JPH11245256A - Method for injection molding of non-crystalline thermoplastic resin - Google Patents

Method for injection molding of non-crystalline thermoplastic resin

Info

Publication number
JPH11245256A
JPH11245256A JP4690398A JP4690398A JPH11245256A JP H11245256 A JPH11245256 A JP H11245256A JP 4690398 A JP4690398 A JP 4690398A JP 4690398 A JP4690398 A JP 4690398A JP H11245256 A JPH11245256 A JP H11245256A
Authority
JP
Japan
Prior art keywords
resin
mold
gas
carbon dioxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4690398A
Other languages
Japanese (ja)
Other versions
JP3096904B2 (en
Inventor
Hiroshi Yamaki
宏 山木
Yoshinobu Matsuura
良暢 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4690398A priority Critical patent/JP3096904B2/en
Publication of JPH11245256A publication Critical patent/JPH11245256A/en
Application granted granted Critical
Publication of JP3096904B2 publication Critical patent/JP3096904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1701Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • B29C2043/527Heating or cooling selectively cooling, e.g. locally, on the surface of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1701Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free
    • B29C2045/1702Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free dissolving or absorbing a fluid in the plastic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a molded article with excellent appearance by transferring highly precisely a mold surface condition to the molded article, in injection molding of a non-crystalline thermoplastic resin. SOLUTION: In a method for injection molding wherein carbon dioxide gas is fed in advance into the cavity of a mold and then, a molted resin is filled by injection, when surface temp. of the cavity of the mold is Tm( deg.C) and glass transition temp. of a non-crystalline thermoplastic resin is Tg( deg.C) and pressure of carbon dioxide gas is P (MPa), for a part where transferring properties of the surface of the mold are required, Tm is set so as to satisfy Tg-5>=Tm>=Tg-(5×P)-35 and for a part where the transferring properties of the surface of the mold are not required, Tm is set so as to satisfy Tm< Tg-(5×P)-35.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非晶性熱可塑性樹
脂の成形において、金型表面状態を成形品表面に高度に
転写するための、射出成形法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an injection molding method for transferring a mold surface state to the surface of a molded article at a high level in molding an amorphous thermoplastic resin.

【0002】[0002]

【従来の技術】熱可塑性樹脂の成形において、通常、金
型の温度は成形樹脂の固化する温度よりも十分に低い温
度に保たれる。これは、熱伝導性が著しく低い樹脂素材
を、短時間で溶融状態から、成形品として取り出せる温
度にまで冷却するために必要なことである。また、金型
表面状態を高度に成形品に転写するには粘度が低い状態
の樹脂を高い圧力で金型に押しつける必要がある。しか
しながら、樹脂の固化温度よりも金型温度が低いと、樹
脂の充填と固化が同時に進行することになり、フローフ
ロント付近で金型に接触した樹脂は、急激に冷却され粘
度が高くなると共に、金型表面に低い圧力で押しつけら
れた状態で固化するため、金型表面状態を高度に成形品
に転写することは困難となる。このため、通常の射出成
形では、光沢ムラ、ウエルドライン、フローマーク、ジ
ェッティングなどの外観不良や、光ディスク等の精密成
形品では微細なピットの転写不良を起こし易く、薄肉部
品ではショートショットを起こすこともある。
2. Description of the Related Art In molding a thermoplastic resin, the temperature of a mold is usually kept sufficiently lower than the temperature at which the molding resin solidifies. This is necessary for cooling a resin material having extremely low thermal conductivity from a molten state to a temperature at which it can be taken out as a molded product in a short time. Further, in order to transfer a mold surface state to a molded article to a high degree, it is necessary to press a resin having a low viscosity into a mold with a high pressure. However, if the mold temperature is lower than the solidification temperature of the resin, the filling and solidification of the resin will proceed simultaneously, and the resin in contact with the mold near the flow front will be rapidly cooled and the viscosity will increase, Since it is solidified while being pressed against the surface of the mold with a low pressure, it is difficult to transfer the surface state of the mold to the molded product at a high level. For this reason, ordinary injection molding tends to cause poor appearance such as uneven gloss, weld lines, flow marks, and jetting, and fine pit transfer failures in precision molded products such as optical disks, and short shots occur in thin parts. Sometimes.

【0003】金型表面の転写性を高めるためには、樹脂
充填工程中の樹脂の固化を防止したり、最小限にとどめ
ることが必要となる。
In order to improve the transferability of the mold surface, it is necessary to prevent or minimize the solidification of the resin during the resin filling step.

【0004】熱可塑性樹脂の射出成形等では、成形サイ
クルタイムを長くせず、経済的に金型表面転写性を高め
ることが常に要求されてきた。金型表面転写性を高める
手段としてこれまで種々の方法が提案されており、例え
ば、次のような方法がある。
In injection molding of a thermoplastic resin, there has always been a demand for economical enhancement of mold surface transferability without lengthening the molding cycle time. Various methods have been proposed as means for improving the mold surface transferability. For example, there are the following methods.

【0005】(1)金型に熱媒と冷媒を交互に流して金
型表面の加熱、冷却を繰り返す方法(Plastic
Technology,Vol.34(June),1
50(1988)等)。 (2)成形直前に高周波誘導加熱で金型表面を選択的に
加熱する方法(USP4439492号明細書等)。 (3)金型表面に絶縁層と導電層を設け、導電層に通電
して加熱する方法(Plym.Eng.Sci.,Vo
l.34(11),894(1994)等)。 (4)金型表面を輻射加熱する方法(合成樹脂,Vo
l.42(1),48(1996)等)。 (5)金型表面を断熱層で被覆し、成形樹脂自身の熱で
金型表面を加熱しつつ成形する断熱層被覆法(USP5
362226号明細書、WO97/04938号等)。
(1) A method of repeating heating and cooling of a mold surface by alternately flowing a heat medium and a coolant through the mold (Plastic)
Technology, Vol. 34 (June), 1
50 (1988)). (2) A method of selectively heating the mold surface by high-frequency induction heating immediately before molding (US Pat. No. 4,439,492). (3) A method in which an insulating layer and a conductive layer are provided on the surface of a mold, and the conductive layer is energized and heated (Plym. Eng. Sci., Vo)
l. 34 (11), 894 (1994), etc.). (4) Method of radiantly heating the mold surface (synthetic resin, Vo
l. 42 (1), 48 (1996), etc.). (5) A heat insulating layer coating method (USP5) in which a mold surface is coated with a heat insulating layer, and the mold surface is heated while being heated by the molding resin itself.
362226, WO97 / 04938, etc.).

【0006】これらはいずれも射出成形時に金型表面を
加熱しつつ成形する方法で、射出された溶融樹脂が金型
壁面に押しつけられる時に金型表面を該樹脂の固化温度
以上に加熱することにより、金型表面転写性を良くする
成形法である。
[0006] All of these are methods of molding while heating the mold surface during injection molding. By heating the mold surface above the solidification temperature of the resin when the injected molten resin is pressed against the mold wall surface. This is a molding method for improving the mold surface transferability.

【0007】また、発泡剤や水分を含有する発泡性樹脂
の射出成形において、発泡ガスによる成形品表面のスワ
ールマーク等の表面不良をなくすために、樹脂充填に先
立ち金型キャビティに加圧ガス体を注入して加圧状態に
して成形する、いわゆるカウンタプレッシャ法がある。
この方法は、金型キャビティを流動する溶融樹脂のフロ
ーフロントで、発泡ガス或いは気化した水分により生じ
た気泡が破裂し、表面不良の原因となることを防ぐため
に、金型キャビティに予めガス圧力をかける方法であ
り、この場合のガス体は樹脂を酸化劣化させないもので
あれば良く、一般に空気が使用され、不活性なガス体は
全てこの成形法に使用できる。
In addition, in injection molding of a foaming resin containing a foaming agent or water, a pressurized gaseous body is introduced into a mold cavity prior to filling with a resin in order to eliminate surface defects such as swirl marks on the surface of a molded product due to foaming gas. , And pressurized to form a molded article.
This method applies a gas pressure to the mold cavity in advance to prevent bubbles generated by foaming gas or vaporized moisture from exploding at the flow front of the molten resin flowing through the mold cavity and causing a surface defect. In this case, it is sufficient that the gas body does not oxidize and degrade the resin. In general, air is used, and all inert gas bodies can be used in this molding method.

