JP2009085767A - Strain measuring apparatus by diffractometry and measuring method - Google Patents

Strain measuring apparatus by diffractometry and measuring method Download PDF

Info

Publication number
JP2009085767A
JP2009085767A JP2007255782A JP2007255782A JP2009085767A JP 2009085767 A JP2009085767 A JP 2009085767A JP 2007255782 A JP2007255782 A JP 2007255782A JP 2007255782 A JP2007255782 A JP 2007255782A JP 2009085767 A JP2009085767 A JP 2009085767A
Authority
JP
Japan
Prior art keywords
measured
measurement
diffracted
diffraction
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007255782A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
賢治 鈴木
Takahisa Shobu
敬久 菖蒲
Junichi Shibano
純一 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Japan Atomic Energy Agency
Original Assignee
Niigata University NUC
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC, Japan Atomic Energy Agency filed Critical Niigata University NUC
Priority to JP2007255782A priority Critical patent/JP2009085767A/en
Publication of JP2009085767A publication Critical patent/JP2009085767A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of measuring a right angle merely from one-direction measurement without requiring to add an analytical compensate, in a strain scanning method to measure a strain generating in an object to be measured. <P>SOLUTION: A surface 24A of a test specimen 24 is irradiated with X-ray and a strain of the test specimen 24 is measured from a diffraction angle 2θ of the diffracted X-ray transmitting through the test specimen 24. The technology comprises a measuring position-changing step to move and rotate the test specimen 24; an irradiating step to irradiate the test specimen 24, of which measuring position being changed at the measuring position-changing step, with a measuring wave of a given luminous flux; and a detecting step to detect a diffracted X-ray of diffracted measured wave that has transmitted through and been diffracted from the test specimen 24 and/or a measuring region set near thereto; since the test specimen 24 is rotated with a rotation center of center S of a nominal gauge volume by the irradiated X-ray of the given luminous flux, the influence of surface effect can be canceled and correct measurement can be carried out. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、X線等のエネルギー波である測定波を被測定物(例えば、多結晶体材料)に照射し、被測定物から透過回折される透過測定波の回折角を測定することで被測定物に発生しているひずみを測定する測定技術に関する。   The present invention irradiates an object to be measured (for example, a polycrystalline material) with a measurement wave that is an energy wave such as an X-ray, and measures the diffraction angle of a transmission measurement wave transmitted and diffracted from the object to be measured. The present invention relates to a measurement technique for measuring strain generated in a measurement object.

機械構造材料に発生している応力(ひずみ)を測定する方法として、X線等のエネルギー波の回折現象を利用して測定する方法が知られている(例えば、sin2Ψ法)。sin2Ψ法では、通常、被測定物に斜めからX線を照射する。被測定物に入射したX線は、被測定物中の回折条件を満たす結晶格子面で反射され回折を生じる。被測定物で反射された反射波は、回折を起こした結晶格子面の法線と被測定物表面の法線とのなす角(Ψ角)を所定値に固定した状態で散乱角2θを走査しつつ測定される。散乱角2θの操作及びX線強度の測定は、Ψ角を変更しながら繰り返し実行される。これによって、散乱角2θに応じたX線の散乱強度分布のΨ角に対する依存性が測定され、この依存性から被測定物に発生した応力の被測定物表面に平行な成分を測定する。 As a method for measuring the stress (strain) generated in the mechanical structural material, a method using a diffraction phenomenon of energy waves such as X-rays is known (for example, the sin 2 Ψ method). In the sin 2 Ψ method, X-rays are usually irradiated obliquely on the object to be measured. The X-rays incident on the object to be measured are reflected by the crystal lattice plane satisfying the diffraction condition in the object to be measured and are diffracted. The reflected wave reflected by the object to be measured scans the scattering angle 2θ with the angle (Ψ angle) formed by the normal line of the crystal lattice plane that caused diffraction and the normal line of the object surface to be measured fixed at a predetermined value. While measuring. The operation of the scattering angle 2θ and the measurement of the X-ray intensity are repeatedly performed while changing the ψ angle. As a result, the dependence of the X-ray scattering intensity distribution on the Ψ angle in accordance with the scattering angle 2θ is measured, and from this dependence, the component parallel to the surface of the object to be measured is measured.

上述したsin2Ψ法では、被測定物に発生している応力を精度良く測定できる反面、Ψ角を一定に保った状態で散乱角2θを走査しながらX線強度を測定しなければならないため、測定に長時間を要するという問題があった。また、sin2Ψ法は、被測定物の平面応力状態しか測定できず、被測定物の垂直方向に発生している応力(ひずみ)を測定することができなかった。 In the sin 2 Ψ method described above, the stress generated in the object to be measured can be accurately measured, but the X-ray intensity must be measured while scanning the scattering angle 2θ while keeping the Ψ angle constant. There is a problem that it takes a long time to measure. Further, the sin 2 Ψ method can measure only the plane stress state of the object to be measured, and cannot measure the stress (strain) generated in the vertical direction of the object to be measured.

なお、sin2Ψ法によるひずみ測定に関する先行技術としては、例えば、特許文献1に開示された技術が知られている。 In addition, as a prior art regarding strain measurement by the sin 2 Ψ method, for example, a technique disclosed in Patent Document 1 is known.

上述したsin2Ψ法の問題点を解決するため、ひずみスキャニング法が注目を集めている。ひずみスキャニング法では、被測定物に斜めからX線等の測定波を照射し、被測定物から反射される反射波をスリット等を介して検出装置で検出する。このため、検出装置で検出される反射波は、被測定物の一部の領域(入射する測定波束と受光側のスリットで作られた領域(以下、測定領域という))から反射された反射波に制限される。したがって、検出装置で検出された検出結果から測定領域の平均ひずみを求め、被測定物に発生している応力を測定する。 In order to solve the problems of the sin 2 Ψ method described above, the strain scanning method has attracted attention. In the strain scanning method, an object to be measured is irradiated with a measurement wave such as an X-ray from an oblique direction, and a reflected wave reflected from the object to be measured is detected by a detection device through a slit or the like. For this reason, the reflected wave detected by the detection device is a reflected wave reflected from a partial area of the object to be measured (an area formed by an incident measurement wave packet and a slit on the light receiving side (hereinafter referred to as a measurement area)). Limited to Therefore, the average strain in the measurement region is obtained from the detection result detected by the detection device, and the stress generated in the object to be measured is measured.

上述の説明から明らかなように、ひずみスキャニング法では、被測定物中に設定される測定領域を移動させることで、被測定物に発生している任意の方向の応力分布を測定できる。また、sin2Ψ法のようにΨ角を一定にして散乱角2θを走査する等の複雑な操作が不要となるため、短時間で測定することができる。 As is apparent from the above description, in the strain scanning method, the stress distribution in an arbitrary direction generated in the measurement object can be measured by moving the measurement region set in the measurement object. Further, since a complicated operation such as scanning the scattering angle 2θ with a constant Ψ angle as in the sin 2 Ψ method is not required, measurement can be performed in a short time.

しかしながら、ひずみスキャニング法では、被測定物の表面近傍のひずみを測定する際に測定領域が被測定物からはみ出して設定される。このため、検出される回折ピークがシフトし、見かけ上のひずみが測定されてしまうという問題があった(いわゆる、表面効果)。   However, in the strain scanning method, when measuring strain near the surface of the object to be measured, the measurement region is set so as to protrude from the object to be measured. For this reason, there has been a problem that the detected diffraction peak is shifted and an apparent strain is measured (so-called surface effect).

この表面効果を解消する技術としては、受光側に単結晶アナライザを設置する測定方法が提案されており(非特許文献1)、この測定方法では、シンクロトロン放射光施設により得られる高輝度で且つ高エネルギーX線を測定波として用い、その高エネルギーX線は、大きな透過力を有し、この特徴を生かして、試験片の表面から透過させ背面から回折X線を測定し、試験片の残留応力を測定する。しかし、この測定方法によっても表面効果の影響を十分に解消し、満足な測定精度を得ることはできていない。   As a technique for eliminating this surface effect, a measurement method in which a single crystal analyzer is installed on the light receiving side has been proposed (Non-Patent Document 1). In this measurement method, high brightness obtained by a synchrotron radiation facility and Using high-energy X-rays as measurement waves, the high-energy X-rays have a large transmission power. Taking advantage of this characteristic, the X-rays are transmitted from the surface of the test piece, and diffracted X-rays are measured from the back surface. Measure the stress. However, even with this measurement method, the influence of the surface effect is sufficiently eliminated, and satisfactory measurement accuracy cannot be obtained.

