JPH11250903A - Nickel hydrogen storage battery - Google Patents

Nickel hydrogen storage battery

Info

Publication number
JPH11250903A
JPH11250903A JP10046054A JP4605498A JPH11250903A JP H11250903 A JPH11250903 A JP H11250903A JP 10046054 A JP10046054 A JP 10046054A JP 4605498 A JP4605498 A JP 4605498A JP H11250903 A JPH11250903 A JP H11250903A
Authority
JP
Japan
Prior art keywords
hydrogen storage
nickel
alloy
negative electrode
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10046054A
Other languages
Japanese (ja)
Inventor
Hideki Tsuriga
英樹 釣賀
Hiroaki Ono
博昭 小野
Hiroshi Fukunaga
浩 福永
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP10046054A priority Critical patent/JPH11250903A/en
Publication of JPH11250903A publication Critical patent/JPH11250903A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nickel hydrogen storage battery with excellent charging discharging cycle characteristics and excellent high-rate discharging characteristics at a low temperature in the nickel hydrogen storage battery having a negative electrode constituted with a hydrogen storage alloy made of a multi-element alloy. SOLUTION: In a nickel hydrogen battery having a positive electrode using nickel hydroxide as an active material, a negative electrode made of a hydrogen storage alloy, an electrolyte, and a separator, the hydrogen storage alloy is constituted with a multi-element alloy prepared by replacing part of Ni of MmNi5 alloy (Mm shows misch metal) with at least one of Co, Mn, Al, Cu, Mo and Cr, and cobalt oxide in which the atomic ratio of cobalt and oxygen is 1:0.9 to 1:0.99 is contained in the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を可逆的に吸
蔵・放出できる水素吸蔵合金電極を用いた、携帯端末機
器の電源などに利用されるニツケル水素蓄電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel hydrogen storage battery using a hydrogen storage alloy electrode capable of reversibly storing and releasing hydrogen and used as a power source for portable terminal equipment.

【0002】[0002]

【従来の技術】ニツケル水素蓄電池は、水素を負極活物
質として動作するものであり、可逆的に水素を吸蔵・放
出できる水素吸蔵合金粉末を導電性基材に担持させてな
る水素吸蔵合金電極を負極とし、通常、正極活物質とし
て動作するニツケル水酸化物を導電性基材に担持させて
なるニツケル極を正極とし、この正負両極をセパレ―タ
を介してアルカリ電解液中に配置して構成される。
2. Description of the Related Art A nickel hydrogen storage battery operates using hydrogen as a negative electrode active material, and comprises a hydrogen storage alloy electrode formed by supporting a hydrogen storage alloy powder capable of reversibly storing and releasing hydrogen on a conductive base material. A negative electrode is used, and a nickel electrode formed by supporting a nickel hydroxide, which normally operates as a positive electrode active material, on a conductive base material is used as a positive electrode, and both positive and negative electrodes are arranged in an alkaline electrolyte via a separator. Is done.

【0003】負極として用いる水素吸蔵合金電極は、水
素吸蔵合金粉末と導電性粉末とポリテトラフルオロエチ
レン粉末を含有する電極合剤をシ―ト状に成形し、これ
を導電性基材である多孔性金属板に圧着させる方法や、
水素吸蔵合金粉末と導電性粉末とカルボキシメチルセル
ロ―ス、ポリアクリル酸ソ―ダなどの結着剤と水とを混
練してペ―スト状の電極合剤を調製し、これを導電性基
材であるパンチドメタルなどの集電体に塗布する方法な
どにより、製造される。
[0003] A hydrogen storage alloy electrode used as a negative electrode is formed by molding an electrode mixture containing a hydrogen storage alloy powder, a conductive powder and a polytetrafluoroethylene powder into a sheet, and forming the mixture into a porous material serving as a conductive base material. Press-bonding to a conductive metal plate,
A paste of an electrode mixture is prepared by kneading a hydrogen storage alloy powder, a conductive powder, a binder such as carboxymethyl cellulose and polyacrylic acid soda, and water, and forming the paste on a conductive base. It is manufactured by a method of applying the material to a current collector such as punched metal.

【0004】ここで、上記の導電性粉末は、水素吸蔵合
金の導電性を高めて負極としての集電能を向上させるた
めのものであり、たとえば、ニツケル粉、コバルト粉、
銅粉、カ―ボン粉などが用いられ、とくにニツケル粉の
使用が多く検討されている。特開平3−179664
号、同7−114922号などの公報には、直径1μm
以下のニツケル粉を用いて内圧上昇を防止し、サイクル
特性を改善することや、平均粒径が2〜8μm、嵩密度
が0.4〜1.0g/cm3 のニツケル粉を用いて、充放
電特性を改善することが提案されている。また、特開平
7−65826号、同7−37583号などの公報に
は、ニツケル粉に異種元素、たとえば炭素を含有させて
内圧上昇を防止することや、ニツケルとコバルトからな
る合金粉を用いて、高率放電特性を改善することが提案
されている。
[0004] Here, the above-mentioned conductive powder is used to enhance the conductivity of the hydrogen storage alloy to improve the current collecting ability as a negative electrode. For example, nickel powder, cobalt powder,
Copper powder, carbon powder and the like are used, and the use of nickel powder is being studied in particular. JP-A-3-179664
No. 7-114922, the diameter of 1 μm
The following nickel powder is used to prevent an increase in internal pressure and to improve cycle characteristics, and to fill using nickel powder having an average particle size of 2 to 8 μm and a bulk density of 0.4 to 1.0 g / cm 3. It has been proposed to improve the discharge characteristics. In Japanese Patent Application Laid-Open Nos. 7-65826 and 7-37583, nickel powder contains a different element, for example, carbon to prevent an increase in internal pressure, or uses an alloy powder composed of nickel and cobalt. It has been proposed to improve high rate discharge characteristics.