【0008】このカウンタプレッシャ法は発泡剤含有樹
脂や、乾燥が不十分な樹脂の射出成形に使用される方法
であり、一般の非発泡性樹脂の成形に使用すると、キャ
ビティ内に存在するガス体が、溶融樹脂と金型の間に入
り込み転写を阻害したり、ガス体が空気の場合、キャビ
ティ内で樹脂により空気が圧縮される部分では、高温で
高酸素濃度の状態となり、樹脂の酸化劣化を引き起こし
たりするなどの問題が生じるだけであり、金型表面転写
性を高める効果はないと言える。このため、金型表面状
態を高度に成形品に転写するには、樹脂充填時のみ金型
をわずかに開きキャビティ内の空気を逃がしたり、真空
ポンプにより金型内を減圧にするなどの方法も使用され
ている。
This counterpressure method is a method used for injection molding of a resin containing a foaming agent or a resin which is insufficiently dried. When used for molding a general non-foamable resin, the gas pressure existing in the cavity is reduced. However, when the air enters the gap between the molten resin and the mold and hinders transfer, or when the gaseous body is air, the part where the air is compressed by the resin in the cavity becomes a state of high oxygen concentration at high temperature, resulting in oxidative deterioration of the resin. It can be said that there is no effect of increasing the mold surface transferability only because of problems such as causing mold failure. For this reason, in order to transfer the mold surface state to the molded product to a high degree, there are also methods such as opening the mold slightly during resin filling to release air in the cavity, and reducing the pressure inside the mold by a vacuum pump. in use.

【0009】特開昭62−231715号公報には、水
分含有ポリマーアロイの射出成形にカウンタプレッシャ
法を用いて成形する方法が示されており、金型キャビテ
ィを予備加圧するガス体として空気、窒素、二酸化炭素
等の不活性ガス体が挙げられている。さらに特開昭61
−213111号公報には、二種のモノマーを混合し、
射出する反応射出成形について、金型キャビティを大気
圧の二酸化炭素で置換した後に成形することで、樹脂充
填時に樹脂中にエアが巻き込まれて発生するボイドを減
少させる方法が示されている。しかしながらいずれの公
報にも、樹脂充填工程中の樹脂の固化に起因した金型表
面転写性不良を改良する手法については開示がなされて
いない。
Japanese Unexamined Patent Publication (Kokai) No. 62-231715 discloses a method for molding a water-containing polymer alloy by using a counter pressure method for injection molding. The gas body for pre-pressurizing a mold cavity is air or nitrogen. And an inert gas such as carbon dioxide. Furthermore, Japanese Patent Laid-Open No. 61
JP-A-213111 discloses that two kinds of monomers are mixed,
With respect to reaction injection molding for injection, a method is disclosed in which a mold cavity is replaced with carbon dioxide at atmospheric pressure and then molded to reduce voids generated when air is entrained in the resin during resin filling. However, none of the publications discloses a method for improving the mold surface transferability defect due to the solidification of the resin during the resin filling step.

【0010】また、J.Appl.Polym.Sc
i.,Vol.30,2633(1985)など、多く
の文献に示されるように、二酸化炭素を樹脂に吸収させ
ると、樹脂の可塑剤として働き、ガラス転移温度(T
g )を低下させることが知られているが、樹脂の成形加
工に広く応用されるには至っていない。わずかな応用事
例として、ドイツ国特許DE4314869号に、生体
吸収性のポリエステルに高圧容器内で超臨界状態の二酸
化炭素や炭化水素などを溶解させてガラス転移温度を低
下させ、50℃程度の低温で樹脂を成形する方法が開示
されている。しかしながら、この方法では樹脂全体のガ
ラス転移温度が低下するため、成形にはガラス転移温度
の低下分だけ通常よりも低い金型温度を使用する必要が
あり、樹脂充填工程中の固化に基づく転写不良を防止す
る効果はない。
Also, J. J. Appl. Polym. Sc
i. , Vol. 30,2633 (1985), when carbon dioxide is absorbed into a resin, it acts as a plasticizer for the resin, and the glass transition temperature (T
g ), but is not widely applied to resin molding. As a few application examples, German Patent DE 4314869 discloses a method of dissolving carbon dioxide and hydrocarbons in a supercritical state in a bioabsorbable polyester in a high-pressure container to lower the glass transition temperature. A method for molding a resin is disclosed. However, this method lowers the glass transition temperature of the entire resin, so it is necessary to use a mold temperature lower than usual for molding because of the decrease in the glass transition temperature, and transfer failure due to solidification during the resin filling step is caused. There is no effect to prevent.

【0011】[0011]

【発明が解決しようとする課題】本発明は、非晶性熱可
塑性樹脂の成形において、樹脂充填工程中の樹脂の固化
や粘度上昇を抑制し、金型表面状態を高度に成形品に転
写する方法を、経済的に提供することにある。
SUMMARY OF THE INVENTION The present invention suppresses solidification and viscosity increase of a resin during a resin filling step in molding an amorphous thermoplastic resin, and transfers a mold surface state to a molded article to a high degree. It is to provide a method economically.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明者等が検討した結果、従来考えられていた金型
表面を加熱することにより金型表面転写性を改良する手
法とは全く異なる方法により、金型表面状態を成形品に
高度に転写できることを見出し本発明を完成するに至っ
た。
As a result of investigations by the present inventors to solve the above-mentioned problems, there has been found no conventional technique for improving the mold surface transferability by heating the mold surface. The present inventors have found that the surface state of a mold can be highly transferred to a molded product by a different method, and have completed the present invention.

【0013】即ち本発明は、金型キャビティ内に予め二
酸化炭素ガスを注入し、次いで溶融した非晶性熱可塑性
樹脂を射出充填する射出成形法であって、金型キャビテ
ィ内に充填された上記樹脂の冷却を、上記二酸化炭素ガ
スが溶解することで低下した樹脂表面の固化温度以上の
金型キャビティ表面温度で行うことを特徴とする。
That is, the present invention relates to an injection molding method in which a carbon dioxide gas is injected into a mold cavity in advance, and then the molten amorphous thermoplastic resin is injected and filled. The cooling of the resin is performed at a mold cavity surface temperature equal to or higher than the solidification temperature of the resin surface reduced by the dissolution of the carbon dioxide gas.

【0014】本発明において好ましくは、金型キャビテ
ィ表面温度をTm (℃)、非晶性熱可塑性樹脂のガラス
転移温度をTg (℃)、二酸化炭素ガスの圧力をP(M
Pa)とした時、下記式を満足するようにTm を設定す
ることにより、良好な金型表面転写性が得られる。
In the present invention, preferably, the mold cavity surface temperature is T m (° C.), the glass transition temperature of the amorphous thermoplastic resin is T g (° C.), and the carbon dioxide gas pressure is P (M
When Pa) is set, good mold surface transferability can be obtained by setting Tm so as to satisfy the following expression.

【0015】Tg −5≧Tm ≧Tg −(5×P)−35
(但し、P≧0.01) また、より良好な金型表面転写性を得るためには、 Tg −5≧Tm ≧Tg −(5×P)−20 と設定すれば良い。
T g -5 ≧ T m ≧ T g − (5 × P) −35
(However, P ≧ 0.01) Moreover, in order to obtain a better mold surface transferability, T g -5 ≧ T m ≧ T g - (5 × P) may be -20 and configuration.

【0016】さらに、目的とする成形品がリブやボスな
どの厚肉形状部を有する場合など上記条件において、高
い金型表面転写性が要求されない側の金型キャビティ表
面温度を、上記Tm の下限未満に設定することにより、
上記厚肉形状部に発生するヒケを防止することができ
る。
Further, under the above conditions, such as when the target molded article has a thick-walled portion such as a rib or a boss, the mold cavity surface temperature on the side where high mold surface transferability is not required is adjusted to the above Tm . By setting it below the lower limit,
It is possible to prevent sinks occurring in the thick-walled portion.

【0017】[0017]

【発明の実施の形態】本発明は、従来、金型表面の転写
を阻害すると考えられていた金型キャビティ内のガス体
に着目したものであり、その効果が発現されるメカニズ
ムは次のように考えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention focuses on a gas body in a mold cavity, which has conventionally been considered to inhibit the transfer of a mold surface. The mechanism by which the effect is exhibited is as follows. Can be considered.

【0018】射出成形では、樹脂は金型キャビティ内を
常に層流で流れ、冷却された金型壁面に接触するとその
界面に固化層が形成され、後から充填される樹脂はその
固化層の内側を流動して前進し、フローフロントに達し
てから金型壁面に向かうファウンテフローと呼ばれる流
動をする。金型キャビティを二酸化炭素などの特定のガ
ス体で、適度なガス圧力で満たしてから樹脂を充填する
と、ガス体は流動樹脂のフローフロントで吸収された
り、金型と樹脂の界面に入り込み樹脂表面層に溶解す
る。樹脂に溶解したガス体は可塑剤として作用し、樹脂
表面だけ固化温度を選択的に低下させたり、樹脂の溶融
粘度を下げる。薄い樹脂表面層だけ固化温度が下がり、
固化温度が金型表面温度以下となれば、樹脂充填工程中
の固化が起きず、成形品の金型表面転写性を著しく改良
することができることになる。樹脂表面層に溶解したガ
ス体は、時間と共に樹脂内部に拡散し、樹脂表面層の固
化温度が上昇するため、通常の樹脂冷却時間内で表面層
は固化し、製品として取り出すことができる。
In the injection molding, the resin always flows in a laminar flow in the mold cavity, and when it contacts the cooled mold wall surface, a solidified layer is formed at the interface, and the resin to be filled later is inside the solidified layer. Flows forward and reaches a flow front, and then flows toward a mold wall surface, called a fountain flow. If the mold cavity is filled with resin after filling the mold cavity with a specific gaseous substance such as carbon dioxide at an appropriate gas pressure, the gaseous body is absorbed at the flow front of the flowing resin or enters the interface between the mold and the resin and enters the resin surface. Dissolve in layer. The gas dissolved in the resin acts as a plasticizer to selectively lower the solidification temperature only on the resin surface or to lower the melt viscosity of the resin. The solidification temperature drops only in the thin resin surface layer,
When the solidification temperature is equal to or lower than the mold surface temperature, no solidification occurs during the resin filling step, and the mold surface transferability of the molded product can be significantly improved. The gas dissolved in the resin surface layer diffuses into the resin with time, and the solidification temperature of the resin surface layer rises. Therefore, the surface layer solidifies within the usual resin cooling time and can be taken out as a product.

