JPH11250905A - Nickel-hydrogen battery - Google Patents

Nickel-hydrogen battery

Info

Publication number
JPH11250905A
JPH11250905A JP10049824A JP4982498A JPH11250905A JP H11250905 A JPH11250905 A JP H11250905A JP 10049824 A JP10049824 A JP 10049824A JP 4982498 A JP4982498 A JP 4982498A JP H11250905 A JPH11250905 A JP H11250905A
Authority
JP
Japan
Prior art keywords
nickel
type
hydrogen storage
storage alloy
containing hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10049824A
Other languages
Japanese (ja)
Inventor
Seijiro Suda
精二郎 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUISO ENERGY KENKYUSHO KK
Original Assignee
SUISO ENERGY KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUISO ENERGY KENKYUSHO KK filed Critical SUISO ENERGY KENKYUSHO KK
Priority to JP10049824A priority Critical patent/JPH11250905A/en
Publication of JPH11250905A publication Critical patent/JPH11250905A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel hydrogen battery with electrochemical characteristics, long life, and high durability. SOLUTION: A nickel-hydrogen battery uses as a negative electrode a nickel- containing hydrogen storage alloy comprising (a) a fluorinated material of at least one nickel-containing hydrogen storage alloy selected from AB2 type, AB type, and BCC type nickel-containing hydrogen storage alloys, (b) a fluorinated material of at least one AB5 type nickel-containing hydrogen storage alloy, and if necessary fluorinated carbon black.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極として高放電
電流条件下において高い放電容量を維持しうる水素吸蔵
電極を用いることにより、長期間にわたって安定した出
力を持続したニッケル‐水素電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen battery having a stable output for a long period of time by using a hydrogen storage electrode capable of maintaining a high discharge capacity under a high discharge current condition as a negative electrode. is there.

【0002】[0002]

【従来の技術】これまで、二次電池としては、アルカリ
蓄電池が汎用されている。そして、このアルカリ蓄電池
の正極としては、空気電極や酸化銀電極が検討されてい
るが、ほとんどの場合、オキシ水酸化ニッケルを活物質
とするニッケル電極が用いられてきた。これらの電池で
は、ニッケル電極をポケット型から焼結型に変えること
により電気特性が向上し、さらに密閉可能な構造とする
ことが可能になっている。一方、負極としては、従来カ
ドミウム電極が主体であったが、公害防止上、カドミウ
ムの使用が制限され、また一層高エネルギー密度に対す
る要求が高まってきた結果、水素吸蔵合金を用いたニッ
ケル‐水素電池が注目され、小型機器、移動用機器、電
気自動車及びハイブリッド車のエネルギー源として利用
されるようになっている。
2. Description of the Related Art Alkaline storage batteries have been widely used as secondary batteries. An air electrode or a silver oxide electrode has been studied as a positive electrode of the alkaline storage battery. In most cases, a nickel electrode using nickel oxyhydroxide as an active material has been used. In these batteries, the electrical characteristics are improved by changing the nickel electrode from a pocket type to a sintered type, and a structure capable of being hermetically sealed can be obtained. On the other hand, cadmium electrodes have been mainly used as the negative electrode in the past.However, the use of cadmium has been restricted to prevent pollution, and the demand for higher energy density has increased. Has been attracting attention, and has been used as an energy source for small devices, mobile devices, electric vehicles and hybrid vehicles.

【0003】ところで、この水素吸蔵合金としては、水
素との反応により水素化物を形成しやすい金属種A、例
えばランタン、チタニウム、ジルコニウムなどと、水素
化物を形成しにくい金属種、例えばニッケル、マンガ
ン、コバルトなどからなるAB5型、AB2型、AB型の
ものやBCC型(体心立方結晶構造)のものが知られて
いる。
[0003] By the way, the hydrogen storage alloy includes a metal species A which easily forms a hydride by reacting with hydrogen, such as lanthanum, titanium and zirconium, and a metal species which hardly forms a hydride such as nickel and manganese. AB 5 type, AB 2 type, AB type and BCC type (body-centered cubic crystal structure) made of cobalt or the like are known.

【0004】これらの水素吸蔵合金の中で、AB5型に
属するLaNi5合金は優れた水素貯蔵特性を示すが、
最大の欠点は極めて高価なことである。したがって、最
近では、実用的な水素吸蔵合金として、レアメタルの混
合体であるミッシュメタルを含むミッシュメタル‐ニッ
ケル系合金が主流となっている。しかしながら、このミ
ッシュメタル‐ニッケル系合金は、LaNi5合金に比
べて安価であるものの、その水素貯蔵容量や放電容量
を、LaNi5合金の理論容量より高くすることができ
ないという欠点がある。
[0004] Among these hydrogen storage alloys, LaNi 5 alloy belonging to AB 5 type shows excellent hydrogen storage characteristics,
The biggest disadvantage is that it is very expensive. Therefore, recently, a misch metal-nickel alloy containing a misch metal, which is a mixture of rare metals, has become the mainstream as a practical hydrogen storage alloy. However, the misch metal - nickel alloy, although it is less expensive than LaNi 5 alloy, the hydrogen storage capacity and the discharge capacity, there is a drawback that can not be higher than the theoretical capacity of LaNi 5 alloy.

【0005】他方、AB2型、AB型及びBCC型ニッ
ケル含有水素吸蔵合金は、小型、小容量二次電池の性能
向上と、大容量、大型電池化への鍵を握る電極材料とし
て期待されながら、被毒性が高い上に、表面にち密な酸
化物を形成して水素透過抵抗を増大するため、これまで
実用化されなかった。
[0005] On the other hand, AB 2 type, AB-type, and BCC type nickel-containing hydrogen-absorbing alloy is small, the performance improvement of small-capacity secondary battery, a large capacity, while being expected as an electrode material as the key to the large batteries of It has not been put to practical use because it is highly toxic and forms a dense oxide on the surface to increase the hydrogen permeation resistance.

