JPH1124766A - Reference voltage generator - Google Patents

Reference voltage generator

Info

Publication number
JPH1124766A
JPH1124766A JP9172055A JP17205597A JPH1124766A JP H1124766 A JPH1124766 A JP H1124766A JP 9172055 A JP9172055 A JP 9172055A JP 17205597 A JP17205597 A JP 17205597A JP H1124766 A JPH1124766 A JP H1124766A
Authority
JP
Japan
Prior art keywords
voltage
reference voltage
differential amplifier
output
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9172055A
Other languages
Japanese (ja)
Other versions
JP3223844B2 (en
Inventor
Kazuki Ono
一樹 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17205597A priority Critical patent/JP3223844B2/en
Priority to KR10-1998-0024628A priority patent/KR100422031B1/en
Priority to CNB981025609A priority patent/CN1140050C/en
Priority to US09/106,266 priority patent/US6147549A/en
Publication of JPH1124766A publication Critical patent/JPH1124766A/en
Application granted granted Critical
Publication of JP3223844B2 publication Critical patent/JP3223844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Amplifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently generate a reference voltage without providing plural circuits by providing a 2nd reference voltage generating means for generating plural reference voltages separately from a voltage feedback means at the output of a differential amplifier. SOLUTION: The desired voltage is extracted from a reference voltage VREF1 through resistance division while using divided resistors R3, R4 and R5. Besides, compensating capacitors C1, C2 and C3 are put in for stability. Besides, the required reference voltage is switched for the relation of VREF1> VREF2>VREF3. In this case, any one of divided resistors R3, R4 and R5 is arbitrarily selected so as to extract the arbitrary voltage. In this case, a capacitance is added only to the VREF1 on a route from the VREF1 through the resistor R1 to the minus input of a differential amplifier 1 inside the feedback loop of the differential amplifier 1 and added before resistance on the route so that feedback is not delayed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】基準電圧発生装置に関し、特
に複数の基準電圧を効率的に発生する基準電圧発生装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reference voltage generator, and more particularly to a reference voltage generator for efficiently generating a plurality of reference voltages.

【0001】[0001]

【従来の技術】基準電圧発生装置は、基準となる電圧を
安定的に発生させるもので、半導体装置内部などで基準
電圧を必要とする回路に基準電圧を供給するものであ
る。基準電圧を発生させる回路は電圧、温度等の条件が
変わっても一定の電圧を発生させなければならないた
め、通常任意の電圧を発生させることはできない。つま
り、この回路は一定の電圧を発生させるだけのため、そ
の出力電圧を使って所望の電圧を生成するためには更に
差動増幅器と抵抗を使っている。
2. Description of the Related Art A reference voltage generating device stably generates a reference voltage, and supplies a reference voltage to a circuit that requires the reference voltage inside a semiconductor device or the like. A circuit for generating a reference voltage must generate a constant voltage even when conditions such as voltage and temperature change, and thus cannot normally generate an arbitrary voltage. That is, since this circuit only generates a constant voltage, a differential amplifier and a resistor are further used to generate a desired voltage using the output voltage.

【0002】例えば、特開昭62−274909に見ら
れるような回路構成になる(図3に示す)。この公知例
では、基準電圧発生源1が一定の電圧を電圧、温度等の
条件が変化しても供給するもので、2が差動増幅器、Q
101〜Q364で選択されるR1〜R64が抵抗であ
る。この例では、トランジスタQ101〜Q364で任
意の抵抗比を選択できるようにしているが一定の電圧だ
けを生成する場合はなくてもよく、この公知例を簡略化
したものが、図4である。この図では、V0が公知例の
Vref,VREFが公知例のVref2に対応し、1
が公知例の2の作動増幅器に対応する。この簡略化した
図で説明すると、ある特定の基準電圧V0は作動増幅器
の一方に入力され、差動増幅器のもう一方には、出力で
あるVREFを抵抗分割したV1が入力される。この
時、 V1=VREF・R2/(R1+R2) ・・・・・・・・・・・(1) の関係があり、差動増幅器は、2つの入力が一致するよ
うに動作するので、最終的には、 V0=V1 ・・・・・・・・・・・・・・・・・・・・・・・・(2) となり、所望の基準電圧VREFは、 VREF=V0・(R1+R2)/R2 ・・・・・・・・・・・(3) で求められる値になるので、R1,R2を調整すること
により、所望の電圧を得られることになる。
For example, a circuit configuration as shown in Japanese Patent Application Laid-Open No. 62-274909 is shown (shown in FIG. 3). In this known example, the reference voltage generator 1 supplies a constant voltage even when conditions such as voltage and temperature change.
R1 to R64 selected by 101 to Q364 are resistors. In this example, an arbitrary resistance ratio can be selected by the transistors Q101 to Q364, but it is not necessary to generate only a constant voltage. FIG. 4 is a simplified version of this known example. In this figure, V0 corresponds to Vref of a known example, VREF corresponds to Vref2 of a known example, and 1
Corresponds to the two operational amplifiers of the known example. In this simplified diagram, a specific reference voltage V0 is input to one of the operational amplifiers, and V1 which is a resistance-divided output of VREF is input to the other of the differential amplifiers. At this time, there is a relationship of V1 = VREF.R2 / (R1 + R2) (1), and the differential amplifier operates so that the two inputs coincide with each other. V0 = V1 (2), and the desired reference voltage VREF is VREF = V0 · (R1 + R2) / R2... (3) Since the value is obtained, the desired voltage can be obtained by adjusting R1 and R2.

【0003】Cは容量で、VREFを安定させるための
補償容量として入れてある。
[0003] C is a capacity, which is included as a compensation capacity for stabilizing VREF.

【0004】[0004]

【発明が解決しようとする課題】従来の基準電圧発生装
置では、複数の異る基準電圧が必要な場合は、図5に示
したように、図4の60に相当する回路を61〜63の
ように複数個半導体装置内に設け、それぞれのブロック
内のR1とR2の比率を変えて、それぞれ異る電圧を生
成する必要があった。このため、必要な基準電圧が複数
ある場合、その必要数分だけ発生回路が必要であり、抵
抗を除き同一の回路を複数設ける必要があり、コストと
密接に結び付いているチップサイズが大きくなってしま
うという問題点があった。
In a conventional reference voltage generator, when a plurality of different reference voltages are required, as shown in FIG. 5, a circuit corresponding to 60 in FIG. As described above, it is necessary to provide a plurality of semiconductor devices and generate different voltages by changing the ratio of R1 and R2 in each block. For this reason, when there are a plurality of necessary reference voltages, a necessary number of generation circuits are necessary, and a plurality of the same circuits except for the resistors need to be provided, and a chip size closely connected to cost increases. There was a problem that it would.

【0005】差動増幅器の回路規模はそれほど大きくな
いが、特に抵抗は、大きな面積を必要とするためであ
る。それは、消費電流を抑えるため抵抗値を大きくする
必要があるためである。例えば、図5のR1+R2が1
000KΩの時、これらの抵抗を通って流れる電流は、
1μAとなる。通常、低消費電流のためR1+R2は1
00K〜10MΩ程度の範囲で抵抗値を設定する。例え
ば1000KΩの抵抗をシリサイドで形成するとする
と、シリサイドの単位矩形面積当り抵抗値が約10Ωと
し、2μmの幅で200mmの長さが必要になることか
らも大きな面積が必要になることが理解できる。
Although the circuit scale of the differential amplifier is not so large, the resistor particularly requires a large area. This is because it is necessary to increase the resistance value in order to suppress current consumption. For example, R1 + R2 in FIG.
At 000 KΩ, the current flowing through these resistors is
1 μA. Usually, R1 + R2 is 1 due to low current consumption.
The resistance value is set in the range of about 00K to 10 MΩ. For example, if a resistance of 1000 KΩ is formed of silicide, the resistance per unit rectangular area of silicide is about 10Ω, and a width of 2 μm and a length of 200 mm are required.

【0006】図6に示したように図4のR1を細分化
し、VREF2を生成したらよいのではないかとも考え
られるが、VREF2の電圧の安定化のために入れてあ
る補償容量C2のため、差動増幅器にフィードバックす
る電圧V1が時定数R11・C2分遅れるため、差動増
幅器に対する制御に遅れを生じさせ、発振現象を起こ
し、基準電圧として使えないものとなってしまうことが
ある。
As shown in FIG. 6, it is conceivable that R1 in FIG. 4 may be subdivided to generate VREF2. However, due to the compensation capacitance C2 inserted for stabilizing the voltage of VREF2, Since the voltage V1 fed back to the differential amplifier is delayed by the time constant R11 · C2, the control of the differential amplifier is delayed, causing an oscillation phenomenon, which may not be used as a reference voltage.