そして、表面効果を解消するため、(1)アナライザを使用する方法、(2)試験片に対して測定波の照射方向を変更して、往路と復路で測定し、その回折角の相加平均を取る方法などがあり、また、(3)解析的に補正する方法(例えば、特許文献2)も提案されている。   In order to eliminate the surface effect, (1) a method using an analyzer, (2) changing the direction of irradiation of the measurement wave on the test piece, measuring in the forward path and the return path, and the arithmetic average of the diffraction angles (3) A method of correcting analytically (for example, Patent Document 2) has also been proposed.

しかし、(1)アナライザを使用すると、回折強度の減衰が1/100程度に減衰するために、偏向電磁石のビームラインではアナライザを使用したひずみスキャニングは困難であり、(2)往復の相加平均法は、2回の測定時間を要するために不利である。また、(3)の解析的に補正する方法は、煩雑な測定と計算を要する。
特開2004−132936号公報 特開2006−17731号公報 P.J.Withers,「 Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation」,edited by M.E. Fitzpatrick and A. Lodini,(2003) pp.170−189,Taylor&Francis,London and New York
However, when (1) the analyzer is used, the diffraction intensity is attenuated to about 1/100, so it is difficult to perform strain scanning using the analyzer in the deflection magnet beam line. (2) Reciprocal arithmetic mean The method is disadvantageous because it requires two measurement times. In addition, the analytical correction method (3) requires complicated measurement and calculation.
JP 2004-132936 A JP 2006-17731 A P. J. et al. Withers, “Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation”, edited by M. H. et al. E. Fitzpatrick and A.M. Rodini, (2003) pp. 170-189, Taylor & Francis, London and New York

本発明は、上述した事情に鑑みてなされたものであって、その目的は、被測定物に発生しているひずみを測定するひずみスキャニング法において、一方向の測定のみで、解析的な補正を加える必要がなく、正しい回折角を測定できる技術を提供することを目的とする。加えて、揺動効果が得られ、また、粗大粒の正確な測定が可能な技術を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and its purpose is to perform analytical correction only in one direction in a strain scanning method for measuring strain generated in an object to be measured. It is an object to provide a technique capable of measuring a correct diffraction angle without adding. In addition, an object of the present invention is to provide a technique capable of obtaining a rocking effect and accurately measuring coarse particles.

請求項1の発明は、被測定物の一側面に測定波を照射し、被測定物を透過した回折測定波の回折角から被測定物のひずみを測定する回折法によるひずみ測定装置であって、前記被測定物の一側面に所定の光束の測定波を照射する照射手段と、前記被測定物を回折透過した回折測定波を検出する検出手段と、前記被測定物を前記照射手段側に移動する移動手段と、前記被測定物を回転する回転手段と、前記検出手段で検出される回折測定波を、被測定物中及び/又はその近傍に設定される測定領域から回折された回折測定波に制限する制限手段と、
を備えた測定装置である。
The invention of claim 1 is a strain measurement apparatus using a diffraction method that irradiates a measurement wave on one side surface of a measurement object and measures the distortion of the measurement object from the diffraction angle of the diffraction measurement wave transmitted through the measurement object. Irradiating means for irradiating a measurement wave of a predetermined light flux on one side of the object to be measured; detecting means for detecting a diffracted measuring wave diffracted and transmitted through the object to be measured; and bringing the object to be measured to the irradiation means side Diffraction measurement in which the diffracted measurement wave detected by the moving means, the rotating means for rotating the object to be measured, and the detecting means is diffracted from the measurement region set in and / or in the vicinity of the object to be measured. Limiting means to limit to waves,
Is a measuring apparatus.

また、請求項2の発明は、被測定物の一側面に測定波を照射し、被測定物を透過した回折測定波の回折角から被測定物のひずみを測定する回折法によるひずみ測定装置であって、前記被測定物を保持する保持部と、前記保持部に保持された被測定物に所定の光束のX線を照射するX線照射装置と、前記被測定物から透過回折された回折X線を検出するX線検出装置と、前記保持部と前記X線検出装置との間に配置され、被測定物から透過回折された回折X線の一部を通過させる第1スリットと、前記第1スリットと前記X線検出装置との間に配置され、前記第1スリットを通過した回折X線の一部を通過させて前記X線検出装置に導く第2スリットと、前記被測定物を前記X線照射装置側に移動する移動装置と、前記被測定物へのX線の入射角を変更するために保持部を回転する回転装置と、前記移動装置及び回転装置による被測定物の位置変更に応じて前記第1スリット,前記第2スリット及び前記X線検出装置を移動させる受光側駆動装置と、前記X線照射装置,X線検出装置,移動装置,回転装置及び受光側駆動手段を制御する制御手段と、を備える測定装置である。   Further, the invention of claim 2 is a strain measurement apparatus using a diffraction method that irradiates a measurement wave on one side of the measurement object and measures the distortion of the measurement object from the diffraction angle of the diffracted measurement wave transmitted through the measurement object. A holding unit that holds the object to be measured, an X-ray irradiation device that irradiates the object to be measured held by the holding unit with X-rays of a predetermined light beam, and diffraction that is transmitted and diffracted from the object to be measured An X-ray detection device that detects X-rays, a first slit that is disposed between the holding unit and the X-ray detection device, and passes a part of the diffracted X-rays that are transmitted and diffracted from the object to be measured; A second slit that is disposed between the first slit and the X-ray detector, passes a part of the diffracted X-rays that have passed through the first slit, and guides the X-ray detector to the X-ray detector; A moving device that moves to the X-ray irradiation device side, and the incidence of X-rays on the object to be measured A rotating device that rotates the holding unit to change the position, and a light receiving side that moves the first slit, the second slit, and the X-ray detection device in accordance with the position change of the object to be measured by the moving device and the rotating device. A measuring apparatus comprising: a driving device; and a control unit that controls the X-ray irradiation device, the X-ray detection device, the moving device, the rotating device, and the light receiving side driving unit.

また、請求項3の発明は、被測定物の一側面に測定波を照射し、被測定物を透過した回折測定波の回折角から被測定物のひずみを測定する回折法によるひずみ測定方法であって、前記被測定物を移動及び回転する測定位置変更工程と、前記測定位置変更工程により測定位置を変更した前記被測定物に所定の光束の測定波を照射する照射工程と、前記被測定物中及び/又はその近傍に設定される測定領域から透過回折された回折測定波を検出する検出工程と、を備え、照射された所定の光束のX線による公称ゲージ体積の中心を回転中心にして前記被測定物を回転する測定方法である。   Further, the invention of claim 3 is a strain measurement method by a diffraction method in which a measurement wave is irradiated on one side of the measurement object, and the distortion of the measurement object is measured from the diffraction angle of the diffraction measurement wave transmitted through the measurement object. A measurement position changing step of moving and rotating the measurement object; an irradiation step of irradiating the measurement object whose measurement position has been changed by the measurement position change step with a measurement wave of a predetermined luminous flux; and the measurement object Detecting a diffracted measurement wave transmitted and diffracted from a measurement region set in and / or in the vicinity of the object, with the center of the nominal gauge volume by the X-ray of the predetermined light beam irradiated as the rotation center And measuring the object to be measured.

請求項1の構成によれば、被測定物の表面側では、所謂、表面効果により、検出される回折ピークがシフトし、見かけ上のひずみが測定され、測定誤差を生じるが、本測定装置では、回折X線の測定中に被測定物をゲージ体積中心で回転するようにすることにより、表面効果の影響をキャンセルし、正確な測定が可能となる。また、合わせて、揺動効果が得られ、さらに、粗大粒の正確な測定が可能となる。   According to the configuration of claim 1, on the surface side of the object to be measured, the detected diffraction peak shifts due to the so-called surface effect, and the apparent distortion is measured, resulting in a measurement error. By rotating the object to be measured around the center of the gauge volume during the measurement of the diffracted X-ray, the influence of the surface effect can be canceled and accurate measurement can be performed. In addition, a rocking effect can be obtained, and coarse particles can be accurately measured.

また、請求項2の構成によれば、被測定物を保持する保持部がX線照射装置側に移動し、且つ公称ゲージ体積の中心を回転中心にして被測定物を回転し、測定位置を変更することができ、測定位置を変更すると、それに応じて受光側駆動手段が作動し、被測定物から透過回折される回折X線を検出可能な位置にX線検出装置と第1スリット及び第2スリットが移動する。   According to the configuration of claim 2, the holding unit for holding the object to be measured moves to the X-ray irradiation apparatus side, rotates the object to be measured around the center of the nominal gauge volume, and sets the measurement position. When the measurement position is changed, the light receiving side driving means is actuated accordingly, and the X-ray detection device, the first slit, and the first slit are placed at a position where the diffracted X-rays transmitted and diffracted from the measurement object can be detected 2 slits move.

そして、X線回折の測定中に被測定物をゲージ体積中心で回転するようにすることにより、表面効果の影響をキャンセルし、正確な測定が可能となる。また、合わせて、揺動効果が得られ、さらに、粗大粒の正確な測定が可能となる。   Then, by rotating the object to be measured around the gauge volume during the X-ray diffraction measurement, the influence of the surface effect can be canceled and accurate measurement can be performed. In addition, a rocking effect can be obtained, and coarse particles can be accurately measured.