【0019】この結果、樹脂充填工程中に金型に接する
樹脂表面の固化温度を低下させつつ成形し、ガス体の可
塑剤効果により低下する樹脂の固化温度に合わせ、金型
表面を適切に設定することで、高度な金型表面転写性と
高い生産性を両立する本発明に至った。
As a result, during the resin filling step, molding is performed while lowering the solidification temperature of the resin surface in contact with the mold, and the mold surface is appropriately set in accordance with the solidification temperature of the resin which is lowered due to the plasticizer effect of the gas body. As a result, the present invention has been achieved which achieves both high mold surface transferability and high productivity.

【0020】本発明で使用される樹脂は、一般に射出成
形に使用できる非晶性熱可塑性樹脂であり、具体的に
は、非晶性熱可塑性樹脂、或いはその複数種のブレンド
や、非晶性熱可塑性樹脂に結晶性熱可塑性樹脂を一部配
合した樹脂、具体的には、ポリスチレン、スチレン−ア
クリロニトリル共重合体、ゴム強化ポリスチレン、スチ
レン−メチルメタクリレート共重合体、ABS樹脂、ス
チレン−メチルメタクリレート−ブタジエン共重合体等
のスチレン系樹脂、ポリメチルメタクリレート、メチル
メタクリレート−スチレン共重合体等のメタクリル樹
脂、ポリビニルアセテート、ポリカーボネート、ポリフ
ェニレンエーテルあるいはポリスチレン等を配合した変
成ポリフェニレンエーテル、ポリスルホン、ポリエーテ
ルスルホン、ポリエーテルイミド、ポリアリレート、ポ
リアミドイミド、ポリ塩化ビニル、塩化ビニル−エチレ
ン共重合体、塩化ビニル−酢酸ビニル共重合体等の塩化
ビニル系樹脂等は特に良好に使用できる。さらに、これ
らの樹脂に無機物や有機物の各種充填材を配合した樹脂
を用いることができる。
The resin used in the present invention is an amorphous thermoplastic resin which can be generally used for injection molding. Specifically, the amorphous thermoplastic resin, a blend of plural kinds thereof, or an amorphous thermoplastic resin can be used. A resin in which a crystalline thermoplastic resin is partially mixed with a thermoplastic resin, specifically, polystyrene, styrene-acrylonitrile copolymer, rubber-reinforced polystyrene, styrene-methyl methacrylate copolymer, ABS resin, styrene-methyl methacrylate- Styrene resins such as butadiene copolymers, polymethyl methacrylate, methacrylic resins such as methyl methacrylate-styrene copolymers, and modified polyphenylene ethers, polysulfones, polyethersulfones, and polyethers containing polyvinyl acetate, polycarbonate, polyphenylene ether, or polystyrene. Ruimido, polyarylate, polyamideimide, polyvinyl chloride, vinyl chloride - ethylene copolymer, vinyl chloride - vinyl chloride resin such as vinyl acetate copolymer can be particularly preferably used. Further, a resin in which various fillers such as an inorganic substance and an organic substance are mixed with these resins can be used.

【0021】本発明に述べる樹脂の固化温度は、溶融し
た熱可塑性樹脂が金型内で固化する温度であり、非晶性
樹脂においてはTg である。非相溶系ポリマーアロイの
場合、海島構造の海を構成する非晶性樹脂のTg であ
る。
The solidification temperature of the resin described in the present invention is a temperature at which a molten thermoplastic resin solidifies in a mold, and is T g for an amorphous resin. For non-compatible system polymer alloy, a T g of the amorphous resin constituting the sea island structure.

【0022】本発明において用いる二酸化炭素ガスは熱
可塑性樹脂への溶解度が大きく、樹脂の可塑化効果を有
する。そのため、金型キャビティに予め充填しておくこ
とにより、樹脂充填工程中に樹脂表面に吸収されて、金
型に接する樹脂表面の固化温度を低下させる。樹脂への
溶解度が空気や窒素程度のガス体では、従来から知られ
ているように、キャビティ中で金型表面の転写を阻害す
るだけであり、固化温度の低下効果は期待できない。二
酸化炭素は安全性、価格、取り扱い易さ等の点でも本発
明に好適なガス体である。
The carbon dioxide gas used in the present invention has a high solubility in a thermoplastic resin and has an effect of plasticizing the resin. Therefore, by filling the mold cavity in advance, the resin is absorbed by the resin surface during the resin filling step, and the solidification temperature of the resin surface in contact with the mold is lowered. In the case of a gaseous substance having a solubility in a resin of about air or nitrogen, as is conventionally known, it merely inhibits the transfer of the surface of the mold in the cavity and cannot expect an effect of lowering the solidification temperature. Carbon dioxide is a gas body suitable for the present invention in terms of safety, price, ease of handling, and the like.

【0023】本発明にガス体として用いる二酸化炭素の
各樹脂への溶解量、二酸化炭素溶解による樹脂のTg
低下等について図面を用いて説明する。
The dissolved amount of each resin of the carbon dioxide used as the gas material to the present invention will be described with reference to the drawings such as reduction of T g of the resin with carbon dioxide dissolved.

【0024】図1〜図5は、各種文献に記載された報告
を示したものである。即ち図1は、成形加工’96(J
SPP’96 Tech,Papers),279,
(1966)より、図2は、J.Appl.Poly
m.Sci.,Vol.30,4019(1985)よ
り、図3は、J.Appl.Polym.Sci.,V
ol.30,2633(1985)より、図4は、J.
Membrane Sci.,Vol.5,63(19
79)からそれぞれ引用した図である。図5はPoly
m.J.,Vol.22(1),77(1990)から
引用したデータをもとに作成した図である。
1 to 5 show reports described in various documents. That is, FIG. 1 shows the molding process '96 (J
SPP '96 Tech, Papers), 279,
(1966), FIG. Appl. Poly
m. Sci. , Vol. 30, 4019 (1985), FIG. Appl. Polym. Sci. , V
ol. 30, 2633 (1985), FIG.
Membrane Sci. , Vol. 5, 63 (19
79) respectively. FIG. 5 shows Poly.
m. J. , Vol. 22 is a diagram created based on data cited from 22 (1), 77 (1990).

【0025】図1はポリスチレンへの二酸化炭素の溶解
量を示した図である。
FIG. 1 is a diagram showing the amount of carbon dioxide dissolved in polystyrene.

【0026】図2は二酸化炭素溶解によるTg の低下量
を示す。ポリスチレンは二酸化炭素を溶解させることに
より、容易にTg を下げることができる。
[0026] Figure 2 shows the decrease T g of with carbon dioxide dissolved. Polystyrene can easily lower T g by dissolving carbon dioxide.

【0027】図3はポリメチルメタクリレート及びポリ
フッ化ビニリデンポリマーアロイへの二酸化炭素の溶解
量と、二酸化炭素溶解によるTg の低下量を示した図で
あり、二酸化炭素溶解によりTg を下げることができ
る。
FIG. 3 is a graph showing the amount of carbon dioxide dissolved into the polymethylmethacrylate and polyvinylidene fluoride polymer alloy, the decrease T g of by dissolving carbon dioxide, to lower a T g by dissolving carbon dioxide it can.

【0028】図4はポリカーボネートへの二酸化炭素溶
解量を示した図である。
FIG. 4 shows the amount of carbon dioxide dissolved in polycarbonate.

【0029】図5は各樹脂の二酸化炭素圧力と二酸化炭
素溶解によるTg 低下量をまとめて示した図である。
FIG. 5 is a diagram collectively showing the carbon dioxide pressure of each resin and the amount of decrease in Tg due to dissolution of carbon dioxide.