【0006】また、これらのAB2型、AB型及びBC
C型ニッケル含有水素吸蔵合金は、一般に水素吸蔵量は
大きいが、二次電池として用いる場合、元来、合金中に
占めるニッケル含有量が少ないため、イオン状水素(プ
ロトン)と単原子状水素(プロチウム)間の転換に触媒
的に作用し、電子の透過を促進させる機能に乏しいとい
う欠点があった。
[0006] In addition, these AB 2 type, AB-type and BC
Although the C-type nickel-containing hydrogen storage alloy generally has a large hydrogen storage amount, when used as a secondary battery, the nickel content originally in the alloy is small, so that ionic hydrogen (proton) and monoatomic hydrogen ( (Protium) has a drawback that it acts catalytically on the conversion between them and has a poor function of promoting the transmission of electrons.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来のニッ
ケル‐水素電池がもつ欠点を克服し、電気化学特性を有
し、しかも長寿命、高耐久性の新規なニッケル‐水素電
池を提供することを目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention overcomes the drawbacks of the conventional nickel-hydrogen batteries, and provides a novel nickel-hydrogen battery having electrochemical characteristics, long life and high durability. It is done for the purpose of.

【0008】[0008]

【課題を解決するための手段】本発明者は、ニッケル‐
水素電池の負極として用いる水素吸蔵合金の電気的特性
を向上させるために、鋭意研究を重ねた結果、この水素
吸蔵合金の低い初期放電容量や、高率放電時の放電容量
の急激な低下が、水素吸蔵合金の原子状水素及び電子に
対する大きい内部抵抗に起因すること、この内部抵抗
は、AB2型、AB型又はBCC型ニッケル含有水素吸
蔵合金のフッ化処理物とAB5型水素吸蔵合金のフッ化
処理物を混合し、あるいはこれにさらにフッ化処理した
カーボンブラックを配合した材料を用いることにより解
消することができ、したがってこれにより、ニッケル‐
水素電池の負極としての電気的特性が著しく向上するこ
とを見出し、この知見に基づいて本発明をなすに至っ
た。
Means for Solving the Problems The present inventors have developed nickel-
In order to improve the electrical characteristics of the hydrogen storage alloy used as the negative electrode of the hydrogen battery, as a result of intensive research, a low initial discharge capacity of this hydrogen storage alloy and a sharp decrease in the discharge capacity during high-rate discharge, be due to the internal resistance larger for atomic hydrogen and electrons of the hydrogen storage alloy, the internal resistance, AB 2 type, the AB-type or fluorination treatment of BCC-type nickel-containing hydrogen-absorbing alloy and AB 5 type hydrogen storage alloy The problem can be solved by mixing a fluorinated material or using a material in which carbon black further fluorinated is mixed, and thus, nickel-
The inventors have found that the electrical characteristics of a negative electrode of a hydrogen battery are significantly improved, and have made the present invention based on this finding.

【0009】すなわち、本発明は、負極として(a)A
2型、AB型及びBCC型ニッケル含有水素吸蔵合金
の中から選ばれた少なくとも1種のニッケル含有水素吸
蔵合金のフッ化処理物、(b)少なくとも1種のAB5
型ニッケル含有水素吸蔵合金のフッ化処理物及び所望に
応じフッ化処理したカーボンブラックとからなるニッケ
ル含有水素吸蔵合金電極を用いたことを特徴とするニッ
ケル‐水素電池を提供するものである。
That is, the present invention provides (a) A
B 2 type, at least one fluoride treatment of nickel-containing hydrogen storage alloy selected from among type AB and BCC type nickel-containing hydrogen storage alloy, (b) at least one AB 5
The present invention provides a nickel-hydrogen battery using a nickel-containing hydrogen storage alloy electrode comprising a fluorinated product of a nickel-containing hydrogen storage alloy and carbon black optionally fluorinated.

【0010】[0010]

【発明の実施の形態】次に添付図面に従って、本発明の
実施の形態の1例を説明する。図1は本発明のニッケル
‐水素電池の構造を示す一部切欠した斜視図であって、
有底円筒形ケース1の内部には、水素吸蔵合金膜からな
る負極板2とニッケルからなる正極板3とがセパレータ
4を介して積層され、全体として円柱を形成している。
ケース1の上部は、封口板5により密閉され、その中央
部には安全弁6を介してキャップ7が取り付けられてい
る。そして、このケース1内には、アルカリ水溶液が充
填されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a partially cutaway perspective view showing the structure of the nickel-hydrogen battery of the present invention.
Inside the bottomed cylindrical case 1, a negative electrode plate 2 made of a hydrogen storage alloy film and a positive electrode plate 3 made of nickel are stacked with a separator 4 interposed therebetween to form a column as a whole.
The upper part of the case 1 is sealed by a sealing plate 5, and a cap 7 is attached to the center of the case 1 via a safety valve 6. The case 1 is filled with an alkaline aqueous solution.

【0011】本発明における正極の材料としては、通常
のニッケル‐カドミウム電極や従来のニッケル‐水素電
池における正極と同じもの、例えばニッケル発泡体を用
いることができるが、負極の材料としては、(a)AB
2型、AB型又はBCC型ニッケル含有水素吸蔵合金の
中から選ばれた少なくとも1種のニッケル含有水素吸蔵
合金のフッ化処理物と、(b)少なくとも1種のAB5
型ニッケル含有水素吸蔵合金のフッ化処理物とからなる
水素吸蔵材料を用いることが必要である。
As the material of the positive electrode in the present invention, the same material as the positive electrode in a conventional nickel-cadmium electrode or a conventional nickel-hydrogen battery, for example, a nickel foam, can be used. ) AB
A fluorinated product of at least one nickel-containing hydrogen storage alloy selected from nickel-containing hydrogen storage alloys of type 2 , AB or BCC; and (b) at least one AB 5
It is necessary to use a hydrogen storage material composed of a nickel-containing hydrogen storage alloy and a fluorinated product.