【0007】[0007]

【課題を解決するための手段】本発明の基準電圧発生装
置は、差動増幅器の一方の入力端子には第1の基準電圧
発生手段の出力が印加され、他方には前記差動増幅器の
出力電圧に比例する電圧を発生する電圧帰還手段の出力
が印加され、かつ前記差動増幅器の出力に前記電圧帰還
手段とは別の電圧経路を有する複数の基準電圧を発生さ
せる第2の基準電圧発生手段を備えている。
A reference voltage generator according to the present invention has an output terminal of a first reference voltage generator applied to one input terminal of a differential amplifier and an output terminal of the differential amplifier connected to the other input terminal. A second reference voltage generator to which an output of a voltage feedback means for generating a voltage proportional to the voltage is applied, and a plurality of reference voltages having different voltage paths from the voltage feedback means are generated at the output of the differential amplifier; Means.

【0008】[0008]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。図1は、本発明の一実施例の回路図であ
る。前述した従来例と同じ構成部分は、同一の番号を付
けている。この実施例では、3つの異る基準電圧を発生
させる場合を示してある。R1とR2はVREF1を生
成するための分割抵抗で、R3,R4,R5はVREF
1からVREF1より電位の低いVREF2,VREF
3を生成するための分割抵抗である。また、C1,C
2,C3は安定性のために入れてある補償容量である。
この図において、従来と異るところは、VREF1から
R3,R4,R5を使って抵抗分割で所望の電圧を取り
出すようにしている点である。また、 VREF1>VREF2>VREF3 ・・・・・・・・・・・・(4) の関係になるように必要としている基準電圧を並び替え
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of one embodiment of the present invention. The same components as those in the conventional example described above are denoted by the same reference numerals. In this embodiment, a case where three different reference voltages are generated is shown. R1 and R2 are divided resistors for generating VREF1, and R3, R4, and R5 are VREF.
1 to VREF2, VREF lower in potential than VREF1
3 is a divisional resistor for generating 3. Also, C1, C
2 and C3 are compensation capacitors provided for stability.
This figure differs from the conventional one in that a desired voltage is extracted from VREF1 by resistance division using R3, R4 and R5. Also, the necessary reference voltages are rearranged so as to satisfy the relationship of VREF1>VREF2> VREF3 (4).

【0009】この例では、VREF1は従来例と同じよ
うに VREF1=V0・(R1+R2)/R2 ・・・・・・・・・・(5) で計算される値となり、VREF2,VREF3をそれ
ぞれ VREF2=VREF1・(R4+R5)/(R3+R4+R5) ・(6) VREF3=VREF1・R5/(R3+R4+R5) ・・・・(7) で計算される値となる。ここで、R3,R4,R5を任
意に選択することにより任意の電圧を取り出すことがで
きる。この場合、差動増幅器のフィードバックループ
内、即ち、VREF1からR1を通って差動アンプの−
(マイナス)入力に至る経路には、VREF1のみに容
量が付いており、経路にある抵抗の手前に付いているた
めフィードバックに遅延を生ずることはない。
In this example, VREF1 is a value calculated by the following equation: VREF1 = V0 + (R1 + R2) / R2 (5), as in the conventional example, and VREF2 is VREF2 = VREF1 · (R4 + R5) / (R3 + R4 + R5) (6) VREF3 = VREF1 · R5 / (R3 + R4 + R5) (7) Here, an arbitrary voltage can be extracted by arbitrarily selecting R3, R4, and R5. In this case, in the feedback loop of the differential amplifier, that is, from VREF1 through R1, −
In the path leading to the (minus) input, only VREF1 has a capacitance, and the path is in front of the resistor in the path, so that there is no delay in feedback.

【0010】次に本発明の第2の実施例について、図2
を基に説明する。実施例1では、常に一定の基準電圧を
出力する場合は問題ないが、半導体装置の初期不良を取
り除く試験であるスクリーニングのため、通常、高電圧
をかけて加速試験を行う場合に問題が生じる場合があ
る。
Next, a second embodiment of the present invention will be described with reference to FIG.
This will be described based on FIG. In the first embodiment, there is no problem in the case where a constant reference voltage is always output. However, in the case of a screening which is a test for removing an initial failure of a semiconductor device, a problem usually occurs when an accelerated test is performed by applying a high voltage. There is.

【0011】例えば、半導体記憶装置において、VRE
F1が周辺回路用の電源電圧の基準電圧、VREF2が
メモリセル用電源電圧の基準電圧といった場合、通常メ
モリセル容量の絶縁酸化膜は周辺回路のトランジスタの
ゲート酸化膜の厚さより薄いため、加速係数が周辺回路
とメモリセル部と異る。従って、VREF1とVREF
2の比率が通常時と加速試験時に変えないとならない場
合に対応できないという問題がある。これは、VREF
2が上記式(6)で決定され、VREF1に対して常に
一定の比率を持つことから明確である。
For example, in a semiconductor memory device, VRE
When F1 is the reference voltage of the power supply voltage for the peripheral circuit and VREF2 is the reference voltage of the power supply voltage for the memory cell, the insulating oxide film of the memory cell capacitor is usually thinner than the thickness of the gate oxide film of the transistor of the peripheral circuit. Are different from the peripheral circuit and the memory cell portion. Therefore, VREF1 and VREF
There is a problem that it is not possible to cope with the case where the ratio of 2 must be changed between the normal time and the acceleration test. This is VREF
2 is determined by the above equation (6), and is clear from the fact that it always has a constant ratio with respect to VREF1.

【0012】そこで、実施例2では、抵抗R3とR4の
間にスイッチとして動作するPchトランジスタP1を
挿入し、加速試験時にハイレベルになるTESTという
信号を入力することにより、VREF1とVREF2が
電気的に切り離れた状態にできるようにしている。この
時、テスト用電源発生回路8を設け、VREF2に供給
することによりVREF1とVREF2が通常時と異る
比率を持つ電位になるようにした。図示はしていない
が、V0も通常時とは異る電圧を発生させることによ
り、VREF1を通常時とは異る電圧にすることも可能
である。この例では、VREF3は VREF3=VREF2・R5/(R4+R5) ・・・・・・・(8) という式で求められる電圧になるが、式(5)とは関係
なく独立した電圧を生成させることもVREF2と同様
な回路を用いることにより可能である。TEST信号が
ロウレベルの時は、テスト用電圧発生回路の出力はハイ
インピーダンス状態になるようにすることにより、実施
例1と同一の動作になる。
Therefore, in the second embodiment, a Pch transistor P1 which operates as a switch is inserted between the resistors R3 and R4, and a signal TEST which becomes a high level during an acceleration test is inputted, so that VREF1 and VREF2 are electrically connected. So that they can be separated from each other. At this time, a test power supply generating circuit 8 is provided and supplied to VREF2 so that VREF1 and VREF2 have a potential different from that in the normal state. Although not shown, it is also possible to make VREF1 a voltage different from the normal state by generating a voltage different from the normal state also for V0. In this example, VREF3 is VREF3 = VREF2 · R5 / (R4 + R5)... (8), but a voltage independent of equation (5) is generated. Is also possible by using a circuit similar to VREF2. When the TEST signal is at a low level, the output of the test voltage generating circuit is set to a high impedance state, thereby performing the same operation as in the first embodiment.

【0013】[0013]

【発明の効果】以上説明したように本発明は、差動増幅
器の一方の入力端子には第1の基準電圧発生手段の出力
が印加され、他方には前記差動増幅器の出力電圧に比例
する電圧を発生する電圧帰還手段の出力が印加され、か
つ前記差動増幅器の出力に前記電圧帰還手段とは別に複
数の基準電圧を発生させる第2の基準電圧発生手段を備
えることにより、回路を複数設けることなく効率的な基
準電圧を発生させることが可能となっている。
As described above, according to the present invention, the output of the first reference voltage generating means is applied to one input terminal of the differential amplifier, and the other is proportional to the output voltage of the differential amplifier. The output of the voltage feedback means for generating a voltage is applied, and the output of the differential amplifier is provided with a second reference voltage generation means for generating a plurality of reference voltages separately from the voltage feedback means. It is possible to generate an efficient reference voltage without providing.

【0014】このような構成にすることにより、複数の
基準電圧が必要な場合、その必要数の基準電圧発生回路
が必要だったのが、従来の回路に加え第2の基準電圧発
生回路という簡単な構成で複数の基準電圧が発生でき
る。
With such a configuration, when a plurality of reference voltages are required, the required number of reference voltage generation circuits are required. A plurality of reference voltages can be generated with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の回路図。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

【図2】本発明の第2の実施例の回路図。FIG. 2 is a circuit diagram of a second embodiment of the present invention.

【図3】従来例を示す回路図。FIG. 3 is a circuit diagram showing a conventional example.

【図4】従来例を簡単化した回路図。FIG. 4 is a simplified circuit diagram of a conventional example.

【図5】従来技術による複数の基準電圧発生回路の例。FIG. 5 is an example of a plurality of reference voltage generation circuits according to the related art.

【図6】従来技術による他の複数の基準電圧発生回路の
例。
FIG. 6 is an example of another plurality of reference voltage generation circuits according to the related art.

【符号の説明】[Explanation of symbols]

1 差動増幅器 2 第1の基準電圧 31〜35,311,312 抵抗 40〜43 電圧補償用容量 50〜53 生成した基準電圧 60〜63 基準電圧発生回路 7 テスト信号 8 テスト用電圧発生回路 9 P−チャネルトランジスタ REFERENCE SIGNS LIST 1 differential amplifier 2 first reference voltage 31 to 35, 311, 312 resistance 40 to 43 voltage compensation capacitance 50 to 53 generated reference voltage 60 to 63 reference voltage generation circuit 7 test signal 8 test voltage generation circuit 9 P -Channel transistor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 差動増幅器の一方の入力端子には第1の
基準電圧発生手段の出力が印加され、他方には前記差動
増幅器の出力電圧に比例する電圧を発生する電圧帰還手
段の出力が印加され、かつ前記差動増幅器の出力に前記
電圧帰還手段とは別の電圧経路を有する複数の基準電圧
を発生させる第2の基準電圧発生手段を備えたことを特
徴とする基準電圧発生回路。
An output of a first reference voltage generating means is applied to one input terminal of a differential amplifier, and an output of a voltage feedback means for generating a voltage proportional to an output voltage of the differential amplifier is applied to the other input terminal. And a second reference voltage generating means for generating a plurality of reference voltages having a voltage path different from that of the voltage feedback means at the output of the differential amplifier. .
【請求項2】 差動増幅回路と、前記差動増幅回路の第
1の入力端に接続した基準電圧入力端子と、前記差動増
幅回路の第2の入力端に接続した節点と、前記増幅回路
の出力端に接続した第1の出力電圧端子と、前記節点と
前記第1の出力電圧端子間に設けられた第1の抵抗と、
前記節点と電源端子間に設けられた第2の抵抗と、前記
第1の出力電圧端子と第2の出力電圧端子間に設けられ
た第3の抵抗と、前記第2の出力電圧端子と第3の出力
電圧端子間に設けられた第4の抵抗と、前記第3の出力
電圧端子と前記電源端子間に設けられた第5の抵抗とを
有することを特徴とする基準電圧発生装置。
2. A differential amplifier circuit; a reference voltage input terminal connected to a first input terminal of the differential amplifier circuit; a node connected to a second input terminal of the differential amplifier circuit; A first output voltage terminal connected to an output terminal of the circuit, a first resistor provided between the node and the first output voltage terminal,
A second resistor provided between the node and a power supply terminal, a third resistor provided between the first output voltage terminal and the second output voltage terminal, and a second resistor connected to the second output voltage terminal. A reference voltage generator comprising: a fourth resistor provided between the third output voltage terminals; and a fifth resistor provided between the third output voltage terminal and the power supply terminal.
【請求項3】 前記第2の出力電圧端子と前記第3の抵
抗の一端との間に設けられテスト信号に応答して導通す
るスイッチ手段と、前記テスト信号に応答して前記第2
の出力電圧端子にテスト用電圧を供給する電圧供給回路
を更に有することを特徴とする請求項2記載の基準電圧
発生装置。
3. A switch means provided between the second output voltage terminal and one end of the third resistor, the switch means being turned on in response to a test signal, and the second means being turned on in response to the test signal.
3. The reference voltage generator according to claim 2, further comprising a voltage supply circuit for supplying a test voltage to an output voltage terminal of the reference voltage generator.
JP17205597A 1997-06-27 1997-06-27 Reference voltage generator Expired - Fee Related JP3223844B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17205597A JP3223844B2 (en) 1997-06-27 1997-06-27 Reference voltage generator
KR10-1998-0024628A KR100422031B1 (en) 1997-06-27 1998-06-27 Reference voltage generation circuit for generating a plurality of reference voltages
CNB981025609A CN1140050C (en) 1997-06-27 1998-06-29 Reference voltage generating circuit of generating plurality of reference voltages
US09/106,266 US6147549A (en) 1997-06-27 1998-06-29 Reference voltage generating circuit of generating a plurality of reference voltages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17205597A JP3223844B2 (en) 1997-06-27 1997-06-27 Reference voltage generator

Publications (2)

Publication Number Publication Date
JPH1124766A true JPH1124766A (en) 1999-01-29
JP3223844B2 JP3223844B2 (en) 2001-10-29

Family

ID=15934706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17205597A Expired - Fee Related JP3223844B2 (en) 1997-06-27 1997-06-27 Reference voltage generator

Country Status (4)

Country Link
US (1) US6147549A (en)
JP (1) JP3223844B2 (en)
KR (1) KR100422031B1 (en)
CN (1) CN1140050C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052012A1 (en) * 2000-01-12 2001-07-19 Advantest Corporation Constant voltage supply circuit, substrate of constant voltage supply circuit, and method of applying constant voltage
JP2018180576A (en) * 2017-04-03 2018-11-15 富士通セミコンダクター株式会社 Voltage dropping circuit and semiconductor integrated circuit

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014547A3 (en) * 1998-12-21 2000-11-15 Fairchild Semiconductor Corporation Low-current charge pump system
JP2001332696A (en) * 2000-05-24 2001-11-30 Nec Corp Board electric potential detecting circuit and board electric potential generating circuit
US6861895B1 (en) * 2003-06-17 2005-03-01 Xilinx Inc High voltage regulation circuit to minimize voltage overshoot
US7180211B2 (en) * 2003-09-22 2007-02-20 Micro Technology, Inc. Temperature sensor
US6970009B1 (en) * 2004-01-16 2005-11-29 Unisys Corporation Single-transistor two resistor circuit which translate test signals to selectable voltage levels
JP4470606B2 (en) * 2004-06-18 2010-06-02 ソニー株式会社 High frequency element and communication device
JP5295706B2 (en) * 2008-10-03 2013-09-18 株式会社東芝 Voltage generation circuit and semiconductor memory device including the same
EP2341616B1 (en) * 2009-12-23 2013-04-24 STMicroelectronics Design and Application S.R.O. Capacitive load driving amplifier
JP5493916B2 (en) 2010-01-28 2014-05-14 ミツミ電機株式会社 Buck-boost DC-DC converter and switching control circuit
JP5625369B2 (en) * 2010-01-28 2014-11-19 ミツミ電機株式会社 Buck-boost DC-DC converter and switching control circuit
KR101095515B1 (en) * 2011-09-09 2011-12-16 주식회사 마이크로텍 Low drop trm control circuit of active phased array antenna
CN104731144B (en) * 2013-12-23 2017-07-04 比亚迪股份有限公司 A kind of generating circuit from reference voltage
CN105511534B (en) * 2014-09-22 2017-12-05 联合聚晶股份有限公司 Multilevel partial-pressure circuit
US10162377B2 (en) 2015-06-15 2018-12-25 Micron Technology, Inc. Apparatuses and methods for providing reference voltages
WO2016201596A1 (en) * 2015-06-15 2016-12-22 Micron Technology, Inc. Apparatuses and methods for providing reference voltages
CN116743124A (en) * 2023-06-28 2023-09-12 上海极海盈芯科技有限公司 Threshold value generation circuit, chip and device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1599406A (en) * 1977-08-11 1981-09-30 Horstmann Gear Group Ltd Gas detector with a failure sensor
JPS5665190A (en) * 1979-11-01 1981-06-02 Nippon Electric Co Voltage devider circuit
JPS56132815A (en) * 1980-03-21 1981-10-17 Nec Corp Reference step voltage generating circuit
JPS62274909A (en) * 1986-05-23 1987-11-28 Hitachi Micro Comput Eng Ltd Selecting circuit
JPS6355530A (en) * 1986-08-27 1988-03-10 Hitachi Ltd Liquid crystal display device
US5105102A (en) * 1990-02-28 1992-04-14 Nec Corporation Output buffer circuit
JPH04157909A (en) * 1990-10-22 1992-05-29 Mitsubishi Electric Corp Semiconductor integrated circuit
KR920010633A (en) * 1990-11-30 1992-06-26 김광호 Reference voltage generation circuit of semiconductor memory device
JPH05100756A (en) * 1991-10-07 1993-04-23 Nec Ic Microcomput Syst Ltd Voltage divider circuit
US5381034A (en) * 1992-04-27 1995-01-10 Dallas Semiconductor Corporation SCSI terminator
JP3321246B2 (en) * 1993-06-08 2002-09-03 株式会社東芝 Current control voltage generation circuit
JP3326949B2 (en) * 1994-01-28 2002-09-24 富士通株式会社 Semiconductor integrated circuit
US5559424A (en) * 1994-10-20 1996-09-24 Siliconix Incorporated Voltage regulator having improved stability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052012A1 (en) * 2000-01-12 2001-07-19 Advantest Corporation Constant voltage supply circuit, substrate of constant voltage supply circuit, and method of applying constant voltage
US6756774B2 (en) 2000-01-12 2004-06-29 Advantest Corporation Constant voltage source, a constant voltage source circuit board and a method for applying a constant voltage
DE10190481B4 (en) * 2000-01-12 2008-01-17 Advantest Corp. Constant voltage source, constant voltage source circuit board and method for supplying a predetermined voltage
JP2018180576A (en) * 2017-04-03 2018-11-15 富士通セミコンダクター株式会社 Voltage dropping circuit and semiconductor integrated circuit

Also Published As

Publication number Publication date
JP3223844B2 (en) 2001-10-29
CN1208991A (en) 1999-02-24
KR100422031B1 (en) 2004-06-04
CN1140050C (en) 2004-02-25
US6147549A (en) 2000-11-14
KR19990007415A (en) 1999-01-25

Similar Documents

Publication Publication Date Title
JP3223844B2 (en) Reference voltage generator
USRE39374E1 (en) Constant voltage power supply with normal and standby modes
KR101136691B1 (en) Constant voltage circuit
JP4390716B2 (en) Voltage supply circuit, microphone unit and method for adjusting sensitivity of microphone unit
US7254080B2 (en) Fuse circuit and electronic circuit
JP2001175340A (en) Potential generation circuit
JP2008071245A (en) Reference current generating device
KR0141157B1 (en) The circuit for reference voltage generating
US6211709B1 (en) Pulse generating apparatus
JP2925995B2 (en) Substrate voltage regulator for semiconductor devices
JP2758893B2 (en) Constant voltage generation circuit for semiconductor device
US20050093581A1 (en) Apparatus for generating internal voltage capable of compensating temperature variation
US6201433B1 (en) Semiconductor memory device having constant voltage circuit
EP0565156A2 (en) Voltage burn-in scheme for BICMOS circuits
US6957278B1 (en) Reference -switch hysteresis for comparator applications
JPH11249751A (en) High-accuracy current supplying means
JP3278635B2 (en) Semiconductor integrated circuit
JP2006285953A (en) Reference voltage generation circuit and reference current generation circuit
US6894469B2 (en) Power supply circuit
KR20060099428A (en) Reference voltage generating circuit and reference current generating circuit
KR970004438B1 (en) Oscillator circuit
KR100234873B1 (en) Clock signal input buffer
KR100575869B1 (en) An internal reference voltage generator
KR20090047700A (en) Reference voltage generating circuit
JP3197807B2 (en) Power supply voltage detection circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees