩素化ビフエ-ルなどの PCB類及びクロ口ベンゼンなどの芳 香族有機塩素化合物がこれに該当する。なお、以上の記載は例示であり、その記載 によっては本発明の修復対象や除去すべき化学物質は限定されない。 [0036] The restoration effect can be enhanced by setting the compounding ratio of each substance constituting the additive according to the soil to be restored. The restoration target in the present invention is an organic halogenated compound, particularly soil, groundwater or sediment soil contaminated with an organic chlorine compound. The organic halogenated compound is a substance in which hydrogen of an aliphatic or aromatic hydrocarbon is substituted with halogen (such as fluorine and chlorine). For example, aliphatic organochlorine compounds such as tetrachlorethylene, trichlorethylene and dichloroethylene, dioxins such as polychlorinated dibenzodioxin (PCDD) and polychlorinated dibenzofuran (PCDF), PCBs such as cobraner polychlorinated biphenyl and the like. Aromatic organochlorine compounds such as black benzene correspond to this category. The above description is an example, and the restoration target and the chemical substance to be removed in the present invention are not limited by the description.
発明の効果  The invention's effect
[0037] 本発明によれば、有機ハロゲン化合物、特には有機塩素化合物により汚染された地 下水、土壌或いは底質土を修復するにあたって、有害な物質が残留しにくい修復ェ 事が可能となり、かつ短ェ期の修復工事が実現できるため低コストの修復工事が可 能となる。  According to the present invention, in repairing groundwater, soil or sediment soil contaminated with an organic halogen compound, particularly an organic chlorine compound, it is possible to carry out a repair work in which harmful substances hardly remain, and Short-term rehabilitation work can be realized, so low-cost rehabilitation work is possible.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0038] 以下、本発明の実施の形態を説明する。 本実施形態においては、実験室におけるミクロコスムの研究により汚染地域に土着 の微生物群、すなわち微生物コンソーシアムに応じた適切な電子供与体の混合比率 が決定される。ミクロコスムは、汚染地域から採取した土壌、地下水或いは底質土で 形成される。添加剤の原料を種々の比率で混合してミクロコスムにカ卩えて一定温度の 下で培養する。嫌気条件において土又は水をミクロコスム力も定期的に採取し、有機 塩素化合物、メタン、塩化ビニル、塩素イオン、溶存酸素量、酸化還元電位、硝酸ィ オン、硫酸イオンの濃度を観察する。有機塩素化合物、メタン、塩化ビニル及び塩素 イオンは、汚染物及びその分解生成物の濃度を確認するためである。溶存酸素量及 び酸ィ匕還元電位は、ミクロコスムが絶対嫌気雰囲気になっていることを確認するため である。これらがそれぞれ 0. 5mgZL、—50mVとなると絶対嫌気条件である。硝酸 イオン及び硫酸イオンは、嫌気性微生物の還元反応にお!ヽて有機塩素化合物よりも 優先して消費される。したがって、硝酸イオン及び硫酸イオンの濃度を測定すること で、ミクロコスムにおける還元反応が開始されたことが確認できる。一定期間、通常は 一から二ヶ月程度の実験の結果に基づき、汚染地域の修復対象に最適な添加剤の 配合比が決定される。 Hereinafter, embodiments of the present invention will be described. In the present embodiment, a microcosm study in the laboratory determines a proper microbial community in the contaminated area, that is, an appropriate mixing ratio of the electron donor according to the microbial consortium. Microcosms are formed from soil, groundwater or sediment collected from contaminated areas. The additives are mixed in various ratios, mixed into microcosms and cultured at a constant temperature. Under anaerobic conditions, soil or water is periodically sampled for microcosm power to observe the concentration of organic chlorine compounds, methane, vinyl chloride, chloride ions, dissolved oxygen, redox potential, nitrate ion, and sulfate ion. Organochlorine compounds, methane, vinyl chloride and chloride ions are used to confirm the concentrations of contaminants and their decomposition products. The dissolved oxygen amount and the oxidation reduction potential are for confirming that the microcosm is in an absolutely anaerobic atmosphere. When these become 0.5mgZL and -50mV respectively, it is an absolute anaerobic condition. Nitrate ion and sulfate ion are involved in the reduction reaction of anaerobic microorganisms! It is consumed in preference to organic chlorine compounds. Therefore, by measuring the concentrations of nitrate ion and sulfate ion, it can be confirmed that the reduction reaction in the microcosm was started. Based on the results of experiments for a certain period of time, usually about one to two months, the optimal additive ratio for the remediation target in the contaminated area is determined.
[0039] 添加剤は、汚染地域の土壌、地下水或いは底質土中に添加される。添加剤の形態 は、固体状、液体状、スラリー状などであり、汚染地域の地層などの地質状態や、汚 染地域の汚染状況に基づ!/、て決定される。  [0039] The additive is added to soil, groundwater or sediment in the contaminated area. The form of the additive may be solid, liquid, slurry, etc., and is determined based on the geological condition of the geological layer in the contaminated area and the contamination status in the contaminated area.
[0040] 微生物コンソーシアムは、添加剤に含まれる物質を分解したり、その分解で生成し た電子供与体を利用したりすることで、土壌、地下水或いは底質土中の溶存酸素を 消費し、修復対象の環境を嫌気性雰囲気である嫌気状態とする。この際、硝酸ィォ ン、硫酸イオンなど元来汚染地域に存在する電子受容体も同時に消費する。そして 、微生物コンソーシアムに含まれる絶対嫌気性微生物は、造成された嫌気状態にお いて、供給された或いは分解生成物として発生した電子供与体を利用して電子受容 体である有機塩素化合物を還元的脱塩素化により分解する。嫌気性微生物の脱塩 素化による有機塩素化合物の分解は、高い塩素化数の化合物力 逐次的に生じ、 最終的には無機塩化物にまで分解する。  [0040] The microbial consortium consumes dissolved oxygen in soil, groundwater or sedimentary soil by decomposing substances contained in additives and using electron donors generated by the decomposition, The environment to be restored is set to an anaerobic state, which is an anaerobic atmosphere. At this time, electron acceptors that originally exist in the contaminated area, such as ion nitrate and sulfate ions, are also consumed. The anaerobic microorganisms contained in the microbial consortium reduce the organochlorine compounds, which are electron acceptors, in the created anaerobic state by using the electron donors supplied or generated as decomposition products. Decomposes by dechlorination. Decomposition of organochlorine compounds by dechlorination of anaerobic microorganisms occurs sequentially with high chlorination number compounds and eventually decomposes to inorganic chlorides.
[0041] (実施例) 以下に本発明の実施例を示す。 (Example) Examples of the present invention will be described below.
有機塩素化合物により汚染された地下水の浄ィ匕において、本発明の添加剤による 汚染浄ィ匕促進の効果を実証するため、実験室規模のミクロコスムの実験を行った。実 験に使用する地下水は、トリクロロエチレン (以下、 TCEと称する)、シス 1, 2—ジク ロロエチレン (以下、 C DCEと称する)、などの有機塩素化合物により汚染されたサ イトにおいて嫌気的に採取した。地下水は、予め滅菌した 2, 190本の lOOmLの褐 色ガラス容器に満杯になるまで入れ、 4°Cで冷蔵しながら実験室に運搬した。  A laboratory-scale microcosm experiment was conducted to demonstrate the effect of the additive of the present invention in promoting the purification of groundwater contaminated by organochlorine compounds. Groundwater used for the experiment was collected anaerobically at sites contaminated with organochlorine compounds such as trichloroethylene (hereinafter referred to as TCE) and cis 1,2-dichloroethylene (hereinafter referred to as CDCE). . Groundwater was filled into 2,190 lOOmL brown glass containers, previously sterilized, until full and transported to the laboratory while refrigerated at 4 ° C.
[0042] 次に、採取した地下水に表 1及び表 2に示す 73種類の添加剤をカ卩えて浄ィ匕効果の 比較を実施した。嫌気条件において 2, 190個の地下水の試料に対して、 30個の地 下水試料につき 1種類の添加剤を加えて混合し、各容器の頭隙 (ヘッドスペース)の 空気を窒素ガスと置換した後に封印した。  [0042] Next, 73 types of additives shown in Tables 1 and 2 were added to the collected groundwater to compare the effects of the purification. Under anaerobic conditions, one type of additive was added to 2,190 groundwater samples and mixed with 30 groundwater samples, and the air in the headspace of each vessel was replaced with nitrogen gas. Later sealed.
[0043] [表 1] [Table 1]
定量下限値以下に浄化される日数 Number of days of purification below the lower limit of quantification
糖類 有機酸塩  Sugar organic acid salt
定量下限値 定量下限値 定量下限値 実施例 ペプトン グルコース プロピオン酸ナトリウム 曰後 曰後 曰後 ペプトン グルコース フ"ロビオン酉 カルシウム 日後 日後 日後 ペプトン グルコース 酪酸ナトリウム 日後 曰後 曰後 ペプトン ゲルコース 酪酸カルシウム 曰後 曰後 曰後 ペプトン グルコース 乳酸ナトリウム 日後 曰後 曰後 ぺフトン グルコース 乳酸カルシウム 日後 日後 曰後 ペプトン ガラク ス プロピオン酸ナトリウム 曰後 曰後 曰後 ペプトン ガラク ス 酪酸ナトリウム 曰後 曰後 曰後 ペプトン ガラク ス 乳酸ナトリウム 日後 曰後 曰後 ペプトン フルク!