【0012】この水素吸蔵材料の(a)成分としては、
ニッケルを成分として含むAB2型、AB型又はBCC
型水素吸蔵合金のフッ化処理物が用いられる。このAB
2型ニッケル含有水素吸蔵合金の例としては、NiT
2、NiMg2、NiZr2やこれらの構成金属の一部
が他の金属、例えばAl、Co、Cr、Cu、Fe、L
a、Mg、Mn、Nb、Si、V、Zn、Zrなどで置
換されたものを挙げることができる。また、AB型ニッ
ケル含有水素吸蔵合金の例としては、TiNi、ZrN
i、VNi、NbNi、MmNi(ただしMmはミッシ
ュメタル)やこれらの構成金属の一部が他の金属例えば
Al、Ce、Co、Cr、Cu、Fe、Mg、Mn、M
o、V、Zn、Zrなどから選ばれた少なくとも1種の
構成金属以外の金属で置換されたものを挙げることがで
きる。
The component (a) of the hydrogen storage material includes:
AB 2 type, AB type or BCC containing nickel as a component
A fluorinated product of a type hydrogen storage alloy is used. This AB
Examples of the type 2 nickel-containing hydrogen storage alloy include NiT
i 2 , NiMg 2 , NiZr 2, and some of these constituent metals are replaced with other metals, for example, Al, Co, Cr, Cu, Fe, L
a, Mg, Mn, Nb, Si, V, Zn, Zr, and the like. Examples of AB-type nickel-containing hydrogen storage alloys include TiNi, ZrN
i, VNi, NbNi, MmNi (where Mm is a misch metal) and some of these constituent metals are other metals such as Al, Ce, Co, Cr, Cu, Fe, Mg, Mn, M
Examples include those substituted with a metal other than at least one kind of constituent metal selected from o, V, Zn, Zr, and the like.

【0013】そのほか、AB型とAB2型との混合型と
して、TiNi・TiNi2やその中のNiの一部が
V、Zr、Cr、Mn、Co、Cu、Feなどで置換さ
れたもの、一般式Ti1-yZryNix(ただし、0.5
≦x≦1.45、0≦y≦1)で表わされるものも用い
ることができる。さらに、BCC型ニッケル含有水素吸
蔵合金の例としては、六方晶系TiAl合金や六方晶系
MgZn2合金の構成金属の一部をNiで置換したもの
がある。
In addition, as a mixed type of AB type and AB 2 type, TiNi.TiNi 2 or a part of Ni therein is replaced with V, Zr, Cr, Mn, Co, Cu, Fe, etc. formula Ti 1-y Zr y Ni x ( where 0.5
<X ≦ 1.45, 0 ≦ y ≦ 1) can also be used. Further, as an example of the BCC type nickel-containing hydrogen storage alloy, there is an alloy in which a part of constituent metals of a hexagonal TiAl alloy or a hexagonal MgZn 2 alloy is replaced with Ni.

【0014】一般に、水素吸蔵合金の各金属成分A,B
の原子比は必ずしも1:2、1:1などの整数比になっ
ているとは限らず、±0.3の範囲内で変動している場
合があるが、このようなものも本発明において用いるこ
とができる。
Generally, each metal component A, B of the hydrogen storage alloy
Is not always an integer ratio such as 1: 2, 1: 1 or the like, and may fluctuate in a range of ± 0.3. Can be used.

【0015】これらの水素吸蔵合金の好適な組成例とし
ては、Fe0.8Mn0.2Zr0.05Ti、Fe0.8Mn0.18
0.02Ni0.05Ti、Ti0.5Zr0.5Mn0.8Cr0.8
0.4、Ti0.5Zr0.5Mn0.5Cr0.5Ni、Ti0.5
0.50.75Ni1.25、Ti0.5Zr0.50.5Ni1.5、N
0.95Fe0.8Mn0.2Zr0.05Ti2、Ni0.95Fe0.8
Mn0.18Al0.02Zr0.05Ti、Zr0.9Ti0.10.2
Co0.1Mn0.6Ni1.1、ZrMn0.6Cr0.2Ni1.2
ZrMn0.5Cr0.20.1Ni1.2、ZrV0.4Ni 1.6
Ti0.17Zr0.160.22Ni0.39Cr0.07、ZrNi
1.43、Ti0.5Zr0.5(V0.375Ni0.6252などを挙げ
ることができる。
Preferred examples of the composition of these hydrogen storage alloys
Fe0.8Mn0.2Zr0.05Ti, Fe0.8Mn0.18A
l0.02Ni0.05Ti, Ti0.5Zr0.5Mn0.8Cr0.8N
i0.4, Ti0.5Zr0.5Mn0.5Cr0.5Ni, Ti0.5Z
r0.5V0.75Ni1.25, Ti0.5Zr0.5V0.5Ni1.5, N
i0.95Fe0.8Mn0.2Zr0.05TiTwo, Ni0.95Fe0.8
Mn0.18Al0.02Zr0.05Ti, Zr0.9Ti0.1V0.2
Co0.1Mn0.6Ni1.1, ZrMn0.6Cr0.2Ni1.2,
ZrMn0.5Cr0.2V0.1Ni1.2, ZrV0.4Ni 1.6,
Ti0.17Zr0.16V0.22Ni0.39Cr0.07, ZrNi
1.43, Ti0.5Zr0.5(V0.375Ni0.625)TwoEtc.
Can be

【0016】これらのAB2型、AB型又はBCC型ニ
ッケル含有水素吸蔵合金は、一般に水素吸蔵力は大きい
が、二次電池電極材料として用いる場合、元来、合金成
分に占めるニッケルの含有量が少ないため、イオン状水
素(プロトン)と単原子状水素(プロチウム)間の転換
に触媒的に作用し、電子(エレクトロン)の透過を促進
させる機能に乏しいという欠点があった。
These AB 2 type, AB type or BCC type nickel-containing hydrogen-absorbing alloys generally have a large hydrogen-absorbing power, but when used as a secondary battery electrode material, the nickel content in the alloy component is originally low. Due to the small amount, there is a drawback that it has a function of catalyzing the conversion between ionic hydrogen (proton) and monatomic hydrogen (protium) and has a poor function of promoting the transmission of electrons (electrons).