【0005】[0005]

【発明が解決しようとする課題】しかし、最近のニツケ
ル水素蓄電池では、活物質である水素吸蔵合金として、
高容量化を図るため、MmNi5 合金(Mmはミツシユ
メタルを表す)のNiの一部がCo、Mn、Alなどで
置換された多元化合金を用いるようにしている。この種
の合金は、充放電サイクルに伴つてアルカリ電解液によ
り腐食が進行し、容量の低下が顕著で、良好なサイクル
特性が得られにくい。また、アルカリ電解液による腐食
により、水素吸蔵合金表面での電荷移動が阻害され、と
くに低温時での高率放電特性の劣化が問題となることが
あつた。
However, in recent nickel hydrogen storage batteries, as a hydrogen storage alloy as an active material,
In order to increase the capacity, a multi-element alloy in which a part of Ni of an MmNi 5 alloy (Mm represents a metal of a metal) is substituted with Co, Mn, Al or the like is used. In this type of alloy, corrosion progresses due to the alkaline electrolyte during the charge / discharge cycle, the capacity is remarkably reduced, and it is difficult to obtain good cycle characteristics. In addition, corrosion caused by the alkaline electrolyte inhibits charge transfer on the surface of the hydrogen storage alloy, and in particular, deterioration of high-rate discharge characteristics at low temperatures may become a problem.

【0006】本発明は、このような事情に照らして、上
記のような多元化合金よりなる水素吸蔵合金を用いて負
極を構成したニツケル水素蓄電池において、充放電サイ
クル特性にすぐれるとともに、低温時での高率放電特性
にもすぐれたニツケル水素蓄電池を提供することを目的
としている。
The present invention has been made in view of the above circumstances and provides a nickel hydrogen storage battery having a negative electrode using a hydrogen storage alloy made of a multiplexed alloy as described above, which has excellent charge / discharge cycle characteristics and a low temperature. It is an object of the present invention to provide a nickel hydrogen storage battery having excellent high-rate discharge characteristics.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、鋭意検討した結果、上記のような
多元化合金よりなる水素吸蔵合金を用いて負極を構成す
るにあたり、この負極中に導電性粉末として特定のコバ
ルト酸化物を含有させることにより、充放電サイクル特
性および低温時での高率放電特性にともにすぐれたニツ
ケル水素蓄電池が得られることを知り、本発明を完成す
るに至つた。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above-mentioned object, and as a result, when constructing a negative electrode using a hydrogen storage alloy made of the above-mentioned multi-element alloy, The inventor of the present invention has found that by including a specific cobalt oxide as a conductive powder in the negative electrode, a nickel hydrogen storage battery having both excellent charge-discharge cycle characteristics and high-rate discharge characteristics at low temperatures can be obtained. It led to.

【0008】本発明は、水酸化ニツケルを活物質とする
正極と水素吸蔵合金よりなる負極と電解液とセパレ―タ
を有するニツケル水素蓄電池において、上記の水素吸蔵
合金がMmNi5 合金(Mmはミツシユメタルを表す)
のNiの一部がCo、Mn、Al、Cu、MoまたはC
rの少なくとも一種で置換されてなる多元化合金で構成
され、かつ負極中にコバルトと酸素の原子比が1:0.
90〜1:0.99のコバルト酸化物を含有することを
特徴とするニツケル水素蓄電池(請求項1)、とくに上
記コバルト酸化物のBET吸着法による比表面積が10
〜20m2/g、細孔容積が0.015〜0.030cc/
g、平均細孔半径が20〜40Åである上記構成のニツ
ケル水素蓄電池(請求項2)に係るものである。
According to the present invention, there is provided a nickel hydrogen storage battery having a positive electrode comprising nickel hydroxide as an active material, a negative electrode comprising a hydrogen storage alloy, an electrolyte and a separator, wherein the hydrogen storage alloy is an MmNi 5 alloy (Mm is a Represents)
Is partially Co, Mn, Al, Cu, Mo or C
r is replaced by a ternary alloy substituted with at least one of the above, and the atomic ratio of cobalt to oxygen in the negative electrode is 1: 0.
Nickel hydrogen storage battery containing cobalt oxide of 90 to 1: 0.99 (Claim 1), in particular, the specific surface area of the cobalt oxide measured by the BET adsorption method is 10
2020 m 2 / g, pore volume 0.015 to 0.030 cc /
g, the nickel hydrogen storage battery having the above-described configuration having an average pore radius of 20 to 40 ° (claim 2).

【0009】[0009]

【発明の実施の形態】本発明に用いられる水素吸蔵合金
は、MmNi5 合金(Mmはミツシユメタルを表す)の
Niの一部がCo、Mn、Al、Cu、MoもしくはC
rの少なくとも一種で置換されてなる多元化合金であ
り、3元系以上の4元系、5元系などの多元化合金のい
ずれも用いることができる。これらの中でも、Niの一
部をCo、MnおよびAlで置換した5元系の多元化合
金が、高容量の合金が得られるため、とくに好ましい。
また、水素吸蔵合金の粒径としては、100μm以下が
好ましく、20〜100μmがより好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION In the hydrogen storage alloy used in the present invention, a part of Ni of an MmNi 5 alloy (Mm represents a metal of a metal) is Co, Mn, Al, Cu, Mo or C
This is a ternary alloy substituted with at least one of r, and any of ternary or higher quaternary alloys such as ternary alloys can be used. Among them, a quinary alloy in which a part of Ni is replaced by Co, Mn and Al is particularly preferable since a high capacity alloy can be obtained.
The particle diameter of the hydrogen storage alloy is preferably 100 μm or less, more preferably 20 to 100 μm.

【0010】このような水素吸蔵合金は、たとえば、M
m(La、Ce、Nd、Prなどを含む希土類元素の混
合物であるミツシユメタル)と、Niと、Co、Mn、
Al、Cu、MoまたはCrの中から選ばれる少なくと
も一種の金属元素とを、高周波溶解炉などで溶解して合
金の溶湯とし、これを回転ロ―ルなどにより約200〜
1,000℃/秒の冷却速度で急冷凝固させ、耐圧容器
内で真空引きを行い、水素加圧下に保持したのち、水素
排気を行い、さらに200〜600℃で加熱し、水素を
完全に合金中から放出することにより、合成できる。
Such a hydrogen storage alloy is, for example, M
m (Mesh metal which is a mixture of rare earth elements including La, Ce, Nd, Pr, etc.), Ni, Co, Mn,
At least one metal element selected from Al, Cu, Mo or Cr is melted in a high-frequency melting furnace or the like to form an alloy melt, which is rotated for about 200
Rapidly solidifies at a cooling rate of 1,000 ° C./sec, evacuates in a pressure vessel, keeps it under hydrogen pressure, evacuates hydrogen, and heats it at 200 to 600 ° C. to completely alloy hydrogen. It can be synthesized by releasing from inside.

【0011】本発明に用いられる導電性粉末は、コバル
トと酸素の原子比が1:0.90〜1:0.99のコバ
ルト酸化物であつて、このような特定原子比のコバルト
酸化物を導電性粉末とすることにより、サイクル特性の
みならず、低温時での高率放電特性にも好結果を得るこ
とができる。なお、上記コバルトと酸素の原子比は、不
活性ガス融解−赤外線吸着法(昇温速度6℃/秒、3,
000℃まで)により測定した値を意味するものであ
る。
The conductive powder used in the present invention is a cobalt oxide having an atomic ratio of cobalt to oxygen of 1: 0.90 to 1: 0.99. By using a conductive powder, good results can be obtained not only in cycle characteristics but also in high-rate discharge characteristics at low temperatures. In addition, the atomic ratio of the above-mentioned cobalt and oxygen is determined by an inert gas melting-infrared absorption method (heating rate 6 ° C./sec, 3,
(Up to 000 ° C.).

【0012】一般に、負極中のコバルト酸化物は、電池
内で電子伝導性の低いCo(III )化合物に変化しやす
く、これが負極表面上に溶解・析出して、水素吸蔵合金
表面での電荷移動を阻害し、とくに低温時での高率放電
特性を劣化させる。しかし、本発明の上記特定のコバル
ト酸化物は、この酸化物中にコバルトが多く含まれる構
成となつているため、コバルトとコバルト酸化物では優
先的にコバルトの方が酸化を受け、酸化コバルトの酸化
がそれだけ抑制され、電池内で電荷移動を阻害するCo
(III )化合物の生成が少なくなり、さらにCoOOH
などの電子伝導性を有するCo化合物が電極表面に多く
析出して、アルカリ腐食から水素吸蔵合金を保護する役
割を果たすことになる。
In general, the cobalt oxide in the negative electrode is apt to change into a Co (III) compound having low electron conductivity in the battery, which dissolves and precipitates on the surface of the negative electrode to cause charge transfer on the surface of the hydrogen storage alloy. And degrades high-rate discharge characteristics especially at low temperatures. However, since the specific cobalt oxide of the present invention has a structure in which a large amount of cobalt is contained in this oxide, cobalt and cobalt oxide are preferentially oxidized in cobalt and cobalt oxide, and Oxidation is suppressed accordingly, and Co, which inhibits charge transfer in the battery,
(III) The production of the compound is reduced,
A large amount of a Co compound having electron conductivity, such as, for example, precipitates on the electrode surface and plays a role in protecting the hydrogen storage alloy from alkali corrosion.

【0013】酸素の原子比がコバルト1に対し0.99
より大きくなるコバルト酸化物は、酸化コバルトの表面
がCo2 3 に変化するため導電性粉末としての役割を
果たすコバルト分が減少し、負極中にコバルトのネツト
ワ―クが十分にできず、低温での放電特性が低下しやす
い。また、酸素の原子比がコバルト1に対し0.90未
満となるコバルト酸化物は、この酸化物の合成に長時間
を要し、生産性やコストの面で不利となり、また電池内
でCoOOHに変化する際に電解液中の水を多く消費し
たり、高温貯蔵時にコバルト表面から酸化されてCo2
3 に変化しやすく、十分な利用率が得られず、サイク
ル特性が低下しやすい。
The atomic ratio of oxygen is 0.99 with respect to cobalt 1.
In the larger cobalt oxide, the surface of the cobalt oxide changes to Co 2 O 3 , so that the amount of cobalt that plays a role as a conductive powder is reduced, the cobalt network is not sufficiently formed in the negative electrode, and the temperature is low. Discharge characteristics in the battery are apt to deteriorate. On the other hand, cobalt oxide in which the atomic ratio of oxygen is less than 0.90 with respect to cobalt 1 requires a long time to synthesize this oxide, which is disadvantageous in terms of productivity and cost, and also reduces CoOOH in the battery. change or consume more water in the electrolyte during the, Co 2 is oxidized cobalt surface during high temperature storage
O 3 easily changes, a sufficient utilization rate cannot be obtained, and the cycle characteristics tend to deteriorate.

【0014】本発明に用いるコバルト酸化物は、コバル
トと酸素の原子比が1:0.90〜1:0.99の範囲
となるように設定できれば、種々の方法で調製できる。
代表的な例としては、コバルト炭酸塩をアルゴンガス雰
囲気中にて200〜400℃で1〜3時間焼成し、つい
で塩化水素ガスを含むアルゴンガス雰囲気中で800〜
1,000℃で7〜12時間加熱したのち、真空雰囲気
中にて600〜800℃で1〜3時間加熱処理する方法
が挙げられる。
The cobalt oxide used in the present invention can be prepared by various methods as long as the atomic ratio of cobalt to oxygen can be set in the range of 1: 0.90 to 1: 0.99.
As a typical example, cobalt carbonate is calcined in an argon gas atmosphere at 200 to 400 ° C. for 1 to 3 hours, and then 800 to 400 ° C. in an argon gas atmosphere containing hydrogen chloride gas.
After heating at 1,000 ° C. for 7 to 12 hours, a method of performing heat treatment at 600 to 800 ° C. for 1 to 3 hours in a vacuum atmosphere may be used.

【0015】このように調製されるコバルト酸化物は、
BET吸着法による比表面積が10〜20m2/g、BE
T吸着法により測定される細孔容積が0.015〜0.
030cc/g、平均細孔半径が20〜40Åであるのが
好ましい。このような性状を有することにより、負極中
のコバルト酸化物の分散が良好となり、また表面の酸化
を抑制することができる。なお、上記のBET吸着法と
は、窒素吸着法(ユアサオ―トアイオニクス、オ―トソ
―プ1)で、1〜100Å、試料1g、測定時間127
分、吸着側での測定値を意味する。
The cobalt oxide thus prepared is
Specific surface area by BET adsorption method is 10 to 20 m 2 / g, BE
The pore volume measured by the T adsorption method is 0.015 to 0.5.
030 cc / g and an average pore radius of 20 to 40 ° are preferred. By having such properties, the dispersion of the cobalt oxide in the negative electrode is improved, and the oxidation of the surface can be suppressed. The above-mentioned BET adsorption method is a nitrogen adsorption method (Yours Auto-Ionics, Autosop 1), 1 to 100 °, a sample 1 g, a measurement time 127
Minute, means the value measured on the adsorption side.

【0016】本発明において、上記のコバルト酸化物
は、水素吸蔵合金100重量部に対して、通常10重量
部以下、好ましくは0.1〜5重量部、より好ましくは
0.1〜2重量部の割合で用いられる。このような少量
の使用量で十分な導電性を付与でき、また前記すぐれた
効果を発現できるので、負極中の水素吸蔵合金の充填容
量を高くできるという利点をも有している。
In the present invention, the above cobalt oxide is usually 10 parts by weight or less, preferably 0.1 to 5 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the hydrogen storage alloy. Used in the ratio of Since such a small amount of use can provide sufficient conductivity and exhibit the above-mentioned excellent effects, there is also an advantage that the filling capacity of the hydrogen storage alloy in the negative electrode can be increased.

【0017】本発明においては、上記の水素吸蔵合金と
導電性粉末であるコバルト酸化物とさらに結着剤などと
を水または溶剤の存在下で混合して、ペ―スト状合剤と
し、これをパンチングメタル、発泡メタルなどの耐アル
カリ性金属多孔体などからなる導電性基材に塗布して充
填し、乾燥したのち、圧縮成形することにより、水素吸
蔵合金電極からなる負極とすることができる。上記のペ
―スト状合剤には、前記本発明のコバルト酸化物のほか
に、従来用いられているニツケル粉、コバルト粉などの
他の導電性粉末を含ませることもできる。
In the present invention, the above-mentioned hydrogen storage alloy, a conductive powder of cobalt oxide, and a binder are mixed in the presence of water or a solvent to form a paste mixture. Is coated on a conductive substrate made of a porous metal such as an alkali-resistant metal such as a punching metal or a foamed metal, filled, dried, and then compression-molded to form a negative electrode made of a hydrogen storage alloy electrode. In addition to the cobalt oxide of the present invention, other conductive powders such as nickel powder and cobalt powder which are conventionally used can be contained in the paste-like mixture.

【0018】上記の結着剤としては、たとえば、ポリテ
トラフルオロエチレン、ポリアクリル酸ナトリウム、ポ
リビニルアルコ―ル、スチレンとアクリル系化合物との
共重合体などが挙げられる。これらの中でも、上記の共
重合体として、スチレンと2−エチルヘキシルアクリレ
―トを主成分とする単量体混合物の共重合体などは、前
記コバルト酸化物との親和性が高く、少量でも良好な分
散性が得られるため、とくに好ましく用いられる。これ
ら結着剤の使用量は、水素吸蔵合金100重量部に対し
て、通常0.5〜5重量部とするのが好ましい。
Examples of the binder include polytetrafluoroethylene, sodium polyacrylate, polyvinyl alcohol, and a copolymer of styrene and an acrylic compound. Among them, copolymers of a monomer mixture containing styrene and 2-ethylhexyl acrylate as main components as the above-mentioned copolymers have a high affinity for the cobalt oxide and are good even in a small amount. It is particularly preferably used because of its excellent dispersibility. It is preferable that the amount of the binder used is usually 0.5 to 5 parts by weight based on 100 parts by weight of the hydrogen storage alloy.

【0019】上記の結着剤とともに、カルボキシメチル
セルロ―ス、メチルセルロ―ス、ヒドロキシプロピルセ
ルロ―ス、ポリオキシエチレンなどの増粘剤を配合する
ようにしてもよい。ポリオキシエチレンは、ペ―スト化
した場合の粘度増加が少ないため、とくに好ましく用い
られる。これらの増粘剤の配合量としては、水素吸蔵合
金100重量部に対して、通常1〜5重量部とするのが
よい。
A thickener such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, or polyoxyethylene may be blended with the above binder. Polyoxyethylene is particularly preferably used because of little increase in viscosity when pasted. The compounding amount of these thickeners is usually preferably 1 to 5 parts by weight based on 100 parts by weight of the hydrogen storage alloy.

【0020】本発明のニツケル水素蓄電池は、ニツケル
極からなる正極に対し、上記構成の水素吸蔵合金電極を
負極としたことを特徴とするものである。上記のニツケ
ル極は、通常、水酸化ニツケル粉、導電助剤および結着
剤を水の存在下で混合分散させてペ―スト状物とし、こ
れを耐アルカリ性金属多孔体に充填し、これを乾燥、圧
延したのち、所定サイズに裁断することにより、製造さ
れる。
A nickel hydrogen storage battery according to the present invention is characterized in that a hydrogen storage alloy electrode having the above structure is used as a negative electrode with respect to a positive electrode comprising a nickel electrode. The nickel electrode is usually prepared by mixing and dispersing nickel hydroxide powder, a conductive additive and a binder in the presence of water to form a paste, filling the paste into an alkali-resistant porous metal body, After drying and rolling, it is manufactured by cutting to a predetermined size.

【0021】本発明のニツケル水素蓄電池は、たとえ
ば、上記ニツケル極からなる正極と、前記の水素吸蔵合
金電極からなる負極とを、セパレ―タを介して積層し、
これを電池缶に挿入したのち、電解液を注入することに
より、作製することができる。ここで、上記のセパレ―
タとしては、ポリオレフイン系繊維からなる不織布に親
水基を付与したものなどが用いられる。また、上記の電
解液としては、水酸化カリウム水溶液などのアルカリ電
解液が用いられる。
The nickel hydrogen storage battery of the present invention comprises, for example, a positive electrode comprising the above-mentioned nickel electrode and a negative electrode comprising the above-mentioned hydrogen-absorbing alloy electrode laminated via a separator.
It can be manufactured by inserting this into a battery can and then injecting an electrolytic solution. Here, the above separation
As the substrate, a nonwoven fabric made of polyolefin-based fibers provided with a hydrophilic group is used. In addition, an alkaline electrolyte such as an aqueous solution of potassium hydroxide is used as the electrolyte.

【0022】[0022]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。以下において、部とあるのは重量部を
意味するものとする。
Next, an embodiment of the present invention will be described in more detail. In the following, “parts” means “parts by weight”.

【0023】なお、実施例1〜3において導電性粉末と
して用いたコバルト酸化物A〜Cと比較例2,3で使用
したコバルト酸化物D,Eは、いずれも、反応容器中で
コバルト炭酸塩を処理温度、時間などを適宜調整して合
成したコバルト酸化物であつて、コバルトと酸素の原子
比、BET吸着法による比表面積、細孔容積、平均細孔
半径が下記の表1に示される構成とされたものである。
The cobalt oxides A to C used as the conductive powder in Examples 1 to 3 and the cobalt oxides D and E used in Comparative Examples 2 and 3 were all cobalt carbonates in the reaction vessel. Is a cobalt oxide synthesized by appropriately adjusting the treatment temperature, time, etc., and the atomic ratio of cobalt to oxygen, specific surface area by BET adsorption method, pore volume, and average pore radius are shown in Table 1 below. It is configured.

【0024】 [0024]

【0025】実施例1 ミツシユメタルMm(La、Ce、Nd、Pr)、N
i、Co、Mn、AlおよびMo(いずれも純度99.
9重量%以上)の各試料を、Mm(La:0.32原子
%、Ce:0.48原子%、Nd:0.15原子%、P
r:0.04原子%)、Ni:3.55原子%、Co:
0.75原子%、Mn:0.4原子%、Al:0.3原
子%、Mo:0.04原子%の組成となるように、高周
波溶解炉によつて加熱溶解して、水素吸蔵合金を得た。
この水素吸蔵合金を、耐圧容器中で10-3Torrまで
真空引きを行つたのち、水素圧力14Kg/cm2 で24時
間保持し、水素を排気し、さらに400℃で加熱し、水
素を完全に放出することにより、20〜100μmの水
素吸蔵合金粉末を得た。
Example 1 Metal Mm (La, Ce, Nd, Pr), N
i, Co, Mn, Al and Mo (all with a purity of 99.
Mm (La: 0.32 atomic%, Ce: 0.48 atomic%, Nd: 0.15 atomic%, P
r: 0.04 atomic%), Ni: 3.55 atomic%, Co:
The hydrogen storage alloy is heated and melted in a high frequency melting furnace so as to have a composition of 0.75 at%, Mn: 0.4 at%, Al: 0.3 at%, and Mo: 0.04 at%. I got
This hydrogen storage alloy is evacuated to 10 −3 Torr in a pressure vessel, and then kept at a hydrogen pressure of 14 kg / cm 2 for 24 hours, evacuated of hydrogen, and further heated at 400 ° C. to completely remove hydrogen. By releasing, a hydrogen storage alloy powder of 20 to 100 μm was obtained.

【0026】この水素吸蔵合金粉末100部に対し、コ
バルト酸化物A0.2部、カルボニルNi粉末4部、増
粘剤としてポリエチレンオキサイド水溶液(固形分濃度
6重量%)20部を加え、さらに結着剤としてスチレン
と2−エチルヘキシルアクリレ―トとの共重合体(スチ
レン単位35モル%、2−エチルヘキシルアクリレ―ト
単位65モル%)の水分散液(固形分濃度42.5重量
%)1.7部を加え、混合分散して、ペ―スト状合剤を
調製した。このペ―スト状合剤を、鉄にNiメツキを施
したパンチングメタルに塗布して充填させ、乾燥後、圧
縮成形した。その後、所定サイズに裁断して、負極シ―
トとした。
To 100 parts of the hydrogen-absorbing alloy powder, 0.2 part of cobalt oxide A, 4 parts of carbonyl Ni powder, and 20 parts of a polyethylene oxide aqueous solution (solid content: 6% by weight) as a thickener were added. Aqueous dispersion of a copolymer of styrene and 2-ethylhexyl acrylate (styrene unit 35 mol%, 2-ethylhexyl acrylate unit 65 mol%) (solids concentration 42.5% by weight) 1 Then, 0.7 part was added and mixed and dispersed to prepare a paste mixture. This paste-form mixture was applied to a punched metal in which Ni plating was applied to iron, filled and dried, and then compression-molded. After that, it is cut to a predetermined size and the negative electrode sheet is cut.
And

【0027】正極は、水酸化ニツケル粉末100部に対
し、ニツケル粉末2部を乾式混合したのち、コバルト粉
末10部、カルボキシルメチルセルロ―ス水溶液(固形
分濃度5重量%)5部、ポリテトラフルオロエチレン分
散剤溶液(固形分濃度60重量%)5部を混合して、ペ
―スト状合剤とした。このペ―スト状合剤をニツケル発
泡体基材に塗布して充填させ、80℃で2時間乾燥後、
1トン/cm2 で圧縮成形した。ついで、80℃の温水で
2時間水洗し、さらに80℃で1時間乾燥後、圧縮成形
した。その後、所定サイズに裁断して、正極シ―トとし
た。
The positive electrode was prepared by dry-mixing 2 parts of nickel powder with 100 parts of nickel hydroxide powder, and then 10 parts of cobalt powder, 5 parts of carboxymethyl cellulose aqueous solution (solid content concentration 5% by weight), and polytetrafluorocarbon. 5 parts of an ethylene dispersant solution (solid content: 60% by weight) was mixed to obtain a paste mixture. This paste-form mixture is applied to a nickel foam base material, filled and dried at 80 ° C. for 2 hours.
It was compression molded at 1 ton / cm 2 . Then, it was washed with warm water of 80 ° C. for 2 hours, dried at 80 ° C. for 1 hour, and compression-molded. Thereafter, the sheet was cut into a predetermined size to obtain a positive electrode sheet.

【0028】つぎに、上記の負極シ―トと正極シ―トと
をナイロン不織布のセパレ―タを介して捲回し、単4サ
イズの電極缶に入れ、これに電解液(30重量%KOH
水溶液1リツトルにLiOHを17g溶解させたアルカ
リ水溶液)を注入した。樹脂製パツキングを付けた可逆
弁付き封口体に正極タブをスポツト溶接し、負極の最外
周部を缶の側面に接触させたのち、密封した。ついで、
これを60℃で17時間保存し、0.25C(138m
A)で6時間充電後、0.2C(110mA)で1.0
Vまで放電した。この充放電サイクルを放電容量が一定
になるまで繰り返して、ニツケル水素蓄電池を作製し
た。
Next, the above-mentioned negative electrode sheet and positive electrode sheet are wound through a separator made of nylon non-woven fabric, placed in a AAA-size electrode can, and placed in an electrolytic solution (30% by weight KOH).
An alkaline aqueous solution in which 17 g of LiOH was dissolved in 1 liter of the aqueous solution was injected. The positive electrode tab was spot-welded to the sealing body with the reversible valve provided with the resin packing, and the outermost peripheral portion of the negative electrode was brought into contact with the side surface of the can, followed by sealing. Then
This was stored at 60 ° C. for 17 hours, and 0.25 C (138 m
After charging for 6 hours at A), 1.0 charge at 0.2 C (110 mA)
Discharged to V. This charge / discharge cycle was repeated until the discharge capacity became constant, thereby producing a nickel hydrogen storage battery.

【0029】実施例2 負極シ―トの作製にあたり、コバルト酸化物A0.2部
の代わりに、コバルト酸化物B0.5部を使用するよう
にした以外は、実施例1と同様にして、ニツケル水素蓄
電池を作製した。
Example 2 Nickel was prepared in the same manner as in Example 1 except that 0.5 parts of cobalt oxide B was used in place of 0.2 parts of cobalt oxide A in producing the negative electrode sheet. A hydrogen storage battery was manufactured.

【0030】実施例3 負極シ―トの作製にあたり、コバルト酸化物A0.2部
の代わりに、コバルト酸化物C1.0部を使用するよう
にした以外は、実施例1と同様にして、ニツケル水素蓄
電池を作製した。
Example 3 A nickel sheet was prepared in the same manner as in Example 1, except that 1.0 part of cobalt oxide C was used in place of 0.2 part of cobalt oxide A in producing the negative electrode sheet. A hydrogen storage battery was manufactured.

【0031】比較例1 負極シ―トの作製にあたり、コバルト酸化物Aを使用し
なかつた以外は、実施例1と同様にして、ニツケル水素
蓄電池を作製した。
Comparative Example 1 A nickel hydrogen storage battery was produced in the same manner as in Example 1 except that cobalt oxide A was not used in producing a negative electrode sheet.

【0032】比較例2 負極シ―トの作製にあたり、コバルト酸化物A0.2部
の代わりに、コバルト酸化物D0.5部を使用するよう
にした以外は、実施例1と同様にして、ニツケル水素蓄
電池を作製した。
Comparative Example 2 Nickel was prepared in the same manner as in Example 1 except that 0.5 parts of cobalt oxide D was used in place of 0.2 parts of cobalt oxide A in producing a negative electrode sheet. A hydrogen storage battery was manufactured.

【0033】比較例3 負極シ―トの作製にあたり、コバルト酸化物A0.2部
の代わりに、コバルト酸化物E0.5部を使用するよう
にした以外は、実施例1と同様にして、ニツケル水素蓄
電池を作製した。
Comparative Example 3 Nickel was prepared in the same manner as in Example 1 except that 0.5 parts of cobalt oxide E was used in place of 0.2 parts of cobalt oxide A in producing the negative electrode sheet. A hydrogen storage battery was manufactured.

【0034】上記の実施例1〜3および比較例1〜3の
各ニツケル水素蓄電池について、下記の方法で、充放電
サイクル特性と低温時での高率放電特性を評価した。
The nickel hydrogen storage batteries of Examples 1 to 3 and Comparative Examples 1 to 3 were evaluated for charge / discharge cycle characteristics and high-rate discharge characteristics at low temperatures by the following methods.

【0035】<充放電サイクル特性>各電池について、
充電0.6A(−ΔV=5mV)、放電0.6A(1V
カツト)のサイクルで充放電し、放電容量が300mA
hに劣化するまでのサイクル数を評価した。結果は、図
1に示されるとおりであつた。
<Charge / Discharge Cycle Characteristics>
Charge 0.6A (-ΔV = 5mV), Discharge 0.6A (1V
Charge / discharge in the cycle of (Cut), discharge capacity is 300mA
The number of cycles until deterioration to h was evaluated. The results were as shown in FIG.

【0036】<低温時での高率放電特性>各電池につい
て、25℃で145mAで6時間充電したのち、−10
℃の恒温槽中で5時間保持し、550mAで放電を行
い、電池電圧が1.0Vになるまでの放電容量(mA
h)を測定し、それによつて低温時での高率放電特性を
評価した。結果は、下記の表2に示されるとおりであつ
た。
<High Rate Discharge Characteristics at Low Temperature> Each battery was charged at 145 mA at 25 ° C. for 6 hours and then charged at −10.
C. for 5 hours, discharge at 550 mA, and discharge capacity (mA) until the battery voltage becomes 1.0 V.
h) was measured, whereby the high-rate discharge characteristics at low temperatures were evaluated. The results were as shown in Table 2 below.

【0037】 [0037]

【0038】上記の図1および表2から明らかなよう
に、導電性粉末として、コバルトと酸素の原子比が本発
明の範囲にある特定のコバルト酸化物を使用した実施例
1〜3の各ニツケル水素蓄電池は、充放電サイクル特性
にすぐれているとともに、低温時での高率放電特性にも
すぐれていることがわかる。
As is clear from FIG. 1 and Table 2, each nickel of Examples 1 to 3 in which a specific cobalt oxide having an atomic ratio of cobalt to oxygen within the range of the present invention was used as the conductive powder. It can be seen that the hydrogen storage battery has excellent charge-discharge cycle characteristics and also has excellent high-rate discharge characteristics at low temperatures.

【0039】これに対して、導電性粉末として、コバル
トと酸素の原子比が本発明の範囲外であるコバルト酸化
物を使用した比較例2,3の両ニツケル水素蓄電池は、
コバルト酸化物を使用しない比較例1のニツケル水素蓄
電池に比べて、充放電サイクル特性のある程度の向上は
認められるが、十分ではなく、また低温での高率放電特
性の改善効果も低く、比較例3ではむしろ低下してい
る。
On the other hand, both nickel hydrogen storage batteries of Comparative Examples 2 and 3 using cobalt oxide having an atomic ratio of cobalt and oxygen outside the range of the present invention as the conductive powder were as follows:
Compared with the nickel hydrogen storage battery of Comparative Example 1 in which no cobalt oxide was used, the charge-discharge cycle characteristics were somewhat improved, but were not sufficient, and the effect of improving the high-rate discharge characteristics at low temperatures was low. In 3, it is rather lower.

【0040】[0040]

【発明の効果】以上のように、本発明は、多元化合金よ
りなる水素吸蔵合金粉末を用いた負極中に、導電性粉末
として、コバルトと酸素の原子比が特定範囲にあるコバ
ルト酸化物を含ませる構成としたことにより、充放電サ
イクル特性と低温時での放電特性にすぐれるニツケル水
素蓄電池を提供できる。
As described above, according to the present invention, a cobalt oxide having an atomic ratio of cobalt and oxygen in a specific range is contained in a negative electrode using a hydrogen storage alloy powder made of a ternary alloy as a conductive powder. With this configuration, it is possible to provide a nickel hydrogen storage battery having excellent charge / discharge cycle characteristics and discharge characteristics at low temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜3のニツケル水素蓄電池と、比較例
1〜3のニツケル水素蓄電池とについて、充放電サイク
ル特性を示す特性図である。
FIG. 1 is a characteristic diagram showing charge / discharge cycle characteristics of the nickel hydrogen storage batteries of Examples 1 to 3 and the nickel hydrogen storage batteries of Comparative Examples 1 to 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長井 龍 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Ryu Nagai 1-1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニツケルを活物質とする正極と水
素吸蔵合金よりなる負極と電解液とセパレ―タを有する
ニツケル水素蓄電池において、上記の水素吸蔵合金がM
mNi5 合金(Mmはミツシユメタルを表す)のNiの
一部がCo、Mn、Al、Cu、MoまたはCrの少な
くとも一種で置換されてなる多元化合金で構成され、か
つ負極中にコバルトと酸素の原子比が1:0.90〜
1:0.99のコバルト酸化物を含有することを特徴と
するニツケル水素蓄電池。
1. A nickel hydrogen storage battery having a positive electrode using nickel hydroxide as an active material, a negative electrode made of a hydrogen storage alloy, an electrolyte and a separator, wherein the hydrogen storage alloy is M
mNi 5 alloy (Mm represents a metal mesh) is composed of a ternary alloy in which part of Ni is replaced by at least one of Co, Mn, Al, Cu, Mo or Cr, and cobalt and oxygen are contained in the negative electrode. The atomic ratio is 1: 0.90
1: A nickel hydrogen storage battery containing 0.99 cobalt oxide.
【請求項2】 負極中のコバルト酸化物において、BE
T吸着法による比表面積が10〜20m2/g、細孔容積
が0.015〜0.030cc/g、平均細孔半径が20
〜40Åである請求項1に記載のニツケル水素蓄電池。
2. The cobalt oxide in the negative electrode, wherein BE
Specific surface area by T adsorption method is 10 to 20 m 2 / g, pore volume is 0.015 to 0.030 cc / g, average pore radius is 20
2. The nickel-metal hydride storage battery according to claim 1, wherein the angle is about 40 [deg.].
JP10046054A 1998-02-26 1998-02-26 Nickel hydrogen storage battery Withdrawn JPH11250903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10046054A JPH11250903A (en) 1998-02-26 1998-02-26 Nickel hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10046054A JPH11250903A (en) 1998-02-26 1998-02-26 Nickel hydrogen storage battery

Publications (1)

Publication Number Publication Date
JPH11250903A true JPH11250903A (en) 1999-09-17

Family

ID=12736319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10046054A Withdrawn JPH11250903A (en) 1998-02-26 1998-02-26 Nickel hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH11250903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233054A (en) * 2020-01-20 2020-06-05 华南理工大学 Copper-doped three-dimensional multilevel-structure nickel hydroxide material and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111233054A (en) * 2020-01-20 2020-06-05 华南理工大学 Copper-doped three-dimensional multilevel-structure nickel hydroxide material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US5455125A (en) Medium or large scale sealed metal oxide/metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US8652684B2 (en) Composition for negative electrode of alkaline electrolyte battery
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP4420767B2 (en) Nickel / hydrogen storage battery
US7820325B2 (en) Alkaline electrolyte storage battery having an anode formed of an active material composition
JPH11111330A (en) Nickel-hydrogen storage battery
JP2001118597A (en) Alkaline secondary cell
JPH11250903A (en) Nickel hydrogen storage battery
JP3082348B2 (en) Nickel-hydrogen battery
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2001223000A (en) Alkaline secondary battery
JP2010262763A (en) Surface treatment method of hydrogen storage alloy powder, anode active material for nickel-hydrogen battery, anode for nickel-hydrogen battery, and nickel-hydrogen battery
US20190097213A1 (en) Processes and compositions to improve high-temperature performance of nimh batteries
JP4059357B2 (en) Hydride secondary battery and manufacturing method thereof
JPH1021904A (en) Alkaline storage battery
JP2000030697A (en) Nickel-hydrogen storage battery
JPH11250904A (en) Nickel hydrogen storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP2004185956A (en) Nickel-hydrogen storage battery
JP2003229120A (en) Sealed metal oxide and hydrogen storage battery
JP2000188106A (en) Alkaline secondary battery
JP2003229122A (en) Sealed metal oxide and hydrogen storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510