一ス ロヒ ン酸ナトリウム 日後 曰後 曰後 ペプトン フルク! ス 酪酸ナトリウム 曰後 曰後 曰後 ペプトン フルクト一ス 乳酸ナトリウム 日後 曰後 曰後 ペプトン ラク! ス ブロピオン酸ナトリウム 日後 日後 日後 ペプトン ラク! ス プロピオン酸カルシウム 曰後 曰後 曰後 ペプトン ラクト一ス 輅酸ナトリウム 日後 日後 曰後 ペプトン ラク! - ス 酷酸カルシウム 曰後 曰後 曰後 ペプトン ラク! ス 乳酸ナトリウム 曰後 曰後 曰後 ペプトン ラクト一ス 乳酸カルシウム 日後 曰後 曰後 ペプトン スクロース プロビ才ン酸ナトリウム 曰後 曰後 曰後 ぺフトン スクロース 酪酸ナトリウム 曰後 曰後 曰後 ぺフトン スクロース 乳酸ナトリウム 日後 日後 曰後 ペプトン マル! ス プロピオン酸ナトリウム 曰後 曰後 曰後 ペプトン マル! ス 酪酸ナトリウム 曰後 曰後 曰後 ペプトン マル! ス 乳酸ナトリウム 曰後 曰後 曰後 ペプトン ゲルコース プロヒ ン酸ナトリウム 曰後 曰後 曰後 ペプトン グルコース プロビ才ン酸カルシウム 日後 日後 曰後 ペプトン グルコース 酪酸ナトリウム 曰後 曰後 未浄化 ペプトン グルコース 酪酸カルシウム 曰後 曰後 未浄化 ペプトン グルコース 乳酸ナトリウム 曰後 曰後 曰後 ペプトン グルコース 乳酸カルシウム 曰後 曰後 曰後 ペプトン ラク! ス ブロヒ "オン酸ナトリウム 日後 日後 日後 ペプトン ラク! ス プロピオン酸カルシウム 曰後 日後 曰後 ペプトン ラクト一ス 酷酸ナトリウム 曰後 曰後 曰後 ペプトン ラク! ス 酪酸カルシウム 曰後 曰後 曰後 ぺフトン ラク! ス 乳酸ナトリウム 曰後 日後 曰後 ペプトン ラク! ス 乳酸カルシウム 曰後 曰後 曰後 ペプトン グルコース プロビ才ン酸ナトリウム 日後 曰後 曰後 ガラク ス  Lower limit of quantification Lower limit of quantification Lower limit of quantification Example Peptone Glucose Sodium Propionate Pt Pose Glucose Frobion Toro Calcium Day Date Day P Day Peptone Glucose Sodium Butyrate Date P P Pt Glucose Calcium Butyrate P P P After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After the day After Peptone Fruc! Sodium Monosulfonate Date After Phrase Peptone Fruc! Sodium Butyrate Ptton Fructos Sodium Lactate Peptone Fructose Sodium Lactate Date Ptp Pak Rak! Sodium Lactate Day After Day After Day After Day Peptone Lac! Calcium Spropionate After The Day After Peptone Lactose Sodium Sodium Lactate After Day After Day After The Day Peptone Lac!-Calcium Sulfate Postscript Postscript Postscript Postscript Peptone Lactose Calcium Lactate Day Postscript Postscript Postscript Peptone Sucrose Sodium Probiate Sodium Postscript Postscript Postscript Postscript Postscript Postscript Sodium Butyl Sucrose Sodium Butyrate Postscript Postscript Postscript Postscript Sodium Lactone Sucrose Sodium Lactate Postscript Postscript Sodium lactate Peptone Mal! Sodium propionate Sodium butyrate Peptone Mal! Sodium butyrate Sodium lactate Peptone Maru! Sodium lactate Sodium lactate Peptone Glucose Probiate Calcium Later Later Later After Peptone Glucose Sodium Butyrate After Repeat Unpurified Peptone Glucose Butyrate After Repeat After Unpurified Peptone Glucose Sodium Lactate After Repeat After Repeat After Peptone Glucose Lactate After Repeat After Peptone Lac! Sodium Onate Day After Day After Day Peptone Lac! Calcium Supionate After After Day After Peptone Lactose Sodium Sulfate Sodium After Sodium Peptone Lak! Calcium Butyrate After Sodium Lactone Sodium Lactate After the day After the day After the peptone Lac! Calcium lactate After the after The after peptone Glucose sodium sodium probiate Day after the day After the galaxy
ペプトン ゲルコース プロヒ ン酸ナトリウム 日後 曰後 曰後 フルク!一ス  Peptone gelcoose sodium arsenate
ペプトン グルコース プロヒ ン酸ナトリウム 曰後 曰後 曰後 ラク! - ス  Peptone Glucose Sodium Prosuccinate
ペプトン グルコース プロピオン酸ナトリウム 曰後 曰後 曰後 スクロース  Peptone Glucose Sodium propionate Postscript Postscript Postscript Sucrose
ペプトン グルコース プロヒ'オン酸ナトリウム 曰後 曰後 曰後 マル! ス  Peptone Glucose Sodium Prohionate
ぺブトン ガラクト一ス プロピ才ン酸ナトリウム 日後 日後 未浄化 フルク! ス  ぺ Buton Galactose Sodium Propitanate Day After Day After Purification
ペプトン ラク! ス 酪酸ナトリウム 曰後 曰後 未浄化 マル! ス Peptone easy! Sodium butyrate
Figure imgf000013_0005
Figure imgf000013_0004
Figure imgf000013_0005
Figure imgf000013_0004
Figure imgf000013_0003
Figure imgf000013_0002
Figure imgf000013_0003
Figure imgf000013_0002
Figure imgf000013_0001
表 1の No. 1カゝら 43は本願発明の添加剤をカ卩えた場合についてであって、実施例 から実施例 43とした。表 2の No. 1から 29は、本願発明の成分が一部入っていない 、または本願発明とは異なる添加剤をカ卩えた場合にっ 、てであって比較例 1から比 較例 29とした。表 2の No. 30は添加剤をカ卩えていない対照試料であって、比較例 3 0とした。
Figure imgf000013_0001
No. 1 Carapella 43 in Table 1 relates to a case where the additive of the present invention was prepared, and was changed from Example to Example 43. Nos. 1 to 29 in Table 2 show that some of the components of the present invention are not Or, when additives different from those of the invention of the present application were added, comparative examples 1 to 29 were used. No. 30 in Table 2 is a control sample in which no additive was added, and Comparative Example 30 was used.