【0017】次に、(b)成分としては、ニッケルを成
分として含む、AB5型水素吸蔵合金のフッ化処理物が
用いられる。このAB5型ニッケル含有水素吸蔵合金と
しては、La1-xMmxNi5(ただしxは0≦x≦1の
数)、Ca1-xMmxNi5(ただしxは0<x<1)、
MmMx(ただしMはNi、Co、Mn、Al、4.5
5≦x≦4.76)、Ca1-xMgxNiy(ただし、0
<x≦0.27、3.8≦y≦5.2)、Ca1-xLax
Ni5-(y+z)AlyCoz(ただし、0.5≦x≦0.
9、0≦y≦0.4、0≦z≦0.4、0<y+z≦
4)及びこれらの構成金属の一部を他の金属例えばA
l、Ce、Co、Cr、Cu、Fe、Mg、Mn、M
o、V、Zn、Zrなどから選ばれた少なくとも1種の
構成金属以外の金属で置き換えたものがある。これらの
水素吸蔵合金についても各金属成分A,Bの原子比は必
ずしも1:5の整数比になっているとは限らず、±0.
3の範囲内で変動している場合があるが、このようなも
のも本発明において用いることができる。
Next, as the component (b), a fluorinated AB 5 type hydrogen storage alloy containing nickel as a component is used. As the AB 5 type nickel-containing hydrogen storage alloy, La 1-x Mm x Ni 5 ( where x is a number of 0 ≦ x ≦ 1), Ca 1 -x Mm x Ni 5 ( where x is 0 <x <1 ),
Mm x (where M is Ni, Co, Mn, Al, 4.5
5 ≦ x ≦ 4.76), Ca 1-x Mg x Ni y (however, 0
<X ≦ 0.27, 3.8 ≦ y ≦ 5.2), Ca 1-x La x
Ni 5- (y + z) Al y Co z (provided that 0.5 ≦ x ≦ 0.
9, 0 ≦ y ≦ 0.4, 0 ≦ z ≦ 0.4, 0 <y + z ≦
4) and some of these constituent metals are replaced with other metals such as A
1, Ce, Co, Cr, Cu, Fe, Mg, Mn, M
Some are replaced with metals other than at least one kind of constituent metal selected from o, V, Zn, Zr, and the like. Also in these hydrogen storage alloys, the atomic ratio of each of the metal components A and B is not always an integer ratio of 1: 5, and is ± 0.1.
Although it may fluctuate within the range of 3, such a thing can be used in the present invention.

【0018】このようなニッケル含有水素吸蔵合金の中
で好ましいLaNi5系のものの例として、LaNi5
LaNi4Cu、LaNi4Al、LaNi2.5Co2.5
LaNi2.5Co2.4Al0.1、LaNi4.7Al0.3、La
0.9Zr0.1Ni4.5Al0.5、La0.8Nd0.2Ni2
3、La0.8Nd0.2Ni2.5Co2.4Al0.1、La0.8
Nd0.15Zr0.05Ni3.8Co0.7Al0.5、La0.7Nd
0.2Ti0.1Ni2.5Co2.4Al0.1、La0.8Nd0.2
2.5Co2.4Si0.1、La0.8Ce0.2Ni5、La0.6
Ce0.4Ni5、La0.5Ce0.5Ni5、La0.6Pr0.4
5、La0.6Nd0.4Ni5、La0.6Pm0.4Ni5、L
0.6Sm0.4Ni5、Ca0.4La0.6Ni5、Ca0.4
0.6Ni4.8Al0.1Co0.1、Ca0.8La0.2Ni4.5
Co0.5、LaNi4.7Al0.3などがある。これらの中
で特に好適なのはAB5のAとして希土類金属、例えば
ミッシュメタル(Mm)を含むものである。このような
ものとしては、MmNi3.55Co0.75Mn0.4Al0.3
MmNi3.5Co0.7Al0.8、MmNi3.5Co0.8Mn
0.4Al0.3、Mm0.85Zr0.15Ni4.0Al0.80.2
MmNi3.7Al0.5Fe0.7Cu0.1などがある。
Among such nickel-containing hydrogen-absorbing alloys, examples of preferred LaNi 5 -based alloys include LaNi 5 ,
LaNi 4 Cu, LaNi 4 Al, LaNi 2.5 Co 2.5 ,
LaNi 2.5 Co 2.4 Al 0.1 , LaNi 4.7 Al 0.3 , La
0.9 Zr 0.1 Ni 4.5 Al 0.5 , La 0.8 Nd 0.2 Ni 2 C
o 3 , La 0.8 Nd 0.2 Ni 2.5 Co 2.4 Al 0.1 , La 0.8
Nd 0.15 Zr 0.05 Ni 3.8 Co 0.7 Al 0.5 , La 0.7 Nd
0.2 Ti 0.1 Ni 2.5 Co 2.4 Al 0.1 , La 0.8 Nd 0.2 N
i 2.5 Co 2.4 Si 0.1 , La 0.8 Ce 0.2 Ni 5 , La 0.6
Ce 0.4 Ni 5 , La 0.5 Ce 0.5 Ni 5 , La 0.6 Pr 0.4 N
i 5 , La 0.6 Nd 0.4 Ni 5 , La 0.6 Pm 0.4 Ni 5 , L
a 0.6 Sm 0.4 Ni 5 , Ca 0.4 La 0.6 Ni 5 , Ca 0.4 L
a 0.6 Ni 4.8 Al 0.1 Co 0.1 , Ca 0.8 La 0.2 Ni 4.5
Co 0.5 , LaNi 4.7 Al 0.3 and the like. These particularly preferred in are those containing rare earth metals as the A of AB 5, for example, misch metal (Mm). Such materials include MmNi 3.55 Co 0.75 Mn 0.4 Al 0.3 ,
MmNi 3.5 Co 0.7 Al 0.8 , MmNi 3.5 Co 0.8 Mn
0.4 Al 0.3 , Mm 0.85 Zr 0.15 Ni 4.0 Al 0.8 V 0.2 ,
MmNi 3.7 Al 0.5 Fe 0.7 Cu 0.1 and the like.

【0019】ところで、本発明において負極として用い
る場合、上記の(a)成分及び(b)成分の水素吸蔵合
金は、いずれもフッ化処理されていることが必要であ
る。このフッ化処理は、公知の方法例えばM3AlF6
2TiF6、M2ZrF6(ただし、Mはカリウムやナト
リウムなどのアルカリ金属)で表わされるフッ化金属化
合物を、重量/容量比(w/v)で0.01〜0.5程
度になるように水に溶解した過飽和水溶液中に、ニッケ
ル含有水素吸蔵合金粒状体を浸せきし、常圧下0〜60
℃、好ましくは15〜40℃で0.5〜5時間保持する
方法(特開平5−213601号公報)、フッ化アルカ
リ0.2〜10.0重量%を含有し、フッ化水素によ
り、pH2.0〜6.5に調整された水溶液中に、ニッ
ケル含有水素吸蔵合金粒状体を、常圧下、0〜80℃、
好ましくは30〜60℃で1〜60分間保持する方法
(特開平9−302478号公報)によって容易に行う
ことができる。このような処理により、各合金粒子の表
面に厚さ0.01〜1μmの金属ニッケルに富む金属フ
ッ化物層が形成される。
When used as a negative electrode in the present invention, it is necessary that the hydrogen storage alloys of the above components (a) and (b) are both fluorinated. This fluorination treatment is performed by a known method such as M 3 AlF 6 ,
A metal fluoride compound represented by M 2 TiF 6 or M 2 ZrF 6 (where M is an alkali metal such as potassium or sodium) is reduced to a weight / volume ratio (w / v) of about 0.01 to 0.5. The nickel-containing hydrogen storage alloy particles are immersed in a supersaturated aqueous solution dissolved in water so that
C., preferably at 15 to 40.degree. C. for 0.5 to 5 hours (JP-A-5-213601), containing 0.2 to 10.0% by weight of alkali fluoride and adjusting the pH to 2 with hydrogen fluoride. In an aqueous solution adjusted to 0.0 to 6.5, the nickel-containing hydrogen-absorbing alloy granules were placed at 0 to 80 ° C under normal pressure.
Preferably, it can be easily carried out by a method of maintaining the temperature at 30 to 60 ° C. for 1 to 60 minutes (JP-A-9-302478). By such a treatment, a metal nickel-rich metal fluoride layer having a thickness of 0.01 to 1 μm is formed on the surface of each alloy particle.

【0020】このフッ化処理は、(a)成分、(b)成
分のそれぞれに別々に施したのち、両者を混合してもよ
いし、また(a)成分と(b)成分を混合したのち、そ
の混合物に施してもよい。(a)成分と(b)成分とを
あらかじめ混合して、その混合物をフッ化処理する場合
は、AB2型、AB型又はBCC型の水素吸蔵合金がニ
ッケルを含有していなくても、フッ化処理の間に、
(b)成分中のニッケルがいったん処理液中に溶出し、
これが合金各粒子の表面上でフッ化物被膜を形成するの
で、原料として用いるAB2型、AB型又はBCC型の
水素吸蔵合金は、ニッケルを含有していないものでもよ
い。この(a)成分及び(b)成分のフッ化処理された
水素吸蔵合金は、通常、平均粒径30μm以下の粒状体
として形成される。これよりも粒径が大きくなるとフッ
化処理が不十分になり、所期の効果が得られない。
In this fluorination treatment, the components (a) and (b) may be separately applied, and then both may be mixed. Alternatively, the components (a) and (b) may be mixed. May be applied to the mixture. When the component (a) and the component (b) are preliminarily mixed and the mixture is subjected to fluorination treatment, even if the AB 2 type, AB type or BCC type hydrogen storage alloy does not contain nickel, it is not fluorinated. During the conversion process,
(B) nickel in the component is eluted into the processing solution once,
Since this forms a fluoride film on the surface of each alloy particle, the AB 2 type, AB type or BCC type hydrogen storage alloy used as a raw material may not contain nickel. The fluorinated hydrogen storage alloy of the components (a) and (b) is usually formed as a granular material having an average particle size of 30 μm or less. If the particle size is larger than this, the fluorination treatment becomes insufficient, and the desired effect cannot be obtained.

【0021】このようにしてフッ化処理された水素吸蔵
合金は、その表面から酸化物が除去されると同時に表面
上に所望に応じたニッケルの分散が行われて、安定化さ
れるために、腐食、微粉末化、壊変、被毒、発火などに
対する耐性が向上し、長期間にわたって水素貯蔵性能を
持続するものとなる。
In the hydrogen storage alloy thus fluorinated, the oxide is removed from the surface and, at the same time, nickel is dispersed on the surface as desired, so that it is stabilized. The resistance to corrosion, pulverization, decay, poisoning, ignition and the like is improved, and the hydrogen storage performance is maintained for a long period of time.

【0022】本発明の負極として用いる場合、(a)成
分と(b)成分とは、重量比で100:1ないし1:1
00の割合で混合される。これよりも(a)成分の量が
少ないと、水素吸蔵能力や充/放電容量が不十分になる
し、これよりも(b)成分の量が少なくなると水素原子
や電子の移動抵抗の低減効果が低くなり、高速放出や高
率光電の向上が得られにくくなる。そして、(a)成分
を(b)成分に添加すれば、(b)成分のもつ水素吸蔵
能力と充/放電容量は、(a)成分の添加量に比例して
増加するため、(a)成分と(b)成分それぞれの特性
を保ったまま、(b)成分単独の場合よりも好ましい特
性を付与することができる。したがって、それらの混合
比は広い範囲で、所望の目的に応じて適宜選択すること
ができる。
When used as the negative electrode of the present invention, the components (a) and (b) are in a weight ratio of 100: 1 to 1: 1.
00 are mixed. If the amount of the component (a) is smaller than this, the hydrogen storage capacity and charge / discharge capacity become insufficient, and if the amount of the component (b) is smaller than this, the effect of reducing the transfer resistance of hydrogen atoms and electrons is reduced. And high-speed emission and improvement of high-rate photoelectricity are hardly obtained. When the component (a) is added to the component (b), the hydrogen storage capacity and the charge / discharge capacity of the component (b) increase in proportion to the amount of the component (a). While maintaining the characteristics of the component and the component (b), more preferable characteristics can be imparted than in the case of the component (b) alone. Therefore, their mixing ratio can be appropriately selected in a wide range according to a desired purpose.

【0023】次に、本発明においては、前記した(a)
成分と(b)成分に加え、さらにフッ化処理したカーボ
ンブラックを配合することにより、さらにその性能を向
上させたものとすることができる。このフッ化処理され
たカーボンブラックは、普通のカーボンブラック例えば
ファーネスカーボンブラック、チャンネルカーボンブラ
ック、アセチレンカーボンブラック、アークカーボンブ
ラックを前記した水素吸蔵合金のフッ化処理の場合と同
様にしてフッ化処理することにより得られる。
Next, in the present invention, the aforementioned (a)
By blending fluorinated carbon black in addition to the component and the component (b), the performance can be further improved. This fluorinated carbon black is subjected to fluorination treatment of ordinary carbon black such as furnace carbon black, channel carbon black, acetylene carbon black, and arc carbon black in the same manner as in the case of the above-described fluorination treatment of the hydrogen storage alloy. It can be obtained by:

【0024】このようなフッ化処理したカーボンブラッ
クを、(a)成分と(b)成分の合計重量に対し、1〜
10重量%の割合で配合すると、高速水素放出特性や高
率放電特性を著しく高めることができる。本発明の負極
は、このような水素吸蔵合金にバインダー2〜10重量
%の割合で加え、圧縮成形することにより作製すること
ができる。この際用いるバインダーは熱可塑性樹脂、熱
硬化性樹脂のいずれでもよいが、電解液に接触しても長
時間安定なもの、たとえばポリテトラフルオロエチレン
が好ましい。このようにして得られる電極は、優れた初
期充/放電特性、高速条件下での水素放出特性を有し、
高放電電流下で高い放電容量を維持しうる上に、充/放
電時の内部抵抗が低いという長所がある。
The fluorinated carbon black is used in an amount of 1 to 10 parts by weight based on the total weight of the components (a) and (b).
When blended at a ratio of 10% by weight, high-speed hydrogen release characteristics and high-rate discharge characteristics can be significantly improved. The negative electrode of the present invention can be prepared by adding a binder at a ratio of 2 to 10% by weight to such a hydrogen storage alloy and compression molding. The binder used at this time may be either a thermoplastic resin or a thermosetting resin, but is preferably a binder that is stable for a long time even in contact with an electrolytic solution, for example, polytetrafluoroethylene. The electrode obtained in this way has excellent initial charge / discharge characteristics and hydrogen release characteristics under high-speed conditions,
It has the advantages of maintaining a high discharge capacity under a high discharge current, and low internal resistance during charge / discharge.

【0025】本発明のニッケル‐水素電池における電解
液としては、従来のニッケル‐カドミウム電池やニッケ
ル‐水素電池において用いられているものの中から任意
に選ぶことができ、特に制限はない。
The electrolyte in the nickel-hydrogen battery of the present invention can be arbitrarily selected from those used in conventional nickel-cadmium batteries and nickel-hydrogen batteries, and is not particularly limited.

【0026】[0026]

【実施例】次に実施例により本発明をさらに詳細に説明
する。
Next, the present invention will be described in more detail by way of examples.

【0027】なお、各例中に示したアンペア時効率(A
h)及び電圧(V)の測定は、JIS C8708−1
997に従って行った。
Note that the ampere-hour efficiency (A
h) and voltage (V) are measured according to JIS C8708-1.
997.

【0028】参考例1 AB2型合金として、Zr0.9Ti0.10.2Co0.1Mn
0.6Ni1.1を、AB5型合金として、LaNi4.7Al
0.3を用い、両者(重量比100:5)をそれぞれ機械
的粉砕により粒度30μmに粉砕した。次に、このよう
にして得た粒状体をジーベルト式P−c−T測定用反応
容器内に封入し、30℃で2.5MPaの水素ガスを圧
入して水素化し、次いで内部の水素を真空引きして脱気
する操作を5回繰り返したのち、室温下、この粒状体5
0gをフッ化処理液(KF 1重量%含有水溶液をHF
によりpH5に調整)1000ml中に投入し、pH値
が5.0から7.5に変化するまでかきまぜることによ
り水素吸蔵材料を調製した。
[0028] Reference Example 1 AB 2 type alloys, Zr 0.9 Ti 0.1 V 0.2 Co 0.1 Mn
The 0.6 Ni 1.1, as AB 5 type alloys, LaNi 4.7 Al
Using 0.3 , both of them (weight ratio 100: 5) were each pulverized to a particle size of 30 μm by mechanical pulverization. Next, the granular material thus obtained is sealed in a reaction vessel for Giebert PcT measurement, hydrogenated at 30 ° C. by injecting 2.5 MPa of hydrogen gas, and then the internal hydrogen is evacuated. After repeating the operation of pulling and degassing 5 times, the granular material 5 was removed at room temperature.
0 g of fluorinated solution (KF 1% by weight aqueous solution is HF
The mixture was added to 1000 ml of water, and stirred until the pH value changed from 5.0 to 7.5 to prepare a hydrogen storage material.

【0029】参考例2 AB型合金として、Ti0.70Zr0.30Mn0.25Ni0.55
0.13Co0.07を、AB5型合金として、LaNi4.7
0.3を用い、両者(重量比100:5)をそれぞれ機
械的粉砕により粒度30μmに粉砕した。次に、このよ
うにして得た粒状体をジーベルト式P−c−T測定用反
応容器内に封入し、30℃で2.5MPaの水素ガスを
圧入して水素化し、次いで内部の水素を真空引きして脱
気する操作を5回繰り返したのち、室温下、この粒状体
50gをフッ化処理液(KF 1重量%含有水溶液をH
FによりpH5に調整)1000ml中に投入し、pH
値が5.2から7.2に変化するまでかきまぜることに
より水素吸蔵材料を調製した。
Reference Example 2 As an AB type alloy, Ti 0.70 Zr 0.30 Mn 0.25 Ni 0.55
The V 0.13 Co 0.07, the AB 5 type alloys, LaNi 4.7 A
Using 0.3 , both of them (weight ratio: 100: 5) were pulverized by mechanical pulverization to a particle size of 30 μm. Next, the granular material thus obtained is sealed in a reaction vessel for Giebert PcT measurement, hydrogenated at 30 ° C. by injecting 2.5 MPa of hydrogen gas, and then the internal hydrogen is evacuated. After the operation of pulling and degassing was repeated 5 times, 50 g of the granular material was treated at room temperature with a fluorinated solution (aqueous solution containing 1% by weight of KF as H
Adjust to pH 5 with F)
A hydrogen storage material was prepared by stirring until the value changed from 5.2 to 7.2.

【0030】実施例1、比較例1 以下のようにして図1に示す構造のニッケル‐水素電池
を製造した。すなわち、参考例1で得た水素吸蔵材料
に、カルボキシメチルセルロース(CMC)1重量%と
水適量を加えてペーストとし、これを市販のニッケルめ
っきしたパンチング鉄板に塗着し、スリットを通してロ
ーラ加圧し、平均厚さ0.4mmの水素吸蔵合金負極2
を作製した。次に正極3として市販の発泡状ニッケル電
極(600mah/cc)を、セパレータ4としてポリ
プロピレンフィルム(厚さ150μm)を用い、密閉円
筒型ニッケル電池(国際規格サブC)を構成し、電解液
として水酸化リチウム水溶液を充てんした。この電池を
30℃で1晩放置後、0.1Cで18時間充電し、0.
2Cで端子電圧0.9Vの間で放電する操作を2回繰り
返すことにより実施例1の電池を製造した。次に、比較
のために実施例1と同一組成の合金にフッ化処理を行わ
ない水素吸蔵材料を用いて負極を作製し、同じようにし
て比較例1の電池を製造した。このものの電池特性を測
定し、その結果を表1に示す。なお、表中の1C、2
C、3Cはそれぞれ1時間、2時間又は3時間の放電容
量を意味する。
Example 1, Comparative Example 1 A nickel-hydrogen battery having the structure shown in FIG. 1 was manufactured as follows. That is, 1% by weight of carboxymethylcellulose (CMC) and an appropriate amount of water were added to the hydrogen storage material obtained in Reference Example 1 to form a paste, which was applied to a commercially available nickel-plated punched iron plate, and roller-pressed through a slit. Hydrogen storage alloy negative electrode 2 having an average thickness of 0.4 mm
Was prepared. Next, using a commercially available foamed nickel electrode (600 mah / cc) as the positive electrode 3 and a polypropylene film (150 μm thickness) as the separator 4, a sealed cylindrical nickel battery (International Standard Sub-C) was constructed. Lithium oxide aqueous solution was charged. After leaving the battery at 30 ° C. overnight, the battery was charged at 0.1 C for 18 hours.
The battery of Example 1 was manufactured by repeating the operation of discharging at a terminal voltage of 0.9 V at 2 C twice. Next, for comparison, a negative electrode was produced using an alloy having the same composition as in Example 1 and a hydrogen storage material not subjected to fluorination treatment, and a battery of Comparative Example 1 was produced in the same manner. The battery characteristics were measured and the results are shown in Table 1. Note that 1C, 2
C and 3C mean the discharge capacity for 1 hour, 2 hours or 3 hours, respectively.

【0031】[0031]

【表1】 [Table 1]

【0032】次に、急速充電時のガス吸収特性を調べ
た。実施例1では内圧が3kgf/cm2であったのに
対して、比較例1では負極律速になっているため、安全
弁の耐圧15kg以上になり、ガス漏れが生じ実用に耐
えられない。なお、この電池を実用レベルにするために
は充放電20回程度繰り返す必要があり、実施例1の2
サイクルに比べてはるかに実用性が劣る。また、正極や
負極からの溶出金属成分による短絡については、ニッケ
ル含有水素吸蔵合金を高温で長期間放置した場合、通常
は溶出金属がセパレータを透過するため充電不可能にな
る。実施例1と比較例1の電池について、0.2Cで放
電後、回路状態で60℃で放置したところ比較例1の電
池では2週間で0Vになるが、実施例1の電池では1か
月放置後も1Vを示した。このように、水素吸蔵合金を
フッ化処理すると、短絡を生じるような成分が溶出して
しまうため、電池構成後の放置による短絡を生じない。
Next, gas absorption characteristics during quick charging were examined. In Example 1, the internal pressure was 3 kgf / cm 2 , whereas in Comparative Example 1, the negative electrode was rate-determined, so that the pressure resistance of the safety valve was 15 kg or more, and gas leakage occurred, making it unusable for practical use. In order to make this battery a practical level, it is necessary to repeat charging and discharging about 20 times.
Much less practical than cycles. In addition, with respect to a short circuit caused by a metal component eluted from the positive electrode or the negative electrode, when the nickel-containing hydrogen storage alloy is left at a high temperature for a long period of time, the elution metal normally passes through the separator, so that charging becomes impossible. The batteries of Example 1 and Comparative Example 1 were discharged at 0.2 C and then left at 60 ° C. in a circuit state. When the battery of Comparative Example 1 became 0 V in two weeks, the battery of Example 1 lost one month. Even after standing, 1V was shown. As described above, when the hydrogen storage alloy is fluorinated, components that may cause a short circuit are eluted, so that a short circuit does not occur when the battery is left after being constructed.

【0033】実施例2、比較例2 参考例2で得た水素吸蔵材料に、カルボキシメチルセル
ロース(CMC)1重量%と水適量を加えてペーストと
し、これを市販のニッケルめっきしたパンチング鉄板に
塗着し、スリットを通してローラ加圧し、平均厚さ0.
4mmの水素吸蔵合金負極2を作製した。次に正極3と
して市販の発泡状ニッケル電極(600mah/cc)
を、セパレータ4としてポリプロピレンフィルム(厚さ
150μm)を用い、実施例1と同じ密閉円筒型ニッケ
ル電池を構成し、電解液として水酸化リチウム水溶液を
充てんした。この電池を30℃で1晩放置後、0.1C
で18時間充電し、0.2Cで端子電圧0.9Vの間で
放電する操作を2回繰り返すことにより実施例2の電池
を製造した。次に、比較のために実施例2と同一組成の
合金にフッ化処理を行わない水素吸蔵材料を用いて負極
を作製し、同じようにして比較例2の電池を製造した。
このものの電池特性を測定し、その結果を表2に示す。
Example 2, Comparative Example 2 To the hydrogen storage material obtained in Reference Example 2, 1% by weight of carboxymethyl cellulose (CMC) and an appropriate amount of water were added to form a paste, which was applied to a commercially available nickel-plated punched iron plate. Then, a roller is pressed through a slit to obtain an average thickness of 0.1 mm.
A 4 mm hydrogen storage alloy negative electrode 2 was produced. Next, a commercially available foamed nickel electrode (600 mah / cc) is used as the positive electrode 3.
Using a polypropylene film (thickness: 150 μm) as the separator 4, the same sealed cylindrical nickel battery as in Example 1 was formed, and an aqueous lithium hydroxide solution was filled as an electrolyte. After leaving this battery at 30 ° C. overnight, 0.1 C
The battery of Example 2 was manufactured by repeating the operation of charging for 18 hours and discharging at 0.2 C between terminal voltages of 0.9 V twice. Next, for comparison, a negative electrode was produced using an alloy having the same composition as in Example 2 and a hydrogen storage material not subjected to fluorination treatment, and a battery of Comparative Example 2 was produced in the same manner.
The battery characteristics were measured, and the results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】この表より明らかなように、実施例2の電
池は、比較例2の電池よりもはるかに優れた放電容量と
高率放電を示す。
As is clear from this table, the battery of Example 2 has much better discharge capacity and higher rate discharge than the battery of Comparative Example 2.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のニッケル‐水素電池の構造を示す一
部切欠した斜視図。
FIG. 1 is a partially cutaway perspective view showing the structure of a nickel-hydrogen battery of the present invention.

【符号の説明】 1 ケース 2 負極板(水素吸蔵合金) 3 正極板(ニッケル) 4 セパレータ 5 封口板 6 安全弁 7 キャップ[Description of Signs] 1 case 2 negative electrode plate (hydrogen storage alloy) 3 positive electrode plate (nickel) 4 separator 5 sealing plate 6 safety valve 7 cap

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 負極として(a)AB2型、AB型及び
BCC型ニッケル含有水素吸蔵合金の中から選ばれた少
なくとも1種のニッケル含有水素吸蔵合金のフッ化処理
物と、(b)少なくとも1種のAB5型ニッケル含有水
素吸蔵合金のフッ化処理物とからなるニッケル含有水素
吸蔵合金混合物を用いたことを特徴とするニッケル‐水
素電池。
1. A negative electrode as (a) AB 2 type, at least one fluoride treatment of nickel-containing hydrogen storage alloy selected from among type AB and BCC type nickel-containing hydrogen storage alloy, (b) at least hydrogen battery - nickel characterized by using a nickel-containing hydrogen storage alloy mixture consisting of fluoride treatment of one AB 5 type nickel-containing hydrogen storage alloy.
【請求項2】 (a)成分がフッ化処理されたAB2
ラーベス相ニッケル含有水素吸蔵合金、フッ化処理され
たAB型チタン系ニッケル含有水素吸蔵合金、及びフッ
化処理されたAB型ジルコニウム型ニッケル含有水素吸
蔵合金の中から選ばれた少なくとも1種であり、(b)
成分がフッ化処理されたAB5型希土類系ニッケル含有
水素吸蔵合金の中から選ばれた少なくとも1種である請
求項1記載のニッケル‐水素電池。
2. An AB 2 type Laves phase nickel-containing hydrogen storage alloy whose component (a) has been fluorinated, an AB type titanium-based nickel-containing hydrogen storage alloy that has been fluorinated, and an AB type zirconium that has been fluorinated. At least one selected from the group consisting of nickel-containing hydrogen storage alloys, and (b)
Hydrogen battery - nickel in the component according to claim 1, wherein at least one selected from the AB 5 type rare earth-nickel containing hydrogen-absorbing alloy which has been fluorinated.
【請求項3】 (a)成分と(b)成分との含有割合が
重量比で100:1ないし1:100の範囲にある請求
項2記載のニッケル‐水素電池。
3. The nickel-metal hydride battery according to claim 2, wherein the content ratio of component (a) to component (b) is in the range of 100: 1 to 1: 100 by weight.
【請求項4】 水素吸蔵合金電極が全重量に基づき1〜
10重量%のフッ化処理したカーボンブラックを含有す
る請求項1、2又は3記載のニッケル‐水素電池。
4. The hydrogen-absorbing alloy electrode is 1 to 3 based on the total weight.
4. The nickel-hydrogen battery according to claim 1, comprising 10% by weight of fluorinated carbon black.
JP10049824A 1998-03-02 1998-03-02 Nickel-hydrogen battery Pending JPH11250905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10049824A JPH11250905A (en) 1998-03-02 1998-03-02 Nickel-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10049824A JPH11250905A (en) 1998-03-02 1998-03-02 Nickel-hydrogen battery

Publications (1)

Publication Number Publication Date
JPH11250905A true JPH11250905A (en) 1999-09-17

Family

ID=12841860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10049824A Pending JPH11250905A (en) 1998-03-02 1998-03-02 Nickel-hydrogen battery

Country Status (1)

Country Link
JP (1) JPH11250905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367669A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367669A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Alkaline battery

Similar Documents

Publication Publication Date Title
EP0522297B1 (en) Hydrogen storage electrode
EP0161075B1 (en) Hydrogen storage materials and methods of sizing and preparing the same for electrochemical applications
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
Moriwaki et al. Electrode characteristics of C15-type laves phasealloys
JP3381264B2 (en) Hydrogen storage alloy electrode
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
JPH06215768A (en) Hydrigenizable material for cathode of nickel-hydride battery
US5591394A (en) Zirconium-based hydrogen storage alloy useable for negative electrodes for secondary battery
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
KR0137797B1 (en) Manufacturing method of electrode for the secondary battery using the hydrogen storage alloy
JPH11217643A (en) New hydrogen storage alloy and hydrogen electrode using the alloy
JPH11250905A (en) Nickel-hydrogen battery
KR100207618B1 (en) Negative electrode manufacturing method and secondary battery having it
JP6951047B2 (en) Alkaline secondary battery
JPH11181536A (en) Composition for hydrogen storage material
JPH06145849A (en) Hydrogen storage alloy electrode
JP3525519B2 (en) Hydrogen storage alloy electrode
JP2679441B2 (en) Nickel-metal hydride battery
JPH0690924B2 (en) Storage battery electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH06318455A (en) Nickel-hydrogen battery
JP3146063B2 (en) Metal oxide / hydrogen secondary batteries