JP2000030697A - Nickel-hydrogen storage battery - Google Patents

Nickel-hydrogen storage battery

Info

Publication number
JP2000030697A
JP2000030697A JP10194335A JP19433598A JP2000030697A JP 2000030697 A JP2000030697 A JP 2000030697A JP 10194335 A JP10194335 A JP 10194335A JP 19433598 A JP19433598 A JP 19433598A JP 2000030697 A JP2000030697 A JP 2000030697A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
nickel
powder
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10194335A
Other languages
Japanese (ja)
Inventor
Hideki Tsuriga
英樹 釣賀
Hiroaki Ono
博昭 小野
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP10194335A priority Critical patent/JP2000030697A/en
Publication of JP2000030697A publication Critical patent/JP2000030697A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nickel-hydrogen storage battery forming a negative electrode with a hydrogen storage alloy made of a polyphyletic alloy and excellent in both high-temperature storage characteristic and low-temperature discharge characteristic. SOLUTION: This nickel-hydrogen storage battery is provided with a positive electrode having an active material made of nickel hydroxide, a negative electrode made of a hydrogen storage alloy, an electrolyte made of an alkaline aqueous solution, and a separator. The hydrogen storage alloy is made of a polyphyletic alloy substituted with part of Ni of a MmNi5 alloy, (where Mm indicates misch metal,) by at least one kind of Co, Mn, Al, Mo, Cu, Cr. The negative electrode made of the hydrogen storage alloy contains a compound constituted of at least one kind of Nb, W, Y, Yb, Bi as an additive and at least one kind selected from B, B2O3 and H3BO3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素を可逆的に吸
蔵・放出できる水素吸蔵合金電極を用いたニツケル水素
蓄電池に関し、とくに携帯端末機器などの電源に使用さ
れる上記ニツケル水素蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel hydrogen storage battery using a hydrogen storage alloy electrode capable of reversibly storing and releasing hydrogen, and more particularly to the above nickel hydrogen storage battery used as a power source for portable terminal equipment. is there.

【0002】[0002]

【従来の技術】携帯端末機器の発展に伴い、その電源と
して使用されるようになつた電池としてニツケル水素蓄
電池が知られている。この電池は、水素を負極活物質と
して動作するものであり、水素を可逆的に吸蔵・放出で
きる水素吸蔵合金を導電性基材に担持させた水素吸蔵合
金電極を負極とし、通常、正極活物質として動作するニ
ツケル水酸化物を導電性基材に担持させたニツケル極を
正極とし、この正負両極をセパレ―タを介してアルカリ
電解液中に配置して構成される。
2. Description of the Related Art With the development of portable terminal equipment, a nickel hydrogen storage battery has been known as a battery used as a power source for the portable terminal equipment. This battery operates with hydrogen as a negative electrode active material. A hydrogen storage alloy electrode in which a hydrogen storage alloy capable of storing and releasing hydrogen reversibly is supported on a conductive base material is used as a negative electrode, and usually, a positive electrode active material is used. A nickel electrode in which a nickel hydroxide that operates as a substrate is supported on a conductive base material is used as a positive electrode, and both positive and negative electrodes are arranged in an alkaline electrolyte via a separator.

【0003】負極として用いる水素吸蔵合金電極は、水
素吸蔵合金粉末と導電性粉末とポリテトラフルオロエチ
レン粉末を含む電極合剤をシ―ト状に成形し、これを導
電性基材である多孔性金属板に圧着させる方法や、水素
吸蔵合金粉末と導電性粉末とカルボキシメチルセルロ―
ス、ポリアクリル酸ソ―ダなどの高分子結着剤と水とを
混練してペ―スト状の電極合剤を調製し、これを導電性
基材であるパンチドメタルなどの集電体に塗布する方法
などにより、製造される。
[0003] A hydrogen storage alloy electrode used as a negative electrode is formed by molding an electrode mixture containing a hydrogen storage alloy powder, a conductive powder and a polytetrafluoroethylene powder into a sheet, and forming the mixture into a porous material serving as a conductive base material. The method of pressing to a metal plate, the hydrogen storage alloy powder, the conductive powder, and carboxymethyl cellulose
A paste-like electrode mixture is prepared by kneading a polymer binder such as sodium and polyacrylic acid soda and water, and this is used as a current collector such as a punched metal conductive base material. It is manufactured by a method of applying to the surface.

【0004】ここで、上記の導電性粉末は、水素吸蔵合
金の導電性を高めて負極としての集電能を向上させるた
めのものであり、たとえば、ニツケル粉、コバルト粉、
銅粉、カ―ボン粉などが用いられ、とくにニツケル粉の
使用が多く検討されている。特開平3−179664
号、同7−114922号などの公報には、直径1μm
以下のニツケル粉を用いて内圧上昇を防止し、サイクル
特性を改善することや、平均粒径が2〜8μm、嵩密度
が0.4〜1g/cm3 のニツケル粉を用いて、充放電特
性を改善することが提案されている。また、特開平7−
65826号、同7−37583号などの公報には、ニ
ツケル粉に異種元素、たとえば炭素を含有させて内圧上
昇を防止することや、ニツケルとコバルトからなる合金
粉を用いて高率放電特性を改善することが提案されてい
る。
[0004] Here, the above-mentioned conductive powder is used to enhance the conductivity of the hydrogen storage alloy to improve the current collecting ability as a negative electrode. For example, nickel powder, cobalt powder,
Copper powder, carbon powder and the like are used, and the use of nickel powder is being studied in particular. JP-A-3-179664
No. 7-114922, the diameter of 1 μm
The following nickel powder is used to prevent an increase in internal pressure and improve cycle characteristics, and to use a nickel powder having an average particle size of 2 to 8 μm and a bulk density of 0.4 to 1 g / cm 3 to achieve charge-discharge characteristics. It has been proposed to improve. In addition, Japanese Patent Application Laid-Open
Publications such as No. 65826 and No. 7-37583 disclose that nickel powder contains a different element, for example, carbon, to prevent an increase in internal pressure, and that high-rate discharge characteristics are improved by using an alloy powder composed of nickel and cobalt. It has been proposed to.