[0045] 次に、浄化処理前の有機塩素化合物の濃度を測定するため、培養開始直前に 2, 1 90の試料のうち力 各処理につき 5本ずつの計 365個の試料をとりわけた。ガスクロ マトグラフにより試料中の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレンを分析 し、 5つの試料の平均値より各処理毎の初期濃度を決定した。  [0045] Next, in order to measure the concentration of the organochlorine compound before the purification treatment, immediately before the start of the culture, a total of 365 specimens, each of which had 5 specimens for each treatment, were selected from the 2,190 specimens. The samples were analyzed by gas chromatography for the organochlorine compounds, the salt-forming butyl monomer and ethylene, and the initial concentration for each treatment was determined from the average value of the five samples.
[0046] 残りの 1, 825個の試料を暗所において 25°Cで 90日間培養した。そして、培養開 始 30日後から 15日経過する毎に各処理につき 5本の計 365本の試料に含まれる有 機塩素化合物、塩ィ匕ビュルモノマー及びエチレンの濃度をガスクロマトグラフにより 測定し、 5つの試料の平均値から各時点 ·各処理毎の有機塩素化合物及びエチレン の濃度を決定した。 73種類の処理を施した試料に含まれる有機塩素化合物及びェ チレンの濃度の推移を図 1から図 73に示す。  [0046] The remaining 1,825 samples were cultured in the dark at 25 ° C for 90 days. Then, every 30 days after the start of the cultivation, every 15 days after the start of the culture, the concentrations of the organic chlorine compounds, the salty butyl monomer and the ethylene contained in the total of 365 samples for each treatment were measured by gas chromatography. From the average value of the three samples, the concentrations of organochlorine compounds and ethylene for each treatment at each time point and for each treatment were determined. Figure 1 to Figure 73 show changes in the concentrations of organochlorine compounds and ethylene contained in the samples subjected to 73 types of treatment.
[0047] 図 1から図 73の結果について検証する。本願の添加剤をカ卩えた実施例 1から実施 例 43の場合には、塩素化数の大きな TCEは 30日力も 75日間で定量下限値 (0. 00 2mgZ 以下まで浄化されている。 C— DCEについても 75日力も 90日間で定量下 限値 (0. 004mgZL)以下まで浄ィ匕されている。有機塩素化合物の浄ィ匕において問 題視される塩ィ匕ビニルモノマー(以下、 VCと称する)については、実施例 27、 28及 び実施例 42、 43を除いて試験期間の 90日以内に定量下限値 (0. OOlmgZL)以 下まで浄ィ匕されている。なお、実施例 27、 28、 42、 43については、定量下限値以下 までは浄ィ匕され得な力つたものの、未浄化分はそれぞれ、 0. lmg/L、 0. lmg/L 、 0. 3mg/L, 0. 3mg/Lと極僅力であった。  The results of FIGS. 1 to 73 will be verified. In the case of Examples 1 to 43 in which the additive of the present application was added, TCE with a large chlorination number was purified to the lower limit of quantification (less than 0.002 mgZ) in 30 days and 75 days. In 90 days, DCE has been purified to below the lower limit of quantitation (0.004 mg ZL) in 90 days.Shiridani vinyl monomer (hereinafter referred to as VC) which is a problem in the purification of organochlorine compounds (Except for Examples 27 and 28 and Examples 42 and 43), the quantification was reduced to below the lower limit of quantification (0.001 mg ZL) within 90 days of the test period. , 28, 42 and 43, although they could be purified to below the lower limit of quantification, the unpurified components were 0.1mg / L, 0.1mg / L, 0.3mg / L, 0mg respectively. It was extremely low at 3 mg / L.
[0048] 一方、本願発明でな 、比較例 1から比較例 30の場合は、ほとんどの場合、 TCEは 90日経過しても系に残留したままであり、 C— DCE、及び VCについても同様のこと がわカゝる。  [0048] On the other hand, in the case of Comparative Examples 1 to 30 which are not the present invention, in most cases, TCE remains in the system even after 90 days, and the same applies to C-DCE and VC. I understand that.
[0049] 具体的に述べると、比較例 1は添加剤としてペプトンだけを添加したものであるが、 [0049] Specifically, in Comparative Example 1, only peptone was added as an additive.
TCE、 C— DCE、及び VCは浄化されず系に残量したままであった。 TCE, C—DCE, and VC remained unpurified and remained in the system.
[0050] 比較例 2から比較例 7は、ペプトンと請求項 1に記載の糖類を含み、有機酸塩を含 まない場合についてである力 この場合も TCE、 C— DCE、及び VCは浄化されず 系に残量したままであった。 [0050] Comparative Examples 2 to 7 contain peptone and the saccharide according to claim 1, and contain an organic acid salt. In this case, TCE, C-DCE, and VC remained unpurified and remained in the system.
[0051] 比較例 8から比較例 13は、ペプトンと請求項 1に記載の有機酸塩を含み、糖類を含 まない場合についてである力 この場合も TCE、 C— DCE、及び VCは浄化されず 系に残量したままであった。 [0051] Comparative Examples 8 to 13 show the power obtained when peptone and the organic acid salt according to claim 1 are used, but no saccharides. In this case also, TCE, C-DCE, and VC are purified. The system remained.
[0052] 比較例 14から比較例 19は、請求項 1に記載の糖類と請求項 1に記載の有機酸塩 を含み、ペプトンを含まない場合である力 この場合も TCE、 C— DCE、及び VCは 浄化されず系に残量したままであった。 [0052] Comparative Examples 14 to 19 each include a saccharide according to claim 1 and an organic acid salt according to claim 1 and a force that does not include peptone. In this case also, TCE, C-DCE, and VC was not purified and remained in the system.
[0053] 比較例 20から比較例 23は、ペプトン、糖類、有機塩酸を含むものの、糖類は請求 項 1に記載の成分とは異なるものである場合についてである力 この場合、 TCEは 7[0053] Comparative Examples 20 to 23 each include peptone, a saccharide, and an organic hydrochloric acid, but have a saccharide having a force different from the component described in claim 1. In this case, TCE is 7
5日或いは 90日で定量下限値以下まで浄化した。し力し、 C— CDE、 VCは未浄ィ匕 のままであった。 In 5 days or 90 days, it was purified to below the lower limit of quantification. C-CDE and VC remained unpurified.
[0054] 比較例 24から比較例 26は、ペプトン、糖類、有機塩酸を含むものの、有機塩酸は 請求項 1に記載の成分とは異なるものである場合についてである力 この場合、 TCE 、 C DCE、及び VCは浄化されず系に残量したままであった。  [0054] Comparative Examples 24 to 26 include peptone, saccharides, and organic hydrochloric acid, but the organic hydrochloric acid is a component different from the component according to claim 1. The force is TCE, CDCE , And VC were not purified and remained in the system.
[0055] 比較例 27から比較例 29は、ペプトン、糖類、有機塩酸を含むものの、糖類及び有 機塩酸とも請求項 1に記載の成分とは異なるものである場合についてである力 この 場合、 TCE、 C— DCE、及び VCは浄化されず系に残量したままであった。  [0055] Comparative Examples 27 to 29 each include peptone, a saccharide, and an organic hydrochloric acid, but each of the saccharides and the organic hydrochloric acid is different from the component according to claim 1. , C—DCE, and VC remained unpurified and remained in the system.
[0056] 比較例 30は、何も添カ卩しない場合についてである力 この場合、 TCE、 C-CDE は浄ィ匕されず系に残量したままであった。なお、 VCについては検出されな力つた。  [0056] Comparative Example 30 was a case in which nothing was added. In this case, TCE and C-CDE were not purified and remained in the system. In addition, it was not detected about VC.
[0057] 以上の結果より、有機塩素化合物の浄化において本願発明の添加剤を使用した場 合、 TCEのような汚染物質、 C DCE及び VCのように浄ィ匕時に生成する有害物質 をともに浄ィ匕することができ、一部の成分が本願発明とは異なる添加剤を使用した場 合に比べて浄ィ匕効果が顕著に優れていた。即ち、本願発明の請求項 1に記載の、微 生物コンソーシアムを造成 ·活性ィ匕する物質と嫌気性微生物の還元的脱ハロゲンィ匕 を促進する物質と嫌気状態を造成する物質との三種類の物質からなる添加剤におい て、特定の 3成分の組み合わせによって顕著な効果があることのみならず、その組み 合わせが他の組み合わせに比べても優れた効果があることが示された。 産業上の利用可能性 [0057] From the above results, when the additive of the present invention is used in purifying organic chlorine compounds, both contaminants such as TCE and harmful substances generated during purification such as CDCE and VC are purified. The purification effect was remarkably excellent as compared with the case where an additive in which some components were different from the present invention was used. That is, three types of substances according to claim 1 of the present invention, a substance that creates and activates a microbial consortium, a substance that promotes reductive dehalogenation of anaerobic microorganisms, and a substance that creates an anaerobic state It was shown that, in the additive consisting of, not only the combination of the specific three components had a remarkable effect, but also that the combination had an excellent effect as compared with other combinations. Industrial applicability
[0058] 有機ハロゲン化合物により汚染された土壌、地下水或いは底質土の修復工事に本 発願に係る添加剤を活用することができる。  [0058] The additive according to the present application can be used for the restoration work of soil, groundwater or sediment soil contaminated with an organic halogen compound.
図面の簡単な説明  Brief Description of Drawings
[0059] [図 1]実施例 1の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 1 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 1.
[図 2]実施例 2の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 2 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 2.
[図 3]実施例 3の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 3 is a graph showing changes in the concentration of an organic chlorine compound, a salt-forming butyl monomer, and ethylene in Example 3.
[図 4]実施例 4の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 4 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 4.
[図 5]実施例 5の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 5 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 5.
[図 6]実施例 6の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 6 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 6.
[図 7]実施例 7の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 7 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 7.
[図 8]実施例 8の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 8 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 8.
[図 9]実施例 9の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 9 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 9.
[図 10]実施例 10の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。  FIG. 10 is a graph showing changes in the concentration of an organic chlorine compound, a salt-forming butyl monomer, and ethylene in Example 10.
[図 11]実施例 11の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。  FIG. 11 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 11.
[図 12]実施例 12の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 圆 13]実施例 13の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 FIG. 12 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 12. [13] FIG. 13 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 13.
圆 14]実施例 14の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [14] Fig. 14 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 14.
圆 15]実施例 15の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [15] FIG. 15 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 15.
圆 16]実施例 16の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [16] Fig. 16 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 16.
圆 17]実施例 17の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [17] Fig. 17 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 17.
圆 18]実施例 18の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [18] FIG. 18 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 18.
圆 19]実施例 19の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [19] Fig. 19 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 19.
圆 20]実施例 20の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [20] Fig. 20 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 20.
圆 21]実施例 21の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [21] Fig. 21 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 21.
圆 22]実施例 22の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [22] Fig. 22 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Example 22.
圆 23]実施例 23の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [23] FIG. 23 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 23.
圆 24]実施例 24の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [24] Fig. 24 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 24.
圆 25]実施例 25の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [25] FIG. 25 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 25.
圆 26]実施例 26の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 圆 27]実施例 27の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [26] Fig. 26 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 26. [27] FIG. 27 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 27.
圆 28]実施例 28の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [28] Fig. 28 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 28.
圆 29]実施例 29の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [29] Fig. 29 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 29.
圆 30]実施例 30の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [30] Fig. 30 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 30.
圆 31]実施例 31の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [31] Fig. 31 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 31.
圆 32]実施例 32の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [32] Fig. 32 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 32.
圆 33]実施例 33の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [33] Fig. 33 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 33.
圆 34]実施例 34の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [34] Fig. 34 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 34.
圆 35]実施例 35の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [35] Fig. 35 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 35.
圆 36]実施例 36の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [36] Fig. 36 is a graph showing changes in the concentration of an organic chlorine compound, a salt-forming bulle monomer and ethylene in the case of Example 36.
圆 37]実施例 37の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [37] Fig. 37 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Example 37.
圆 38]実施例 38の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [38] Fig. 38 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 38.
圆 39]実施例 39の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [39] Fig. 39 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Example 39.
[図 40]実施例 40の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [図 41]実施例 41の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 FIG. 40 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 40. FIG. 41 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Example 41.
[図 42]実施例 42の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。  FIG. 42 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Example 42.
[図 43]実施例 43の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。  FIG. 43 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Example 43.
[図 44]比較例 1の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 44 is a graph showing a change in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 1.
[図 45]比較例 2の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 45 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 2.
[図 46]比較例 3の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 46 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 3.
[図 47]比較例 4の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 47 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 4.
[図 48]比較例 5の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 48 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 5.
[図 49]比較例 6の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 49 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 6.
[図 50]比較例 7の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 50 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Comparative Example 7.
[図 51]比較例 8の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 51 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 8.
[図 52]比較例 9の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度の 変化を表すグラフである。  FIG. 52 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 9.
[図 53]比較例 10の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。  FIG. 53 is a graph showing a change in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 10.
[図 54]比較例 11の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 圆 55]比較例 12の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 FIG. 54 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 11. [55] FIG. 55 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 12.
圆 56]比較例 13の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [56] FIG. 56 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 13.
圆 57]比較例 14の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [57] FIG. 57 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 14.
圆 58]比較例 15の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [58] Fig. 58 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 15.
圆 59]比較例 16の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [59] Fig. 59 is a graph showing changes in the concentration of an organic chlorine compound, a salted butyl monomer and ethylene in Comparative Example 16.
圆 60]比較例 17の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [60] FIG. 60 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 17.
圆 61]比較例 18の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [61] Fig. 61 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 18.
圆 62]比較例 19の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [62] FIG. 62 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 19.
圆 63]比較例 20の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [63] This is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 20.
圆 64]比較例 21の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [64] Fig. 64 is a graph illustrating changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in the case of Comparative Example 21.
圆 65]比較例 22の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [65] Fig. 65 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 22.
圆 66]比較例 23の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [66] Fig. 66 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 23.
圆 67]比較例 24の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [67] FIG. 67 is a graph illustrating changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 24.
圆 68]比較例 25の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [図 69]比較例 26の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。 [68] Fig. 68 is a graph illustrating changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 25. FIG. 69 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Comparative Example 26.
[図 70]比較例 27の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。  FIG. 70 is a graph showing changes in the concentration of an organic chlorine compound, a salt-doping butyl monomer and ethylene in the case of Comparative Example 27.
[図 71]比較例 28の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。  FIG. 71 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer and ethylene in Comparative Example 28.
[図 72]比較例 29の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。  FIG. 72 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 29.
[図 73]比較例 30の場合の有機塩素化合物、塩ィ匕ビュルモノマー及びエチレン濃度 の変化を表すグラフである。  FIG. 73 is a graph showing changes in the concentrations of an organic chlorine compound, a salt-doping butyl monomer, and ethylene in Comparative Example 30.

Claims

請求の範囲 The scope of the claims
[1] 微生物コンソーシアムを造成 ·活性ィ匕する物質と嫌気性微生物の還元的脱ハロゲン 化を促進する物質と嫌気状態を造成する物質とから成ることを特徴とする有機ハロゲ ン化合物により汚染された土壌、地下水或いは底質土の修復に使用する添加剤。  [1] Contaminated with an organic halogen compound characterized by being composed of a substance that forms and activates a microbial consortium, a substance that promotes reductive dehalogenation of anaerobic microorganisms, and a substance that forms an anaerobic state Additives used to repair soil, groundwater or sediment.
[2] 前記微生物コンソーシアムを造成 ·活性ィ匕する物質がペプトンであり、前記嫌気性微 生物の還元的脱ハロゲンィ匕を促進する物質がプロピオン酸、酪酸、乳酸、およびそ れらの塩力 なる群力 選択される少なくとも一の物質であり、前記嫌気状態を造成 する物質がグルコース、ガラクトース、フルクトース、ラタトース、スクロース、およびマ ルトースカもなる群力 選択される少なくとも一の物質であることを特徴とする請求項 1に記載の有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質土の修復 に使用する添加剤。  [2] The substance that forms and activates the microbial consortium is peptone, and the substance that promotes reductive dehalogenation of the anaerobic microorganism is propionic acid, butyric acid, lactic acid, and their salt power. Group strength is at least one substance selected, and the substance forming the anaerobic state is at least one substance selected from glucose, galactose, fructose, ratatose, sucrose, and maltosca. An additive for repairing soil, groundwater or sediment contaminated with the organic halogenated conjugate according to claim 1.
[3] 微生物コンソーシアムを造成'活性ィ匕する物質と嫌気性微生物の還元的脱ハロゲン 化を促進する物質と嫌気状態を造成する物質とを添加して有機ハロゲン化合物によ り汚染された土壌、地下水或いは底質土を修復する修復方法。  [3] A soil contaminated with an organic halogen compound by adding a substance that creates and activates a microbial consortium, a substance that promotes reductive dehalogenation of anaerobic microorganisms, and a substance that creates an anaerobic state, Restoration method to restore groundwater or sediment.
[4] 前記微生物コンソーシアムを造成 ·活性ィ匕する物質がペプトンであり、前記嫌気性微 生物の還元的脱ハロゲンィ匕を促進する物質がプロピオン酸、酪酸、乳酸、およびそ れらの塩力 なる群力 選択される少なくとも一の物質であり、前記嫌気状態を造成 する物質がグルコース、ガラクトース、フルクトース、ラタトース、スクロース、およびマ ルトースカもなる群力 選択される少なくとも一の物質であることを特徴とする請求項 3に記載の有機ハロゲンィ匕合物により汚染された土壌、地下水或いは底質土の修復 方法。  [4] The substance that forms and activates the microbial consortium is peptone, and the substance that promotes reductive dehalogenation of the anaerobic microorganism is propionic acid, butyric acid, lactic acid, and their salt power. Group strength is at least one substance selected, and the substance forming the anaerobic state is at least one substance selected from glucose, galactose, fructose, ratatose, sucrose, and maltosca. A method for repairing soil, groundwater or sediment soil contaminated with the organic halogenated conjugate according to claim 3.
[5] ペプトンを添加して微生物コンソーシアムを造成 ·活性ィ匕し、プロピオン酸、酪酸、乳 酸、およびそれらの塩力もなる群力も選択される少なくとも一の物質を添加して嫌気 性微生物の還元的脱ハロゲンィ匕を促進し、グルコース、ガラクトース、フルクトース、ラ クトース、スクロース、およびマルトース力 なる群力 選択される少なくとも一の物質 を添加して嫌気状態を造成することを特徴とする有機ハロゲン化合物により汚染され た土壌、地下水或いは底質土の修復方法。  [5] Peptone is added to form and activate a microbial consortium, and anaerobic microorganisms are reduced by adding propionic acid, butyric acid, lactic acid, and at least one substance selected from the group consisting of salt and salt. An organic halogen compound characterized by promoting the objective dehalogenation and forming an anaerobic state by adding at least one substance selected from the group consisting of glucose, galactose, fructose, lactose, sucrose, and maltose. How to remediate contaminated soil, groundwater or sediment.
PCT/JP2005/010187 2004-06-02 2005-06-02 Additive for use to restore polluted soil, groundwater or bottom sediment soil WO2005118171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006514137A JP3834580B2 (en) 2004-06-02 2005-06-02 Additives used to restore contaminated soil, groundwater or sediment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004164219 2004-06-02
JP2004-164219 2004-06-02

Publications (1)

Publication Number Publication Date
WO2005118171A1 true WO2005118171A1 (en) 2005-12-15

Family

ID=35462775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010187 WO2005118171A1 (en) 2004-06-02 2005-06-02 Additive for use to restore polluted soil, groundwater or bottom sediment soil

Country Status (2)

Country Link
JP (1) JP3834580B2 (en)
WO (1) WO2005118171A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045558A (en) * 2007-08-20 2009-03-05 Taisei Corp In-situ purification method of polluted groundwater
JP2010263824A (en) * 2009-05-14 2010-11-25 Ecocycle Corp Additive for cleaning medium polluted with organic chlorine compound and cleaning method
JP2010269244A (en) * 2009-05-21 2010-12-02 Ecocycle Corp Additive and method for cleaning medium contaminated with mineral oil
JP2011036819A (en) * 2009-08-14 2011-02-24 Oyo Corp Prior effect determination test method of cleaning agent used for bioremediation
CN109821887A (en) * 2019-01-25 2019-05-31 北京博诚立新环境科技股份有限公司 A kind of aeration zone contaminated soil original position anaerobic organism restorative procedure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262751A (en) * 1998-03-17 1999-09-28 Ebara Corp Method for in-situ purification of soil and the like
JP2002224658A (en) * 2001-01-31 2002-08-13 Mitsui Eng & Shipbuild Co Ltd Method of cleaning soil and/or groundwater and composition used for the same
JP2003145131A (en) * 2001-11-09 2003-05-20 Kurita Water Ind Ltd Method for treating organic chlorine compound in soil and/or groundwater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262751A (en) * 1998-03-17 1999-09-28 Ebara Corp Method for in-situ purification of soil and the like
JP2002224658A (en) * 2001-01-31 2002-08-13 Mitsui Eng & Shipbuild Co Ltd Method of cleaning soil and/or groundwater and composition used for the same
JP2003145131A (en) * 2001-11-09 2003-05-20 Kurita Water Ind Ltd Method for treating organic chlorine compound in soil and/or groundwater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045558A (en) * 2007-08-20 2009-03-05 Taisei Corp In-situ purification method of polluted groundwater
JP2010263824A (en) * 2009-05-14 2010-11-25 Ecocycle Corp Additive for cleaning medium polluted with organic chlorine compound and cleaning method
JP2010269244A (en) * 2009-05-21 2010-12-02 Ecocycle Corp Additive and method for cleaning medium contaminated with mineral oil
JP2011036819A (en) * 2009-08-14 2011-02-24 Oyo Corp Prior effect determination test method of cleaning agent used for bioremediation
CN109821887A (en) * 2019-01-25 2019-05-31 北京博诚立新环境科技股份有限公司 A kind of aeration zone contaminated soil original position anaerobic organism restorative procedure
CN109821887B (en) * 2019-01-25 2021-06-22 北京博诚立新环境科技股份有限公司 In-situ anaerobic bioremediation method for contaminated soil of aeration zone

Also Published As

Publication number Publication date
JPWO2005118171A1 (en) 2008-11-13
JP3834580B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
Field et al. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds
Ferguson et al. Anaerobic transformations and bioremediation of chlorinated solvents
Kao et al. Evaluation of TCDD biodegradability under different redox conditions
Aulenta et al. Electrochemical stimulation of microbial cis-dichloroethene (cis-DCE) oxidation by an ethene-assimilating culture
JP3834580B2 (en) Additives used to restore contaminated soil, groundwater or sediment
Ge et al. Degradation of tetra-and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6
Tu et al. Enhanced anaerobic biodegradation of OCDD-contaminated soils by Pseudomonas mendocina NSYSU: Microcosm, pilot-scale, and gene studies
Habe et al. Degradation characteristics of a dibenzofuran-degrader Terrabacter sp. strain DBF63 toward chlorinated dioxins in soil
Medina et al. Exploring the effect of composting technologies on the recovery of hydrocarbon contaminated soil post chemical oxidative treatment
McCarty et al. Retrospective on microbial transformations of halogenated organics
JP2007222823A (en) Cleaning method of soil polluted with chloroorganic compound
JP5186169B2 (en) Purification method of soil and groundwater in aquifer
JP4557219B2 (en) Additives used to restore contaminated soil, groundwater or sediment
Van Eekert et al. The potential of anaerobic bacteria to degrade chlorinated compounds
Pavlostathis et al. Potential and limitations of microbial reductive dechlorination for bioremediation applications
JP2005288276A (en) Additive used in restoring contaminated soil, ground water or sedimentary soil deposit
JP3564573B2 (en) Biological remediation methods for contaminated soil and groundwater
JP2004130166A (en) Method for restoring polluted soil or the like
McCarty Discovery of organohalide-respiring processes and the bacteria involved
Magar PCB treatment alternatives and research directions
Cox et al. In situ bioremediation of perchlorate in groundwater
US8372627B2 (en) Methods for in situ acceleration of biological degradation of chlorohydrocarbon in a soil
US7462480B2 (en) Stimulation of microbial dechlorination of polychorinated biphenyls with halogenated ethenes
Tandon 10 Microbial Remediation of Persistent Organic Pollutants
JP5258179B2 (en) Groundwater purification method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006514137

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase