JPH11258186A - Method and apparatus for measurement of stress by x-rays - Google Patents

Method and apparatus for measurement of stress by x-rays

Info

Publication number
JPH11258186A
JPH11258186A JP10064932A JP6493298A JPH11258186A JP H11258186 A JPH11258186 A JP H11258186A JP 10064932 A JP10064932 A JP 10064932A JP 6493298 A JP6493298 A JP 6493298A JP H11258186 A JPH11258186 A JP H11258186A
Authority
JP
Japan
Prior art keywords
sample
ray
rays
stress
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10064932A
Other languages
Japanese (ja)
Inventor
Hiroshi Furuta
啓 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI SHINGIJUTSU KENKYUSHO K
KANSAI SHINGIJUTSU KENKYUSHO KK
Original Assignee
KANSAI SHINGIJUTSU KENKYUSHO K
KANSAI SHINGIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI SHINGIJUTSU KENKYUSHO K, KANSAI SHINGIJUTSU KENKYUSHO KK filed Critical KANSAI SHINGIJUTSU KENKYUSHO K
Priority to JP10064932A priority Critical patent/JPH11258186A/en
Publication of JPH11258186A publication Critical patent/JPH11258186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a stress measuring method whose resolution is high in the depth direction of a sample and in which the large penetration depth of X-rays is obtained and to obtain its apparatus. SOLUTION: In a stress measuring method and an apparatus 1 which executes the method, diffracted X-rays D from the inside of a sample S are detected by a concentration method, and a stress inside the sample S is measured. In this case, X-rays B from an X-ray source 11 are condensed on a focus circle C which is situated along a plane crossing the surface of the sample S and which passes the center position S0 of a measuring place inside the sample S. The sample S is irradiated with the X-rays B which are passed through their condensed place F. An R-ray detector 13 which is provided with a monochromator is scanned near the diffraction angle θ of the sample S with reference to the irradiated X-rays B. The diffracted X-rays of a crysal on the focus circle C which passes the center position S0 of the measuring place are detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回折X線を集中法
により検出し試料内の応力を測定する方法及び装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting a stress in a sample by detecting diffracted X-rays by a concentrated method.

【0002】[0002]

【従来の技術】X線応力測定法は、多結晶物質、例えば
金属の表面応力を非破壊で評価する方法として広く知ら
れており、回折X線強度がピークを示す回折角を測定し
て、当該回折角より応力を算出する方法である。このよ
うなX線応力測定法に、回折X線の検出方法の一つとし
て一般に知られている集中法を適用する場合がある。
2. Description of the Related Art An X-ray stress measurement method is widely known as a method for non-destructively evaluating the surface stress of a polycrystalline substance, for example, a metal, and measures a diffraction angle at which a diffraction X-ray intensity shows a peak. This is a method of calculating stress from the diffraction angle. A concentrated method generally known as one of the diffraction X-ray detection methods may be applied to such an X-ray stress measurement method.

【0003】結晶格子間隔によって決まる回折角θは、
X線源、X線検出器及び試料の位置関係によって検出さ
れる。集中法は、通常、図2に示すように、被測定対象
たる試料表面に接する円C1(焦点円)上にX線源、X
線検出器及び回折面を位置させ(これを集中条件と呼
ぶ)、X線斜入射角と回折X線検出角が等しくなるよう
に(双方共θになるように)配置する構成を採る。これ
により、回折X線測定対象面(この配置では試料表面)
からの回折角θを有する回折X線が、前記X線検出器の
位置に集中することとなる。したがって、急峻な回折X
線の強度プロファイルが得られ、これにより、高い分解
能で回折角を測定することができるという特徴を有す
る。図3に示すように、回折X線の強度プロファイルを
得るには、例えば、試料を点S0を回転中心として回転
(回転角±Δθ。図3にはΔθだけ回転した状態を示
す)させると共に、これに連動してX線検出器を点S0
を回転中心とするゴニオメータ円C’上で回転(図3で
は試料をΔθだけ回転させたことに対応して、2Δθだ
け回転させた状態を示す)させる。これにより、回折角
θ+Δθを有する回折X線がX線検出器に集中するた
め、θ、Δθの値を種々変えることにより、回折X線の
強度プロファイルを得ることが可能である。
The diffraction angle θ determined by the crystal lattice spacing is
It is detected by the positional relationship between the X-ray source, the X-ray detector and the sample. In the focusing method, as shown in FIG. 2, an X-ray source and an X-ray source are arranged on a circle C 1 (focal circle) in contact with the surface of a sample to be measured.
A configuration is adopted in which the line detector and the diffraction surface are positioned (this is called a concentration condition) and arranged so that the oblique incidence angle of X-rays and the detection angle of diffraction X-rays are equal (both are θ). Thereby, the diffraction X-ray measurement target surface (the sample surface in this arrangement)
Will be concentrated at the position of the X-ray detector. Therefore, steep diffraction X
It is characterized in that a line intensity profile is obtained, whereby the diffraction angle can be measured with high resolution. As shown in FIG. 3, in order to obtain the intensity profile of the diffracted X-ray, for example, the sample is rotated around the point S 0 as the rotation center (rotation angle ± Δθ; FIG. 3 shows a state rotated by Δθ). , In conjunction with this, the X-ray detector is set to the point S 0.
Is rotated on the goniometer circle C ′ with the rotation center as the rotation center (FIG. 3 shows a state in which the sample is rotated by 2Δθ corresponding to the rotation of the sample by Δθ). As a result, the diffracted X-ray having the diffraction angle θ + Δθ concentrates on the X-ray detector. Therefore, the intensity profile of the diffracted X-ray can be obtained by variously changing the values of θ and Δθ.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記集中法
は、通常、焦点円上に一定の幅(100μm程度)を有
するX線源を配置する構成、又はX線源前方の焦点円上
に回折X線ピーク幅を狭めるためのスリット(但し、所
定のX線強度を確保し得る幅を有する必要がある)を設
置した構成であるため、出射X線の幅及び試料表面の照
射域の広がりに基因して、本来集中条件を満たさないX
線も検出される。したがって、集中条件を完全に満たす
位置からずれた部分の回折X線強度の低下が緩慢とな
る。すなわち、図4に示す幾何学的許容量(例えば、回
折X線強度がピーク値の1/2となる試料表面のずれ
量)δが大きくなる。これは、測定対象たる試料の表面
が、集中条件を完全に満たす位置から焦点円の径方向に
±δだけずれたとしても、X線検出器には前記表面から
の回折X線が入射することを意味する。したがって、後
述の試料中への侵入深さを考慮しなければ、試料表面を
焦点円上に位置させて測定する回折X線強度は、試料表
面から深さ方向δの範囲に亘る領域からの全ての回折X
線の強度となる。通常、X線源の出射幅は100μm程
度であり、この場合δは、試料の結晶状態にも依存する
が、数100μm程度になると考えられる。一方、X線
の試料中への実際の侵入深さ(検出可能な強度の回折X
線を得ることができる深度)はたかだか数10μm程度
である。したがって、通常のX線源を配置した集中法に
よる応力測定では、試料表面から深さ方向に数10μm
程度の領域における結晶状態の平均的な情報を有した回
折X線しか測定できない。例えば、試料の劣化メカニズ
ムの詳細解析には、試料の深さ方向の高い測定分解能を
得ることが必要であるが、従来の集中法によってもこれ
に十分に応えることはできなかった。
However, the above-mentioned focusing method usually employs a configuration in which an X-ray source having a fixed width (about 100 μm) is arranged on a focal circle, or a diffraction method on a focal circle in front of the X-ray source. Since a slit for narrowing the X-ray peak width (however, it is necessary to have a width capable of securing a predetermined X-ray intensity) is provided, the width of the emitted X-ray and the spread of the irradiation area on the sample surface are reduced. Basically, X that does not originally satisfy the concentration condition
Lines are also detected. Therefore, the intensity of the diffracted X-ray at a position shifted from the position that completely satisfies the concentration condition slowly decreases. That is, the geometric allowance δ shown in FIG. 4 (for example, the shift amount of the sample surface at which the diffracted X-ray intensity becomes の of the peak value) δ increases. This means that even if the surface of the sample to be measured is displaced by ± δ in the radial direction of the focal circle from a position that completely satisfies the concentration condition, diffracted X-rays from the surface enter the X-ray detector. Means Therefore, unless consideration is given to the depth of penetration into the sample described later, the diffraction X-ray intensity measured with the sample surface positioned on the focal circle is all from the region extending from the sample surface to the depth direction δ. Diffraction X
The intensity of the line. Usually, the emission width of the X-ray source is about 100 μm. In this case, δ is considered to be about several 100 μm, although it depends on the crystal state of the sample. On the other hand, the actual penetration depth of the X-ray into the sample (diffraction X
The depth at which a line can be obtained is at most several tens of μm. Therefore, in the stress measurement by the concentrated method in which a normal X-ray source is arranged, several tens μm
Only diffracted X-rays having average information of the crystal state in the extent region can be measured. For example, a detailed analysis of the deterioration mechanism of a sample requires obtaining a high measurement resolution in the depth direction of the sample, but the conventional lumped method could not sufficiently respond to this.

【0005】また、通常のX線源を用いた場合、上述の
ように、試料へのX線の侵入深さは、たかだか数10μ
m程度で、特に試料が金属の場合は数μm以下であるた
め、試料の極表層の平均的な応力しか測定することがで
きない。したがって、メッキ材料や各種構造材の劣化メ
カニズムの詳細解析、例えば、半導体デバイスの回路上
に発生する応力割れの解析等において、正確な内部応力
の測定ができないという問題もある。
When a normal X-ray source is used, as described above, the penetration depth of X-rays into a sample is at most several tens of μm.
m, especially several micrometers or less when the sample is a metal, so that only the average stress of the extreme surface layer of the sample can be measured. Therefore, there is also a problem that accurate internal stress cannot be measured in detailed analysis of a deterioration mechanism of a plating material or various structural materials, for example, analysis of a stress crack generated on a circuit of a semiconductor device.

【0006】本発明は、かかる従来技術における問題点
を解決するべくなされたもので、試料深さ方向に高い測
定分解能を有し、大きなX線の侵入深さが得られる応力
測定方法及び装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems in the prior art, and has a method and an apparatus for measuring stress which have a high measurement resolution in the sample depth direction and can obtain a large X-ray penetration depth. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するべ
く、本発明は、集中法により試料内からの回折X線を検
出し該試料内の応力を測定する方法であって、試料表面
を横切る平面に沿い且つ試料内の測定箇所中心位置を通
る焦点円上に、X線源からのX線を集光し、該集光箇所
通過後のX線を試料に照射し、前記照射X線に対する試
料の回折角付近でモノクロメータを備えたX線検出器を
走査し前記測定箇所中心位置を通る焦点円上の結晶の回
折X線を検出することを特徴とする応力測定方法を提供
する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is a method for measuring a stress in a sample by detecting diffracted X-rays from the inside of the sample by a concentrated method. X-rays from an X-ray source are condensed on a focal circle along a plane and passing through a center position of a measurement point in the sample, and the sample is irradiated with the X-rays after passing through the light-condensing point, and A stress measurement method is provided, wherein an X-ray detector provided with a monochromator is scanned near a diffraction angle of a sample to detect a diffraction X-ray of a crystal on a focal circle passing through the center of the measurement point.

【0008】かかる発明によれば、焦点円上に集光され
たX線の幅が従来の集中法におけるX線源の出射幅に比
較して小さくなるため、前記幾何学的許容量δもこれに
応じて小さくなる。これは、試料深さ方向の測定分解能
が高まることを意味し、試料の位置を深さ方向に微動さ
せれば、試料内の深さ方向の特定位置からの回折ピーク
を検出することが可能となる。
According to this invention, the width of the X-rays condensed on the focal circle is smaller than the emission width of the X-ray source in the conventional focusing method. It becomes smaller according to. This means that the measurement resolution in the sample depth direction increases, and if the position of the sample is slightly moved in the depth direction, it is possible to detect a diffraction peak from a specific position in the sample in the depth direction. Become.

【0009】さらに、好適には、前記X線源はシンクロ
トロン放射光源とされる。
Preferably, the X-ray source is a synchrotron radiation source.

【0010】かかる発明によれば、シンクロトロン放射
光源の強度が強く平行性が良いため、試料内部へのX線
侵入深さが増すと共に、X線集光光学系によりX線が焦
点円上で非常に小さい幅に集光されるため、試料深さ方
向の分解能が飛躍的に向上する。
According to this invention, since the intensity of the synchrotron radiation light source is strong and the parallelism is good, the penetration depth of the X-ray into the sample increases, and the X-ray focusing optical system allows the X-ray to be focused on the focal circle. Since the light is condensed to a very small width, the resolution in the sample depth direction is dramatically improved.

【0011】さらに、本発明は、前記方法を好適に実施
し得る装置を提供するものである。
Further, the present invention provides an apparatus capable of suitably implementing the above method.

【0012】[0012]

【発明の実施の形態】以下、添付図面を参照しつつ、本
発明の実施形態について説明する。図1は、本発明に係
る応力測定装置の一実施形態を概略的に示す断面図であ
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view schematically showing one embodiment of a stress measuring device according to the present invention.

【0013】図1に示すように、本発明に係る応力測定
装置1は、X線源11、X線集光光学系12、X線検出
器13及び試料移動装置14を備え、試料移動装置14
に取り付けられた試料SにX線Bを照射し、集中条件を
満足する回折X線Dを検出する構成とされている。本実
施形態におけるX線源11は、シンクロトロン放射光を
単色化する分光系を備え、強度が強く且つ平行性に優れ
たX線を出射し得るシンクロトロン放射光源(便宜上、
図1には小さい寸法で表す)とされている。シンクロト
ロン放射光源は、強度が強い連続X線を出射することが
でき、単色化するための前記分光系を用いて、試料Sの
結晶系等に応じた適切なX線が選択される。X線源とし
ては、シンクロトロン放射光源の他、強度が強く平行性
が良い単色のX線を試料Sに照射できるものを好適に使
用することができる。X線源11から出射したX線B
は、焦点円C上の点Fに集束するようX線集光光学系1
2によって集光される。本実施形態におけるX線集光光
学系12は、斜入射反射系を採用し反射面を楕円面とし
ているが、該反射面を双曲面若しくは双曲面及び楕円面
の組合せとすることもできる。
As shown in FIG. 1, a stress measuring device 1 according to the present invention includes an X-ray source 11, an X-ray focusing optical system 12, an X-ray detector 13, and a sample moving device 14, and a sample moving device 14.
Is irradiated with X-rays B on a sample S attached to the sample, and diffracted X-rays D satisfying a concentration condition are detected. The X-ray source 11 in the present embodiment includes a spectroscopic system for monochromaticizing synchrotron radiation, and is a synchrotron radiation light source (for convenience, capable of emitting X-rays with high intensity and excellent parallelism).
1 (represented by small dimensions). The synchrotron radiation light source can emit continuous X-rays having a high intensity, and an appropriate X-ray according to the crystal system of the sample S is selected using the above-described spectral system for monochromatization. As the X-ray source, other than a synchrotron radiation light source, a source capable of irradiating the sample S with monochromatic X-rays having high intensity and good parallelism can be suitably used. X-ray B emitted from X-ray source 11
Is an X-ray condensing optical system 1 so as to focus on a point F on a focal circle C.
2 collects light. In the present embodiment, the X-ray focusing optical system 12 employs an oblique incidence reflection system and has an elliptical reflection surface. However, the reflection surface may be a hyperboloid or a combination of a hyperboloid and an ellipsoid.

【0014】一旦集光されたX線Bは、点Fに設けたス
リット121を通った後、集束角に応じて再び拡散し、
試料Sの所定の領域に照射される。ここで、試料Sは、
測定対象たる表面からの深さdの点S0(測定箇所中心
位置)が焦点円C上の点C0に一致するよう、試料移動
装置14によって位置調整される。前述のようにX線源
11を強度が強く平行性が良いシンクロトロン放射光源
とすることにより十分な侵入深さが得られ、X線集光光
学系12により焦点円上の点FにX線が集束するため、
試料Sの位置調整をすれば、試料S内部の特定深度から
の回折X線を検出することが可能である。
The X-rays B once condensed pass through the slit 121 provided at the point F, and then diffuse again according to the convergence angle.
A predetermined area of the sample S is irradiated. Here, the sample S is
The position is adjusted by the sample moving device 14 so that the point S0 at the depth d from the surface to be measured (the center position of the measurement point) coincides with the point C0 on the focal circle C. By using the X-ray source 11 as a synchrotron radiation light source having high intensity and good parallelism as described above, a sufficient penetration depth can be obtained. Converge,
By adjusting the position of the sample S, it is possible to detect a diffracted X-ray from a specific depth inside the sample S.

【0015】試料Sからの回折X線Dは、焦点円上の点
Gに設けられたスリット131を通ってモノクロメータ
(図示せず)を前方に備えたX線検出器13で検出され
る。モノクロメータは、試料に照射されるX線の波長に
応じた検出波長帯域を有する。また、モノクロメータ
は、点Gに焦点を有する円弧形状の反射光学系を備え、
例えば、図5に示す試料表面からの散乱X線又は回折X
線D’がX線検出器13本体に入射するのを抑制する。
スリット131及びX線検出器13は、点C0を回転中
心とするゴニオメータ(図示せず)に載置されている。
試料S及び試料移動装置14、並びにX線検出器13及
びスリット131は、点C0を回転中心として任意に回
転させることができ、回折X線の強度プロファイルを測
定することが可能となる。試料S内の応力は、前記強度
プロファイルより求めた回折角から算出することができ
る。したがって、例えば、メッキ材料等の金属材料の内
部応力を所定の深さ毎に測定することができ、当該材料
劣化メカニズムの詳細解析が可能となる。
The diffracted X-ray D from the sample S passes through a slit 131 provided at a point G on the focal circle and is detected by an X-ray detector 13 having a monochromator (not shown) in front. The monochromator has a detection wavelength band corresponding to the wavelength of the X-ray irradiated on the sample. Further, the monochromator includes an arc-shaped reflecting optical system having a focal point at point G,
For example, scattered X-rays or diffraction X-rays from the sample surface shown in FIG.
The line D ′ is suppressed from entering the X-ray detector 13 body.
The slit 131 and the X-ray detector 13 are mounted on a goniometer (not shown) having the point C0 as the center of rotation.
The sample S and the sample moving device 14, and the X-ray detector 13 and the slit 131 can be arbitrarily rotated about the point C0 as a center of rotation, and the intensity profile of the diffracted X-ray can be measured. The stress in the sample S can be calculated from the diffraction angle obtained from the intensity profile. Therefore, for example, the internal stress of a metal material such as a plating material can be measured at each predetermined depth, and a detailed analysis of the material deterioration mechanism becomes possible.

【0016】[0016]

【発明の効果】以上のように、本発明は、試料内の測定
箇所中心位置を通る焦点円上にX線源からのX線を集光
する構成としたため、X線源が一定の幅を有することに
起因して従来の集中法においては得ることのできなかっ
た程度まで、試料深さ方向の測定分解能を得ることがで
きる。したがって、試料の一定の深さ毎に応力測定がで
き、半導体デバイスや各種構造物等の劣化メカニズムの
詳細解析が可能である。
As described above, according to the present invention, since the X-ray from the X-ray source is condensed on the focal circle passing through the center of the measurement point in the sample, the X-ray source has a certain width. The measurement resolution in the sample depth direction can be obtained to the extent that it cannot be obtained by the conventional intensive method due to having. Therefore, the stress can be measured at a certain depth of the sample, and the detailed analysis of the deterioration mechanism of the semiconductor device and various structures can be performed.

【0017】さらに、前記X線源を、例えばシンクロト
ロン放射光源に代表されるような強度が強く平行性が良
いX線源とすれば、試料深さ方向の高い分解能が得られ
ると共に、試料のより深い位置からの回折X線でも強い
強度が得られる。したがって、試料がメッキ材料等であ
っても、極表層に限定されない内部応力の精密な測定が
可能となり、メッキ材料等の劣化メカニズムの詳細解析
等に非常に有効である。
Further, if the X-ray source is an X-ray source having a high intensity and a good parallelism as represented by a synchrotron radiation light source, for example, a high resolution in the sample depth direction can be obtained, and Strong intensity can be obtained even with diffracted X-rays from a deeper position. Therefore, even if the sample is a plating material or the like, it is possible to precisely measure the internal stress, which is not limited to the extreme surface layer, and it is very effective for detailed analysis of the degradation mechanism of the plating material and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係る応力測定装置の一実施形
態を概略的に示す断面図である。
FIG. 1 is a sectional view schematically showing one embodiment of a stress measuring device according to the present invention.

【図2】図2は、従来装置を概略的に示す断面図であ
る。
FIG. 2 is a sectional view schematically showing a conventional device.

【図3】図3は、図2に示す装置による回折X線の強度
プロファイル測定方法の概念図である。
FIG. 3 is a conceptual diagram of a method for measuring an intensity profile of a diffracted X-ray by the apparatus shown in FIG.

【図4】図4は、試料表面の集中条件からのずれによる
回折X線強度の変化を示す図である。
FIG. 4 is a diagram showing a change in diffraction X-ray intensity due to a deviation from a concentration condition of a sample surface.

【図5】図5は、試料表面からの散乱X線又は回折X線
を示す図である。
FIG. 5 is a diagram showing scattered X-rays or diffracted X-rays from the sample surface.