【0030】金型キャビティに封入するガス圧力は、高
い圧力になるほど多量のガス体が樹脂に溶解するため、
より固化温度が低くなり、低い金型温度でも樹脂充填工
程中の固化を防止できることになる。実用的には、要求
する金型表面転写性の程度、樹脂の種類、金型温度等か
ら必要なガス圧力が決まり、金型温度を高く設定すれば
低いガス圧力で十分な転写性を得ることもできる。この
時、ガス圧力、平衡状態で樹脂に溶解するガス量、固化
温度低下量はそれぞれほぼ比例することから、金型キャ
ビティ内のガス圧力と樹脂表面層の固化温度低下量も比
例することになる。
The gas pressure sealed in the mold cavity is such that as the pressure becomes higher, a larger amount of gas is dissolved in the resin.
The solidification temperature is lower, and solidification during the resin filling step can be prevented even at a low mold temperature. Practically, the required gas pressure is determined from the required mold surface transferability, the type of resin, the mold temperature, etc. If the mold temperature is set high, sufficient transferability can be obtained at a low gas pressure. Can also. At this time, since the gas pressure, the amount of gas dissolved in the resin in the equilibrium state, and the amount of solidification temperature decrease are almost proportional to each other, the gas pressure in the mold cavity and the amount of solidification temperature decrease of the resin surface layer are also proportional. .

【0031】このため、金型キャビティに封入するガス
圧力をP(MPa)とすると、平衡状態における樹脂表
層の固化温度低下量は、図5より約15×P(℃)とな
る。しかし、実際の成形においては、ガス吸収時間が短
く、樹脂に吸収されたガス体は樹脂内部に拡散するた
め、樹脂表層はガス体を平衡状態まで吸収することはな
く、樹脂表層の固化温度低下量は樹脂の種類により変わ
るが、おおむね5×P(℃)である。このため、金型キ
ャビティ表面温度Tm (℃)を〔Tg −(5×P)〕
(℃)以上に設定すれば、樹脂充填工程中の固化を抑制
もしくは防止することができ、成形品の金型表面転写性
を改良することが可能となる。実用的には、Tm の下限
は、樹脂の固化温度よりも35℃程度低くても金型表面
転写性が向上するため、〔Tg −(5×P)−35〕
(℃)以上であれば良く、またTm の上限は、樹脂から
金型への熱移動の必要性から(Tg −5)(℃)と言え
る。
Therefore, assuming that the gas pressure filled in the mold cavity is P (MPa), the solidification temperature drop of the resin surface layer in the equilibrium state is about 15 × P (° C.) from FIG. However, in actual molding, the gas absorption time is short, and the gas absorbed by the resin diffuses into the resin, so that the resin surface does not absorb the gas to an equilibrium state and the solidification temperature of the resin surface decreases. The amount varies depending on the type of the resin, but is generally 5 × P (° C.). Therefore, the mold cavity surface temperature T m (° C.) is set to [T g − (5 × P)].
When the temperature is set to (° C.) or more, solidification during the resin filling step can be suppressed or prevented, and the mold surface transferability of the molded product can be improved. Practically, even if the lower limit of Tm is lower than the solidification temperature of the resin by about 35 ° C., the mold surface transferability is improved, so that [T g − (5 × P) −35]
(° C.) or more, and the upper limit of T m can be said to be (T g −5) (° C.) from the necessity of heat transfer from the resin to the mold.

【0032】樹脂表層の固化温度は、冷却工程中にガス
体が成形品肉厚の中心方向に拡散すするために上昇し、
g に近づき金型温度以上になる。
The solidification temperature of the resin surface rises during the cooling step because the gas diffuses toward the center of the thickness of the molded product,
It approaches T g and becomes higher than the mold temperature.

【0033】さらに、上記の成形以上に良好な金型表面
転写性を得るには、〔Tg −(5×P)−20〕(℃)
以上、(Tg −5)(℃)以下とすることが好ましい。
Further, in order to obtain better mold surface transferability than the above-mentioned molding, [T g- (5 × P) -20] (° C.)
As described above, the temperature is preferably set to (T g −5) (° C.) or less.

【0034】また、成形加工,Vol.2(6),50
5(1990)に示されるように、金型表面温度の一方
をTg 以上とし、他方をTg 以下にした場合、樹脂収縮
による成形品表面のヒケは、金型表面温度の低い側に発
生することが知られている。この現象は、本発明におい
ても同じである、成形品の裏面など一方の面或いは一部
の面について高い金型表面転写性が要求されず、リブや
ボスなどの厚肉形状部が存在する場合、高い転写性を要
求されず、厚肉形状部のある側の金型表面温度のみ、本
発明にかかるTm の下限である〔Tg −(5×P)−3
5〕(℃)未満にすると、反対側の高い金型表面転写性
を要求される面にヒケを生じにくくなり、好ましい。
尚、表面転写性が要求される側の金型キャビティ表面温
度を、より表面転写性の良い、〔Tg −(5×P)−2
0〕(℃)以上に設定した場合には、表面転写性が要求
されない金型キャビティ表面温度は、〔Tg −(5×
P)−20〕(℃)未満とすれば良い。
Further, the molding process, Vol. 2 (6), 50
5 (1990), when one of the mold surface temperatures is set to Tg or more and the other is set to Tg or less, sink on the molded product surface due to resin shrinkage occurs on the side where the mold surface temperature is low. It is known to This phenomenon is the same in the present invention, when high mold surface transferability is not required for one surface or a part of the surface such as the back surface of a molded product, and when a thick-walled portion such as a rib or a boss exists. High transferability is not required, and only the mold surface temperature on the side having the thick-walled portion is the lower limit of Tm according to the present invention [ Tg- (5 * P) -3.
5] When the temperature is lower than (° C.), it is difficult to cause sink marks on the surface on the opposite side where high mold surface transferability is required, which is preferable.
In addition, the surface temperature of the mold cavity on the side where the surface transfer property is required is set to [T g- (5 × P) -2
0] (° C.) or higher, the mold cavity surface temperature at which surface transferability is not required is [T g − (5 ×
P) -20] (° C.).

【0035】金型キャビティ内のガス圧力の下限は、樹
脂充填工程で樹脂によりガス体がどの程度圧縮されるか
により異なるが、実用的には0.01MPa以上が好ま
しく、さらに好ましくは0.1MPa以上である。これ
以下の圧力であっても、二酸化炭素は樹脂への溶解性や
可塑剤効果が高いため、キャビティを真空ポンプにより
減圧した時と同等以上の転写性向上効果を得ることがで
きる。低い圧力で使用する場合は、キャビティを可能な
限り二酸化炭素で置換することが好ましい。
The lower limit of the gas pressure in the mold cavity varies depending on the degree to which the gas is compressed by the resin in the resin filling step, but is practically preferably 0.01 MPa or more, more preferably 0.1 MPa or more. That is all. Even at a pressure lower than this, since carbon dioxide has high solubility in a resin and a plasticizer effect, it is possible to obtain an effect of improving transferability equal to or higher than that when the cavity is depressurized by a vacuum pump. When used at low pressure, it is preferable to replace the cavity with carbon dioxide as much as possible.

【0036】また、圧力の上限は、特に限定はないが、
あまりに高圧になると金型を開こうとする力が無視でき
なくなったり、金型のシールが難しくなるなどの問題が
生じ易いことから、15MPa以下が実用的である。ガ
ス圧力は1工程に使用するガス体の量を最小限に抑え、
金型のシールやガス供給装置の構造を簡単にするため
に、要求する効果が得られる範囲で低い方が好ましい。
The upper limit of the pressure is not particularly limited.
If the pressure is too high, problems such as the force to open the mold cannot be ignored and the mold is difficult to seal are likely to occur. Therefore, 15 MPa or less is practical. Gas pressure minimizes the amount of gas used in one process,
In order to simplify the structure of the mold seal and the gas supply device, it is preferable that the temperature is low as long as the required effect can be obtained.

【0037】型閉時に型内に残る空気は、型締め中や型
締め完了後に使用するガス体で、置換した方が好ましい
が、使用するガス圧力が1MPaを超えるような場合、
空気の影響は無視できる場合が多い。
The air remaining in the mold at the time of closing the mold is preferably a gas used during or after completion of the mold clamping, and is preferably replaced. However, when the gas pressure used exceeds 1 MPa,
The effects of air are often negligible.

【0038】樹脂充填後、キャビティ外に押し出された
ガス体を解放し、大気圧とする。ガス体の解放は、キャ
ビティ内を溶融樹脂で満たした後に行う。樹脂充填後は
金型表面状態を成形品に転写するため、成形品表面が固
化するまでキャビティ内の樹脂に十分な圧力を与えるこ
とが望ましい。特に、金型表面にある点状の凹み形状を
転写する場合には、凹み内部のガス圧力に対向して樹脂
を金型に押しつける必要があり、このような場合には通
常の成形よりも高い樹脂圧力で成形することが望まし
い。
After filling the resin, the gas pushed out of the cavity is released to atmospheric pressure. The release of the gas is performed after the cavity is filled with the molten resin. After the resin is filled, it is desirable to apply a sufficient pressure to the resin in the cavity until the surface of the molded product is solidified in order to transfer the surface state of the mold to the molded product. In particular, when transferring a point-like dent shape on the mold surface, it is necessary to press the resin against the mold against the gas pressure inside the dent, and in such a case, the resin is higher than normal molding. It is desirable to mold with resin pressure.