【0005】[0005]

【発明が解決しようとする課題】しかし、最近のニツケ
ル水素蓄電池は、水素吸蔵合金として、高容量化のた
め、MmNi5 合金(Mmはミツシユメタルを表す)の
Niの一部をCo、Mn、Alなどで置換した多元化合
金を用いている。この場合、上記の置換合金が充・放電
サイクルに伴いアルカリ電解液中で腐食進行の原因とな
り、負極中に前記提案の導電性粉末を添加しても、電池
容量が低下する問題があつた。
However, in recent nickel hydrogen storage batteries, a part of Ni of an MmNi 5 alloy (Mm represents a metal mesh) is used as a hydrogen storage alloy in order to increase the capacity. A multi-element alloy substituted by such as is used. In this case, the replacement alloy causes corrosion to progress in the alkaline electrolyte during the charge / discharge cycle, and there is a problem that the battery capacity is reduced even if the above-described conductive powder is added to the negative electrode.

【0006】このため、特開平3−280362号公報
には、アルカリ電解液中にストロンチウム、バリウムな
どのアルカリ土類金属イオンを含ませ、このアルカリ土
類金属イオンを水和化して、合金の腐食を抑制すること
が提案されている。しかし、このような手法では、高温
状態または高温状態後の過充電状態で正極から発生する
多量の酸素に対して効果が小さく、水素吸蔵合金のアル
カリ電解液での腐食を抑制するのは困難であり、とくに
長期貯蔵後の回復率が十分に得られなかつた。また、ア
ルカリ土類金属イオン濃度を増加させると、これらの水
酸化物が負極表面に折出して、低温放電特性を低下させ
る問題もあつた。
For this reason, Japanese Patent Application Laid-Open No. Hei 3-280362 discloses that an alkaline electrolyte contains an alkaline earth metal ion such as strontium and barium, and hydrates the alkaline earth metal ion to cause corrosion of the alloy. It has been proposed to suppress. However, such a method has a small effect on a large amount of oxygen generated from the positive electrode in a high temperature state or in an overcharged state after the high temperature state, and it is difficult to suppress corrosion of the hydrogen storage alloy in an alkaline electrolyte. In particular, a sufficient recovery rate was not obtained after long-term storage. Further, when the alkaline earth metal ion concentration is increased, these hydroxides are deposited on the surface of the negative electrode, and there is a problem that the low-temperature discharge characteristics are reduced.

【0007】本発明は、このような事情に照らし、上記
のような多元化合金よりなる水素吸蔵合金を用いて負極
を構成したニツケル水素蓄電池において、高温貯蔵特性
と低温放電特性にすぐれたニツケル水素蓄電池を提供す
ることを目的とする。
In view of such circumstances, the present invention provides a nickel hydrogen storage battery in which a negative electrode is formed using a hydrogen storage alloy made of a multiplexed alloy as described above, and which has excellent high-temperature storage characteristics and low-temperature discharge characteristics. It is intended to provide a storage battery.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために、鋭意検討した結果、上記のような多
元化合金よりなる水素吸蔵合金を用いて負極を構成する
にあたり、この負極中に上記の合金とともに特定の添加
剤を2種組み合わせて添加することにより、高温貯蔵特
性と低温放電特性にともにすぐれたニツケル水素蓄電池
が得られることを見い出し、本発明を完成するに至つた
ものである。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, when forming a negative electrode using a hydrogen storage alloy made of a multi-element alloy as described above. It has been found that by adding two kinds of specific additives together with the above alloy to the negative electrode, a nickel hydrogen storage battery having both excellent high-temperature storage characteristics and low-temperature discharge characteristics can be obtained, and completed the present invention. Things.

【0009】すなわち、本発明は、水酸化ニツケルを活
物質とする正極と水素吸蔵合金よりなる負極とアルカリ
水溶液よりなる電解液とセパレ―タを有するニツケル水
素蓄電池において、上記の水素吸蔵合金は、MmNi5
合金(Mmはミツシユメタルを表す)のNiの一部がC
o、Mn、Al、Mo、CuまたはCrの少なくとも1
種で置換されてなる多元化合金で構成されており、かつ
この水素吸蔵合金を用いた負極中に添加剤としてNb、
W、Y、YbまたはBiの少なくとも1種の元素から構
成される化合物と、B、B2 3 またはH3 BO3 から
選ばれる少なくとも1種とを含有することを特徴とする
ニツケル水素蓄電池(請求項1)に係るものである。
That is, the present invention relates to a nickel hydrogen storage battery having a positive electrode containing nickel hydroxide as an active material, a negative electrode comprising a hydrogen storage alloy, an electrolyte comprising an alkaline aqueous solution, and a separator. MmNi 5
Part of the Ni in the alloy (Mm represents the metal of the metal) is C
at least one of o, Mn, Al, Mo, Cu or Cr
Nb, as an additive, in a negative electrode using the hydrogen storage alloy.
A nickel hydrogen storage battery comprising: a compound composed of at least one element of W, Y, Yb or Bi; and at least one selected from B, B 2 O 3 or H 3 BO 3 ( According to claim 1).

【0010】また、本発明は、上記のNb、W、Y、Y
bまたはBiの少なくとも1種の元素から構成される化
合物が、水素吸蔵合金100重量部に対して、0.5〜
2重量部である上記構成のニツケル水素蓄電池(請求項
2)、上記のB、B2 3 またはH3 BO3 から選ばれ
る少なくとも1種が、水素吸蔵合金100重量部に対し
て、0.1〜3重量部である上記構成のニツケル水素蓄
電池(請求項3)、上記のNb、W、Y、YbまたはB
iの少なくとも1種の元素から構成される化合物と、上
記のB、B2 3 またはH3 BO3 から選ばれる少なく
とも1種とが、前者の上記各元素と後者のホウ素との原
子比で1:0.5〜1:1.5である上記構成のニツケ
ル水素蓄電池(請求項4)に係るものである。
Further, the present invention relates to the above-mentioned Nb, W, Y, Y
The compound composed of at least one element of b or Bi is 0.5 to 100 parts by weight of the hydrogen storage alloy.
The nickel hydrogen storage battery having the above-mentioned configuration, which is 2 parts by weight, and at least one selected from the group consisting of B, B 2 O 3, and H 3 BO 3 are used in an amount of 0.1 part by weight with respect to 100 parts by weight of the hydrogen storage alloy. 1 to 3 parts by weight of the above nickel hydrogen storage battery (Claim 3), and Nb, W, Y, Yb or B
a compound composed of at least one element of i and at least one selected from the group consisting of B, B 2 O 3 and H 3 BO 3 in an atomic ratio of each of the former elements and boron of the latter. The present invention relates to a nickel hydrogen storage battery having the above-described configuration in which the ratio is 1: 0.5 to 1: 1.5.