また、請求項3の構成によれば、X線回折の測定中に被測定物がゲージ体積中心で回転することにより、表面効果の影響をキャンセルし、正確な測定が可能となる。また、合わせて、揺動効果が得られ、さらに、粗大粒の正確な測定が可能となる。   According to the third aspect of the present invention, the measurement object rotates around the center of the gauge volume during the measurement of the X-ray diffraction, thereby canceling the influence of the surface effect and enabling accurate measurement. In addition, a rocking effect can be obtained, and coarse particles can be accurately measured.

本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる回折法によるひずみ測定装置及び測定方法を採用することにより、従来にない回折法によるひずみ測定装置及び測定方法が得られ、その回折法によるひずみ測定装置及び測定方法を夫々記述する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all the configurations described below are not necessarily essential requirements of the present invention. In each embodiment, by employing a strain measuring device and a measuring method based on a diffraction method different from the conventional one, a strain measuring device and a measuring method based on a diffraction method which are not conventional can be obtained, and the strain measuring device and the measuring method based on the diffraction method are obtained. Respectively.

本発明を具現化した実施例1に係るひずみ測定方法について説明する。まず、従来の反射型ひずみスキャニング法で測定される回折角から応力を算出する手順と、反射型ひずみスキャニング法の原理について、簡単に説明しておく。尚、以下、上述した背景技術と同一部分に同一符号を付し、その説明を省略する。   A strain measuring method according to the first embodiment embodying the present invention will be described. First, the procedure for calculating the stress from the diffraction angle measured by the conventional reflective strain scanning method and the principle of the reflective strain scanning method will be briefly described. In the following description, the same parts as those in the background art described above are denoted by the same reference numerals, and description thereof is omitted.

図10(a)は試験片に設定された座標系を示している。図10(a)に示すように、試験片表面と平行な平面内の応力(ひずみ)をσ1(ε1),σ2(ε2)とし、試験片の深さ方向の応力(ひずみ)をσ3(ε3)とすると、3軸応力の関係は次式で与えられる。
ε1={σ1−ν(σ2+σ3)}/E
ε2={σ2−ν(σ1+σ3)}/E (1)
ε3={σ3−ν(σ1+σ2)}/E
ここで、格子面の間隔dとひずみεとの関係は次式で与えられる(d0は無ひずみの格子面間隔である)。
ε=(d−d0)/d0 (2)
また、格子面間隔dと回折角θとの関係は次式のブラッグの条件で与えられる(λは測定波の波長である)。
λ=2dsinθ (3)
ここで、測定波の波長λと無ひずみの格子面間隔d0は既知であるため、回折角θを測定できれば上記(3)式より格子面間隔dを算出することができ、その格子面間隔dからひずみεを算出することができる(上記(2)式)。したがって、試験片の3軸方向それぞれについて回折角θ1,θ2,θ3を測定できれば、それら回折角θ1,θ2,θ3から格子面間隔d1,d2,d3を算出でき、その格子面間隔d1,d2,d3からひずみε1,ε2,ε3を算出できる。ひずみε1,ε2,ε3が算出できれば、これらの値を上記(1)式に用いて、試験片の3軸方向の応力を全て算出できることとなる。
FIG. 10A shows a coordinate system set for the test piece. As shown in FIG. 10A, the stress (strain) in the plane parallel to the surface of the test piece is σ 11 ), σ 22 ), and the stress (strain) in the depth direction of the test piece Is σ 33 ), the relationship of triaxial stress is given by the following equation.
ε 1 = {σ 1 −ν (σ 2 + σ 3 )} / E
ε 2 = {σ 2 −ν (σ 1 + σ 3 )} / E (1)
ε 3 = {σ 3 −ν (σ 1 + σ 2 )} / E
Here, the relationship between the lattice plane spacing d and the strain ε is given by the following equation (d 0 is the unstrained lattice spacing).
ε = (d−d 0 ) / d 0 (2)
The relationship between the lattice plane distance d and the diffraction angle θ is given by the following Bragg condition (λ is the wavelength of the measurement wave).
λ = 2 dsin θ (3)
Here, since the wavelength λ of the measurement wave and the undistorted lattice plane interval d 0 are known, the lattice plane interval d can be calculated from the above equation (3) if the diffraction angle θ can be measured. The strain ε can be calculated from d (the above equation (2)). Therefore, the diffraction angle theta 1 for 3-axis directions of the test piece, theta 2, if measured theta 3, which diffraction angles theta 1, theta 2, can be calculated lattice spacing d 1, d 2, d 3 from the theta 3 The strains ε 1 , ε 2 , ε 3 can be calculated from the lattice spacings d 1 , d 2 , d 3 . If the strains ε 1 , ε 2 , and ε 3 can be calculated, all of the stresses in the three axial directions of the test piece can be calculated using these values in the above equation (1).

図10(b)は試験片の深さ方向のひずみε3を測定する際の光学系の模式図を示している。深さ方向のひずみε3を測定する場合は、試験片のx−y面(表面)を上に向けて試験片がセットされる(図10(b))。セットされた試験片には斜め上方から測定波(例えば、X線,中性子線等のエネルギー波)を照射する。照射される測定波は、発散スリットSdによって所定の光束とされる。試験片で回折された回折測定波は、受光スリットSrを介して検出装置(図示省略)で検出される。この回折測定波の検出を試験片への入射角を変更しながら行うことで「回折測定波の強度−入射角」の関係が求まり、回折測定波の強度がピークとなる角度(すなわち、回折角)を特定することができる。特定した回折角からひずみε3の算出は、既に説明した手順で行うことができる。 FIG. 10B shows a schematic diagram of the optical system when measuring the strain ε 3 in the depth direction of the test piece. When measuring the strain ε 3 in the depth direction, the test piece is set with the xy plane (surface) of the test piece facing upward (FIG. 10B). The set test piece is irradiated with measurement waves (for example, energy waves such as X-rays and neutrons) from obliquely above. The measurement wave to be irradiated is changed into a predetermined light flux by the diverging slit Sd. The diffraction measurement wave diffracted by the test piece is detected by a detection device (not shown) through the light receiving slit Sr. By detecting the diffracted measurement wave while changing the incident angle to the test piece, the relationship of “diffracted measured wave intensity−incident angle” is obtained, and the angle at which the diffracted measured wave intensity peaks (ie, the diffraction angle) ) Can be specified. The calculation of the strain ε 3 from the specified diffraction angle can be performed by the procedure already described.

なお、図10(b)から明らかなように、検出装置で検出される測定波は、発散スリットSdと受光スリットSrによって制限された測定領域(図中の菱形の領域)から反射された回折測定波のみが検出される。このため、特定された回折角から得られるひずみε3は、この測定領域における平均ひずみである。したがって、測定領域を試験片のZ方向に移動させながら回折角を測定することで、試験片のZ方向のひずみ分布を求めることができる。 As is clear from FIG. 10 (b), the measurement wave detected by the detector is a diffraction measurement reflected from the measurement region (diamond region in the figure) limited by the diverging slit Sd and the light receiving slit Sr. Only waves are detected. Therefore, the strain ε 3 obtained from the specified diffraction angle is an average strain in this measurement region. Therefore, the strain distribution in the Z direction of the test piece can be obtained by measuring the diffraction angle while moving the measurement region in the Z direction of the test piece.

また、図10(c)は試験片の平面内ひずみ(詳細にはx方向)を測定する際の光学系の模式図を示している。図10(c)に示すようにx方向のひずみε1を測定する場合は、試験片のx−y面(表面)が測定波の入射側に対向し、かつ、測定領域を移動させる方向が試験片のx方向と一致するように試験片をセットする。試験片への測定波の照射及び試験片からの反射波の検出並びに回折角の特定等は、上述した場合と同様に行われる。 FIG. 10C is a schematic diagram of the optical system when measuring the in-plane strain (specifically, the x direction) of the test piece. When measuring the strain ε 1 in the x direction as shown in FIG. 10C, the xy plane (surface) of the test piece faces the incident side of the measurement wave, and the direction in which the measurement region is moved is The test piece is set so as to coincide with the x direction of the test piece. Irradiation of the measurement wave to the test piece, detection of the reflected wave from the test piece, identification of the diffraction angle, and the like are performed in the same manner as described above.

なお、y方向のひずみε2の測定は、試験片をセットする方向を変えるだけでよい。すなわち、試験片のx−y面(表面)が測定波の入射側に対向し、かつ、測定領域を移動させる方向が試験片のy方向と一致するように試験片をセットすればよい。 The strain ε 2 in the y direction can be measured only by changing the direction in which the test piece is set. That is, the test piece may be set so that the xy plane (front surface) of the test piece faces the incident side of the measurement wave and the direction in which the measurement area is moved coincides with the y direction of the test piece.

次に、本願発明の透過型回転ひずみスキャニング法について説明する。本願発明では、高エネルギー放射光X線を測定波として用い、非特許文献1と同様に、X線を試験片の表面から透過させ、背面から回折X線を測定し、試験片の残留応力を測定する透過型のひずみ測定方法を採用する。   Next, the transmission type rotational strain scanning method of the present invention will be described. In the present invention, high-energy synchrotron radiation X-rays are used as measurement waves, and X-rays are transmitted from the surface of the test piece, and diffracted X-rays are measured from the back, as in Non-Patent Document 1, and the residual stress of the test piece is measured. A transmission type strain measurement method is used.

測定に係る原理は、上記図10に示した反射型ひずみスキャニング法と共通し、図1を用いてさらに説明する。図1に示すように、保持部たるZ軸ステージ1上に、被測定物たる試験片24をセットする。試験片24は、その垂直方向の表面24AをX線照射装置10側に向け、その垂直方向の背面24BをX線検出装置(X線カウンタ)20側に向けてセットする。すなわち、試験片24の厚さ方向(Z方向)の一側が表面24Aで、他側が背面24Bである。尚、試験片24は、対向する外面同士が平行な直方体である。   The principle related to the measurement is the same as that of the reflection type strain scanning method shown in FIG. 10, and will be further described with reference to FIG. As shown in FIG. 1, a test piece 24 that is an object to be measured is set on a Z-axis stage 1 that is a holding unit. The test piece 24 is set with the surface 24A in the vertical direction facing the X-ray irradiation device 10 side and the back surface 24B in the vertical direction facing the X-ray detection device (X-ray counter) 20 side. That is, one side in the thickness direction (Z direction) of the test piece 24 is the surface 24A, and the other side is the back surface 24B. In addition, the test piece 24 is a rectangular parallelepiped with which the outer surfaces which oppose are parallel.

X線照射装置10は、高エネルギー放射光X線を出射するものであり、そのX線照射装置10の出射口には発散スリット12が配置されている。このため、X線照射装置10から出射したX線は、発散スリット12によって所定の幅のX線束となり、試験片24に入射することとなる。したがって、本実施例ではX線照射装置10と発散スリット12によって請求項でいう照射手段が構成されている。また、X線検出装置20の入射口側には受光スリット16,18が配置されている。このため、X線検出装置20では受光スリット16,18を通過したX線だけが検出される。したがって、本実施例では受光スリット16,18が請求項でいう制限手段に相当する。   The X-ray irradiation apparatus 10 emits high-energy radiated light X-rays, and a diverging slit 12 is disposed at the exit of the X-ray irradiation apparatus 10. For this reason, the X-rays emitted from the X-ray irradiation apparatus 10 become an X-ray bundle having a predetermined width by the diverging slit 12 and enter the test piece 24. Therefore, in this embodiment, the X-ray irradiation apparatus 10 and the diverging slit 12 constitute the irradiation means referred to in the claims. In addition, light receiving slits 16 and 18 are arranged on the entrance side of the X-ray detector 20. For this reason, the X-ray detector 20 detects only X-rays that have passed through the light receiving slits 16 and 18. Therefore, in this embodiment, the light receiving slits 16 and 18 correspond to the limiting means in the claims.

また、X線検出装置20で検出される回折測定波は、発散スリット12と受光スリット16,18によって制限された測定領域(図中の菱形の領域)から透過回折された回折測定波のみが検出される。そして、前記測定領域がひずみを評価するゲージ体積となる。Z軸ステージ1をX線照射装置10側に平行移動することで、試験片24がX線照射装置10に移動し、ゲージ体積は試験片24の表面24Aから背面24Bへ移動しながら回折X線の回折角2θを測定する。回折角2θは、上述した(2)式で表される。   Further, the diffracted measurement wave detected by the X-ray detection device 20 is detected only from the diffracted measurement wave transmitted and diffracted from the measurement region (diamond region in the figure) limited by the divergence slit 12 and the light receiving slits 16 and 18. Is done. And the said measurement area | region becomes a gauge volume which evaluates distortion. By moving the Z-axis stage 1 in parallel to the X-ray irradiation apparatus 10 side, the test piece 24 moves to the X-ray irradiation apparatus 10, and the gauge volume moves from the front surface 24A to the back surface 24B of the test piece 24 while diffracting X-rays. Is measured. The diffraction angle 2θ is expressed by the above-described equation (2).

したがって、X線の波長λが定数であるから,回折角2θを測定することで,格子面間隔dが求められる。そして、任意の位置の格子面間隔dの変化からその位置における材料のひずみを求めることができる。以上が、透過型回転ひずみスキャニング法の原理の説明である。   Therefore, since the wavelength λ of the X-ray is a constant, the lattice plane distance d can be obtained by measuring the diffraction angle 2θ. Then, the strain of the material at that position can be obtained from the change in the lattice spacing d at any position. The above is the explanation of the principle of the transmission type rotational strain scanning method.

以下、透過型回転ひずみスキャニング法における表面効果について、考察する。図2の概略説明図に示すようにゲージ体積が試験片24の表面を横切るとき、回折に与るゲージ体積の形状は公称の形と異なる。そのため、実際のゲージ体積の回折中心が、公称ゲージ体積の中心から外れた位置となる。その結果、測定される回折角2θがずれてしまう。この現象を表面効果(surface aberration effect)といい、そのために正確なひずみ測定が困難となる。   Hereinafter, the surface effect in the transmission type rotational strain scanning method will be considered. As shown in the schematic illustration of FIG. 2, when the gauge volume crosses the surface of the test piece 24, the shape of the gauge volume subjected to diffraction is different from the nominal shape. For this reason, the diffraction center of the actual gauge volume is at a position off the center of the nominal gauge volume. As a result, the measured diffraction angle 2θ is shifted. This phenomenon is called a surface aberration effect, which makes accurate strain measurement difficult.

表面効果の影響は、図2(a)の往路の場合と図2(b)の復路の場合で異なり、これを示すため往路と復路とで測定した回折角の値を図3に示す。尚、図3の例では、試験片24にS45Cを焼鈍した材料を用いたから、試験片24には残留応力がないので、一定の回折角を示すはずである。しかし、同図からわかるようにゲージ体積が表面24A(Z=0mm)および背面24B(Z=4mm)付近にあるとき、正しい回折角2θを測定できなくなる。図3では、往路と復路とで得られた回折角の平均値も表示しており、平均値を用いることにより、回折角2θの値がグラフ図中で略水平となり、試験片24に残留応力の無いことが分かるが、2回の測定が必要となる。   The influence of the surface effect differs between the forward path shown in FIG. 2A and the return path shown in FIG. 2B. In order to show this, the values of diffraction angles measured in the forward path and the return path are shown in FIG. In the example of FIG. 3, since the material obtained by annealing S45C is used for the test piece 24, the test piece 24 has no residual stress, and therefore should exhibit a certain diffraction angle. However, as can be seen from the figure, when the gauge volume is in the vicinity of the surface 24A (Z = 0 mm) and the back surface 24B (Z = 4 mm), the correct diffraction angle 2θ cannot be measured. In FIG. 3, the average value of diffraction angles obtained in the forward path and the return path is also displayed. By using the average value, the value of the diffraction angle 2θ becomes substantially horizontal in the graph, and the residual stress is applied to the test piece 24. It is clear that there is no error, but two measurements are required.

そして、ひずみスキャニング法では、発散スリット12と受光スリット16,18によって形成される測定領域と、実際に測定波を回折する回折領域(被測定物が存在する領域)とが異なると、見かけ上のひずみが測定される。   In the strain scanning method, if the measurement region formed by the divergence slit 12 and the light receiving slits 16 and 18 is different from the diffraction region where the measurement wave is actually diffracted (the region where the object to be measured exists), the apparent scanning method is apparent. Strain is measured.

図11には、受光側(X線検出装置20側)に配置した2つのスリット、そのスリットによって形成される光学系が模式的に示されている。図11に示すように、本実施例では2つのスリットG1,G2が光軸方向に所定の間隔R2だけ離れて配置される。2つのスリットG1,G2を光軸方向に離間して配置することで、2つのスリットG1,G2を通過する反射波の発散角はαに制限することができる。これによって、反射波の発散の影響が抑えられ、測定精度を上げることが可能となる。なお、図11から明らかなように発散角αは次の式で求められる(rはスリットG1,G2の幅)。
α/2=tan−1(r/R2) (4)
図12は本実施例の光学系の全体構成を示す概略図であり、図13は図12に示す装置ゲージ体積を拡大して示している。図12に示すように、測定波は発散スリットDsで幅rの光束とされ、試験片に入射する。試験片24で回折された回折測定波は、幅rの受光スリットRS1,RS2によりX線検出装器に導かれる。受光スリットRS1,RS2を通過する回折測定波の発散角はαであることから、装置ゲージ体積は中央のひし形の領域(公称ゲージ体積)の上下に広がっている。そして、図13に示すように、公称ゲージ体積の中心は、符号Sである。従来では、上述した見かけ上のひずみを測定し、その測定値を解析的に補正する必要があった。
FIG. 11 schematically shows two slits arranged on the light receiving side (X-ray detection device 20 side) and an optical system formed by the slits. As shown in FIG. 11, in this embodiment, the two slits G1 and G2 are arranged apart from each other by a predetermined distance R2 in the optical axis direction. By disposing the two slits G1 and G2 apart from each other in the optical axis direction, the divergence angle of the reflected wave passing through the two slits G1 and G2 can be limited to α. As a result, the influence of the divergence of the reflected wave is suppressed, and the measurement accuracy can be increased. As is apparent from FIG. 11, the divergence angle α is obtained by the following equation (r is the width of the slits G1 and G2).
α / 2 = tan-1 (r / R2) (4)
FIG. 12 is a schematic view showing the overall configuration of the optical system of the present embodiment, and FIG. 13 shows an enlarged apparatus gauge volume shown in FIG. As shown in FIG. 12, the measurement wave is converted into a light flux having a width r by the diverging slit Ds, and is incident on the test piece. The diffraction measurement wave diffracted by the test piece 24 is guided to the X-ray detector by the light receiving slits RS1 and RS2 having a width r. Since the divergence angle of the diffracted measurement wave passing through the light receiving slits RS1 and RS2 is α, the device gauge volume extends above and below the central rhombus region (nominal gauge volume). And as shown in FIG. 13, the center of a nominal gauge volume is the code | symbol S. FIG. Conventionally, it is necessary to measure the above-described apparent strain and analytically correct the measured value.

これに対し、本実施例では、図4に示すように、試験片24を回転ステージ2上に載置して保持し、この回転ステージ2を公称ゲージ体積の中心Sで回転させ、すなわち回転ステージ2の回転中心を公称ゲージ体積の中心Sに合わせ、その回転ステージ2上に前記Z軸ステージ1を設ける。   On the other hand, in this embodiment, as shown in FIG. 4, the test piece 24 is placed and held on the rotary stage 2, and the rotary stage 2 is rotated around the center S of the nominal gauge volume, that is, the rotary stage. The center of rotation 2 is aligned with the center S of the nominal gauge volume, and the Z-axis stage 1 is provided on the rotation stage 2.

また、前記回転ステージ2を回転駆動する回転装置3と、前記Z軸ステージ1をX線検出装置20側からX線照射装置10側(Z方向)に進退駆動する移動装置4とを備える。尚、X線検出装置20側からX線照射装置10側へと水平移動する方向がZ方向である。前記移動手段4の駆動機構は、回転ステージ2とZ軸ステージ1との間に設けられるものであるから、その移動手段4に制御用コードなどを接続すると、回転ステージ2が回転した際、回転ステージ2に巻き付き,測定が不可能となる。それを防止するために,スリップリング5を回転ステージ2に設置することにより,回転をかけながらZ軸ステージ1の移動を制御できるようにした。すなわち、スリップリング5の上の回転ステージ2が回転し、スリップリング5より下部は固定され、スリップリング5を介して前記移動手段4に制御信号及び動力などを伝達している。   In addition, a rotation device 3 that rotates the rotation stage 2 and a moving device 4 that drives the Z-axis stage 1 to move back and forth from the X-ray detection device 20 side to the X-ray irradiation device 10 side (Z direction) are provided. The direction of horizontal movement from the X-ray detection device 20 side to the X-ray irradiation device 10 side is the Z direction. Since the drive mechanism of the moving means 4 is provided between the rotary stage 2 and the Z-axis stage 1, when a control cord or the like is connected to the moving means 4, it rotates when the rotary stage 2 rotates. Wrapping around stage 2 makes measurement impossible. In order to prevent this, the slip ring 5 is installed on the rotary stage 2 so that the movement of the Z-axis stage 1 can be controlled while rotating. That is, the rotary stage 2 on the slip ring 5 rotates, the lower part of the slip ring 5 is fixed, and a control signal and power are transmitted to the moving means 4 through the slip ring 5.

また、前記移動装置4及び回転装置3による被測定物の位置変更に応じて第1スリットたる受光スリット16、第2スリットたる受光スリット18及びX線検出装置20を移動させる受光側駆動装置6を備える。そして、制御手段7が、X線照射装置10,X線検出装置20,移動装置4,回転装置3及び受光側駆動手段6を制御し、回折角2θを検出する。   In addition, the light receiving side driving device 6 that moves the light receiving slit 16 that is the first slit, the light receiving slit 18 that is the second slit, and the X-ray detection device 20 according to the position change of the object to be measured by the moving device 4 and the rotating device 3. Prepare. Then, the control means 7 controls the X-ray irradiation device 10, the X-ray detection device 20, the moving device 4, the rotating device 3, and the light receiving side driving means 6 to detect the diffraction angle 2θ.

本方法によれば、回折X線の測定中に試験片24が公称ゲージ体積の中心Sを回転中心にして回転するために、上述した表面効果の影響をキャンセルすることが可能である。   According to this method, since the test piece 24 rotates around the center S of the nominal gauge volume during the measurement of diffracted X-rays, it is possible to cancel the influence of the surface effect described above.

試験片24を回転させながら各深さZで回折ピークを測定し、Z軸ステージ1をX線照射装置10側に進めることになる。つまり、試料片24とZ軸ステージは図4及び図5に示すように動くこととなる。尚、光学系であるX線照射装置10及びX線検出装置20と試験片24の動きは相対的なものなので、試験片24が回転せずに光学系,ゲージ体積が回転してもいいが、放射光施設ではそれは現実的でないので,本件では言及していない。   The diffraction peak is measured at each depth Z while rotating the test piece 24, and the Z-axis stage 1 is advanced to the X-ray irradiation apparatus 10 side. That is, the sample piece 24 and the Z-axis stage move as shown in FIGS. Since the movement of the X-ray irradiation apparatus 10 and the X-ray detection apparatus 20 which are optical systems and the test piece 24 are relative, the optical system and gauge volume may rotate without the test piece 24 rotating. In a synchrotron radiation facility, it is not realistic, so it is not mentioned in this case.

「透過型回転ひずみスキャニング法」を実施するために回転ひずみスキャニング用ステージを製作し、高輝度放射光の回折装置に装着して測定を行った様子を図7に示す。同図に示す「X線」(高エネルギー放射光X線)が図中左側から試験片24に入射し、試験片24で回折したX線は図中右側(X線検出装置側)に進む。回転ステージ2の上でZ軸ステージ1が回転し、このZ軸ステージ1上に試験片24がセットされている。そして、回転しながら且つZ方向にスキャンしながらその都度回折角2θを測定する。   FIG. 7 shows a state in which a rotational strain scanning stage was manufactured in order to carry out the “transmission type rotational strain scanning method” and mounted on a diffraction device for high-intensity synchrotron radiation. “X-rays” (high-energy synchrotron radiation X-rays) shown in the figure are incident on the test piece 24 from the left side in the figure, and the X-rays diffracted by the test piece 24 travel to the right side (X-ray detection device side) in the figure. The Z-axis stage 1 rotates on the rotary stage 2, and a test piece 24 is set on the Z-axis stage 1. The diffraction angle 2θ is measured each time while rotating and scanning in the Z direction.

試験片24のZ方向厚さは。この例では4mmであり、その上述した「透過型回転ひずみ
スキャニング法」による実験結果を図3の結果と併せて示したのが図8である。これにより、透過型回転ひずみスキャニング法により、表面効果が補正され,一定の回折角2θを測定でき、透過型回転ひずみスキャニング法の表面補正の効果が実証されたことが分かる。
What is the thickness of the specimen 24 in the Z direction? In this example, it is 4 mm, and FIG. 8 shows the experimental result by the above-mentioned “transmission type rotational strain scanning method” together with the result of FIG. Thus, it can be seen that the surface effect is corrected by the transmission type rotational strain scanning method, and a constant diffraction angle 2θ can be measured, and the effect of the surface correction of the transmission type rotational strain scanning method has been proved.

つぎに、粗大粒の回折測定における回転ひずみスキャニング法の揺動効果について、検討した。   Next, the oscillation effect of the rotational strain scanning method in the diffraction measurement of coarse grains was examined.

本実施例の回転ひずみスキャニング法は表面効果の補正効果だけでなく、結晶粒の大きい粗大粒の回折線測定にも威力を発揮する。前記試験片24として、オーステナイト系ステンレスSUS304L(板厚5mm)の表面24A(Z=0mm)にショットピーニングを施し、圧縮の残留応力を導入した。この表面24A側に残留応力を導入した試験片24を、透過型回転ひずみスキャニング法によりひずみスキャニングした結果を図9(b)に示す。同図は、縦軸が回折強度であり、深さZにおける回折角2θを座標にした。   The rotational strain scanning method of this embodiment is effective not only for correcting the surface effect but also for measuring diffraction lines of coarse grains having large crystal grains. As the test piece 24, shot peening was applied to the surface 24A (Z = 0 mm) of austenitic stainless steel SUS304L (plate thickness 5 mm) to introduce compressive residual stress. FIG. 9B shows the result of strain scanning of the test piece 24 in which residual stress is introduced on the surface 24A side by the transmission type rotational strain scanning method. In the figure, the vertical axis represents the diffraction intensity, and the diffraction angle 2θ at the depth Z is used as a coordinate.

一般のひずみスキャニング法では、表面24A付近は粗大粒のため回折に与る結晶粒が十分でなく回折線が測定できず、ひずみの測定ができない。   In a general strain scanning method, the vicinity of the surface 24A is coarse, so that there are not enough crystal grains to be diffracted, the diffraction line cannot be measured, and the strain cannot be measured.

これに対し、 本発明の透過型回転ひずみスキャニング法では、試験片24をゲージ体積中心に回転するので,十分な結晶粒を得ることができる。その結果、図9(b)に示すようにショットピーニングを受けた面(表面24A)でも回折曲線がきれいに測定でき、回折角2θの決定が十分可能である。   On the other hand, in the transmission type rotational strain scanning method of the present invention, the test piece 24 is rotated around the gauge volume, so that sufficient crystal grains can be obtained. As a result, as shown in FIG. 9B, the diffraction curve can be clearly measured even on the surface (surface 24A) subjected to shot peening, and the diffraction angle 2θ can be determined sufficiently.

このように,透過型回転ひずみスキャニング法は表面効果の補正ができることに加え、粗大粒の測定にも有利であることが明らかである。   Thus, it is clear that the transmission-type rotational strain scanning method is advantageous in measuring coarse grains in addition to correcting the surface effect.

このように本実施例では、請求項1に対応して、被測定物たる試験片24の一側面たる表面24Aに測定波たるX線を照射し、試験片24を透過した回折測定波たる回折X線の回折角2θから試験片24のひずみを測定する回折法によるひずみ測定装置であって、試験片24の表面24Aに所定の光束のX線を照射する照射手段たるX線照射装置10と、試験片24を回折透過した回折X線を検出する検出手段たるX線検出装置20と、試験片24をX線照射装置10側に移動する移動手段たる移動装置4と、試験片24を回転する回転手段たる回転装置3と、X線検出装置20で検出される回折X線を、試験片24中及び/又はその近傍に設定される測定領域から回折された回折X線に制限する制限手段たる受光スリット16,18とを備えたから、従来、試験片24の表面側では、所謂、表面効果により、検出される回折ピークがシフトし、見かけ上のひずみが測定され、測定誤差を生じるが、本測定装置では、回折X線の測定中に試験片24をゲージ体積の中心Sを回転中心して回転するようにすることにより、表面効果の影響をキャンセルし、正確な測定が可能となる。また、合わせて、揺動効果が得られ、さらに、粗大粒の正確な測定が可能となる。   As described above, in this embodiment, corresponding to claim 1, X-rays that are measurement waves are applied to the surface 24A that is one side surface of the test piece 24 that is the object to be measured, and the diffraction that is the diffraction measurement wave that is transmitted through the test piece 24. An X-ray irradiating apparatus 10 that is a diffractometric strain measuring apparatus that measures the strain of the test piece 24 from the X-ray diffraction angle 2θ, and that is an irradiating means for irradiating the surface 24A of the test piece 24 with X-rays of a predetermined light beam; Rotating the test piece 24, the X-ray detection device 20 as detection means for detecting diffracted X-rays diffracted and transmitted through the test piece 24, the moving device 4 as moving means for moving the test piece 24 toward the X-ray irradiation device 10 Limiting means for limiting the diffracted X-rays detected by the rotating device 3 and the X-ray detector 20 to the diffracted X-rays diffracted from the measurement region set in and / or in the vicinity of the test piece 24 With light receiving slits 16 and 18 Therefore, conventionally, on the surface side of the test piece 24, the detected diffraction peak is shifted due to the so-called surface effect, and the apparent distortion is measured, resulting in a measurement error. By rotating the test piece 24 around the center S of the gauge volume during the measurement, the influence of the surface effect can be canceled and accurate measurement can be performed. In addition, a rocking effect can be obtained, and coarse particles can be accurately measured.

また、このように本実施例では、制限手段が、被測定物たる試験片24と検出手段たるX線検出装置20の間に配置され、試験片24からX線検出装置20に向かう回折測定波たる回折X線の一部を遮断する第1遮断部材たる受光スリット16と、この受光スリット16とX線検出装置20の間に配置され、受光スリット16を通過した回折X線の一部をさらに遮断する第2遮断部材たる受光スリット18とを有するから、X線検出装置20で検出される回折X線は、受光スリット16,18によってより制限され、回折測定波の発散による影響を低減することができる。特に、受光スリット16,18が光軸方向に離間して配置されると、光軸と略平行な回折X線のみが検出手段で検出される。   In this way, in this embodiment, the limiting means is disposed between the test piece 24 as the object to be measured and the X-ray detection device 20 as the detection means, and the diffraction measurement wave from the test piece 24 toward the X-ray detection device 20. A light receiving slit 16 that is a first blocking member that blocks a part of the diffracted X-rays, and a part of the diffracted X-rays that are disposed between the light receiving slit 16 and the X-ray detection device 20 and pass through the light receiving slit 16 Since it has the light-receiving slit 18 that is the second blocking member to block, the diffracted X-rays detected by the X-ray detection device 20 are more limited by the light-receiving slits 16 and 18 and reduce the influence of the diffracted measurement wave divergence. Can do. In particular, when the light receiving slits 16 and 18 are spaced apart in the optical axis direction, only the diffracted X-rays substantially parallel to the optical axis are detected by the detecting means.

また、このように本実施例では、請求項2に対応して、被測定物たる試験片24の一側面たる表面24Aに測定波たるX線を照射し、試験片24の背面24Bを透過した回折X線の回折角2θから試験片24のひずみを測定する回折法によるひずみ測定装置であって、被測定物たる試験片24を保持する保持部たるZ軸ステージ1と、Z軸ステージ1に保持された試験片24に所定の光束のX線を照射するX線照射装置10と、試験片24から透過回折された回折X線を検出するX線検出装置20と、Z軸ステージ1とX線検出装置20との間に配置され、試験片24から透過回折された回折X線の一部を通過させる第1スリットたる受光スリット16と、この受光スリット16とX線検出装置20との間に配置され、受光スリット16を通過した回折X線の一部を通過させてX線検出装置20に導く第2スリットたる受光スリット18と、試験片24をX線照射装置10側に移動する移動装置4と、試験片24へのX線の入射角を変更するためにZ軸ステージ1を回転する回転装置3と、移動装置4及び回転装置3による試験片24の位置変更(向きの変更を含む)に応じて受光スリット16,18及びX線検出装置20を移動させる受光側駆動装置6と、X線照射装置10,X線検出装置20,移動装置4,回転装置3及び受光側駆動手段6を制御する制御手段とを備えるから、試験片24を保持するZ軸ステージ1がX線照射装置10側に移動し、且つ公称ゲージ体積の中心Sを回転中心にして試験片24を回転し、測定位置を変更することができ、測定位置を変更すると、それに応じて受光側駆動手段6が作動し、試験片24から透過回折される回折X線を検出可能な位置にX線検出装置20と受光スリット16,18が移動する。   In this way, in this embodiment, corresponding to claim 2, X-rays that are measurement waves are applied to the surface 24A that is one side of the test piece 24 that is the object to be measured, and the back surface 24B of the test piece 24 is transmitted. A strain measurement apparatus using a diffraction method that measures strain of a test piece 24 from a diffraction angle 2θ of diffracted X-rays. The Z-axis stage 1 is a holding unit that holds a test piece 24 that is an object to be measured. An X-ray irradiation apparatus 10 that irradiates the held test piece 24 with X-rays of a predetermined light beam, an X-ray detection apparatus 20 that detects diffracted X-rays transmitted and diffracted from the test piece 24, the Z-axis stage 1 and X The light receiving slit 16 that is disposed between the light detecting device 20 and passes a part of the diffracted X-rays transmitted and diffracted from the test piece 24, and between the light receiving slit 16 and the X-ray detecting device 20. Placed through the light receiving slit 16 The light-receiving slit 18 that is a second slit that allows a part of the diffracted X-rays to pass to the X-ray detector 20, the moving device 4 that moves the test piece 24 toward the X-ray irradiation device 10, and the test piece 24. The rotating device 3 that rotates the Z-axis stage 1 to change the incident angle of X-rays, and the light receiving slit 16 according to the position change (including change of orientation) of the test piece 24 by the moving device 4 and the rotating device 3. 18 and the light receiving side driving device 6 for moving the X-ray detection device 20, and a control means for controlling the X-ray irradiation device 10, the X-ray detection device 20, the moving device 4, the rotating device 3 and the light receiving side driving means 6. Thus, the Z-axis stage 1 holding the test piece 24 can be moved to the X-ray irradiation apparatus 10 side, and the test piece 24 can be rotated around the center S of the nominal gauge volume to change the measurement position. If you change the measurement position, In response to this, the light receiving side driving means 6 operates, and the X-ray detector 20 and the light receiving slits 16 and 18 move to a position where the diffracted X-rays transmitted and diffracted from the test piece 24 can be detected.

そして、X線回折の測定中に試験片24をゲージ体積中心で回転するようにすることにより、表面効果の影響をキャンセルし、正確な測定が可能となる。また、合わせて、揺動効果が得られ、さらに、粗大粒の正確な測定が可能となる。   Then, by rotating the test piece 24 around the center of the gauge volume during the measurement of X-ray diffraction, the influence of the surface effect can be canceled and accurate measurement can be performed. In addition, a rocking effect can be obtained, and coarse particles can be accurately measured.

また、このように本実施例では、請求項3に対応して、被測定物たる試験片24の一側面たる表面24Aに測定波たるX線を照射し、試験片24を透過した回折測定波たる回折X線の回折角2θから試験片24のひずみを測定する回折法によるひずみ測定方法であって、試験片24を移動及び回転する測定位置変更工程と、前記測定位置変更工程により測定位置を変更した試験片24に所定の光束の測定波を照射する照射工程と、試験片24中及び/又はその近傍に設定される測定領域から透過回折された回折測定波たる回折X線を検出する検出工程とを備え、照射された所定の光束のX線による公称ゲージ体積の中心Sを回転中心にして試験片24を回転するから、表面効果の影響をキャンセルし、正確な測定が可能となる。また、合わせて、揺動効果が得られ、さらに、粗大粒の正確な測定が可能となる。   In this way, in this embodiment, corresponding to claim 3, the diffraction measurement wave transmitted through the test piece 24 by irradiating the surface 24A, which is one side surface of the test piece 24, which is an object to be measured, with the X-ray as the measurement wave. This is a strain measurement method by a diffraction method for measuring the strain of the test piece 24 from the diffraction angle 2θ of the diffracted X-ray, and the measurement position is changed by the measurement position changing step of moving and rotating the test piece 24 and the measurement position changing step. Irradiation step of irradiating the modified test piece 24 with a measurement wave of a predetermined light beam, and detection for detecting a diffracted X-ray as a diffracted measurement wave transmitted and diffracted from a measurement region set in and / or in the vicinity of the test piece 24 And the test piece 24 is rotated about the center S of the nominal gauge volume by the X-ray of the irradiated predetermined light beam as the rotation center, so that the influence of the surface effect can be canceled and accurate measurement can be performed. In addition, a rocking effect can be obtained, and coarse particles can be accurately measured.

また、実施例上の効果として、制御手段7は、回転装置3,移動装置4及び受光側駆動装置6を駆動して試験片24への入射角を変更しながらX線照射装置10からX線を照射させると共にX線検出装置10に試験片24から透過回折されたX線を検出させ、これにより得られた「入射角−X線強度」の関係からX線の回折角2θを特定することができる。   Further, as an effect on the embodiment, the control means 7 drives the rotating device 3, the moving device 4 and the light receiving side driving device 6 to change the incident angle to the test piece 24 from the X-ray irradiation device 10 to the X-ray. And the X-ray detection apparatus 10 detects X-rays transmitted and diffracted from the test piece 24, and the X-ray diffraction angle 2θ is specified from the relationship of “incident angle−X-ray intensity” obtained thereby. Can do.

なお、本発明は、前記実施例に限定されるものではなく、種々の変形実施が可能である。例えば、実施例では、シンクロトロン放射光源による高エネルギー放射光X線を、測定波として用いたが、他に中性子線等のエネルギー波を用いてもよい。   In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible. For example, although high-energy synchrotron radiation X-rays from a synchrotron radiation source are used as measurement waves in the embodiments, other energy waves such as neutron beams may be used.

本発明の実施例1を示すひずみ測定装置の要部の側面図である。It is a side view of the principal part of the distortion | strain measuring apparatus which shows Example 1 of this invention. 同上、往路と復路における被測定物とゲージ体積との方位関係を示す説明図である。It is explanatory drawing which shows the azimuth | direction relationship between the to-be-measured object and a gauge volume in an outward path and a return path. 同上、往路と復路とで測定した回折角の値を示すグラフ図である。It is a graph which shows the value of the diffraction angle measured on the outward path and the return path. 同上、ひずみ測定装置の要部の側面図である。It is a side view of the principal part of a distortion measuring device same as the above. 同上、ひずみ測定装置の要部の平面図である。It is a top view of the principal part of a distortion measuring device same as the above. 同上、制御手段回りのブロック図である。It is a block diagram around a control means same as the above. 同上、透過型回転ひずみスキャニング用ステージの斜視図である。It is a perspective view of the stage for transmission type | mold rotational distortion scanning same as the above. 同上、回折角の値を示すグラフ図である。It is a graph which shows the value of a diffraction angle same as the above. 同上、X線強度と回折角と深さの関係を示すグラフ図であり、図9(a)は従来のひずみスキャニング法、図9(b)は透過型回転スキャニング法によるものである。FIG. 9 is a graph showing the relationship between the X-ray intensity, the diffraction angle, and the depth. FIG. 9A shows a conventional strain scanning method, and FIG. 9B shows a transmission type rotational scanning method. 同上、ダブルスリットの光学系を説明する説明図である。It is explanatory drawing explaining the optical system of a double slit same as the above. 同上、ダブルスリットの光学系を示す概略説明図である。It is a schematic explanatory drawing which shows the optical system of a double slit same as the above. 同上、発散スリットと2つの受光スリットにより形成される光学系を示す概略説明図である。It is a schematic explanatory drawing which shows the optical system formed by a diverging slit and two light receiving slits same as the above. 同上、図11のゲージ体積の部分を拡大した概略説明図である。It is the schematic explanatory drawing which expanded the part of the gauge volume of FIG. 11 same as the above.

符号の説明Explanation of symbols

1 Z軸ステージ(保持部)
2 回転ステージ
3 回転装置(回転手段)
4 移動装置(移動手段)
5 スリップリング
6 受光側駆動装置
7 制御手段
10 X線照射装置(照射手段)
12 発散スリット
16 受光スリット(第1遮蔽手段・第1スリット)
18 受光スリット(第2遮蔽手段・第2スリット)
20 X線検出装置(検出手段)
24 試験片(被測定物)
S 中心
1 Z-axis stage (holding part)
2 Rotating stage 3 Rotating device (Rotating means)
4. Moving device (moving means)
5 Slip ring 6 Light-receiving side drive device 7 Control means 10 X-ray irradiation device (irradiation means)
12 Divergence slit 16 Light receiving slit (first shielding means / first slit)
18 Light receiving slit (second shielding means / second slit)
20 X-ray detection device (detection means)
24 Test piece (measurement)
S center

Claims (3)

被測定物の一側面に測定波を照射し、被測定物を透過した回折測定波の回折角から被測定物のひずみを測定する回折法によるひずみ測定装置であって、
前記被測定物の一側面に所定の光束の測定波を照射する照射手段と、
前記被測定物を回折透過した回折測定波を検出する検出手段と、
前記被測定物を前記照射手段側に移動する移動手段と、
前記被測定物を回転する回転手段と、
前記検出手段で検出される回折測定波を、被測定物中及び/又はその近傍に設定される測定領域から回折された回折測定波に制限する制限手段と、
を備えたことを特徴とする回折法によるひずみ測定装置。
A diffraction measuring device that irradiates a measurement wave on one side of the object to be measured and measures the distortion of the object to be measured from the diffraction angle of the diffraction measurement wave transmitted through the object to be measured,
Irradiating means for irradiating a measurement wave of a predetermined light flux on one side surface of the object to be measured;
Detecting means for detecting a diffracted measurement wave diffracted and transmitted through the object to be measured;
Moving means for moving the object to be measured toward the irradiation means;
Rotating means for rotating the object to be measured;
Limiting means for limiting the diffracted measurement wave detected by the detecting means to a diffracted measurement wave diffracted from a measurement region set in and / or in the vicinity of the measured object
A strain measurement apparatus using a diffraction method, comprising:
被測定物の一側面に測定波を照射し、被測定物を透過した回折測定波の回折角から被測定物のひずみを測定する回折法によるひずみ測定装置であって、
前記被測定物を保持する保持部と、
前記保持部に保持された被測定物に所定の光束のX線を照射するX線照射装置と、
前記被測定物から透過回折された回折X線を検出するX線検出装置と、
前記保持部と前記X線検出装置との間に配置され、被測定物から透過回折された回折X線の一部を通過させる第1スリットと、
前記第1スリットと前記X線検出装置との間に配置され、前記第1スリットを通過した回折X線の一部を通過させて前記X線検出装置に導く第2スリットと、
前記被測定物を前記X線照射装置側に移動する移動装置と、
前記被測定物へのX線の入射角を変更するために保持部を回転する回転装置と、
前記移動装置及び回転装置による被測定物の位置変更に応じて前記第1スリット,前記第2スリット及び前記X線検出装置を移動させる受光側駆動装置と、
前記X線照射装置,X線検出装置,移動装置,回転装置及び受光側駆動手段を制御する制御手段と、
を備えることを特徴とする回折法によるひずみ測定装置。
A diffraction measuring device that irradiates a measurement wave on one side of the object to be measured and measures the distortion of the object to be measured from the diffraction angle of the diffraction measurement wave transmitted through the object to be measured,
A holding unit for holding the object to be measured;
An X-ray irradiation apparatus for irradiating the object to be measured held by the holding unit with X-rays of a predetermined luminous flux;
An X-ray detector for detecting diffracted X-rays transmitted and diffracted from the object to be measured;
A first slit that is disposed between the holding unit and the X-ray detection device and transmits a part of the diffracted X-rays transmitted and diffracted from the object to be measured;
A second slit disposed between the first slit and the X-ray detection device, and passing a part of the diffracted X-rays that have passed through the first slit to guide the X-ray detection device;
A moving device for moving the object to be measured to the X-ray irradiation device side;
A rotating device that rotates a holding unit to change an incident angle of X-rays to the object to be measured;
A light receiving side driving device that moves the first slit, the second slit, and the X-ray detection device in accordance with a change in position of the object to be measured by the moving device and the rotating device;
Control means for controlling the X-ray irradiation device, the X-ray detection device, the moving device, the rotating device, and the light receiving side driving means;
A strain measurement apparatus using a diffraction method, comprising:
被測定物の一側面に測定波を照射し、被測定物を透過した回折測定波の回折角から被測定物のひずみを測定する回折法によるひずみ測定方法であって、
前記被測定物を移動及び回転する測定位置変更工程と、
前記測定位置変更工程により測定位置を変更した前記被測定物に所定の光束の測定波を照射する照射工程と、
前記被測定物中及び/又はその近傍に設定される測定領域から透過回折された回折測定波を検出する検出工程と、
を備え、
照射された所定の光束のX線による公称ゲージ体積の中心を回転中心にして前記被測定物を回転することを特徴とする回折法によるひずみ測定方法。
It is a strain measurement method by a diffraction method in which a measurement wave is irradiated on one side surface of a measurement object, and the distortion of the measurement object is measured from the diffraction angle of the diffraction measurement wave transmitted through the measurement object.
A measurement position changing step of moving and rotating the object to be measured;
An irradiation step of irradiating the measurement object whose measurement position has been changed by the measurement position changing step with a measurement wave of a predetermined luminous flux;
A detection step of detecting a diffracted measurement wave transmitted and diffracted from a measurement region set in and / or in the vicinity of the object to be measured;
With
A strain measurement method by a diffraction method, characterized in that the object to be measured is rotated about the center of a nominal gauge volume by X-rays of an irradiated predetermined light beam as a rotation center.
JP2007255782A 2007-09-28 2007-09-28 Strain measuring apparatus by diffractometry and measuring method Pending JP2009085767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255782A JP2009085767A (en) 2007-09-28 2007-09-28 Strain measuring apparatus by diffractometry and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255782A JP2009085767A (en) 2007-09-28 2007-09-28 Strain measuring apparatus by diffractometry and measuring method

Publications (1)

Publication Number Publication Date
JP2009085767A true JP2009085767A (en) 2009-04-23

Family

ID=40659376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255782A Pending JP2009085767A (en) 2007-09-28 2007-09-28 Strain measuring apparatus by diffractometry and measuring method

Country Status (1)

Country Link
JP (1) JP2009085767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108709A1 (en) * 2010-03-05 2011-09-09 株式会社Ihi Nondestructive inspection device and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223660A (en) * 1992-02-14 1993-08-31 Hitachi Ltd X-ray diffraction apparatus
JPH07140096A (en) * 1993-11-13 1995-06-02 Rigaku Corp Lang camera
JPH08327471A (en) * 1995-05-31 1996-12-13 Hitachi Ltd Method for measuring residual stress
JPH0915400A (en) * 1995-06-30 1997-01-17 Nec Corp X-ray diffraction microscope
JPH1114562A (en) * 1997-06-23 1999-01-22 Nec Corp Method and apparatus for x-ray diffraction microscopy
JPH11258186A (en) * 1998-03-16 1999-09-24 Kansai Shingijutsu Kenkyusho:Kk Method and apparatus for measurement of stress by x-rays
JP2004325267A (en) * 2003-04-24 2004-11-18 Spectris Co Ltd Residual stress measuring device of thin film, and residual stress measuring method of thin film
JP2006177731A (en) * 2004-12-21 2006-07-06 Univ Nagoya Device and method for measuring strain by diffractometry

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223660A (en) * 1992-02-14 1993-08-31 Hitachi Ltd X-ray diffraction apparatus
JPH07140096A (en) * 1993-11-13 1995-06-02 Rigaku Corp Lang camera
JPH08327471A (en) * 1995-05-31 1996-12-13 Hitachi Ltd Method for measuring residual stress
JPH0915400A (en) * 1995-06-30 1997-01-17 Nec Corp X-ray diffraction microscope
JPH1114562A (en) * 1997-06-23 1999-01-22 Nec Corp Method and apparatus for x-ray diffraction microscopy
JPH11258186A (en) * 1998-03-16 1999-09-24 Kansai Shingijutsu Kenkyusho:Kk Method and apparatus for measurement of stress by x-rays
JP2004325267A (en) * 2003-04-24 2004-11-18 Spectris Co Ltd Residual stress measuring device of thin film, and residual stress measuring method of thin film
JP2006177731A (en) * 2004-12-21 2006-07-06 Univ Nagoya Device and method for measuring strain by diffractometry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108709A1 (en) * 2010-03-05 2011-09-09 株式会社Ihi Nondestructive inspection device and method
JP5286411B2 (en) * 2010-03-05 2013-09-11 株式会社Ihi Nondestructive inspection equipment

Similar Documents

Publication Publication Date Title
EP2541238B1 (en) A measuring device for the short-wavelength X-ray diffraction and a method thereof
Bokuchava et al. Neutron Fourier diffractometer FSD for residual stress studies in materials and industrial components
KR102104082B1 (en) Closed­loop control of x­ray knife edge
JP6230618B2 (en) Apparatus and method for surface mapping using in-plane oblique incidence diffraction
CN105960590A (en) X-ray diffraction analyzer and analyzing method
JP5713357B2 (en) X-ray stress measurement method and apparatus
KR102140602B1 (en) Method and device for carrying out an x-ray fluorescence analysis
JP2012122737A (en) X-ray diffraction device
EP1896837B1 (en) Mobile device for irradiation and detection of radiation
JPH1048398A (en) X-ray diffraction device
JP2008008785A (en) X-ray spectrometric method and x-ray spectroscope
JP3968350B2 (en) X-ray diffraction apparatus and method
JP2009128112A (en) Neutron diffracting device
JP2009085767A (en) Strain measuring apparatus by diffractometry and measuring method
JP5018132B2 (en) Sample analyzer and sample analysis method
Macherauch et al. A modified diffractometer for x-ray stress measurements
RU2419088C1 (en) X-ray spectrometer
JP2010286346A (en) Spectroscope
Bokuchava et al. Neutron Fourier Stress Diffractometer FSS at the IBR-2 Reactor: Results of Upgrading and Prospects for Further Development
WO2000026649A2 (en) X-ray diffraction apparatus with an x-ray optical reference channel
JP3017634B2 (en) X-ray stress measurement apparatus and X-ray stress measurement method
JP2000275113A (en) Method and apparatus for measuring x-ray stress
JP2008286735A (en) Eds head protection method and protection mechanism for fluorescence x-ray spectrometer
JP2019132599A (en) Carrying object stress measurement device
JP2006177731A (en) Device and method for measuring strain by diffractometry

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100924

A977 Report on retrieval

Effective date: 20120702

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120827

A02 Decision of refusal

Effective date: 20121225

Free format text: JAPANESE INTERMEDIATE CODE: A02