【0039】樹脂中に溶解したガス体は、樹脂の成形後
に成形品を大気中に放置すれば徐々に大気中に拡散す
る。拡散により成形品に気泡を生じることはなく、拡散
後の成形品の機械的性能は通常の成形法で作ったものと
変わらない。
The gas dissolved in the resin gradually diffuses into the air if the molded article is left in the air after the resin is molded. No bubbles are generated in the molded article due to diffusion, and the mechanical performance of the molded article after diffusion is not different from that produced by a normal molding method.

【0040】ガス体をキャビティに供給、排出する装
置、ガス配管及び金型は、ガス体の液化を防ぐための対
策をとることが好ましい。これはガス体の液化が起きる
ような温度では、高いガス圧力が得られないばかりか、
キャビティ内で液化ガスが樹脂に触れると多量のガスが
樹脂中に溶け込み、ガス圧力解放後に成形品表面が発泡
し、外観不良を起こすためである。液化防止の対策とし
ては、ガス体を加温器により加熱し、ガス体の流路や金
型の温度もガス体の臨界温度以上に保つことや、樹脂充
填時にキャビティからガス体が押し出されたことによる
大幅な圧力上昇を防止するために、キャビティと配管内
のガス圧力を任意の範囲に保つことのできる圧力解放弁
や、キャビティからガス体が逆流可能なガス溜を設ける
ことが挙げられる。但し、ガス体の液化を防止するため
に、ガス体の温度を過剰に高くすることは、ガス体の膨
張によりキャビティ内のガス量が減少するために好まし
くない。
It is preferable that a device for supplying and discharging a gas body to and from the cavity, a gas pipe, and a mold take measures to prevent liquefaction of the gas body. This means that at a temperature where liquefaction of gas occurs, not only can a high gas pressure not be obtained,
When the liquefied gas comes into contact with the resin in the cavity, a large amount of the gas dissolves into the resin, and after the gas pressure is released, the surface of the molded product foams, resulting in poor appearance. As a measure to prevent liquefaction, the gas body was heated by a heater, and the temperature of the gas body flow path and the mold were kept above the critical temperature of the gas body, and the gas body was pushed out of the cavity during resin filling. In order to prevent a significant pressure increase due to the above, a pressure release valve capable of maintaining the gas pressure in the cavity and the pipe in an arbitrary range, and a gas reservoir in which a gas body can flow backward from the cavity are provided. However, it is not preferable to excessively increase the temperature of the gas in order to prevent liquefaction of the gas, because the gas in the cavity decreases due to expansion of the gas.

【0041】通常、カウンタプレッシャ法による成形な
どで金型を気密構造にするには、パーティング面や各プ
レート間をOリングでシールし、金型キャビティに連通
する突き出しピンなどの可動ピンもOリングでシールし
たり、突き出しピンが固定された突き出しプレート部分
全体を覆い気密とするなどの方法が採られている。
Normally, in order to make the mold hermetically sealed by molding by a counter pressure method or the like, the parting surface and each plate are sealed with an O-ring, and movable pins such as protruding pins communicating with the mold cavity are also O-shaped. A method such as sealing with a ring or covering the whole protruding plate portion to which the protruding pin is fixed to make it airtight is adopted.

【0042】突き出しピンのシールにOリングを使用す
る場合、2枚のプレート間にOリングを入れた後に、突
き出しピンを通すことが必要である。この時、突き出し
ピン先端のエッジでOリングを傷つけたり、ピン挿入抵
抗が大きいとOリングがねじれ確実なシール性が確保で
きないことが多い。これに対し、半径方向の断面形状が
U字形状のゴムパッキン(以下、「Uパッキン」と記
す)でシールすると、突き出しピン挿入時に挿入抵抗が
少なく、ピン先端のエッジで傷ついたり、ねじれたりす
ることなく容易に金型組立ができ、高い信頼性のシール
性を得ることができる。
When an O-ring is used for sealing the protruding pin, it is necessary to pass the protruding pin after inserting the O-ring between the two plates. At this time, if the O-ring is damaged by the edge of the tip of the protruding pin, or if the pin insertion resistance is large, the O-ring is twisted, and reliable sealing performance cannot often be secured. On the other hand, when sealing is performed with rubber packing having a U-shaped cross section in the radial direction (hereinafter referred to as “U packing”), the insertion resistance is small when the protruding pin is inserted, and the pin tip is damaged or twisted at the edge of the tip. The mold can be easily assembled without the need, and a highly reliable sealing property can be obtained.

【0043】また、可動ピンをパッキンでシールする場
合、金型キャビティとパッキン間でピンまわりの隙間に
入った加圧ガス体は、樹脂充填により隙間に閉じ込めら
れ、成形品表面が冷え金型表面から離れると、金型キャ
ビティに流れ出し、十分に固まっていない成形品表面を
凹ませたり、型開き時に成形品を膨らませ変形させるこ
とがある。このような問題が生じる場合は、ピンまわり
の隙間に入った加圧ガス体を、金型キャビティ以外の経
路から金型外に排出できる溝や穴を金型に設け、樹脂充
填後、金型キャビティから押し出されたガス体の排出と
同時に排気することが望ましい。図6に金型キャビティ
以外の経路から金型外に加圧ガス体を排出できる金型の
構造例を示す。図6中、8は隙間、9はガス流路溝、1
0はガス流路溝9から金型外に通じる孔、11はOリン
グ、12は突き出しピン、13はキャビティブロック、
14はバックアッププレートである。
In the case where the movable pin is sealed with packing, the pressurized gas body that has entered the gap around the pin between the mold cavity and the packing is confined in the gap by filling with resin, and the surface of the molded product is cooled and the mold surface is cooled. Away from the mold cavity, it may flow into the mold cavity, denting the surface of the molded product that is not sufficiently solidified, or expanding and deforming the molded product when the mold is opened. When such a problem occurs, the mold is provided with a groove or a hole that allows the pressurized gas body entering the gap around the pin to be discharged out of the mold from a path other than the mold cavity. It is desirable to exhaust simultaneously with the discharge of the gas body pushed out of the cavity. FIG. 6 shows an example of the structure of a mold capable of discharging a pressurized gas body out of the mold from a path other than the mold cavity. In FIG. 6, 8 is a gap, 9 is a gas flow channel, 1
0 is a hole communicating from the gas flow channel 9 to the outside of the mold, 11 is an O-ring, 12 is a protruding pin, 13 is a cavity block,
14 is a backup plate.

【0044】金型キャビティへのガス体の注入は、一般
に金型キャビティのガス抜きに用いられる金型構造を用
いれば可能であり、金型キャビティ外周のパーティング
面に設けたスリット、金型入れ子や突き出しピンの隙
間、ガス抜きピン、多孔質焼結体でできた入れ子などが
使用できる。金型キャビティを大気圧付近のガス体で置
換する場合、金型キャビティの空気を、できるだけ短時
間に、できるだけ少量のガス体で、できるだけ100%
近く置換する、経済的な方法が必要であり、金型スプル
からガス体を吹き込む方法が適している。この方法で
は、金型キャビティへ樹脂を充填するに先立ち、金型ス
プル付近よりガス体を注入して成形することにより、ガ
ス体が樹脂により押されて、ガス体によりキャビティに
残存する空気を金型外へ排出しつつ成形されることにな
る。即ち、金型のスプル、ランナ、ゲート付近を十分に
ガス体で置換すれば、樹脂に触れるガス体は常に注入し
たガス体となる。
The gas body can be injected into the mold cavity by using a mold structure generally used for venting the mold cavity. A slit provided on the parting surface on the outer periphery of the mold cavity, a mold insert, and the like. And a gap between protruding pins, a venting pin, and a nest made of a porous sintered body can be used. When the mold cavity is replaced with a gas substance near the atmospheric pressure, the air in the mold cavity is reduced to 100% with as little gas as possible in as short a time as possible.
An economical method of near replacement is required, and a method of blowing a gas from a mold sprue is suitable. In this method, before filling the mold cavity with the resin, a gas body is injected from near the mold sprue and molded, whereby the gas body is pushed by the resin and the air remaining in the cavity by the gas body is removed by the mold. It will be molded while being discharged out of the mold. That is, if the vicinity of the sprue, runner, and gate of the mold is sufficiently replaced with a gas, the gas that comes into contact with the resin is always the injected gas.