【符号の説明】[Explanation of symbols]

1 応力測定装置 11 X線源 12 X線集光光学系 13 X線検出器 14 試料移動装置 121 スリット 131 スリット B 照射X線 D 回折X線 D’ 散乱X線 C 焦点円 C’ ゴニオメータ円 S 試料 DESCRIPTION OF SYMBOLS 1 Stress measuring device 11 X-ray source 12 X-ray focusing optical system 13 X-ray detector 14 Sample moving device 121 Slit 131 Slit B Irradiation X-ray D Diffracted X-ray D 'Scattered X-ray C Focus circle C' Goniometer circle S Sample

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集中法により試料内からの回折X線を検
出し該試料内の応力を測定する方法であって、試料表面
を横切る平面に沿い且つ試料内の測定箇所中心位置を通
る焦点円上に、X線源からのX線を集光し、該集光箇所
通過後のX線を試料に照射し、前記照射X線に対する試
料の回折角付近でモノクロメータを備えたX線検出器を
走査し前記測定箇所中心位置を通る焦点円上の結晶の回
折X線を検出することを特徴とする応力測定方法。
1. A method for measuring a stress in a sample by detecting diffracted X-rays from inside the sample by a convergence method, wherein a focal circle passes along a plane crossing the surface of the sample and passes through a center position of a measurement point in the sample. An X-ray detector that focuses X-rays from an X-ray source, irradiates the sample with the X-rays after passing through the focus, and includes a monochromator near the diffraction angle of the sample with respect to the irradiated X-rays And detecting a diffraction X-ray of a crystal on a focal circle passing through the center position of the measurement point.
【請求項2】 前記X線源は、シンクロトロン放射光源
であることを特徴とする請求項1に記載の応力測定方
法。
2. The method according to claim 1, wherein the X-ray source is a synchrotron radiation source.
【請求項3】 集中法により試料内からの回折X線を検
出し該試料内の応力を測定する装置であって、X線源
と、試料表面を横切る平面に沿い且つ試料内の測定箇所
中心位置を通る焦点円上に前記X線源からのX線を集光
するX線集光光学系と、該集光箇所通過後に試料に照射
されるX線に対する試料の回折角付近で走査されるモノ
クロメータを備えたX線検出器と、前記試料を前記焦点
円の径方向に移動させる試料移動装置とを備えることを
特徴とする応力測定装置。
3. An apparatus for measuring a stress in a sample by detecting a diffracted X-ray from inside the sample by a concentration method, comprising: an X-ray source; a center of a measurement point in the sample along a plane crossing the surface of the sample. An X-ray condensing optical system for condensing X-rays from the X-ray source on a focal circle passing through the position, and scanning is performed near a diffraction angle of the sample with respect to X-rays irradiated on the sample after passing through the condensing point A stress measurement device comprising: an X-ray detector having a monochromator; and a sample moving device for moving the sample in a radial direction of the focal circle.
【請求項4】 前記X線源は、シンクロトロン放射光源
であることを特徴とする請求項3に記載の応力測定装
置。
4. The stress measuring device according to claim 3, wherein the X-ray source is a synchrotron radiation light source.
JP10064932A 1998-03-16 1998-03-16 Method and apparatus for measurement of stress by x-rays Pending JPH11258186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10064932A JPH11258186A (en) 1998-03-16 1998-03-16 Method and apparatus for measurement of stress by x-rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10064932A JPH11258186A (en) 1998-03-16 1998-03-16 Method and apparatus for measurement of stress by x-rays

Publications (1)

Publication Number Publication Date
JPH11258186A true JPH11258186A (en) 1999-09-24

Family

ID=13272311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10064932A Pending JPH11258186A (en) 1998-03-16 1998-03-16 Method and apparatus for measurement of stress by x-rays

Country Status (1)

Country Link
JP (1) JPH11258186A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064643A (en) * 2000-08-17 2002-02-28 Koji Osada Acceptance system of interphone
JP2006177731A (en) * 2004-12-21 2006-07-06 Univ Nagoya Device and method for measuring strain by diffractometry
JP2007057329A (en) * 2005-08-23 2007-03-08 Kawasaki Heavy Ind Ltd Deterioration diagnosing method of ni-based hard metal by x-ray diffraction method and future lifetime evaluation method
JP2009085767A (en) * 2007-09-28 2009-04-23 Niigata Univ Strain measuring apparatus by diffractometry and measuring method
CN103245445A (en) * 2013-05-17 2013-08-14 北京师范大学 Stress meter
US8617310B1 (en) 2005-03-09 2013-12-31 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
CN103712998A (en) * 2012-10-09 2014-04-09 波音公司 Nondestructive examination of structures having embedded particles
CN104181181A (en) * 2013-05-24 2014-12-03 株式会社岛津制作所 X-ray analyzing device
US8969833B1 (en) 2011-12-16 2015-03-03 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
JP2017083333A (en) * 2015-10-29 2017-05-18 株式会社日産アーク Confocal X-ray analysis method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064643A (en) * 2000-08-17 2002-02-28 Koji Osada Acceptance system of interphone
JP2006177731A (en) * 2004-12-21 2006-07-06 Univ Nagoya Device and method for measuring strain by diffractometry
US8617310B1 (en) 2005-03-09 2013-12-31 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US9453802B1 (en) 2005-03-09 2016-09-27 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
JP2007057329A (en) * 2005-08-23 2007-03-08 Kawasaki Heavy Ind Ltd Deterioration diagnosing method of ni-based hard metal by x-ray diffraction method and future lifetime evaluation method
JP4719836B2 (en) * 2005-08-23 2011-07-06 川崎重工業株式会社 Deterioration diagnosis method and remaining life evaluation method of Ni-base superalloy by X-ray diffraction method
JP2009085767A (en) * 2007-09-28 2009-04-23 Niigata Univ Strain measuring apparatus by diffractometry and measuring method
US8969833B1 (en) 2011-12-16 2015-03-03 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and a second region of a superabrasive volume
US9423364B1 (en) 2011-12-16 2016-08-23 Us Synthetic Corporation Method and system for perceiving a boundary between a first region and second region of a superabrasive volume
CN103712998A (en) * 2012-10-09 2014-04-09 波音公司 Nondestructive examination of structures having embedded particles
CN103245445A (en) * 2013-05-17 2013-08-14 北京师范大学 Stress meter
CN104181181A (en) * 2013-05-24 2014-12-03 株式会社岛津制作所 X-ray analyzing device
CN104181181B (en) * 2013-05-24 2017-07-14 株式会社岛津制作所 X-ray analysis equipment
JP2017083333A (en) * 2015-10-29 2017-05-18 株式会社日産アーク Confocal X-ray analysis method

Similar Documents

Publication Publication Date Title
US7076024B2 (en) X-ray apparatus with dual monochromators
JP6142135B2 (en) Obliquely incident X-ray fluorescence analyzer and method
JP2003297891A (en) X-ray fluorescence analyzer for semiconductors
JPH11502025A (en) Apparatus for simultaneous X-ray diffraction and X-ray fluorescence measurement
JP2002530671A (en) X-ray analyzer including parabolic X-ray mirror and quartz monochromator
JP3712531B2 (en) XAFS measurement method and XAFS measurement apparatus
JPH11258186A (en) Method and apparatus for measurement of stress by x-rays
JP2004184314A (en) X-ray fluorescence analytical device
JP2009002805A (en) Small angle/wide angle x-ray measuring device
JP2001021507A (en) Xafs measuring apparatus
JP3968350B2 (en) X-ray diffraction apparatus and method
JP4160124B2 (en) X-ray spectrometer having an analyzer crystal having a partially varying and partially constant radius of curvature
JP2004514135A (en) Sample condition inspection apparatus and method
JP2008170236A (en) Measuring method for reflectivity curve of x ray and of neutron radiation and measuring instrument
JP2685726B2 (en) X-ray analyzer
JP2001033406A (en) X-ray phase difference image pickup method and device
US20060056590A1 (en) Methods and apparatus of sample analysis
WO2010097968A1 (en) Method and apparatus of precisely measuring intensity profile of x-ray nanobeam
JP5504502B2 (en) X-ray and neutron beam reflectivity curve measuring method and measuring apparatus
JP2002333409A (en) X-ray stress measuring device
JP2921597B2 (en) Total reflection spectrum measurement device
JPH1151883A (en) Method and equipment for fluorescent x-ray analysis
US20030026383A1 (en) Apparatus and method for the analysis of atomic and molecular elements by wavelength dispersive x-ray spectrometric devices
JP2675737B2 (en) Total reflection X-ray fluorescence analysis method and analyzer
JPS6353457A (en) 2-d scan type state analyzer