【0011】[0011]

【発明の実施の形態】本発明に用いられる水素吸蔵合金
は、MmNi5 合金(Mmはミツシユメタルを表す)の
Niの一部がCo、Mn、Al、Mo、CuまたはCr
の少なくとも1種で置換されてなる多元化合金であり、
3元系以上の4元系、5元系などの多元化合金のいずれ
も用いることができる。これらの中でも、Niの一部を
Co、MnおよびAlで置換した5元系の多元化合金
が、高容量の合金が得られるため、とくに好ましい。ま
た、水素吸蔵合金の粒径としては、100μm以下が好
ましく、20〜100μmがより好ましい。
Hydrogen storage alloy used in the Detailed Description of the Invention The present invention is a part of Ni is Co of MmNi 5 alloy (Mm represents Mitsushiyumetaru), Mn, Al, Mo, Cu or Cr
A ternary alloy substituted by at least one of the following,
Any of ternary or higher alloys such as quaternary, quinary, etc. can be used. Among them, a quinary alloy in which a part of Ni is replaced by Co, Mn and Al is particularly preferable since a high capacity alloy can be obtained. The particle diameter of the hydrogen storage alloy is preferably 100 μm or less, more preferably 20 to 100 μm.

【0012】このような水素吸蔵合金は、たとえば、M
m(La、Ce、Nd、Prなどを含む希土類元素の混
合物であるミツシユメタル)と、Niと、Co、Mn、
Al、Mo、CuまたはCrの中から選ばれる少なくと
も1種の金属元素とを、高周波溶解炉などで溶解して合
金の溶湯とし、これを回転ロ―ルなどにより約200〜
1,000℃/秒の冷却速度で急冷凝固させ、耐圧容器
内で真空引きを行い、水素加圧下に保持したのち、水素
排気を行い、さらに200〜600℃で加熱し、水素を
完全に合金中から放出することにより、合成できる。
Such a hydrogen storage alloy is, for example, M
m (Mesh metal which is a mixture of rare earth elements including La, Ce, Nd, Pr, etc.), Ni, Co, Mn,
At least one metal element selected from Al, Mo, Cu or Cr is melted in a high-frequency melting furnace or the like to form a molten alloy, which is rotated for about 200 to about
Rapidly solidifies at a cooling rate of 1,000 ° C./sec, evacuates in a pressure vessel, keeps it under hydrogen pressure, evacuates hydrogen, and heats it at 200 to 600 ° C. to completely alloy hydrogen. It can be synthesized by releasing from inside.

【0013】本発明に用いられる添加剤のひとつは、N
b、W、Y、YbまたはBiの少なくとも1種の元素か
ら構成される化合物、たとえば、酸化物、水酸化物など
であり、以下、これを腐食防止化合物と称する。また、
添加剤のもうひとつは、B、B2 3 またはH3 BO3
から選ばれるホウ素またはホウ素化合物の少なくとも1
種である。本発明では、上記の腐食防止化合物とホウ素
またはホウ素化合物とを併用することにより、高温貯蔵
特性と低温放電特性にともに好結果を得たものである
が、この理由は、以下のように考えられる。
One of the additives used in the present invention is N
It is a compound composed of at least one element of b, W, Y, Yb or Bi, for example, an oxide, a hydroxide and the like. Also,
Another of the additives is B, B 2 O 3 or H 3 BO 3
At least one of boron or a boron compound selected from
Is a seed. In the present invention, the combined use of the above-described corrosion inhibitor and boron or a boron compound gives good results in both high-temperature storage characteristics and low-temperature discharge characteristics. The reason is considered as follows. .

【0014】上記の腐食防止化合物は、アルカリ電解液
中でその一部が溶解して、水素吸蔵合金の粒子表面上に
錯体や水酸化物として析出することにより保護膜を形成
し、これが高温貯蔵時に水素吸蔵合金の腐食を抑制す
る。一方、この保護膜は、Co、Al、Mnなどで活性
化された水素吸蔵合金の活性を低下させ、低温放電特性
や高率放電特性を低下させる原因となるが、併用する上
記のホウ素またはホウ素化合物が電解液中に溶解して、
充放電サイクルに伴い生じる水素吸蔵合金粒子の新生面
上に析出し、これが電極活性領域となつて上記の保護膜
と共存し、低温放電特性と高率放電特性を向上させる。
つまり、水素吸蔵合金の粒子表面上に上記の保護膜と上
記の電極活性領域とが共存することにより、高温貯蔵特
性と低温放電特性にともにすぐれたものとなると考えら
れる。
The above-mentioned corrosion-inhibiting compound is partially dissolved in an alkaline electrolyte, and precipitates as a complex or a hydroxide on the particle surface of the hydrogen-absorbing alloy to form a protective film. Sometimes suppresses corrosion of hydrogen storage alloy. On the other hand, this protective film reduces the activity of the hydrogen storage alloy activated by Co, Al, Mn, etc., and lowers the low-temperature discharge characteristics and the high-rate discharge characteristics. The compound dissolves in the electrolyte,
The hydrogen storage alloy particles generated during the charge / discharge cycle are deposited on the new surface and coexist with the above-mentioned protective film as an electrode active region to improve low-temperature discharge characteristics and high-rate discharge characteristics.
That is, it is considered that the coexistence of the above-mentioned protective film and the above-mentioned electrode active region on the surface of the particles of the hydrogen storage alloy results in both high-temperature storage characteristics and low-temperature discharge characteristics.

【0015】本発明において、上記の腐食防止化合物
は、水素吸蔵合金の活性化を維持しつつ保護膜で合金表
面を被覆するのに十分な量とするために、水素吸蔵合金
100重量部に対して、0.5〜2重量部、好ましくは
1〜1.5重量部とするのがよい。また、上記のホウ素
またはホウ素化合物は、保護膜に対して電極活性領域を
共存させるために、水素吸蔵合金100重量部に対し
て、0.1〜3重量部、好ましくは0.5〜1.5重量
部とするのがよい。
In the present invention, the above-mentioned corrosion-inhibiting compound is used in an amount sufficient to cover the alloy surface with a protective film while maintaining the activation of the hydrogen-absorbing alloy. The amount is preferably 0.5 to 2 parts by weight, more preferably 1 to 1.5 parts by weight. Further, the above-mentioned boron or boron compound is used in an amount of 0.1 to 3 parts by weight, preferably 0.5 to 1 part by weight, based on 100 parts by weight of the hydrogen storage alloy in order to allow the electrode active region to coexist with the protective film. It is preferable to use 5 parts by weight.

【0016】また、本発明において、上記の腐食防止化
合物と上記のホウ素またはホウ素化合物との負極中での
存在割合は、高温貯蔵特性と低温放電特性の両立をはか
るため、Nb、W、Y、YbまたはBiの各元素とホウ
素との原子比が1:0.5〜1:1.5、とくに1:1
となるようにするのが好ましい。すなわち、このような
存在割合にすると、水素吸蔵合金の表面に保護膜と電極
活性領域とがうまく共存して、高温貯蔵特性と低温放電
特性にともにすぐれたものとなる。
In the present invention, the proportion of the above-mentioned corrosion-inhibiting compound and the above-mentioned boron or boron compound in the negative electrode is determined by Nb, W, Y, and Nb in order to achieve both high-temperature storage characteristics and low-temperature discharge characteristics. The atomic ratio between each element of Yb or Bi and boron is 1: 0.5 to 1: 1.5, particularly 1: 1.
It is preferable that That is, with such an abundance ratio, the protective film and the electrode active region coexist well on the surface of the hydrogen storage alloy, and both the high-temperature storage characteristics and the low-temperature discharge characteristics are excellent.

【0017】本発明においては、前記の水素吸蔵合金
と、上記の腐食防止化合物と上記のホウ素またはホウ素
化合物との組み合わせからなる添加剤と、さらに結着剤
などとを、水または溶剤の存在下で混合して、ペ―スト
状合剤とし、これをパンチングメタル、発泡メタルなど
の耐アルカリ性金属多孔体などからなる導電性基材に塗
布して充填し、乾燥したのち、圧縮成形することによ
り、水素吸蔵合金からなる負極とすることができる。な
お、上記のペ―スト状合剤には、必要に応じて、ニツケ
ル粉、コバルト粉、銅粉、コバルト酸化物などの従来公
知の各種の導電性粉末などの配合成分を含ませるように
してもよい。
In the present invention, the above-mentioned hydrogen storage alloy, an additive comprising the above-mentioned corrosion-inhibiting compound and the above-mentioned combination of boron or a boron compound, and a binder and the like are added in the presence of water or a solvent. To form a paste-like mixture, apply it to a conductive substrate made of porous metal such as punched metal, foamed metal, etc., fill it, dry it, and then press-mold it. And a negative electrode made of a hydrogen storage alloy. In addition, the above-mentioned paste-form mixture contains, as necessary, a compounding component such as various known conductive powders such as nickel powder, cobalt powder, copper powder, and cobalt oxide. Is also good.

【0018】上記の結着剤としては、ポリテトラフルオ
ロエチレン、ポリアクリル酸ナトリウム、ポリビニルア
ルコ―ル、スチレンとアクリル系化合物との共重合体な
どがある。これらの中でも、スチレンと2−エチルヘキ
シルアクリレ―トを主成分とする単量体混合物の共重合
体などは、水素吸蔵合金などとの親和性が高く、少量で
も良好な分散性が得られるため、好ましい。これら結着
剤の使用量は、水素吸蔵合金100重量部に対して、通
常0.5〜5重量部とするのがよい。
Examples of the binder include polytetrafluoroethylene, sodium polyacrylate, polyvinyl alcohol, and a copolymer of styrene and an acrylic compound. Among these, a copolymer of a monomer mixture containing styrene and 2-ethylhexyl acrylate as main components has a high affinity for a hydrogen storage alloy and the like, and a good dispersibility can be obtained even in a small amount. ,preferable. The amount of these binders used is generally preferably 0.5 to 5 parts by weight based on 100 parts by weight of the hydrogen storage alloy.

【0019】上記の結着剤とともに、カルボキシメチル
セルロ―ス、メチルセルロ―ス、ヒドロキシプロピルセ
ルロ―ス、ポリオキシエチレンなどの増粘剤を配合して
もよい。これらの中でも、ポリオキシエチレンは、ペ―
スト化した場合の粘度増加が少ないため、とくに好まし
く用いられる。これら増粘剤の配合量は、水素吸蔵合金
100重量部に対して、通常1〜5重量部とするのがよ
い。
A thickener such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, or polyoxyethylene may be added to the binder. Among these, polyoxyethylene is
It is particularly preferably used since the increase in viscosity when it is made into a strike is small. The compounding amount of these thickeners is usually preferably 1 to 5 parts by weight based on 100 parts by weight of the hydrogen storage alloy.

【0020】本発明のニツケル水素蓄電池は、ニツケル
極からなる正極に対し、上記構成の水素吸蔵合金電極を
負極としたことを特徴とするものである。上記のニツケ
ル極は、通常、水酸化ニツケル粉、導電助剤および結着
剤を水の存在下で混合分散させてペ―スト状物とし、こ
れを耐アルカリ性金属多孔体に充填し、これを乾燥、圧
延したのち、所定サイズに裁断することにより、製造さ
れる。
A nickel hydrogen storage battery according to the present invention is characterized in that a hydrogen storage alloy electrode having the above structure is used as a negative electrode with respect to a positive electrode comprising a nickel electrode. The nickel electrode is usually prepared by mixing and dispersing nickel hydroxide powder, a conductive additive and a binder in the presence of water to form a paste, filling the paste into an alkali-resistant porous metal body, After drying and rolling, it is manufactured by cutting to a predetermined size.

【0021】本発明のニツケル水素蓄電池は、たとえ
ば、上記ニツケル極からなる正極と、前記の水素吸蔵合
金電極からなる負極とを、セパレ―タを介して積層し、
これを電池缶に挿入したのち、アルカリ電解液を注入す
ることにより、作製することができる。ここで、上記の
セパレ―タとしては、ポリオレフイン繊維からなる不織
布に親水基を付与したものなどが用いられる。また上記
のアルカリ電解液としては、水酸化カリウム水溶液単独
や、これに水酸化ナトリウム、酸化亜鉛などの添加物を
溶解させたアルカリ水溶液が用いられる。
The nickel hydrogen storage battery of the present invention comprises, for example, a positive electrode comprising the above-mentioned nickel electrode and a negative electrode comprising the above-mentioned hydrogen-absorbing alloy electrode laminated via a separator.
It can be manufactured by inserting this into a battery can and then injecting an alkaline electrolyte. Here, as the above separator, a non-woven fabric made of polyolefin fibers having a hydrophilic group is used. As the above-mentioned alkaline electrolyte, an aqueous potassium hydroxide solution alone or an alkaline aqueous solution in which additives such as sodium hydroxide and zinc oxide are dissolved are used.

【0022】[0022]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明する。以下において、部とあるのは重量部を
意味するものとする。
Next, an embodiment of the present invention will be described in more detail. In the following, “parts” means “parts by weight”.

【0023】実施例1 ミツシユメタルMm(La、Ce、Nd、Pr)、N
i、Co、Mn、AlおよびMo(いずれも純度99.
9重量%以上)の各試料を、原子比でMm(La:0.
32、Ce:0.48、Nd:0.15、Pr:0.0
4)、Ni:3.55、Co:0.75、Mn:0.
4、Al:0.3、Mo:0.04となるように、高周
波溶解炉により加熱溶解して、水素吸蔵合金を得た。こ
の水素吸蔵合金を、耐圧容器中で10-3Torrまで真
空引きを行つたのち、水素圧力14Kg/cm2 で24時間
保持し、水素を排気し、さらに400℃で加熱し、水素
を完全に放出することにより、20〜100μmの水素
吸蔵合金粉末を得た。
Example 1 Mission metal Mm (La, Ce, Nd, Pr), N
i, Co, Mn, Al and Mo (all with a purity of 99.
9% by weight or more) of each sample in atomic ratio of Mm (La: 0.
32, Ce: 0.48, Nd: 0.15, Pr: 0.0
4), Ni: 3.55, Co: 0.75, Mn: 0.
4, Al: 0.3 and Mo: 0.04 were heated and melted by a high frequency melting furnace to obtain a hydrogen storage alloy. This hydrogen storage alloy is evacuated to 10 −3 Torr in a pressure vessel, and then kept at a hydrogen pressure of 14 kg / cm 2 for 24 hours, evacuated of hydrogen, and further heated at 400 ° C. to completely remove hydrogen. By releasing, a hydrogen storage alloy powder of 20 to 100 μm was obtained.

【0024】この水素吸蔵合金粉末100部に対し、N
2 5 粉末1部、ホウ素粉末1部、カルボニルNi粉
末4部、増粘剤としてポリエチレンオキサイド水溶液
(固形分濃度6重量%)20部を加え、さらに結着剤と
してスチレンと2−エチルヘキシルアクリレ―トとの共
重合体(スチレン単位35モル%、2−エチルヘキシル
アクリレ―ト単位65モル%)の水分散液(固形分濃度
42.5重量%)1.7部を加え、混合分散して、ペ―
スト状合剤とした。この合剤中のNb2 5 粉末とホウ
素粉末とは、NbとBとの原子比が1:1であつた。こ
のペ―スト状合剤を、鉄にNiメツキを施したパンチン
グメタルに塗布して充填させ、乾燥後、圧縮成形した。
その後、所定サイズに裁断して、負極シ―トを作製し
た。
With 100 parts of this hydrogen storage alloy powder, N
b 2 O 5 powder, 1 part of boron powder 1 part, carbonyl Ni powder, 4 parts of aqueous solution of polyethylene oxide (solid content concentration of 6 wt%) as a thickener 20 parts was added, styrene and 2-ethylhexyl acrylate further as a binder 1.7 parts of an aqueous dispersion (solids concentration: 42.5% by weight) of a copolymer with a latex (styrene unit: 35 mol%, 2-ethylhexyl acrylate unit: 65 mol%) was added and mixed and dispersed. And pa
The mixture was in the form of a strike. The Nb 2 O 5 powder and the boron powder in this mixture had an atomic ratio of Nb to B of 1: 1. This paste-form mixture was applied to a punched metal in which Ni plating was applied to iron, filled and dried, and then compression-molded.
Thereafter, the resultant was cut into a predetermined size to produce a negative electrode sheet.

【0025】正極は、水酸化ニツケル粉末100部に対
し、ニツケル粉末2部を乾式混合したのち、コバルト粉
末10部、カルボキシルメチルセルロ―ス水溶液(固形
分濃度5重量%)5部、ポリテトラフルオロエチレン分
散剤溶液(固形分濃度60重量%)5部を混合して、ペ
―スト状合剤とした。このペ―スト状合剤をニツケル発
泡体基材に塗布して充填させ、80℃で2時間乾燥後、
1トン/cm2 で圧縮成形した。ついで、80℃の温水で
2時間水洗し、さらに80℃で1時間乾燥後、圧縮成形
した。その後、所定サイズに裁断して、正極シ―トを作
製した。
The positive electrode was prepared by dry-mixing 2 parts of nickel powder with 100 parts of nickel hydroxide powder, and then 10 parts of cobalt powder, 5 parts of carboxymethyl cellulose aqueous solution (solid content concentration 5% by weight), and polytetrafluorocarbon. 5 parts of an ethylene dispersant solution (solid content: 60% by weight) was mixed to obtain a paste mixture. This paste-form mixture is applied to a nickel foam base material, filled and dried at 80 ° C. for 2 hours.
It was compression molded at 1 ton / cm 2 . Then, it was washed with warm water of 80 ° C. for 2 hours, dried at 80 ° C. for 1 hour, and compression-molded. Thereafter, the sheet was cut into a predetermined size to produce a positive electrode sheet.

【0026】つぎに、上記の負極シ―トと正極シ―トと
をナイロン不織布製のセパレ―タを介して捲回し、単4
サイズの電極缶に入れ、これに電解液(30重量%KO
H水溶液1リツトルにLiOHを17g溶解させたアル
カリ水溶液)を注入した。樹脂製パツキングを付けた可
逆弁付き封口体に正極タブをスポツト溶接し、負極の最
外周部を缶の側面に接触させたのち、密封した。つい
で、これを60℃で17時間保存し、0.25C(13
8mA)で6時間充電後、0.2C(110mA)で
1.0Vまで放電した。この充放電サイクルを放電容量
が一定になるまで繰り返して、ニツケル水素蓄電池を作
製した。
Next, the above-mentioned negative electrode sheet and positive electrode sheet were wound through a separator made of nylon non-woven fabric to form a single sheet.
Electrode (30% by weight KO)
An aqueous alkaline solution in which 17 g of LiOH was dissolved in 1 liter of an aqueous H solution was injected. The positive electrode tab was spot-welded to the sealing member with the reversible valve provided with the resin packing, and the outermost peripheral portion of the negative electrode was brought into contact with the side surface of the can, followed by sealing. Then, this was stored at 60 ° C. for 17 hours, and 0.25 C (13
After charging at 8 mA) for 6 hours, the battery was discharged to 1.0 V at 0.2 C (110 mA). This charge / discharge cycle was repeated until the discharge capacity became constant, thereby producing a nickel hydrogen storage battery.

【0027】実施例2 負極シ―トの作製にあたり、ペ―スト状合剤中のNb2
5 粉末の使用量を1部から2部に変更した以外は、実
施例1と同様にして、ニツケル水素蓄電池を作製した。
なお、負極シ―トのペ―スト状合剤中のNb2 5 粉末
とホウ素粉末とは、NbとBとの原子比が2:1であつ
た。
Example 2 In preparing a negative electrode sheet, Nb 2 in the paste mixture was used.
A nickel hydrogen storage battery was produced in the same manner as in Example 1, except that the amount of the O 5 powder was changed from 1 part to 2 parts.
The Nb 2 O 5 powder and the boron powder in the paste mixture of the negative electrode sheet had an atomic ratio of Nb to B of 2: 1.

【0028】実施例3 負極シ―トの作製にあたり、ペ―スト状合剤中のホウ素
粉末の使用量を1部から2部に変更した以外は、実施例
1と同様にして、ニツケル水素蓄電池を作製した。な
お、負極シ―トのペ―スト状合剤中のNb2 5 粉末と
ホウ素粉末とは、NbとBとの原子比が1:2であつ
た。
Example 3 A nickel hydrogen storage battery was manufactured in the same manner as in Example 1 except that the amount of the boron powder in the paste mixture was changed from 1 part to 2 parts in producing a negative electrode sheet. Was prepared. The Nb 2 O 5 powder and the boron powder in the paste mixture of the negative electrode sheet had an atomic ratio of Nb to B of 1: 2.

【0029】実施例4 負極シ―トの作製にあたり、ペ―スト状合剤中のNb2
5 粉末1部に代えてWO3 粉末1部を使用した以外
は、実施例1と同様にして、ニツケル水素蓄電池を作製
した。なお、負極シ―トのペ―スト状合剤中のWO3
末とホウ素粉末とは、WとBとの原子比が1:1であつ
た。
Example 4 In preparing a negative electrode sheet, Nb 2 in the paste mixture was used.
A nickel hydrogen storage battery was produced in the same manner as in Example 1, except that 1 part of WO 3 powder was used instead of 1 part of O 5 powder. The WO 3 powder and the boron powder in the paste mixture of the negative electrode sheet had an atomic ratio of W to B of 1: 1.

【0030】実施例5 負極シ―トの作製にあたり、ペ―スト状合剤中のNb2
5 粉末1部に代えてWO3 粉末2部を使用した以外
は、実施例1と同様にして、ニツケル水素蓄電池を作製
した。なお、負極シ―トのペ―スト状合剤中のWO3
末とホウ素粉末とは、WとBとの原子比が2:1であつ
た。
Example 5 In preparing a negative electrode sheet, Nb 2 in the paste mixture was used.
A nickel hydrogen storage battery was produced in the same manner as in Example 1, except that 2 parts of WO 3 powder was used instead of 1 part of O 5 powder. The WO 3 powder and the boron powder in the paste mixture of the negative electrode sheet had an atomic ratio of W to B of 2: 1.

【0031】実施例6 負極シ―トの作製にあたり、ペ―スト状合剤中のNb2
5 粉末1部に代えてWO3 粉末1部を使用するととも
に、ホウ素粉末の使用量を1部から2部に変更した以外
は、実施例1と同様にして、ニツケル水素蓄電池を作製
した。なお、負極シ―トのペ―スト状合剤中のWO3
末とホウ素粉末とは、WとBとの原子比が1:2であつ
た。
Example 6 In preparing a negative electrode sheet, Nb 2 in the paste mixture was used.
A nickel hydrogen storage battery was produced in the same manner as in Example 1, except that 1 part of WO 3 powder was used instead of 1 part of O 5 powder, and the amount of the boron powder was changed from 1 part to 2 parts. The WO 3 powder and the boron powder in the paste mixture of the negative electrode sheet had an atomic ratio of W to B of 1: 2.

【0032】比較例1 負極シ―トの作製にあたり、ペ―スト状合剤中のNb2
5 粉末1部およびホウ素粉末1部の使用を省いた以外
は、実施例1と同様にして、ニツケル水素蓄電池を作製
した。
Comparative Example 1 In preparing a negative electrode sheet, Nb 2 in the paste mixture was used.
A nickel hydrogen storage battery was fabricated in the same manner as in Example 1, except that one part of O 5 powder and one part of boron powder were omitted.

【0033】比較例2 負極シ―トの作製にあたり、ペ―スト状合剤中のNb2
5 粉末の使用量を1部から2部に変更するとともに、
ホウ素粉末1部の使用を省いた以外は、実施例1と同様
にして、ニツケル水素蓄電池を作製した。
Comparative Example 2 In preparing a negative electrode sheet, Nb 2 in the paste mixture was used.
The amount of O 5 powder used was changed from 1 part to 2 parts,
A nickel hydrogen storage battery was fabricated in the same manner as in Example 1, except that one part of the boron powder was omitted.

【0034】比較例3 負極シ―トの作製にあたり、ペ―スト状合剤中のホウ素
粉末の使用量を1部から2部に変更するとともに、Nb
2 5 粉末1部の使用を省いた以外は、実施例1と同様
にして、ニツケル水素蓄電池を作製した。
Comparative Example 3 In preparing the negative electrode sheet, the amount of the boron powder in the paste mixture was changed from 1 part to 2 parts, and Nb was added.
A nickel hydrogen storage battery was produced in the same manner as in Example 1, except that one part of 2 O 5 powder was omitted.

【0035】上記の実施例1〜6および比較例1〜3の
各ニツケル水素蓄電池について、下記の方法にしたがつ
て、高温貯蔵特性を評価した。この結果は、表1に示さ
れるとおりであつた。
The nickel hydrogen storage batteries of Examples 1 to 6 and Comparative Examples 1 to 3 were evaluated for high-temperature storage characteristics according to the following method. The results were as shown in Table 1.

【0036】<高温貯蔵特性>20℃,145mAで6
時間充電したのち、110mA放電を行い、電池電圧が
1.0Vになるまでの放電容量を測定した(高温貯蔵前
の放電容量)。また、80℃の高温槽中に14日間貯蔵
したのち、上記と同様に充放電試験を行つて、放電容量
を測定した(高温貯蔵後の放電容量)。これらの高温貯
蔵前の放電容量と高温貯蔵後の放電容量とから、回復率
を求めた。
<High temperature storage characteristics> 6 ° C. at 145 mA at 20 ° C.
After charging for an hour, the battery was discharged at 110 mA, and the discharge capacity until the battery voltage reached 1.0 V was measured (discharge capacity before high-temperature storage). After storage in a high-temperature bath at 80 ° C. for 14 days, a charge / discharge test was performed in the same manner as above to measure the discharge capacity (discharge capacity after high-temperature storage). The recovery rate was determined from the discharge capacity before storage at high temperature and the discharge capacity after storage at high temperature.

【0037】 [0037]

【0038】また、上記の実施例1〜6および比較例1
〜3の各ニツケル水素蓄電池について、下記の方法にし
たがつて、低温放電特性を評価した。この結果は、表2
に示されるとおりであつた。
Further, the above Examples 1 to 6 and Comparative Example 1
The low-temperature discharge characteristics of each of the nickel hydrogen storage batteries of Nos. 1 to 3 were evaluated according to the following method. This result is shown in Table 2
The results were as shown in FIG.

【0039】<低温放電特性>20℃,145mAで6
時間充電したのち、550mA放電を行い、電池電圧が
1.0Vになるまでの放電容量を測定した。また、上記
充電後、−10℃の恒温槽中で4時間保持し、550m
A放電を行い、電池電圧が1.0Vになるまでの放電容
量を測定した。両者の放電容量より、低温放電特性を評
価した。
<Low-Temperature Discharge Characteristics>
After charging for an hour, 550 mA discharge was performed, and the discharge capacity until the battery voltage became 1.0 V was measured. After the above charging, the battery was kept in a constant temperature bath at −10 ° C. for 4 hours, and 550 m
A discharge was performed, and the discharge capacity until the battery voltage reached 1.0 V was measured. The low-temperature discharge characteristics were evaluated from both discharge capacities.

【0040】 [0040]

【0041】上記の表1および表2から明らかなよう
に、本発明の実施例1〜6の各ニツケル水素蓄電池は、
高温貯蔵後の回復率が90%以上という、すぐれた高温
貯蔵特性を有しているとともに、低温放電特性にもすぐ
れていることがわかる。これに対し、比較例1〜3の各
ニツケル水素蓄電池は、高温貯蔵特性に劣つているか、
低温放電特性に劣つていることが明らかである。
As is clear from Tables 1 and 2 above, each of the nickel hydrogen storage batteries of Examples 1 to 6 of the present invention
It can be seen that it has excellent high-temperature storage characteristics of a recovery rate after storage at high temperatures of 90% or more, and also has excellent low-temperature discharge characteristics. On the other hand, the nickel hydrogen storage batteries of Comparative Examples 1 to 3 are inferior in high-temperature storage characteristics,
It is clear that the low-temperature discharge characteristics are inferior.

【0042】なお、上記の実施例では、添加剤としてN
2 5 またはWO3 とホウ素を用いた例を示している
が、他の腐食防止化合物としてY、YbまたはBiから
構成される化合物を用い、またホウ素化合物としてB2
3 またはH3 BO3 を用いたときでも、上記とほぼ同
様の効果が奏されることが確認されている。
In the above embodiment, N was used as an additive.
Although an example using b 2 O 5 or WO 3 and boron is shown, a compound composed of Y, Yb or Bi is used as another corrosion inhibitor, and B 2 is used as a boron compound.
It has been confirmed that even when O 3 or H 3 BO 3 is used, substantially the same effects as described above are exerted.

【0043】[0043]

【発明の効果】以上のように、本発明においては、多元
化合金よりなる水素吸蔵合金を用いた負極中に、添加剤
として、前記特定の腐食防止化合物とホウ素またはホウ
素化合物とを組み合わせ使用したことにより、高温貯蔵
特性と低温放電特性にすぐれるニツケル水素蓄電池を提
供することができる。
As described above, in the present invention, the above-mentioned specific corrosion inhibitor and boron or a boron compound are used as additives in a negative electrode using a hydrogen storage alloy made of a ternary alloy. Thus, a nickel hydrogen storage battery having excellent high-temperature storage characteristics and low-temperature discharge characteristics can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長井 龍 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H003 AA03 BB02 BB04 BC01 BD00 BD03 BD04 5H016 AA02 EE01 EE04 EE05 HH01 5H028 AA01 AA05 EE01 EE04 EE05 HH01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Ryu Nagai 1-88 Ushitora, Ibaraki-shi, Osaka F-term in Hitachi Maxell, Ltd. (Reference) 5H003 AA03 BB02 BB04 BC01 BD00 BD03 BD04 5H016 AA02 EE01 EE04 EE05 HH01 5H028 AA01 AA05 EE01 EE04 EE05 HH01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニツケルを活物質とする正極と水
素吸蔵合金よりなる負極とアルカリ水溶液よりなる電解
液とセパレ―タを有するニツケル水素蓄電池において、
上記の水素吸蔵合金は、MmNi5 合金(Mmはミツシ
ユメタルを表す)のNiの一部がCo、Mn、Al、M
o、CuまたはCrの少なくとも1種で置換されてなる
多元化合金で構成されており、かつこの水素吸蔵合金を
用いた負極中に添加剤としてNb、W、Y、Ybまたは
Biの少なくとも1種の元素から構成される化合物と、
B、B2 3 またはH3 BO3 から選ばれる少なくとも
1種とを含有することを特徴とするニツケル水素蓄電
池。
1. A nickel hydrogen storage battery comprising a positive electrode containing nickel hydroxide as an active material, a negative electrode comprising a hydrogen storage alloy, an electrolytic solution comprising an aqueous alkali solution, and a separator.
In the above hydrogen storage alloy, a part of Ni of the MmNi 5 alloy (Mm represents a metal mesh) is Co, Mn, Al, M
o, Cu, or Cr, which is composed of a ternary alloy substituted with at least one of Nb, W, Y, Yb or Bi as an additive in a negative electrode using the hydrogen storage alloy. A compound composed of the elements of
A nickel hydrogen storage battery comprising at least one selected from the group consisting of B, B 2 O 3 and H 3 BO 3 .
【請求項2】 Nb、W、Y、YbまたはBiの少なく
とも1種の元素から構成される化合物は、水素吸蔵合金
100重量部に対して、0.5〜2重量部である請求項
1に記載のニツケル水素蓄電池。
2. The composition according to claim 1, wherein the compound composed of at least one element of Nb, W, Y, Yb or Bi is 0.5 to 2 parts by weight based on 100 parts by weight of the hydrogen storage alloy. The nickel-metal hydride storage battery according to any one of the preceding claims.
【請求項3】 B、B2 3 またはH3 BO3 から選ば
れる少なくとも1種は、水素吸蔵合金100重量部に対
して、0.1〜3重量部である請求項1に記載のニツケ
ル水素蓄電池。
3. The nickel according to claim 1, wherein at least one selected from the group consisting of B, B 2 O 3 and H 3 BO 3 is 0.1 to 3 parts by weight based on 100 parts by weight of the hydrogen storage alloy. Hydrogen storage battery.
【請求項4】 Nb、W、Y、YbまたはBiの少なく
とも1種の元素から構成される化合物と、B、B2 3
またはH3 BO3 から選ばれる少なくとも1種とは、前
者の上記各元素と後者のホウ素との原子比が1:0.5
〜1:1.5である請求項1〜3のいずれかに記載のニ
ツケル水素蓄電池。
4. A compound comprising at least one element of Nb, W, Y, Yb or Bi, and B, B 2 O 3
Alternatively, at least one selected from H 3 BO 3 means that the atomic ratio of the former element to boron is 1: 0.5.
The nickel hydrogen storage battery according to claim 1, wherein the ratio is で 1: 1.5.
JP10194335A 1998-07-09 1998-07-09 Nickel-hydrogen storage battery Withdrawn JP2000030697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10194335A JP2000030697A (en) 1998-07-09 1998-07-09 Nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10194335A JP2000030697A (en) 1998-07-09 1998-07-09 Nickel-hydrogen storage battery

Publications (1)

Publication Number Publication Date
JP2000030697A true JP2000030697A (en) 2000-01-28

Family

ID=16322887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10194335A Withdrawn JP2000030697A (en) 1998-07-09 1998-07-09 Nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP2000030697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050898A1 (en) * 2001-12-12 2003-06-19 Sanyo Electric Co., Ltd. Nickel-hydrogen cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050898A1 (en) * 2001-12-12 2003-06-19 Sanyo Electric Co., Ltd. Nickel-hydrogen cell

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP2012069510A (en) Cylindrical nickel-hydrogen storage battery
JP2008071759A (en) Composition of anode of alkaline electrolytic solution battery, anode composed of the composition, and alkaline electrolytic solution battery composed of this anode
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP3482606B2 (en) Sealed alkaline storage battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP2001118597A (en) Alkaline secondary cell
JP2000030697A (en) Nickel-hydrogen storage battery
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JP3263603B2 (en) Alkaline storage battery
JPH09204930A (en) Nickel hydrogen storage battery
JP2002279992A (en) Nickel electrode for alkaline storage battery, and alkaline storage battery
JP2010262763A (en) Surface treatment method of hydrogen storage alloy powder, anode active material for nickel-hydrogen battery, anode for nickel-hydrogen battery, and nickel-hydrogen battery
JP3268938B2 (en) Nickel-hydrogen storage battery
JPH11250904A (en) Nickel hydrogen storage battery
JP2001223000A (en) Alkaline secondary battery
JPH11250903A (en) Nickel hydrogen storage battery
JP2002260650A (en) Battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP2004185956A (en) Nickel-hydrogen storage battery
JP2000021398A (en) Alkaline secondary battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004