【0045】[0045]

【実施例】本発明の実施例に用いた樹脂は、ゴム補強ポ
リスチレン(HIPS,旭化成工業社製「スタイロン4
00」)、スチレン・ブタジエンブロックポリマー(S
Bblock,旭化成工業社製「アサフレックス81
0」)、アクリロニトリル・ブタジエン・スチレン共重
合体(ABS,旭化成工業社製「スタイラックABS1
80」)、メタクリル樹脂(PMMA,旭化成工業社製
「デルペット80NH」)で、成形品表面の欠陥が見や
すいように黒色に着色したものである。
EXAMPLES The resin used in the examples of the present invention was rubber-reinforced polystyrene (HIPS, Asahi Kasei Kogyo Co., Ltd., "Stylon 4").
00 "), styrene-butadiene block polymer (S
Bblock, Asaflex 81 manufactured by Asahi Kasei Corporation
0 ”), acrylonitrile-butadiene-styrene copolymer (ABS,“ Styrac ABS1 ”manufactured by Asahi Kasei Corporation)
80 "), a methacrylic resin (PMMA," Delpet 80NH "manufactured by Asahi Kasei Kogyo Co., Ltd.), which is colored black so that defects on the surface of the molded product are easily seen.

【0046】各樹脂のTg 測定にはDSC(パーキンエ
ルマー社製「PYRIS 1」)を用い、10℃/分で
昇温した時の温度変化に対する比熱の変曲点をTg とし
た。各樹脂のTg は、HIPSが99℃、SBbloc
kが104℃、ABSが109℃、PMMAが114℃
であった。
The T g of each resin was measured using DSC (“PYRIS 1” manufactured by PerkinElmer), and the inflection point of the specific heat with respect to the temperature change when the temperature was raised at 10 ° C./min was defined as T g . The T g of each resin was 99 ° C. for HIPS and SBblock.
k is 104 ° C, ABS is 109 ° C, PMMA is 114 ° C
Met.

【0047】ガス体としては純度99%以上の二酸化炭
素を使用した。
As the gas, carbon dioxide having a purity of 99% or more was used.

【0048】射出成形機は住友重機械工業社製「SG5
0」を用いた。
The injection molding machine "SG5" manufactured by Sumitomo Heavy Industries, Ltd.
0 "was used.

【0049】成形品は厚み2mmで120mm×60m
mの長方形平板で、中央に直径10mmの丸穴があり、
樹脂充填末端部付近に高さ3mm、幅3mm、長さ20
mmのリブが設けてある。金型の構造を図6に、ガス供
給装置の構造を図7に示す。金型表面は、固定側を放電
加工を用い表面粗さRa 5μmの梨地とした。ゲートは
幅3mm、厚み2mmでランド長を3mmとした。ラン
ナ断面は平均幅4mm、深さ4mmのほぼ正方形であ
り、ランナ長さは140mm、スプルは平均直径4m
m、長さ55mmでノズルタッチ部の直径を3.5mm
とした。金型キャビティにはガス供給と解放のための隙
間8とガス流路溝9をキャビティ外周に設け、孔10と
金型外のガス供給装置を接続し、ガス流路溝、ランナ、
スプルの外周にガスシールのためにOリングを設け、金
型キャビティを気密構造とした。
The molded product is 120 mm × 60 m with a thickness of 2 mm.
m rectangular plate with a 10mm diameter round hole in the center,
3mm height, 3mm width, 20 length near resin filling end
mm ribs are provided. FIG. 6 shows the structure of the mold, and FIG. 7 shows the structure of the gas supply device. The mold surface was matte with a surface roughness R a of 5 μm using electric discharge machining on the fixed side. The gate had a width of 3 mm, a thickness of 2 mm, and a land length of 3 mm. The cross section of the runner is almost square with an average width of 4 mm and a depth of 4 mm, the runner length is 140 mm, and the sprue is an average diameter of 4 m.
m, length 55mm, 3.5mm diameter of nozzle touch part
And In the mold cavity, a gap 8 for gas supply and release and a gas passage groove 9 are provided on the outer periphery of the cavity, and the hole 10 is connected to a gas supply device outside the mold.
An O-ring was provided on the outer periphery of the sprue for gas sealing, and the mold cavity had an airtight structure.

【0050】ガス供給装置は、液化炭酸ガスを充填した
ボンベ16を40℃で保温しガス体供給源として用い
た。ガス体はボンベ16より加温器17を通り、減圧弁
18にて所定圧力に調圧された後、約40℃に保温され
た内容量100cm3 のガス溜19に溜められる。金型
キャビティへのガス体供給は、ガス溜19の下流にある
供給用電磁弁20を開け、同時に解放用電磁弁21を閉
じることで行われ、樹脂充填中はガス溜19と金型キャ
ビティはつながっている。樹脂充填が終了するとほぼ同
時に、供給用電磁弁20を閉じ、解放用電磁弁21を開
けることでガス体を金型外に解放する。
In the gas supply device, the cylinder 16 filled with liquefied carbon dioxide was kept at 40 ° C. and used as a gas supply source. The gas body passes through a heater 17 from a cylinder 16 and is adjusted to a predetermined pressure by a pressure reducing valve 18, and then stored in a gas reservoir 19 having an internal capacity of 100 cm 3 kept at about 40 ° C. The gas supply to the mold cavity is performed by opening the supply solenoid valve 20 downstream of the gas reservoir 19 and closing the release solenoid valve 21 at the same time. linked. Almost simultaneously with the completion of the resin filling, the supply electromagnetic valve 20 is closed and the release electromagnetic valve 21 is opened to release the gas body out of the mold.

【0051】(実施例1)シリンダ設定温度はHIP
S、SBblockは220℃、ABS、PMMAにつ
いては240℃とし、全ての樹脂に対し金型表面温度を
40〜90℃の範囲で10℃刻みで変え、各温度におい
て、金型キャビティ内の二酸化炭素圧力を0〜8MPa
の範囲で1MPa刻みで変えて満たした後、樹脂を充填
時間0.6秒で充填し、シリンダ内樹脂圧力120〜1
40MPaで5秒間保圧し、20秒間冷却した後成形品
を取り出した。金型に満たした二酸化炭素は、樹脂充填
完了と同時に大気中に解放した。
(Embodiment 1) The cylinder set temperature is HIP
S, SBblock is 220 ° C, ABS and PMMA are 240 ° C, and the mold surface temperature is changed for all resins in the range of 40 to 90 ° C in steps of 10 ° C. At each temperature, the carbon dioxide in the mold cavity is changed. Pressure is 0-8MPa
The resin was filled in the range of 1 MPa at intervals of 1 MPa, and the resin was filled with a filling time of 0.6 seconds.
The pressure was maintained at 40 MPa for 5 seconds, and after cooling for 20 seconds, the molded product was taken out. The carbon dioxide filled in the mold was released to the atmosphere at the same time as the resin filling was completed.

【0052】樹脂充填時に二酸化炭素を吸収して低下す
る樹脂表層部のTg は、直接測定でいないため、上記の
成形において金型表面状態がほぼ完全に成形品に転写さ
れ外観不良がなくなる最低の金型温度Tm とDSCによ
る樹脂のTg との差を二酸化炭素によるTg 低下効果の
指標とした。
[0052] T g of the resin surface layer portion to decrease by absorbing carbon dioxide during resin filling directly for measurement by no minimum appearance mold surface state in the molding of the above are transferred almost completely molded article defects is eliminated the difference between the mold temperature T m and the DSC according to the resin T g was used as an index a T g lowering effect of carbon dioxide.

【0053】評価は、各金型表面温度において、成形品
の梨地部分に生じたウエルドライン及び周囲の光沢ムラ
を評価し、目視ではウエルドラインが見えず500倍の
レーザ顕微鏡では幅0.5μm程度のウエルドラインが
確認される程度で、光沢ムラがほとんどない最低の二酸
化炭素圧力P1 、及び、目視、レーザ顕微鏡でもウエル
ドラインが見えず、光沢ムラも全くない最低の二酸化炭
素圧力P2 を求めた。ここで、二酸化炭素圧力条件の粗
さから、P1 、P2 共に最大±0.5MPaの誤差を含
む。
At each mold surface temperature, a weld line formed on the satin portion of the molded product and uneven gloss around the mold were evaluated. The weld line was not visually observed, and the width was about 0.5 μm with a 500 × laser microscope. The minimum carbon dioxide pressure P 1 at which the weld line is confirmed and there is almost no gloss unevenness, and the minimum carbon dioxide pressure P 2 at which the weld line is not visible even with a laser microscope and there is no gloss unevenness at all. Was. Here, due to the roughness of the carbon dioxide pressure condition, P 1 and P 2 each include an error of ± 0.5 MPa at the maximum.

【0054】結果を下記表1、2及び図8、図9に示
す。
The results are shown in Tables 1 and 2 below and FIGS. 8 and 9.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】表1、図8より、Tg −Tm ≦(5×P)
+35、即ち、Tm ≧Tg −(5×P)−35であれ
ば、各種の樹脂についてほぼ金型表面転写性の良好な成
形品が得られることがわかる。また、表2、図9より、
g −Tm ≦(5×P)+20、即ち、Tm ≧Tg
(5×P)−20であれば、さらに良好な表面の成形品
が得られることがわかる。
From Table 1 and FIG. 8, T g −T m ≦ (5 × P)
+35, i.e., T m ≧ T g - if (5 × P) -35, it can be seen that substantially the mold surface transferability of good molded articles for various resins can be obtained. Also, from Table 2 and FIG.
T g −T m ≦ (5 × P) +20, that is, T m ≧ T g
If (5 × P) −20, it can be seen that a molded product having a better surface can be obtained.

【0058】(実施例2)HIPSを用い、シリンダ設
定温度を200℃及び240℃とし、金型表面温度を6
0℃において金型キャビティ内の二酸化炭素圧力を0〜
8MPaの範囲で1MPa刻みで変えて満たした後、樹
脂を充填時間0.6秒で充填し、シリンダ内樹脂圧力1
20MPaで5秒間保圧し、20秒間冷却した後成形品
を取り出した。金型に満たした二酸化炭素は、樹脂充填
完了と同時に大気中に解放した。
(Example 2) Using HIPS, the cylinder set temperature was set to 200 ° C and 240 ° C, and the mold surface temperature was set to 6 ° C.
At 0 ° C., the carbon dioxide pressure in the mold cavity
After filling the resin in the range of 8 MPa in steps of 1 MPa, filling the resin with a filling time of 0.6 seconds, the resin pressure in the cylinder 1
The pressure was maintained at 20 MPa for 5 seconds, and after cooling for 20 seconds, the molded product was taken out. The carbon dioxide filled in the mold was released to the atmosphere at the same time as the resin filling was completed.

【0059】実施例1と同様にして、成形品の梨地部分
に生じたウエルドライン及び周囲の光沢ムラを評価し、
1 とP2 を求めた。結果を下記表3に示す。
In the same manner as in Example 1, the weld line formed in the satin portion of the molded product and the surrounding gloss unevenness were evaluated.
P 1 and P 2 were determined. The results are shown in Table 3 below.

【0060】[0060]

【表3】 [Table 3]

【0061】表3に示すように、P1 、P2 は溶融樹脂
の温度によらず、ほぼ一定といえる。尚、シリンダ設定
温度200℃においてP1 がわずかに高いのは、樹脂の
温度が低くなり溶融粘度が増したために、同一の保圧で
は金型内の樹脂圧力が低下し、金型表面状態を樹脂に転
写しにくくなったためと考えられる。
As shown in Table 3, it can be said that P 1 and P 2 are almost constant irrespective of the temperature of the molten resin. Incidentally, the high P 1 slightly at the cylinder setting temperature of 200 ° C., to a temperature of the resin has increased the melt viscosity becomes low, the same holding pressure reduces the resin pressure in the mold, the mold surface state This is probably because the transfer to the resin became difficult.

【0062】(実施例3)HIPSを用い、固定側金型
表面温度70℃、移動側を35℃とし、金型キャビティ
内の二酸化炭素圧力を5MPaとし、樹脂を充填時間
0.6秒で充填し、シリンダ内樹脂圧力120MPaで
5秒間保圧し、20秒間冷却した後成形品を取り出し
た。金型に満たした二酸化炭素は、樹脂充填完了と同時
に大気中に解放した。
(Example 3) Using HIPS, the fixed-side mold surface temperature was set to 70 ° C, the moving side was set to 35 ° C, the carbon dioxide pressure in the mold cavity was set to 5 MPa, and the resin was filled in 0.6 seconds. Then, the pressure was maintained for 5 seconds at a resin pressure of 120 MPa in the cylinder, and after cooling for 20 seconds, the molded product was taken out. The carbon dioxide filled in the mold was released to the atmosphere at the same time as the resin filling was completed.

【0063】成形品のリブ部の反対面のヒケを観察した
ところ、ヒケは全く認められなかった。
When the sink was observed on the opposite side of the rib portion of the molded product, no sink was observed.

【0064】(比較例1)固定側金型表面温度を35℃
とした以外は、実施例3と同様にして成形品を得た。成
形品のリブ部の反対面のヒケを観察したところ、明らか
なヒケが認められた。
Comparative Example 1 The surface temperature of the fixed mold was 35 ° C.
A molded article was obtained in the same manner as in Example 3 except that the above conditions were satisfied. Observation of sink on the opposite side of the rib part of the molded product revealed obvious sink.

【0065】(比較例2)金型キャビティ内を大気圧と
した以外は、実施例3と同様にして成形品を得た。成形
品のリブ部の反対面のヒケを観察したところ、明らかな
ヒケが認められた。
Comparative Example 2 A molded product was obtained in the same manner as in Example 3 except that the inside of the mold cavity was set to the atmospheric pressure. Observation of sink on the opposite side of the rib part of the molded product revealed obvious sink.

【0066】[0066]

【発明の効果】以上説明したように、本発明によれば、
経済的に金型表面状態を高度に成形品に転写することが
可能となる。さらに、本発明においては、表面転写性が
要求されない部位の金型キャビティ表面温度を低く設定
することにより、リブやボスが存在する場合にもヒケの
発生を防止することができる。そのため、従来、成形品
の外観が悪い場合にやむをえず施されていた塗装などの
後工程が不要となり、成形品の大幅なコストダウンを図
ることができる。また、微細な金型表面状態を成形品に
均一に転写することができないために、射出成形に比べ
生産性の低いプレス成形で成形していた平面レンズなど
の生産性が著しく高められ、新たな射出成形の用途分野
を創造できるなどの効果が期待できる。
As described above, according to the present invention,
It is possible to economically transfer the mold surface state to a molded product at a high level. Furthermore, in the present invention, by setting the mold cavity surface temperature at a portion where surface transferability is not required to be low, it is possible to prevent the occurrence of sink marks even when ribs or bosses are present. For this reason, post-processing such as painting, which has been unavoidably performed when the appearance of the molded product is poor, becomes unnecessary, and the cost of the molded product can be significantly reduced. In addition, because it is not possible to transfer the fine mold surface state uniformly to the molded product, the productivity of flat lenses molded by press molding, which is less productive than injection molding, is significantly increased, and a new It can be expected to have the effect of creating application fields for injection molding.

【0067】本発明の成形法で良好に成形される成形品
には、光学機器部品、弱電機器、電子機器、事務機器等
のハウジング、各種自動車部品、各種日用品、等の樹脂
射出成形品が挙げられる。多点ゲートで射出成形され、
その結果ウエルドラインが多数発生する電子機器、電気
機器、事務機器のハウジング等や、艶消し状成形品、パ
ターンしぼ成形品の外観向上に適する。また、透明な合
成樹脂を用いて成形したレンチキュラーレンズ、フレネ
ルレンズ等のレンズ、光ディスク等の記録用ディスク、
液晶表示部品である導光板、拡散板等の各種光学部品の
射出成形品にも好適である。本発明で成形されるこれら
の成形品は、型表面の再現性が良くなり、光沢度の向
上、ウエルドラインによる外観不良の減少、型表面のシ
ャープエッジの再現性向上、微細な型表面凹凸の再現性
向上などの効果があるだけでなく、樹脂充填工程時に発
生する成形品表面付近の内部ひずみが低減され、複屈折
の減少、耐薬品性の向上、配合したゴムの配向低減によ
るメッキ性能向上などの効果もある。そして、キャビテ
ィ内に高圧のガスを封入することで、樹脂充填工程時に
発生するメルトフロントからのガスの発生が抑制される
ため、金型汚れが減少したり、成形品の離型力が低減す
るなどの効果も期待される。
Examples of the molded article satisfactorily molded by the molding method of the present invention include resin injection molded articles such as optical equipment parts, light electric equipment, electronic equipment, office equipment housings, various automobile parts, various daily necessities, and the like. Can be Injection molding with multi-point gate,
As a result, the present invention is suitable for improving the appearance of housings of electronic equipment, electric equipment, office equipment, etc., in which a large number of weld lines are generated, matte molded products, and patterned grain molded products. In addition, lenses such as lenticular lenses and Fresnel lenses molded using a transparent synthetic resin, recording disks such as optical disks,
It is also suitable for injection molded products of various optical components such as a light guide plate and a diffusion plate which are liquid crystal display components. These molded products formed by the present invention have improved mold surface reproducibility, improved gloss, reduced appearance defects due to weld lines, improved reproducibility of sharp edges on the mold surface, and improved fine mold surface irregularities. Not only has the effect of improving reproducibility, but also reduces internal strain near the molded product surface generated during the resin filling process, reduces birefringence, improves chemical resistance, and improves plating performance by reducing the orientation of the compounded rubber There are other effects as well. By filling high-pressure gas in the cavity, generation of gas from the melt front generated during the resin filling step is suppressed, so that mold contamination is reduced and the mold release force of the molded product is reduced. Such effects are expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ポリスチレンへの二酸化炭素の溶解量を示す図
である。
FIG. 1 is a diagram showing the amount of carbon dioxide dissolved in polystyrene.

【図2】ポリスチレンへの二酸化炭素溶解によるTg
低下量を示す図である。
FIG. 2 is a graph showing the amount of decrease in T g due to dissolution of carbon dioxide in polystyrene.

【図3】PMMA/PVF2 系ポリマーアロイへの二酸
化炭素の溶解量を示す図である。
FIG. 3 is a graph showing the amount of carbon dioxide dissolved in a PMMA / PVF 2 polymer alloy.

【図4】ポリカーボネートへの二酸化炭素の溶解量を示
す図である。
FIG. 4 is a graph showing the amount of carbon dioxide dissolved in polycarbonate.

【図5】各種樹脂への二酸化炭素溶解によるTg の低下
量を示す図である。
FIG. 5 is a graph showing the amount of decrease in T g due to dissolution of carbon dioxide in various resins.

【図6】本発明に用いる金型の一例の断面図である。FIG. 6 is a sectional view of an example of a mold used in the present invention.

【図7】本発明に用いるガス供給装置の一例の構造を示
す図である。
FIG. 7 is a diagram showing a structure of an example of a gas supply device used in the present invention.

【図8】本発明の実施例1の結果を示す図である。FIG. 8 is a diagram showing the results of Example 1 of the present invention.

【図9】本発明の実施例1の結果を示す図である。FIG. 9 is a diagram showing the results of Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

8 隙間 9 ガス流路溝 10 ガス流路溝から金型外に通じる孔 11 Oリング 12 突き出しピン 13 キャビティブロック 14 バックアッププレート 16 ボンベ 17 加温器 18 減圧弁 19 ガス溜 20 供給用電磁弁 21 解放用電磁弁 22 圧力解放弁 Reference Signs List 8 gap 9 gas passage groove 10 hole from gas passage groove to outside of mold 11 O-ring 12 protrusion pin 13 cavity block 14 backup plate 16 cylinder 17 heater 18 pressure reducing valve 19 gas reservoir 20 supply electromagnetic valve 21 release Solenoid valve 22 Pressure release valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // B29K 101:12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // B29K 101: 12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金型キャビティ内に予め二酸化炭素ガス
を注入し、次いで溶融した非晶性熱可塑性樹脂を射出充
填する射出成形法であって、金型キャビティ内に充填さ
れた上記樹脂の冷却を、上記二酸化炭素ガスが溶解する
ことで低下した樹脂表面の固化温度以上の金型キャビテ
ィ表面温度で行うことを特徴とする非晶性熱可塑性樹脂
の射出成形法。
1. An injection molding method in which a carbon dioxide gas is injected into a mold cavity in advance, and then a molten amorphous thermoplastic resin is injected and filled, wherein cooling of the resin filled in the mold cavity is performed. A mold cavity surface temperature equal to or higher than the solidification temperature of the resin surface reduced by the dissolution of the carbon dioxide gas.
【請求項2】 金型キャビティ表面温度をTm (℃)、
非晶性熱可塑性樹脂のガラス転移温度をTg (℃)、二
酸化炭素ガスの圧力をP(MPa)とした時、下記式を
満足するようにTm を設定する請求項1記載の非晶性熱
可塑性樹脂の射出成形法。 Tg −5≧Tm ≧Tg −(5×P)−35 (但し、
P≧0.01)
2. The mold cavity surface temperature is T m (° C.),
The glass transition temperature of the amorphous thermoplastic resin T g (℃), when the pressure of carbon dioxide gas was P (MPa), amorphous of claim 1, wherein setting the T m so as to satisfy the following formula Injection molding method for conductive thermoplastic resin. T g -5 ≧ T m ≧ T g - (5 × P) -35 ( where,
P ≧ 0.01)
【請求項3】 金型キャビティ表面温度を部分的に下記
式を満足するTm に設定する請求項2記載の非晶性熱可
塑性樹脂の射出成形法。 Tm <Tg −(5×P)−35 (但し、P≧0.0
1)
3. The injection molding method for an amorphous thermoplastic resin according to claim 2, wherein the mold cavity surface temperature is partially set to Tm which satisfies the following equation. T m <T g − (5 × P) −35 (However, P ≧ 0.0
1)
【請求項4】 金型キャビティ表面温度をTm (℃)、
非晶性熱可塑性樹脂のガラス転移温度をTg (℃)、二
酸化炭素ガスの圧力をP(MPa)とした時、下記式を
満足するようにTm を設定する請求項1記載の非晶性熱
可塑性樹脂の射出成形法。 Tg −5≧Tm ≧Tg −(5×P)−20 (但し、
P≧0.01)
4. The mold cavity surface temperature is T m (° C.),
The glass transition temperature of the amorphous thermoplastic resin T g (℃), when the pressure of carbon dioxide gas was P (MPa), amorphous of claim 1, wherein setting the T m so as to satisfy the following formula Injection molding method for conductive thermoplastic resin. T g -5 ≧ T m ≧ T g - (5 × P) -20 ( where,
P ≧ 0.01)
【請求項5】 金型キャビティ表面温度を部分的に下記
式を満足するTm に設定する請求項4記載の非晶性熱可
塑性樹脂の射出成形法。 Tm <Tg −(5×P)−20 (但し、P≧0.0
1)
5. The injection molding method for an amorphous thermoplastic resin according to claim 4, wherein the mold cavity surface temperature is partially set to Tm which satisfies the following expression. T m <T g − (5 × P) −20 (where P ≧ 0.0
1)
JP4690398A 1998-02-27 1998-02-27 Injection molding of amorphous thermoplastic resin Expired - Fee Related JP3096904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4690398A JP3096904B2 (en) 1998-02-27 1998-02-27 Injection molding of amorphous thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4690398A JP3096904B2 (en) 1998-02-27 1998-02-27 Injection molding of amorphous thermoplastic resin

Publications (2)

Publication Number Publication Date
JPH11245256A true JPH11245256A (en) 1999-09-14
JP3096904B2 JP3096904B2 (en) 2000-10-10

Family

ID=12760327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4690398A Expired - Fee Related JP3096904B2 (en) 1998-02-27 1998-02-27 Injection molding of amorphous thermoplastic resin

Country Status (1)

Country Link
JP (1) JP3096904B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179405A1 (en) * 2000-08-11 2002-02-13 Tohoku Munekata Co., Ltd Injection moulding method
JP2002264171A (en) * 2001-03-07 2002-09-18 Asahi Eng Co Ltd Method and apparatus for substituting gas of mold
JP2011062973A (en) * 2009-09-18 2011-03-31 Canon Inc Gas assistant injection molding method and die for the same
JP2013226684A (en) * 2012-04-25 2013-11-07 Canon Inc Method for manufacturing fresnel lens

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483906U (en) * 1990-11-30 1992-07-21
EP0914919B1 (en) 1997-05-21 2004-12-29 Asahi Kasei Kabushiki Kaisha Method for injection molding of thermoplastic resins

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179405A1 (en) * 2000-08-11 2002-02-13 Tohoku Munekata Co., Ltd Injection moulding method
JP2002264171A (en) * 2001-03-07 2002-09-18 Asahi Eng Co Ltd Method and apparatus for substituting gas of mold
JP2011062973A (en) * 2009-09-18 2011-03-31 Canon Inc Gas assistant injection molding method and die for the same
JP2013226684A (en) * 2012-04-25 2013-11-07 Canon Inc Method for manufacturing fresnel lens

Also Published As

Publication number Publication date
JP3096904B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3349070B2 (en) Molding method of thermoplastic resin
US6146577A (en) Method for injection molding of thermoplastic resins
JP3101943B2 (en) Injection molding method for resin with non-resin fluid
US20050189665A1 (en) Method for producing light transmitting plate
TW200427569A (en) Process for producing light transmitting plate
EP0826477B1 (en) Method for molding thermoplastic resin
US6322735B1 (en) Method for molding thermoplastic resin
JPWO2002094532A1 (en) Resin molding method
JP3096904B2 (en) Injection molding of amorphous thermoplastic resin
JP2004218062A (en) Molded product, and method and device for injection molding
US6890478B2 (en) Open mold molding
JPH11179750A (en) Injection molding method using gas together
JP3875587B2 (en) Gas-assisted injection molding method of thermoplastic resin
JP2001062862A (en) Method for injection molding amorphous thermoplastic
JP3875586B2 (en) Molding method of thermoplastic resin
JPH11245257A (en) Injection molding of thermoplastic resin
JP5771058B2 (en) Molding method of resin
JP2004330720A (en) Manufacturing method of molded article, mold used for manufacturing the same, and molded article
JP2004223879A (en) Gas pressurizing injection molding method
JPH10286840A (en) New molding method of synthetic resin
JP2005125504A (en) Injection molding method
JPH11245252A (en) Method for injection-molding of amorphous resin
Zhao et al. Injection Molding at Multiscales
JPH10100184A (en) Method for molding synthetic resin
JPH11245250A (en) Method for injection-molding of amorphous resin

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000627

LAPS Cancellation because of no payment of annual fees