JP3875587B2 - Gas-assisted injection molding method of thermoplastic resin - Google Patents

Gas-assisted injection molding method of thermoplastic resin Download PDF

Info

Publication number
JP3875587B2
JP3875587B2 JP2002100710A JP2002100710A JP3875587B2 JP 3875587 B2 JP3875587 B2 JP 3875587B2 JP 2002100710 A JP2002100710 A JP 2002100710A JP 2002100710 A JP2002100710 A JP 2002100710A JP 3875587 B2 JP3875587 B2 JP 3875587B2
Authority
JP
Japan
Prior art keywords
resin
mold
gas
cavity
gas body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002100710A
Other languages
Japanese (ja)
Other versions
JP2002307476A (en
Inventor
宏 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002100710A priority Critical patent/JP3875587B2/en
Publication of JP2002307476A publication Critical patent/JP2002307476A/en
Application granted granted Critical
Publication of JP3875587B2 publication Critical patent/JP3875587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1701Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2608Mould seals

Description

【0001】
【発明の属する技術分野】
本発明は熱可塑性樹脂の成形において、金型表面状態を成形品表面に高度に転写する成形法に関する。
【0002】
【従来の技術】
熱可塑性樹脂の成形において、通常、金型の温度は成形樹脂の固化する温度よりも十分に低い温度に保たれる。これは、熱伝導性が著しく低い樹脂素材を、短時間で溶融状態から成形品として取り出せる温度にまで冷却するために必要なことである。また、金型表面状態を高度に成形品に転写するには粘度が低い状態の樹脂を高い圧力で金型に押しつける必要がある。
【0003】
しかしながら、樹脂の固化温度よりも金型温度が低いと、樹脂充填と樹脂の固化が同時に進行することになり、樹脂流動先端部(フローフロント)付近で金型に接触した樹脂は、急激に冷却され粘度が高くなるとともに、金型表面に低い圧力で押し付けられた状態で固化するため、金型表面状態を高度に成形品に転写することは困難となる。このため通常の射出成形では、光沢ムラ、ウェルドライン、フローマーク、ジェッティングなどの外観不良や、光ディスク等の精密成形品では微細なピットの転写不良を起こしやすく、薄肉部品ではショートショットを起こすこともある。
【0004】
金型表面の転写性を高めるには、樹脂充填工程中の樹脂の固化を防止したり、最小限にとどめることが必要となる。
【0005】
熱可塑性樹脂の射出成形等では、成形サイクルタイムを長くせず、経済的に金型表面転写性を高めることが常に要求されてきた。金型表面転写性を高める手段としてこれまで種々の方法が提案されており、例えば、次のような方法がある。
【0006】
(1)金型に熱媒と冷媒を交互に流して金型表面の加熱、冷却を繰り返す方法(Plastic Technology,VOL.34(June),150(1988)等)。
(2)成形直前に高周波誘導加熱で金型表面を選択的に加熱する方法(USP4439492等)。
(3)金型表面に絶縁層と導電層を設け、導電層に通電して加熱する方法(Polym.Eng.Sci.,Vol.34(11),894(1994)等)。
(4)金型表面を輻射加熱する方法(合成樹脂,Vol.42(1),48(1996)等)。
(5)金型表面を断熱層で被覆し、成形樹脂自身の熱で金型表面を加熱しつつ成形する断熱層被覆法(USP 5362226,WO97/04938等)。
【0007】
ビー・エイチ・キム(B.H.Kim)の報告(Polym.Plast.Technol.Eng.,Vol.25(1),73(1986))では、成形直前に電気等の外部エネルギーで金型表面を加熱する上記の(1)〜(4)の方法をアクティブコントロール法、それに対して、外部エネルギーを加えず、成形樹脂自身の熱で金型表面を加熱する上記(5)の方法をパッシブコントロール法と称している。
【0008】
上記アクティブコントロール法も、パッシブコントロール法もいずれも射出成形時に金型表面を加熱しつつ成形する方法である。すなわち、射出された溶融樹脂が金型壁面に押し付けられる時に金型表面を該樹脂の固化温度以上に加熱することにより金型表面転写性を良くする成形法である。
【0009】
【発明が解決しようとする課題】
本発明の課題は、熱可塑性樹脂の成形において、樹脂充填工程中の樹脂の固化や粘度上昇を防止し、金型表面状態を高度に成形品に転写する方法を経済的に提供することにある。
【0010】
【課題を解決するための手段】
前記課題を解決するため本発明者らは検討の結果、従来考えられていた金型表面を加熱することにより金型表面転写性を改良する手法とは全く異なる方法により、金型表面状態が成形品に高度に転写できることを見いだし本発明を完成するに至った。
【0011】
すなわち本発明は、溶融した熱可塑性樹脂を金型に充填して成形する成形法において、該樹脂の固化温度における該樹脂への溶解度が空気及び/又は窒素の2倍以上であるガス体を、該樹脂の固化温度において、平衡状態で0.1重量%以上樹脂に溶解する圧力で金型キャビティに充填し、次いで上記樹脂を該金型キャビティに充填して、樹脂充填工程中に上記ガス体を該樹脂表面に溶解させて金型に接する該樹脂表面の固化温度を低下させつつガスアシスト射出成形することを特徴とする熱可塑性樹脂のガスアシスト射出成形法である。
【0012】
本発明は前記従来の金型表面転写性を良くする成形メカニズムとは全く異なるメカニズムによりその目的を達成する方法であり、従来技術とは異なる新しい考え方により著しい効果を得る方法を発見し、本発明に至ったものである。
【0013】
本発明に若干関連する公知文献について次に述べる。
【0014】
発泡剤や水分を含有する発泡性樹脂の射出成形において、発泡ガスによる成形品表面のスワールマーク等の表面不良をなくすために、樹脂充填に先立ち金型キャビティに加圧ガス体を注入して加圧状態にして成形する、いわゆるカウンタープレッシャー法がある。この方法は金型キャビティを流動する溶融樹脂のフローフロントで、発泡ガスあるいは気化した水分により生じた気泡が破裂し、表面不良の原因となることを防ぐために、金型キャビティにあらかじめガス圧力をかける方法であり、この場合のガス体は樹脂を酸化劣化させないものであれば良く、一般に空気が使用され、不活性なガス体は全てこの成形法に使用できる。このカウンタープレッシャー法は発泡剤含有樹脂や、乾燥が不十分な樹脂の射出成形に使用される方法であり、一般の非発泡性樹脂の成形にこの方法を使用すると、キャビティ内に存在するガス体が、溶融樹脂と金型の間に入り込み転写を阻害したり、ガス体が空気の場合、キャビティ内で樹脂により空気が圧縮される部分では、高温で高酸素濃度の状態となり、樹脂の酸化劣化を引き起こしたりするなどの問題が生じるだけであり、金型表面転写性を高める効果はないといえる。このため、金型表面状態を高度に成形品に転写するには、樹脂充填時のみ金型をわずかに開きキャビティ内の空気を逃がしたり、真空ポンプにより金型内を減圧にするなどの方法も使用されている。
【0015】
特開昭62−231715号公報には、水分含有ポリマーアロイの射出成形にカウンタープレッシャー法を用いて成形する方法が示されており、金型キャビティを予備加圧するガス体として空気、窒素、二酸化炭素等の不活性ガス体があげられているが、本発明の考え方を何ら示唆するものではない。
【0016】
更に特開昭61−213111号公報には、二種のモノマーを混合し、射出する反応射出成形(Reaction Injection Molding)について、金型キャビティを大気圧の二酸化炭素で置換した後に成形することで、樹脂充填時に樹脂中にエアが巻き込まれて発生するボイドを、減少させる方法が示されている。しかし、二種以上のモノマーを混合した原料の温度よりも金型温度の方が高い反応射出成形と、本発明の熱可塑性樹脂の射出成形とは分野が全く異なり、樹脂充填工程中の樹脂の固化に起因した金型表面転写性不良を改良する手法を開示するものではない。
【0017】
一方、J.Appl.Polym.Sci.,Vol.30,2633(1985)など、多くの文献に示されるように、二酸化炭素を樹脂に吸収させると、樹脂の可塑剤として働き、ガラス転移温度を低下させることが知られているが、樹脂の成形加工に広く応用されるに至ってはいない。わずかな応用事例として、ドイツ国特許DE4314869号に、生体吸収性のポリエステルに高圧容器内で超臨界状態の二酸化炭素や炭化水素などを溶解させてガラス転移温度を低下させ、50℃程度の低温で樹脂を成形する方法が開示されている。しかし、この方法では樹脂全体のガラス転移温度が低下するため、成形にはガラス転移温度の低下分だけ通常よりも低い金型温度を使用する必要があり、樹脂充填工程中の固化に基づく転写不良を防止する効果はない。
【0018】
本発明は、従来、金型表面の転写を阻害すると考えられていた金型キャビティ内のガス体に着目したものであり、その効果が発現されるメカニズムは次のように考えられる。
【0019】
射出成形では、樹脂は金型キャビティ内を常に層流で流れ、冷却された金型壁面に接触するとその界面に固化層が形成され、後から充填される樹脂はその固化層の内側を流動して前進し、樹脂流動先端部(フローフロント)に達してから金型壁面に向かうファウンテンフローと呼ばれる流動をする。金型キャビティを二酸化炭素などの特定のガス体で、適度なガス圧力で満たしてから樹脂を充填すると、ガス体は流動樹脂のフローフロントで吸収されたり、金型と樹脂の界面に入り込み樹脂表面層に溶解する。樹脂に溶解したガス体は可塑剤として作用し、樹脂表面だけ固化温度を選択的に低下させたり、樹脂の溶融粘度を下げる。薄い樹脂表面層だけ固化温度が下がり、固化温度が金型表面温度以下となれば、樹脂充填工程中の固化が起きず、成形品の金型表面転写性を著しく改良することができることになる。樹脂表面層に溶解したガス体は、時間とともに樹脂内部に拡散し、樹脂表面層の固化温度が上昇するため、通常の樹脂冷却時間内で表面層は固化し、製品として取り出すことができる。
【0020】
この結果、樹脂充填工程中に金型に接する樹脂表面の固化温度を低下させつつ成形することが可能となり、本発明に至った。
【0021】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0022】
本発明で使用される樹脂は、一般の射出成形等に使用できる熱可塑性樹脂である。良好に使用できるのは非結晶性熱可塑性樹脂、非結晶性樹脂が主成分の熱可塑性ポリマーアロイ、あるいは結晶化度が低い一部の結晶性熱可塑性樹脂である。ポリスチレン、スチレン−アクリロニトリル共重合体、ゴム強化ポリスチレン、スチレン−メチルメタクリレート共重合体、ABS樹脂、スチレン−メチルメタクリレート−ブタジエン共重合体等のスチレン系樹脂、ポリメチルメタクリレート、メチルメタクリレート−スチレン共重合体等のメタクリル樹脂、ポリビニルアセテート、ポリカーボネート、ポリフェニレンエーテルあるいはポリスチレン等を配合した変成ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリアリレート、ポリアミドイミド、ポリ塩化ビニル、塩化ビニル−エチレン共重合体、塩化ビニル−酢酸ビニル共重合体等の塩化ビニル系樹脂等は特に良好に使用できる。更にこれらの樹脂のブレンド、これらの非結晶性樹脂に一部の結晶性樹脂を配合した樹脂、無機物や有機物の各種充填材が配合された樹脂である。
【0023】
本発明では、使用するガス体が樹脂に良く溶解する組み合わせが好ましい。ガス体として二酸化炭素を使用する場合、二酸化炭素との親和性が高く、二酸化炭素の溶解度が高い樹脂の方が大きな効果が得られる。更に本発明では、各種難加工性樹脂で、成形品外観が悪くなる樹脂も効果が大きく現れる。
【0024】
本発明に述べる樹脂の固化温度は、溶融した熱可塑性樹脂が金型内で固化する温度であり、非結晶性樹脂ではガラス転移温度、結晶性樹脂では結晶化開始温度である。非相溶系ポリマーアロイにおいては、海島構造の海を構成する樹脂の、ガラス転移温度または結晶化開始温度である。ここで、結晶性樹脂の結晶化開始温度は、示差熱量計を用いて樹脂を成形時の温度まで加熱し溶融させた後、20℃/分の速度で冷却し、樹脂の結晶化による発熱が最初に認められる温度とする。
【0025】
また、本発明において金型キャビティに充填するガス体とは、熱可塑性樹脂への溶解度が大きく、該樹脂の固化温度において空気及び/又は窒素の2倍以上の溶解度を有し、樹脂の可塑化効果を有するガス体である。すなわち、ガス体は金型キャビティに存在し、樹脂充填工程中に樹脂表面に吸収されて、金型に接する樹脂表面の固化温度を低下させるガス体である。樹脂への溶解度が空気や、窒素程度のガス体では、従来から知られるように、キャビティ中で金型表面の転写を阻害するだけであり、従って少なくともこれらの2倍以上の樹脂への溶解度が必要である。また、樹脂を劣化させないこと、金型や成形する環境に対し危険性がないこと、安価であることなどの制約から選定される。ガス体は溶解度が大きいものであれば2種以上の混合物であっても使用できる。
【0026】
具体的には二酸化炭素、メタン、エタン、プロパンなどの炭化水素、およびその一部水素をフッ素などで置換したフロンなどであり、使用する熱可塑性樹脂により最適な物が選択される。この中で二酸化炭素は安全性、価格、取り扱いやすさ等の点で最も良好に使用できるだけでなく、樹脂に良く溶解して可塑剤となり、樹脂の固化温度を低下させる効果も大きい。
【0027】
次に本発明に最も良好に使用されるガス体である二酸化炭素の各樹脂への溶解量、二酸化炭素溶解による樹脂のガラス転移温度(以後Tgと略称する)の低下等について図面を用いて説明する。
【0028】
図1〜図10は各種文献に記載の報告を示したものである。すなわち、図1と図2は、成形加工’96(JSPP’96 Tech.Papers),279(1996)より、図3〜図6と図9は、J.Appl.Polym.Sci.,Vol.30,4019(1985)より、図7と図10はJ.Appl.Polym.Sci.,Vol.30,2633(1985)より、図8はJ.Membrane Sci.,Vol.5,63(1979)からそれぞれ引用した図である。
【0029】
図1と図2はポリスチレンへの二酸化炭素と窒素の溶解量を示した図であり、二酸化炭素は窒素の約10倍の溶解量がある。
【0030】
図3と図4は液状可塑剤を含むポリスチレンへの二酸化炭素の溶解量を示し、図5は二酸化炭素溶解によるTgの低下量を示す。ポリスチレンは二酸化炭素を溶解させることにより、容易にTgを下げることができる。
【0031】
図6と図7はポリメチルメタクリレートおよびポリフッ化ビニリデンポリマーアロイへの二酸化炭素の溶解量と、二酸化炭素溶解によるTgの低下量を示した図であり、二酸化炭素溶解によりTgを下げることができる。
【0032】
図8と図9はポリカーボネートとポリスルホンへの二酸化炭素溶解量を示した図である。
【0033】
図10は各樹脂の二酸化炭素溶解によるTg低下量をまとめて示した図である。二酸化炭素溶解によるTgの低下量はポリカーボネートを除けばほぼ同一である。ポリカーボネートは二酸化炭素溶解によるTgの低下が特に大きい。
【0034】
金型キャビティに封入するガス圧力は、高い圧力になるほど多量のガス体が樹脂に溶解するため、より固化温度が低くなり、低い金型温度でも樹脂充填工程中の固化を防止できることになる。実用的には、要求する金型表面転写性の程度、樹脂やガス体の種類、金型温度等から必要なガス圧力が決まり、高い溶解性を持つガス体を使用し、金型温度を高く設定すれば低いガス圧力で十分な転写性を得ることもできる。
【0035】
圧力の下限は、樹脂に溶解したガス体の可塑剤効果から決まり、樹脂の固化温度において、平衡状態で0.1重量%樹脂に溶解する圧力であり、好ましくは0.5重量%溶解する圧力である。ここで用いるガス体の樹脂への溶解度は、圧力降下法による測定値である。これ未満の圧力や大気圧であっても、二酸化炭素などの溶解性の高いガス体を使用すれば、キャビティを真空ポンプにより減圧にしたときと同等以上の転写性向上効果を得ることができる。低い圧力で使用する場合は、キャビティを可能な限り特定ガス体で置換することが好ましい。
【0036】
また、圧力の上限は、特に限定はないが、あまりに高圧になると金型を開こうとする力が無視できなくなったり、金型のシールが難しくなるなどの問題が生じやすいことから、15MPa以下が実用的であり、好ましくは10MPa以下である。ガス圧力は1工程に使用するガス体の量を最小限に押さえ、金型のシールやガス供給装置の構造を簡単にするために、要求する効果が得られる範囲で低い方が好ましい。
【0037】
型閉時に型内に残る空気は、型締め中や型締め完了後に使用するガス体で置換した方が好ましいが、使用するガス圧力が1MPaを超えるような場合、空気の影響はほとんど無視できる。
【0038】
樹脂充填後、キャビティ外に押し出されたガス体を解放し、大気圧とする。ガス体の解放は、キャビティ内を溶融樹脂で満たした後に行う。樹脂充填後は金型表面状態を成形品に転写するため、成形品表面が固化するまでキャビティ内の樹脂に十分な圧力を与えることが望ましい。特に、金型表面にある点状の凹み形状を転写する場合には、凹み内部のガス圧力に対抗して樹脂を金型に押しつける必要があり、このような場合には通常の成形よりも高い樹脂圧力で成形することが望ましい。
【0039】
樹脂中に溶解したガス体は、樹脂の成形後に成形品を大気中に放置すれば徐々に大気中に放散する。放散により成形品に気泡を生じることはなく、放散後の成形品の機械的性能は通常の成形法で作ったものと変わらない。
【0040】
ガス体をキャビティに供給、排出する装置、ガス配管および金型は、ガス体の液化を防ぐための対策をとることが好ましい。これはガス体の液化が起きるような温度では、高いガス圧力が得られないばかりか、キャビティ内で液化ガスが樹脂に触れると多量のガスが樹脂中に溶け込み、ガス圧力解放後に成形品表面が発泡し、外観不良を起こすためである。液化防止の対策としては、ガス体を加温器により加熱し、ガス体の流路や金型の温度もガス体の臨界温度以上に保つことや、樹脂充填時にキャビティからガス体が押し出されことによる大幅な圧力上昇を防止するために、キャビティと配管内のガス圧力を任意の範囲に保つことのできる圧力解放弁や、キャビティからガス体が逆流可能なガス溜めを設けることがあげられる。ただし、ガス体の液化を防止するために、ガス体の温度を過剰に高くすることは、ガス体の膨張によりキャビティ内のガス量が減少するため好ましくない。
【0041】
通常、カウンタープレッシャー法による成形などで金型を気密構造にするには、パーティング面や各プレート間をOリングでシールし、キャビティに連通する突き出しピンなどの可動ピンもOリングでシールしたり、突き出しピンが固定された突き出しプレート部分全体を覆い気密とするなどの方法が採られている。突き出しピンのシールにOリングを使用する場合、2枚のプレート間にOリングを入れた後に、突き出しピンを通すことが必要である。この時、突き出しピン先端のエッジでOリングを傷つけたり、ピン挿入抵抗が大きいとOリングがねじれ確実なシール性が確保できないことが多い。これに対し、半径方向の断面形状がU字形状のゴムパッキン(以下、Uパッキン)でシールすると、突き出しピン挿入時に挿入抵抗が少なく、ピン先端のエッジで傷ついたり、ねじれたりすることなく容易に金型組立ができ、高い信頼性のシール性を得ることができる。
【0042】
また、可動ピンをパッキンでシールする場合、キャビティとパッキン間でピンまわりの隙間に入った加圧ガス体は、樹脂充填により隙間に閉じこめられ、成形品表面が冷え金型表面から離れると、キャビティに流れ出し、十分に固まっていない成形品表面を凹ませたり、型開き時に成形品を膨らませ変形させることがある。このような問題が生じる場合は、ピンまわりの隙間に入った加圧ガス体を、キャビティ以外の経路から金型外に排出できる溝や穴を金型に設け、樹脂充填後、キャビティから押し出されたガス体の排出と同時に排気することが望ましい。図12にキャビティ以外の経路から金型外に加圧ガス体を排出できる金型の構造例を示す。
【0043】
キャビティへのガス体の注入は、一般にキャビティのガス抜きに用いられる金型構造を用いれば可能であり、キャビティ外周のパーティング面に設けたスリット、金型入れ子や突き出しピンの隙間、ガス抜きピン、多孔質焼結体でできた入れ子などが使用できる。キャビティを大気圧付近のガス体で置換する場合、キャビティの空気を、できるだけ短時間に、できるだけ少量のガス体で、できるだけ100%近く置換する、経済的な方法が必要であり、金型スプルからガス体を吹き込む方法が適している。キャビティへ樹脂を充填するに先立ち、金型スプル付近よりガス体を注入して成形することにより、ガス体が樹脂により押されて、ガス体によりキャビティに残存する空気を金型外へ排出しつつ成形されることになる。すなわち、金型のスプル、ランナ、ゲート付近を十分にガス体で置換すれば、樹脂に触れるガス体は常に注入したガス体となる。
【0044】
図11はキャビティを加圧するガス体を金型のスプル部分から注入するノズルを示す。図11において、射出シリンダ1に連結するノズル2にはノズル先端3を開閉するニードル弁4がある。ノズル先端部にアウタノズル5があり、ノズル本体2とアウタノズル5で形成される空間6は通路7を通してガス体源と連結している。アウタノズル5が軽く金型に接触すると空間6はキャビティに連結し、この状態でガス体を空間6から金型へ圧入する。次いで射出シリンダ1が前進してアウタノズル5が金型に強く押し付けられると、アウタノズル5を金型に押しつけていたスプリングが圧縮され、ノズル本体2が前進して、空間6と金型との連結は遮断される。この状態で射出シリンダ1より樹脂を金型に充填する。
【0045】
本発明には、ガス体を金型キャビティに大気圧から1MPa程度の低い圧力で満たし、次いで溶融樹脂の充填によりキャビティのガス体を圧縮し、ガス圧力を増加させつつ成形する方法も含まれる。Oリング等でキャビティのガス体をシールした構造の金型を用い、キャビティをガス体で大気圧から1MPa程度の低い圧力で満たし樹脂を充填すると、樹脂によりガス体は圧縮され、樹脂充填が進む程ガス圧力は上昇する。ガス圧力が上昇すると樹脂中に溶解するガス量が増大し、溶解したガス体により樹脂は可塑化され、流動性は良くなり、高い金型表面転写性を得ることができる。一般の射出成形品では、射出圧力伝達の悪い樹脂流動末端部の金型表面転写性はゲート付近に比べ低いが、上記の方法では流動末端部の金型表面転写性を改良することができる。
【0046】
同様な効果は、金型表面の微細な凹部の転写に対しても有効である。一般に、微細な凹部では、樹脂流動中の固化や凹形状内にトラップされた空気のために、十分奥まで樹脂が入り込めない場合が多いが、本発明ではトラップされたガス体が樹脂に吸収されるため樹脂充填の障害となることが少なく、吸収されたガス体の可塑剤効果により樹脂の固化温度が下がり、流動性が増すため、凹部の奥まで樹脂を充填することが可能となる。
【0047】
さらに本発明はキャビティのガス体圧力がより低圧で型表面再現性効果をもたらす別の成形法も同時に提供する。すなわち、樹脂に溶解し可塑剤となる液体を、金型と溶融樹脂が接触する界面に存在させることにより、成形工程中に樹脂表面の固化温度を低下させつつ成形する成形法も含まれる。適度に可塑剤を選定し、適度な厚みに型表面に被覆することにより、成形品の型表面再現性が改良される。
【0048】
また、二酸化炭素等を溶解し易い液体の気化物及び/又は霧状微粒子状分散体を含む二酸化炭素等を、冷却した金型のキャビティへ圧入して成形する成形法も本発明に含まれる。ここに述べる液体は二酸化炭素の溶解量が大きく、沸点が金型温度以上で樹脂に良く溶ける液体である。二酸化炭素の溶解量が大きな、樹脂の良溶剤、可塑剤が良好に使用できる。一般には水、アセトン、メチルエチルケトン等のケトン類、エチルアルコール等のアルコール類や種々の極性溶剤等が使用できる。
【0049】
二酸化炭素等を溶解し易い液体の気化物、及び/又は霧状微粒子状に分散した該液体を含む二酸化炭素を、冷却した金型のキャビティへ圧入すると、キャビティ表面は、結露等により樹脂の可塑化効果を有し二酸化炭素等を多量に含む液体の薄層で被覆され、該表面に成形中の樹脂を押し付けて、樹脂表面層に多量の二酸化炭素を含浸させて成形品の金型表面転写性を良くすることもできる。すなわち型表面に多量の二酸化炭素を含有する液体を存在させることにより、キャビティ中に低圧力の二酸化炭素を供給するだけで、十分な量の二酸化炭素を樹脂表面に供給する方法である。
【0050】
金型表面の薄層液体の厚みは、樹脂充填時の樹脂固化層が型表面をスリップしない範囲の厚みにする必要があり、一般には0.1μmから10μm程度の範囲が好ましい。二酸化炭素中の液体の濃度はこの薄層液体の厚みになる濃度にしてキャビティへ圧入することが好ましい。
【0051】
本発明では各種の射出成形法が良好に使用できる。一般に、金型表面転写性に劣るとされる、ガスアシスト射出成形、液体アシスト射出成形、射出圧縮成形などの低圧射出成形法は良好に使用できる。さらに樹脂のフローフロント流動速度が200mm/秒以下、特に100mm/秒以下の低速充填を含む射出成形も良好に使用できる。これには樹脂の流動速度が一時的に低速になる場合、瞬間的に流動が止まる場合、全体的に低速の場合等の各種が含まれる。本発明によれば、樹脂充填時の樹脂の固化を防止できるため、ガスアシスト射出成形にみられるヘジテーションマークと呼ばれる樹脂流動速度の差に起因した、部分的な金型表面転写性の違いも少なくなる。
【0052】
また本発明では、前述した金型表面温度を高める既存の金型表面転写性改良法と組み合わせて使用することもできる。これらの成形法では、金型温度が高いため、樹脂充填時に樹脂と金型が密着しやすく、キャビティ内の空気が樹脂と金型の間にトラップされると、樹脂表面に凹みとなることが多い。本発明と組み合わせることにより樹脂表面の凹み不良が改善されるだけでなく、より低い金型温度で高い金型表面転写性が得られ加熱効率を高めることができる。
【0053】
さらに本発明は、樹脂充填工程中に樹脂に振動を加える方法と組み合わせることで、高い金型表面転写性と高い機械物性をあわせ持った成形品を得ることもできる。樹脂に振動を加える方法としては、射出シリンダ中の樹脂を加振する方法(Polym.Plast.Technol.Eng.,17(1),11(1981)など)、金型を加振する方法(成形加工’97(JSPP’97 Tech.Papers),185,(1997)など)、キャビティ内の加圧ガスを加振する方法(Platstics World,July,8(1997)など)があげられる。特に、キャビティ内の加圧ガスを加振する方法と本発明の併用では、従来使用していた窒素ガスによる転写阻害が防止できるため高い併用効果が得られる。
【0054】
【実施例】
以下に実施例、比較例を用いて本発明の効果をさらに具体的に説明する。
【0055】
射出成形に使用した樹脂は、ゴム補強ポリスチレン(旭化成工業製,商品名:スタイロン400)、ガラス繊維20%充填ABS樹脂(旭化成工業製,商品名:スタイラックABS R240A)、メタクリル樹脂(旭化成工業製,商品名:デルペット 80NH)、ポリカーボネート(帝人化成製,商品名:パンライト L1225)である。
【0056】
ガス体としては純度99%以上の二酸化炭素を使用した。
【0057】
成形機は住友重機械工業製のSG50を使用した。
【0058】
成形品は厚み2mmで縦横各100mmの正方形平板である。金型の構造を図12に、ガス供給装置の構造を図13に示す。尚、図12中(a)は金型全体の断面図、(b)は金型の移動側断面図で(a)中のA−A’断面図、(c)はキャビティ外周部の詳細断面図、(d)は付き出しピンのシール部詳細断面図である。
【0059】
金型表面は、移動側キャビティ表面の半分を梨地処理し、他は鏡面とした。成形品中心に直径8mmのダイレクトゲートを設け、スプルの長さは58mm、ノズルタッチ部の直径を3.5mmとした。金型のキャビティ外周にはガス供給と開放のための深さ0.05mmの隙間8とガス流路溝9、およびガス流路溝9から金型外に通じる孔10を設けてガス供給装置と接続し、ガス流路溝9の外周にガスシールのためにOリング11を設け、キャビティを気密構造とした。また、突き出しピン12はキャビティブロック13とバックアッププレート14間にUパッキン15を挿入してシールした。Uパッキンには日本バルカー工業製MPRシリーズを用いた。金型外に通じる孔10は、突き出しピン12のまわり、およびキャビティブロック13とバックアッププレート14間の隙間にも通じ、隙間のガス体を樹脂充填完了と同時に解放できる構造とした。
【0060】
ガス供給装置は、液化炭酸ガスを充填したボンベ16を40℃で保温し約12MPaのガス体供給源として用いた。ガス体はボンベ16より加温器17を通り、減圧弁18にて所定圧力に調圧された後、約40℃に保温された内容量100cm3のガス溜19に溜められる。金型キャビティへのガス体供給は、ガス溜19の下流にある供給用電磁弁20を開け、同時に解放用電磁弁21を閉じることで行われ、樹脂充填中はガス溜とキャビティはつながっている。樹脂充填が終了すると同時に、供給用電磁弁20を閉じ、解放用電磁弁21を開けることでガス体を金型外に解放する。溶融樹脂の充填によりキャビティ内のガス体を圧縮し圧力を増す場合には、ガス体供給後、樹脂充填開始とともに供給用電磁弁20を閉じ、樹脂充填の終了時に、解放用電磁弁21を開け、樹脂充填中の不要な圧力上昇は圧力解放弁22よりガスを解放することで防止する。
【0061】
金型表面状態の転写性は、鏡面部分の表面光沢測定、光学顕微鏡による観察、梨地部分の表面粗さ測定で評価した。表面光沢の測定には、スガ試験機製の変角光沢計,商品名:UGV−5K、表面粗さの測定には東京精密製,商品名:サーフコム575Aを用いた。
【0062】
[実施例1]
キャビティ表面温度70℃の金型内に、二酸化炭素を5.0MPaの圧力で満たし、樹脂温度220℃のゴム補強ポリスチレンを充填時間0.6秒および2.4秒で充填し、シリンダ内樹脂圧力35MPaで10秒間保圧し、20秒間冷却した後成形品を取り出した。金型に満たした二酸化炭素は、樹脂充填完了と同時に大気中に解放した。
【0063】
得られた成形品の表面光沢を測定した結果、充填時間によらず表面光沢に優れる(60度鏡面光沢度=いずれも101)ことが確認された。
【0064】
[実施例2]
金型に満たす二酸化炭素の圧力を2.5MPaとし、それ以外は実施例1と同様にして成形品を得た。
【0065】
得られた成形品の表面光沢を測定した結果、充填時間によらず表面光沢に優れる(60度鏡面光沢度=いずれも88)ことが確認された。
【0066】
[実施例3]
金型キャビティ表面温度を80℃とし、それ以外は実施例2と同様にして成形品を得た。
【0067】
得られた成形品の表面光沢を測定した結果、充填時間によらず表面光沢に優れる(60度鏡面光沢度=いずれも108)ことが確認された。
【0068】
[実施例4]
ガラス繊維20%充填ABS樹脂を用い、キャビティ表面温度88℃、樹脂温度240℃、保圧力70MPaとした以外は、実施例1と同様にして成形品を得た。得られた成形品の表面光沢を測定した結果、充填時間によらず表面光沢に優れる(60度鏡面光沢度=99及び100)ことが確認された。
【0069】
また、成形品の表面を顕微鏡で100倍の倍率で観察したところ、表面にはガラス繊維がほとんど露出しておらず平滑であった。
【0070】
[実施例5]
キャビティ表面温度80℃の金型内に、二酸化炭素を5.0MPaの圧力で満たし、樹脂温度240℃のメタクリル樹脂を充填時間0.6秒で充填し、シリンダ内樹脂圧力80MPaで10秒間保圧し、20秒間冷却した後成形品を取り出した。金型に満たした二酸化炭素は、樹脂充填完了と同時に大気中に解放した。得られた成形品の梨地部分の表面粗さRmaxは12.0μmであった。
【0071】
[実施例6]
キャビティ表面温度120℃の金型内に、二酸化炭素を5.0MPaの圧力に満たし、樹脂温度300℃のポリカーボネートを充填時間0.6秒で充填し、シリンダ内樹脂圧力120MPaで10秒間保圧し、20秒間冷却した後成形品を取り出した。金型に満たした二酸化炭素は、樹脂充填完了と同時に大気中に解放した。
【0072】
得られた成形品の梨地部分の表面粗さRmaxは11.5μmであった。
【0073】
[比較例1]
金型にガス供給装置を接続せずに大気開放し、それ以外は実施例1と同様にして成形品を得た。
【0074】
得られた成形品の表面光沢を測定した結果、充填時間0.6秒で60度鏡面光沢度=61、充填時間2.4秒で60度鏡面光沢度=48と表面光沢は劣り、充填時間に依存することが確認された。
【0075】
[比較例2]
金型に満たすガスに窒素を用い、それ以外は実施例1と同様にして成形品を得た。
【0076】
得られた成形品の表面光沢を測定した結果、表面光沢は比較例1よりも劣る(充填時間0.6秒で60度鏡面光沢度=46、充填時間2.4秒で60度鏡面光沢度=40)ことが確認された。
【0077】
[比較例3]
金型にガス供給装置を接続せずに大気開放し、それ以外は実施例4と同様にして成形品を得た。
【0078】
得られた成形品の表面光沢を測定した結果、充填時間0.6秒で60度鏡面光沢度=85、充填時間2.4秒で60度鏡面光沢度=62と表面光沢は劣り、充填時間に依存することが確認された。
【0079】
また、成形品の表面を顕微鏡で観察したところ、表面には多数のガラス繊維および凹凸がみられた。
【0080】
[比較例4]
金型にガス供給装置を接続せずに大気開放し、それ以外は実施例5と同様にして成形品を得た。
【0081】
得られた成形品の梨地部分の表面粗さRmaxは8.2μmであった。
【0082】
[比較例5]
金型にガス供給装置を接続せずに大気開放し、それ以外は実施例6と同様にして成形品を得た。
【0083】
得られた成形品の梨地部分の表面粗さRmaxは7.4μmであった。
【0084】
実施例、比較例の結果をまとめて表1、表2に示す。
【0085】
【表1】

Figure 0003875587
【0086】
【表2】
Figure 0003875587
【0087】
【発明の効果】
本発明によって、経済的に金型表面状態を高度に成形品に転写することが可能となるため、従来、成形品の外観が悪い場合にやむをえず施されていた塗装などの後工程が不要になり、部品の大幅なコストダウンができる。また、微細な金型表面状態を成形品に均一に転写することができないために、射出成形に比べ生産性の低いプレス成形で成形していた平面レンズなどの生産性が著しく高められ、新たな射出成形の用途分野を創造できるなどの効果が期待できる。
【0088】
本発明の成形法で良好に成形される成形品には、光学機器部品、弱電機器、電子機器、事務機器等のハウジング、各種自動車部品、各種日用品、等の樹脂射出成形品があげられる。多点ゲートで射出成形され、その結果ウエルドラインが多数発生する電子機器、電気機器、事務機器のハウジング等や、艶消し状成形品、パターンしぼ成形品の外観向上に適する。また、透明な合成樹脂を用いて成形したレンチキュラーレンズ、フレネルレンズ等のレンズ、光ディスク等の記録用ディスク、液晶表示部品である導光板、拡散板等の各種光学部品の射出成形品にも好適である。本発明法で成形されるこれらの成形品は、型表面の再現性が良くなり、光沢度の向上、ウエルドラインによる外観不良の減少、型表面のシャープエッジの再現性向上、微細な型表面凹凸の再現性向上などの効果があるだけでなく、樹脂充填工程時に発生する成形品表面付近の内部ひずみが低減され、複屈折の減少、耐薬品性の向上、配合したゴムの配向低減によるメッキ性能向上などの効果もある。そして、キャビティ内に高圧のガスを封入することで、樹脂充填工程時に発生するメルトフロントからのガスの発生が抑制されるため、金型汚れが減少したり、成形品の離型力が低減するなどの効果も期待される。
【図面の簡単な説明】
【図1】ポリスチレンへの二酸化炭素の溶解量を示す図である。
【図2】ポリスチレンへの窒素ガスの溶解量を示す図である。
【図3】ポリスチレンへの二酸化炭素の溶解量を示す図である。
【図4】ポリスチレンへの二酸化炭素の溶解量を示す図である。
【図5】ポリスチレンへの二酸化炭素溶解によるTgの低下量を示す図である。
【図6】PMMA/PVF2系ポリマーアロイへの二酸化炭素の溶解量を示す図である。
【図7】PMMA/PVF2系ポリマーアロイへの二酸化炭素溶解によるTgの低下量を示す図である。
【図8】ポリカーボネートへの二酸化炭素の溶解量を示す図である。
【図9】ポリスルホンへの二酸化炭素の溶解量を示す図である。
【図10】各合成樹脂の二酸化炭素溶解によるTgの低下を示す図である。
【図11】本発明を実施する射出成形機ノズルの本発明に直接係わる部分の断面を示す図である。
【図12】本発明を実施する金型の本発明に直接係わる部分の断面を示す図である。
【図13】本発明を実施するガス供給装置の構造を示す図である。
【符号の説明】
1 射出シリンダ
2 ノズル
3 ノズル先端
4 ニードル弁
5 アウタノズル
6 空間
7 通路
8 隙間
9 ガス流路溝
10 ガス流路溝から金型外に通じる孔
11 Oリング
12 突き出しピン
13 キャビティブロック
14 バックアッププレート
15 Uパッキン
16 ボンベ
17 加温器
18 減圧弁
19 ガス溜
20 供給用電磁弁
21 解放用電磁弁
22 圧力解放弁[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding method for highly transferring a mold surface state onto a molded product surface in molding a thermoplastic resin.
[0002]
[Prior art]
In the molding of thermoplastic resins, the temperature of the mold is usually kept at a temperature sufficiently lower than the temperature at which the molding resin solidifies. This is necessary for cooling a resin material having extremely low thermal conductivity to a temperature at which it can be taken out from a molten state as a molded product in a short time. Further, in order to transfer the mold surface state to a molded product highly, it is necessary to press a resin having a low viscosity against the mold with a high pressure.
[0003]
However, if the mold temperature is lower than the resin solidification temperature, resin filling and resin solidification proceed simultaneously, and the resin that contacts the mold near the resin flow front (flow front) cools rapidly. As the viscosity increases, it hardens in a state where it is pressed against the mold surface with a low pressure, so that it is difficult to transfer the mold surface state to a molded product to a high degree. For this reason, normal injection molding tends to cause poor appearance such as uneven gloss, weld lines, flow marks, jetting, and fine pit transfer defects in precision molded products such as optical discs, and short shots in thin parts. There is also.
[0004]
In order to improve the transferability of the mold surface, it is necessary to prevent or minimize the solidification of the resin during the resin filling process.
[0005]
In thermoplastic resin injection molding and the like, it has always been required to economically improve the mold surface transferability without lengthening the molding cycle time. Various methods have been proposed so far as means for improving the mold surface transferability. For example, there are the following methods.
[0006]
(1) A method of repeatedly heating and cooling the mold surface by alternately flowing a heat medium and a refrigerant through the mold (Plastic Technology, VOL. 34 (June), 150 (1988), etc.).
(2) A method of selectively heating the mold surface by high-frequency induction heating immediately before molding (USP 4439492).
(3) A method in which an insulating layer and a conductive layer are provided on the mold surface, and the conductive layer is energized and heated (Polym. Eng. Sci., Vol. 34 (11), 894 (1994), etc.).
(4) A method of radiatively heating the mold surface (synthetic resin, Vol. 42 (1), 48 (1996), etc.).
(5) A heat insulating layer coating method (USP 536226, WO 97/04938, etc.) in which the mold surface is coated with a heat insulating layer and the mold surface is heated with the heat of the molding resin itself.
[0007]
According to the report of BH Kim (Polym.Plast.Technol.Eng., Vol.25 (1), 73 (1986)), the surface of the mold is externally charged with external energy such as electricity immediately before molding. The above-mentioned methods (1) to (4) for heating the mold are active control methods, whereas the method (5) for heating the mold surface with the heat of the molding resin itself without applying external energy is passively controlled. It is called the law.
[0008]
Both the active control method and the passive control method are methods of molding while heating the mold surface during injection molding. That is, it is a molding method in which the mold surface transferability is improved by heating the mold surface above the solidification temperature of the resin when the injected molten resin is pressed against the mold wall surface.
[0009]
[Problems to be solved by the invention]
It is an object of the present invention to economically provide a method for preventing the resin from solidifying and increasing the viscosity during the resin filling process in the molding of a thermoplastic resin and transferring the mold surface state to a molded product highly. .
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have studied, and as a result, the surface state of the mold is molded by a method that is completely different from the conventional method for improving the mold surface transferability by heating the mold surface. As a result, the present invention has been completed.
[0011]
That is, the present invention relates to a molding method in which a molten thermoplastic resin is filled in a mold and molded, and a gas body whose solubility in the resin at the solidification temperature of the resin is twice or more that of air and / or nitrogen , At the solidification temperature of the resin, the mold cavity is filled with a pressure that dissolves in the resin by 0.1% by weight or more in an equilibrium state, and then the resin is filled into the mold cavity, and the gas body is filled during the resin filling process. A gas-assisted injection molding method for a thermoplastic resin, wherein the gas-assisted injection molding is performed while lowering the solidification temperature of the resin surface in contact with the mold by dissolving the resin on the resin surface.
[0012]
The present invention is a method for achieving the object by a mechanism completely different from the conventional molding mechanism for improving the mold surface transferability, and has found a method for obtaining a remarkable effect by a new concept different from the prior art. Has been reached.
[0013]
The following is a description of known documents slightly related to the present invention.
[0014]
In the injection molding of a foaming resin containing a foaming agent and moisture, in order to eliminate surface defects such as swirl marks on the surface of the molded product due to foaming gas, a pressurized gas body is injected into the mold cavity prior to resin filling. There is a so-called counter pressure method, in which molding is performed under pressure. In this method, gas pressure is preliminarily applied to the mold cavity in order to prevent bubbles generated by foaming gas or vaporized water from bursting and causing surface defects in the flow front of the molten resin flowing through the mold cavity. In this case, the gas body is not particularly limited as long as it does not oxidize and deteriorate the resin. Generally, air is used, and all the inert gas bodies can be used in this molding method. This counter pressure method is a method used for injection molding of a foaming agent-containing resin or a resin that is insufficiently dried. When this method is used for molding a general non-foamable resin, a gas body existing in the cavity is used. However, if it enters between the molten resin and the mold and inhibits transfer, or the gas body is air, the part where air is compressed by the resin in the cavity will be in a high oxygen concentration state at high temperature, and the resin will be oxidized and deteriorated. It can be said that there is no effect of improving the mold surface transferability. For this reason, in order to transfer the mold surface state to the molded product highly, there are also methods such as slightly opening the mold only during resin filling to let the air in the cavity escape, or reducing the pressure inside the mold with a vacuum pump. in use.
[0015]
Japanese Patent Application Laid-Open No. 62-231715 discloses a method of molding a moisture-containing polymer alloy by using a counter pressure method, and air, nitrogen, carbon dioxide as gas bodies for pre-pressurizing a mold cavity. However, this does not suggest any idea of the present invention.
[0016]
Further, JP-A-61-213111 discloses a reaction injection molding in which two types of monomers are mixed and injected, by molding after replacing the mold cavity with carbon dioxide at atmospheric pressure, There is shown a method for reducing voids generated when air is entrained in a resin during resin filling. However, the field of reaction injection molding, in which the mold temperature is higher than the temperature of the raw material in which two or more monomers are mixed, and the injection molding of the thermoplastic resin of the present invention are completely different, and the resin in the resin filling process is different. It does not disclose a technique for improving the mold surface transfer defect caused by solidification.
[0017]
On the other hand, J.H. Appl. Polym. Sci. , Vol. 30, 2633 (1985) and other documents, it is known that when carbon dioxide is absorbed into a resin, it acts as a plasticizer for the resin and lowers the glass transition temperature. It has not been widely applied to processing. As a slight application example, in German patent DE 43 14 869, supercritical carbon dioxide and hydrocarbons are dissolved in a bioabsorbable polyester in a high-pressure vessel to lower the glass transition temperature, and at a low temperature of about 50 ° C. A method for molding a resin is disclosed. However, this method lowers the glass transition temperature of the entire resin, so it is necessary to use a mold temperature that is lower than usual for molding because of the lower glass transition temperature. Transfer defects due to solidification during the resin filling process There is no effect to prevent.
[0018]
The present invention pays attention to the gas body in the mold cavity that has been conventionally considered to inhibit the transfer of the mold surface, and the mechanism for realizing the effect is considered as follows.
[0019]
In injection molding, the resin always flows in the mold cavity in a laminar flow, and when it comes into contact with the cooled mold wall, a solidified layer is formed at the interface, and the resin that is filled later flows inside the solidified layer. Then, after reaching the resin flow front end (flow front), a flow called fountain flow toward the mold wall surface occurs. When filling the mold cavity with a specific gas body such as carbon dioxide at an appropriate gas pressure and then filling the resin, the gas body is absorbed at the flow front of the fluidized resin or enters the interface between the mold and the resin and the resin surface Dissolve in the layer. The gas dissolved in the resin acts as a plasticizer, and selectively lowers the solidification temperature only on the resin surface or lowers the melt viscosity of the resin. If the solidification temperature is lowered only for the thin resin surface layer and the solidification temperature is equal to or lower than the mold surface temperature, solidification during the resin filling process does not occur, and the mold surface transferability of the molded product can be remarkably improved. The gas dissolved in the resin surface layer diffuses into the resin with time, and the solidification temperature of the resin surface layer increases, so that the surface layer solidifies within a normal resin cooling time and can be taken out as a product.
[0020]
As a result, it became possible to mold while lowering the solidification temperature of the resin surface in contact with the mold during the resin filling step, which led to the present invention.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0022]
The resin used in the present invention is a thermoplastic resin that can be used for general injection molding and the like. A non-crystalline thermoplastic resin, a thermoplastic polymer alloy mainly composed of an amorphous resin, or a part of a crystalline thermoplastic resin having a low crystallinity can be used favorably. Styrene resins such as polystyrene, styrene-acrylonitrile copolymer, rubber reinforced polystyrene, styrene-methyl methacrylate copolymer, ABS resin, styrene-methyl methacrylate-butadiene copolymer, polymethyl methacrylate, methyl methacrylate-styrene copolymer Such as methacrylic resin, polyvinyl acetate, polycarbonate, polyphenylene ether or modified polyphenylene ether blended with polystyrene, polysulfone, polyethersulfone, polyetherimide, polyarylate, polyamideimide, polyvinyl chloride, vinyl chloride-ethylene copolymer, Vinyl chloride resins such as vinyl chloride-vinyl acetate copolymer can be used particularly well. Further, blends of these resins, resins in which some crystalline resins are blended with these non-crystalline resins, and resins in which various inorganic and organic fillers are blended.
[0023]
In the present invention, a combination in which the gas body to be used is well dissolved in the resin is preferable. When carbon dioxide is used as the gas body, a resin having a high affinity with carbon dioxide and a high solubility of carbon dioxide has a greater effect. Furthermore, in the present invention, the effects of various difficult-to-work resins such as resins that deteriorate the appearance of the molded product are also significant.
[0024]
The solidification temperature of the resin described in the present invention is a temperature at which the molten thermoplastic resin solidifies in the mold, and is a glass transition temperature for an amorphous resin and a crystallization start temperature for a crystalline resin. In an incompatible polymer alloy, it is the glass transition temperature or the crystallization start temperature of the resin constituting the sea of the sea-island structure. Here, the crystallization start temperature of the crystalline resin is such that the resin is heated to the temperature at the time of molding using a differential calorimeter, and then cooled at a rate of 20 ° C./min. Let it be the first recognized temperature.
[0025]
Further, in the present invention, the gas body filled in the mold cavity has a high solubility in the thermoplastic resin, and has a solubility of at least twice that of air and / or nitrogen at the solidification temperature of the resin, and the plasticization of the resin. It is a gas body having an effect. That is, the gas body is a gas body that exists in the mold cavity and is absorbed by the resin surface during the resin filling process to lower the solidification temperature of the resin surface in contact with the mold. In a gas body having a solubility in the resin such as air or nitrogen, as is conventionally known, it only inhibits the transfer of the mold surface in the cavity. Therefore, the solubility in the resin is at least twice as much as these. is necessary. Further, it is selected based on restrictions such as not deteriorating the resin, no danger to the mold and molding environment, and low cost. As long as the gas body has a high solubility, a mixture of two or more kinds can be used.
[0026]
Specifically, hydrocarbons such as carbon dioxide, methane, ethane, and propane, and chlorofluorocarbons in which a part of hydrogen is substituted with fluorine or the like, and the most suitable one is selected depending on the thermoplastic resin to be used. Of these, carbon dioxide can be used not only in terms of safety, price, and ease of handling, but also dissolves well in the resin to become a plasticizer, and has a great effect of lowering the solidification temperature of the resin.
[0027]
Next, the amount of carbon dioxide dissolved in each resin, which is the gas body best used in the present invention, the decrease in the glass transition temperature (hereinafter abbreviated as Tg) of the resin due to carbon dioxide dissolution, and the like will be described with reference to the drawings. To do.
[0028]
1 to 10 show reports described in various documents. That is, FIGS. 1 and 2 show molding processing '96 (JSPP '96 Tech. Papers), 279 (1996), and FIGS. Appl. Polym. Sci. , Vol. 30, 4019 (1985), FIGS. Appl. Polym. Sci. , Vol. 30, 2633 (1985), FIG. Membrane Sci. , Vol. 5, 63 (1979).
[0029]
1 and 2 are graphs showing the amount of carbon dioxide and nitrogen dissolved in polystyrene. Carbon dioxide has about 10 times the amount of nitrogen dissolved.
[0030]
3 and 4 show the amount of carbon dioxide dissolved in polystyrene containing a liquid plasticizer, and FIG. 5 shows the amount of decrease in Tg due to carbon dioxide dissolution. Polystyrene can easily lower Tg by dissolving carbon dioxide.
[0031]
FIGS. 6 and 7 are graphs showing the amount of carbon dioxide dissolved in polymethyl methacrylate and polyvinylidene fluoride polymer alloy and the amount of decrease in Tg due to carbon dioxide dissolution. Tg can be lowered by carbon dioxide dissolution.
[0032]
8 and 9 are graphs showing the amount of carbon dioxide dissolved in polycarbonate and polysulfone.
[0033]
FIG. 10 is a diagram collectively showing the amount of Tg decrease due to carbon dioxide dissolution of each resin. The amount of decrease in Tg due to carbon dioxide dissolution is almost the same except for polycarbonate. Polycarbonate has a particularly large decrease in Tg due to dissolution of carbon dioxide.
[0034]
The higher the gas pressure sealed in the mold cavity, the more the gas body dissolves in the resin. Therefore, the solidification temperature becomes lower, and the solidification during the resin filling process can be prevented even at a low mold temperature. In practice, the required gas pressure is determined by the required degree of mold surface transferability, the type of resin or gas body, the mold temperature, etc., and a highly soluble gas body is used to increase the mold temperature. If set, sufficient transferability can be obtained at a low gas pressure.
[0035]
The lower limit of the pressure is determined by the plasticizer effect of the gas dissolved in the resin, and is a pressure that dissolves in 0.1% by weight resin in an equilibrium state at the resin solidification temperature, and preferably a pressure that dissolves by 0.5% by weight. It is. The solubility of the gas body used in the resin here is a value measured by a pressure drop method. Even at a lower pressure or atmospheric pressure, if a highly soluble gas body such as carbon dioxide is used, an effect of improving transferability equivalent to or higher than when the cavity is decompressed by a vacuum pump can be obtained. When used at a low pressure, it is preferable to replace the cavity with a specific gas as much as possible.
[0036]
The upper limit of the pressure is not particularly limited. However, if the pressure is too high, the force to open the mold cannot be ignored, and problems such as difficulty in sealing the mold tend to occur. Practical, preferably 10 MPa or less. In order to minimize the amount of the gas body used in one process and simplify the structure of the mold seal and the gas supply device, the gas pressure is preferably as low as possible within the range where the required effect can be obtained.
[0037]
The air remaining in the mold when the mold is closed is preferably replaced with a gas body used during the mold clamping or after the mold clamping is completed, but when the gas pressure used exceeds 1 MPa, the influence of the air can be almost ignored.
[0038]
After filling the resin, the gas body pushed out of the cavity is released to atmospheric pressure. The gas body is released after the cavity is filled with molten resin. Since the mold surface state is transferred to the molded product after the resin is filled, it is desirable to apply sufficient pressure to the resin in the cavity until the surface of the molded product is solidified. In particular, when transferring a dot-like dent shape on the mold surface, it is necessary to press the resin against the mold against the gas pressure inside the dent, and in such a case, it is higher than normal molding. It is desirable to mold with resin pressure.
[0039]
The gas dissolved in the resin gradually dissipates into the atmosphere if the molded product is left in the atmosphere after the resin is molded. Bubbles are not generated in the molded product due to the diffusion, and the mechanical performance of the molded product after the diffusion is the same as that produced by a normal molding method.
[0040]
It is preferable to take measures to prevent the gas body from being liquefied in the apparatus for supplying and discharging the gas body to and from the cavity, the gas pipe, and the mold. This is because not only high gas pressure cannot be obtained at a temperature at which liquefaction of the gas body occurs, but when the liquefied gas touches the resin in the cavity, a large amount of gas dissolves in the resin, and after releasing the gas pressure, the surface of the molded product This is because foaming causes poor appearance. As measures to prevent liquefaction, the gas body is heated by a heater, and the temperature of the flow path and mold of the gas body is kept above the critical temperature of the gas body, or the gas body is pushed out of the cavity during resin filling. In order to prevent a significant increase in pressure due to the above, it is possible to provide a pressure release valve capable of maintaining the gas pressure in the cavity and the pipe within an arbitrary range, and a gas reservoir capable of allowing the gas body to flow backward from the cavity. However, excessively increasing the temperature of the gas body in order to prevent liquefaction of the gas body is not preferable because the amount of gas in the cavity decreases due to the expansion of the gas body.
[0041]
Normally, in order to make the mold airtight by molding by the counter pressure method, the parting surface and between each plate are sealed with an O-ring, and movable pins such as protruding pins communicating with the cavity are also sealed with an O-ring. A method is adopted in which the entire protruding plate portion to which the protruding pin is fixed is covered and airtight. When using an O-ring to seal the ejection pin, it is necessary to pass the ejection pin after inserting the O-ring between the two plates. At this time, if the O-ring is damaged at the edge of the protruding pin or the pin insertion resistance is large, the O-ring is often twisted and a reliable sealing performance cannot be ensured. On the other hand, sealing with a rubber packing with a U-shaped radial cross-section (hereinafter referred to as “U-packing”) has low insertion resistance when inserting the protruding pin, and it is easy without being damaged or twisted at the edge of the pin tip. Mold assembly is possible, and a highly reliable sealing property can be obtained.
[0042]
In addition, when sealing the movable pin with packing, the pressurized gas body that has entered the gap around the pin between the cavity and the packing is confined in the gap by resin filling, and when the surface of the molded product is cooled and separated from the mold surface, The surface of the molded product which is not sufficiently hardened may be recessed, or the molded product may be expanded and deformed when the mold is opened. When such a problem occurs, a groove or hole is provided in the mold to allow the pressurized gas body that has entered the gap around the pin to be discharged out of the mold from a path other than the cavity, and after filling the resin, it is pushed out of the cavity. It is desirable to exhaust the gas body at the same time as discharging the gas body. FIG. 12 shows a structure example of a mold that can discharge the pressurized gas body from the path other than the cavity to the outside of the mold.
[0043]
The gas body can be injected into the cavity by using a mold structure that is generally used for venting the cavity. A slit provided in the parting surface on the outer periphery of the cavity, a gap between the mold insert and the ejection pin, a vent pin An insert made of a porous sintered body can be used. When replacing the cavity with a gas body near atmospheric pressure, there is a need for an economical method that replaces the air in the cavity with as little gas body as possible in as short a time as possible and as much as 100%. A method of blowing a gas body is suitable. Prior to filling the cavity with the resin, the gas body is injected and molded from the vicinity of the mold sprue, so that the gas body is pushed by the resin and the gas body discharges the air remaining in the cavity to the outside of the mold. It will be molded. That is, if the mold sprue, runner, and the vicinity of the gate are sufficiently replaced with a gas body, the gas body touching the resin is always an injected gas body.
[0044]
FIG. 11 shows a nozzle for injecting a gas body for pressurizing the cavity from a sprue portion of the mold. In FIG. 11, the nozzle 2 connected to the injection cylinder 1 has a needle valve 4 for opening and closing the nozzle tip 3. An outer nozzle 5 is provided at the tip of the nozzle, and a space 6 formed by the nozzle body 2 and the outer nozzle 5 is connected to a gas source through a passage 7. When the outer nozzle 5 lightly contacts the mold, the space 6 is connected to the cavity, and in this state, the gas body is press-fitted from the space 6 into the mold. Next, when the injection cylinder 1 moves forward and the outer nozzle 5 is strongly pressed against the mold, the spring that pressed the outer nozzle 5 against the mold is compressed, the nozzle body 2 moves forward, and the connection between the space 6 and the mold is Blocked. In this state, the mold is filled with resin from the injection cylinder 1.
[0045]
The present invention also includes a method in which a gas body is filled in a mold cavity at a pressure as low as about 1 MPa from atmospheric pressure, and then the gas body in the cavity is compressed by filling with a molten resin and molded while increasing the gas pressure. When a mold having a structure in which the gas body of the cavity is sealed with an O-ring or the like and the cavity is filled with the gas body at a low pressure of about 1 to 1 MPa, the gas body is compressed by the resin, and the resin filling proceeds. As the gas pressure increases. When the gas pressure increases, the amount of gas dissolved in the resin increases, the resin is plasticized by the dissolved gas body, the fluidity is improved, and high mold surface transferability can be obtained. In a general injection-molded product, the mold surface transferability of the resin flow end portion with poor injection pressure transmission is lower than that near the gate, but the above method can improve the mold surface transferability of the flow end portion.
[0046]
A similar effect is also effective for transferring fine concave portions on the mold surface. In general, in a fine recess, resin often cannot enter deep enough due to solidification during resin flow or air trapped in the recess, but in the present invention the trapped gas body is absorbed by the resin. Therefore, the resin filling is less likely to be an obstacle, and the solidification temperature of the resin is lowered due to the plasticizer effect of the absorbed gas body, and the fluidity is increased, so that the resin can be filled to the back of the recess.
[0047]
Furthermore, the present invention simultaneously provides another molding method that provides a mold surface reproducibility effect at a lower gas body pressure in the cavity. That is, a molding method is also included in which a liquid that dissolves in a resin and becomes a plasticizer is present at the interface between the mold and the molten resin so as to lower the solidification temperature of the resin surface during the molding process. By appropriately selecting a plasticizer and coating the mold surface with an appropriate thickness, the mold surface reproducibility of the molded product is improved.
[0048]
Further, the present invention includes a molding method in which carbon dioxide or the like containing a liquid vaporized substance that easily dissolves carbon dioxide and / or mist-like fine particle dispersion is pressed into a cavity of a cooled mold. The liquid described here is a liquid in which the amount of carbon dioxide dissolved is large, and the boiling point is higher than the mold temperature and dissolves well in the resin. Resin good solvents and plasticizers with a large amount of dissolved carbon dioxide can be used satisfactorily. In general, water, ketones such as acetone and methyl ethyl ketone, alcohols such as ethyl alcohol, various polar solvents, and the like can be used.
[0049]
When carbon dioxide containing a liquid vapor that easily dissolves carbon dioxide and / or carbon dioxide containing the liquid dispersed in the form of atomized fine particles is pressed into the cavity of the cooled mold, the surface of the cavity is plasticized by condensation or the like. It is coated with a thin layer of liquid that contains a large amount of carbon dioxide, etc., and the surface of the mold is pressed by pressing the resin being molded onto the surface and impregnating the resin surface layer with a large amount of carbon dioxide. It can also improve sex. In other words, by providing a liquid containing a large amount of carbon dioxide on the mold surface, a sufficient amount of carbon dioxide is supplied to the resin surface only by supplying low pressure carbon dioxide into the cavity.
[0050]
The thickness of the thin layer liquid on the surface of the mold needs to be in a range where the resin solidified layer at the time of resin filling does not slip on the surface of the mold, and is generally in the range of about 0.1 μm to 10 μm. The concentration of the liquid in the carbon dioxide is preferably adjusted to the thickness of the thin layer liquid and press-fitted into the cavity.
[0051]
In the present invention, various injection molding methods can be used favorably. In general, low pressure injection molding methods such as gas assist injection molding, liquid assist injection molding, and injection compression molding, which are generally inferior in mold surface transferability, can be used. Furthermore, injection molding including low-speed filling with a resin flow front flow rate of 200 mm / second or less, particularly 100 mm / second or less, can be used satisfactorily. This includes various cases such as when the flow rate of the resin temporarily becomes low, when the flow stops instantaneously, and when the flow rate is low overall. According to the present invention, since the solidification of the resin at the time of resin filling can be prevented, there is little difference in partial mold surface transferability due to a difference in resin flow rate called a hesitation mark in gas assist injection molding. Become.
[0052]
Moreover, in this invention, it can also be used in combination with the existing mold surface transfer property improvement method which raises the mold surface temperature mentioned above. In these molding methods, since the mold temperature is high, the resin and the mold are likely to closely adhere to each other when the resin is filled, and if the air in the cavity is trapped between the resin and the mold, a dent may be formed on the resin surface. Many. By combining with the present invention, not only the dent defect on the resin surface is improved, but also high mold surface transferability can be obtained at a lower mold temperature, and the heating efficiency can be increased.
[0053]
Furthermore, according to the present invention, by combining with a method of applying vibration to the resin during the resin filling process, a molded product having both high mold surface transferability and high mechanical properties can be obtained. As a method of applying vibration to the resin, a method of vibrating the resin in the injection cylinder (Polym.Plast.Technol.Eng., 17 (1), 11 (1981), etc.), a method of vibrating the mold (molding). Processing '97 (JSPP '97 Tech. Papers), 185, (1997) and the like, and a method of exciting a pressurized gas in the cavity (Plastics World, July, 8 (1997)). In particular, the combined use of the method of oscillating the pressurized gas in the cavity and the present invention can prevent the transfer inhibition by the conventionally used nitrogen gas, so that a high combined effect can be obtained.
[0054]
【Example】
The effects of the present invention will be described more specifically with reference to examples and comparative examples.
[0055]
The resin used for injection molding is rubber-reinforced polystyrene (Asahi Kasei Kogyo, trade name: Styron 400), 20% glass fiber-filled ABS resin (Asahi Kasei Kogyo, trade name: Stylac ABS R240A), methacrylic resin (Asahi Kasei Kogyo) , Trade name: Delpet 80NH), polycarbonate (manufactured by Teijin Chemicals, trade name: Panlite L1225).
[0056]
Carbon dioxide having a purity of 99% or more was used as the gas body.
[0057]
The molding machine used was SG50 manufactured by Sumitomo Heavy Industries.
[0058]
The molded product is a square flat plate having a thickness of 2 mm and a length and width of 100 mm each. FIG. 12 shows the structure of the mold, and FIG. 13 shows the structure of the gas supply device. In FIG. 12, (a) is a sectional view of the entire mold, (b) is a sectional view of the moving side of the mold, AA 'sectional view in (a), (c) is a detailed sectional view of the cavity outer peripheral portion. FIG. 4D is a detailed sectional view of the seal portion of the feeding pin.
[0059]
On the mold surface, half of the moving cavity surface was satin-finished and the others were mirror surfaces. A direct gate having a diameter of 8 mm was provided at the center of the molded product, the length of the sprue was 58 mm, and the diameter of the nozzle touch part was 3.5 mm. On the outer periphery of the cavity of the mold, a gap 8 having a depth of 0.05 mm for gas supply and release, a gas flow path groove 9, and a hole 10 communicating from the gas flow path groove 9 to the outside of the mold are provided. The O-ring 11 was provided on the outer periphery of the gas flow channel groove 9 for gas sealing, and the cavity was hermetically sealed. Further, the protruding pin 12 was sealed by inserting a U packing 15 between the cavity block 13 and the backup plate 14. The MPR series manufactured by Nippon Valqua Industries was used for the U packing. The hole 10 communicating with the outside of the mold is connected to the protrusion pin 12 and the gap between the cavity block 13 and the backup plate 14 so that the gas body in the gap can be released simultaneously with completion of the resin filling.
[0060]
As the gas supply device, the cylinder 16 filled with liquefied carbon dioxide gas was kept at 40 ° C. and used as a gas body supply source of about 12 MPa. The gas body passes from the cylinder 16 through the heater 17 and is adjusted to a predetermined pressure by the pressure reducing valve 18 and then is stored in a gas reservoir 19 having an internal volume of 100 cm 3 and kept at about 40 ° C. The gas body is supplied to the mold cavity by opening the supply solenoid valve 20 downstream of the gas reservoir 19 and simultaneously closing the release solenoid valve 21. The gas reservoir and the cavity are connected during resin filling. . Simultaneously with the completion of the resin filling, the supply solenoid valve 20 is closed and the release solenoid valve 21 is opened to release the gas body out of the mold. When the gas body in the cavity is compressed and the pressure is increased by filling the molten resin, the supply solenoid valve 20 is closed together with the start of the resin filling after the gas body is supplied, and the release solenoid valve 21 is opened at the end of the resin filling. Unnecessary pressure rise during resin filling is prevented by releasing gas from the pressure release valve 22.
[0061]
The mold surface state transferability was evaluated by measuring the surface gloss of the mirror surface portion, observing with an optical microscope, and measuring the surface roughness of the satin portion. For measuring the surface gloss, a variable gloss meter made by Suga Test Instruments, trade name: UGV-5K, and for measuring the surface roughness, Tokyo Seimitsu, trade name: Surfcom 575A was used.
[0062]
[Example 1]
Fill a mold with a cavity surface temperature of 70 ° C. with carbon dioxide at a pressure of 5.0 MPa and a rubber reinforced polystyrene with a resin temperature of 220 ° C. with a filling time of 0.6 seconds and 2.4 seconds. After holding at 35 MPa for 10 seconds and cooling for 20 seconds, the molded product was taken out. The carbon dioxide filled in the mold was released into the atmosphere as soon as the resin filling was completed.
[0063]
As a result of measuring the surface gloss of the obtained molded product, it was confirmed that the surface gloss was excellent regardless of the filling time (60 ° specular gloss = both 101).
[0064]
[Example 2]
A molded article was obtained in the same manner as in Example 1 except that the pressure of carbon dioxide filling the mold was 2.5 MPa.
[0065]
As a result of measuring the surface gloss of the obtained molded product, it was confirmed that the surface gloss was excellent regardless of the filling time (60 ° specular gloss = 88).
[0066]
[Example 3]
A mold product was obtained in the same manner as in Example 2 except that the mold cavity surface temperature was 80 ° C.
[0067]
As a result of measuring the surface gloss of the obtained molded product, it was confirmed that the surface gloss was excellent regardless of the filling time (60 ° specular gloss = 108 in all).
[0068]
[Example 4]
A molded product was obtained in the same manner as in Example 1 except that a 20% glass fiber-filled ABS resin was used and the cavity surface temperature was 88 ° C., the resin temperature was 240 ° C., and the holding pressure was 70 MPa. As a result of measuring the surface gloss of the obtained molded product, it was confirmed that the surface gloss was excellent (60 ° specular gloss = 99 and 100) regardless of the filling time.
[0069]
Further, when the surface of the molded product was observed with a microscope at a magnification of 100 times, the glass fiber was hardly exposed on the surface and was smooth.
[0070]
[Example 5]
A mold with a cavity surface temperature of 80 ° C. is filled with carbon dioxide at a pressure of 5.0 MPa, methacrylic resin with a resin temperature of 240 ° C. is filled with a filling time of 0.6 seconds, and the pressure in the cylinder is kept at 80 MPa for 10 seconds. After cooling for 20 seconds, the molded product was taken out. The carbon dioxide filled in the mold was released into the atmosphere as soon as the resin filling was completed. The surface roughness R max of the satin portion of the obtained molded product was 12.0 μm.
[0071]
[Example 6]
In a mold having a cavity surface temperature of 120 ° C., carbon dioxide is filled to a pressure of 5.0 MPa, polycarbonate having a resin temperature of 300 ° C. is filled with a filling time of 0.6 seconds, and the pressure in the cylinder is kept at 120 MPa for 10 seconds, After cooling for 20 seconds, the molded product was taken out. The carbon dioxide filled in the mold was released into the atmosphere as soon as the resin filling was completed.
[0072]
The surface roughness R max of the satin portion of the obtained molded product was 11.5 μm.
[0073]
[Comparative Example 1]
A molded product was obtained in the same manner as in Example 1 except that the mold was opened to the atmosphere without connecting a gas supply device.
[0074]
As a result of measuring the surface gloss of the obtained molded product, the surface gloss was inferior with 60 ° specular gloss = 61 at a filling time of 0.6 seconds, 60 ° specular gloss = 48 at a filling time of 2.4 seconds, and the filling time. It was confirmed that it depends on.
[0075]
[Comparative Example 2]
A molded product was obtained in the same manner as in Example 1 except that nitrogen was used as the gas filling the mold.
[0076]
As a result of measuring the surface gloss of the obtained molded product, the surface gloss was inferior to that of Comparative Example 1 (60 ° specular gloss = 46 at a filling time of 0.6 seconds, 60 ° specular gloss at a filling time of 2.4 seconds). = 40).
[0077]
[Comparative Example 3]
A molded product was obtained in the same manner as in Example 4 except that the mold was opened to the atmosphere without connecting a gas supply device.
[0078]
As a result of measuring the surface gloss of the obtained molded product, the surface gloss was inferior, with 60 ° specular gloss = 85 at a filling time of 0.6 seconds, 60 ° specular gloss = 62 at a filling time of 2.4 seconds, and the filling time. It was confirmed that it depends on.
[0079]
Moreover, when the surface of the molded product was observed with a microscope, many glass fibers and irregularities were observed on the surface.
[0080]
[Comparative Example 4]
A molded product was obtained in the same manner as in Example 5 except that the mold was opened to the atmosphere without connecting a gas supply device.
[0081]
The surface roughness R max of the satin portion of the obtained molded product was 8.2 μm.
[0082]
[Comparative Example 5]
A molded product was obtained in the same manner as in Example 6 except that the mold was opened to the atmosphere without connecting a gas supply device.
[0083]
The surface roughness R max of the matte part of the obtained molded product was 7.4 μm.
[0084]
The results of Examples and Comparative Examples are summarized in Tables 1 and 2.
[0085]
[Table 1]
Figure 0003875587
[0086]
[Table 2]
Figure 0003875587
[0087]
【The invention's effect】
According to the present invention, it is possible to economically transfer the mold surface state to a molded product economically, so that a post-process such as painting, which has been inevitably applied when the appearance of the molded product is poor, is unnecessary. Therefore, the cost of parts can be greatly reduced. In addition, since the fine mold surface state cannot be uniformly transferred to the molded product, the productivity of flat lenses and the like molded by press molding, which is less productive than injection molding, is remarkably improved. The effects such as the creation of application fields for injection molding can be expected.
[0088]
Examples of molded articles that are favorably molded by the molding method of the present invention include resin injection molded articles such as optical equipment parts, light electrical equipment, electronic equipment, office equipment and other housings, various automobile parts, and various daily necessities. Suitable for improving the appearance of electronic equipment, electrical equipment, office equipment housings, matte-shaped molded products, and patterned grain-molded products that are injection-molded with a multi-point gate, resulting in many weld lines. Also suitable for injection molding products of various optical components such as lenses such as lenticular lenses and Fresnel lenses molded using transparent synthetic resin, recording disks such as optical discs, light guide plates that are liquid crystal display components, and diffusion plates. is there. These molded products molded by the method of the present invention have improved reproducibility of the mold surface, improved glossiness, reduced appearance defects due to weld lines, improved reproducibility of sharp edges on the mold surface, fine mold surface irregularities In addition to the effect of improving the reproducibility of the resin, the internal strain near the surface of the molded product that occurs during the resin filling process is reduced, reducing the birefringence, improving the chemical resistance, and reducing the orientation of the compounded rubber. There is also an effect such as improvement. And, by sealing the high pressure gas in the cavity, the generation of gas from the melt front generated during the resin filling process is suppressed, so that mold contamination is reduced and the mold release force of the molded product is reduced. Such effects are also expected.
[Brief description of the drawings]
FIG. 1 is a graph showing the amount of carbon dioxide dissolved in polystyrene.
FIG. 2 is a graph showing the amount of nitrogen gas dissolved in polystyrene.
FIG. 3 is a graph showing the amount of carbon dioxide dissolved in polystyrene.
FIG. 4 is a graph showing the amount of carbon dioxide dissolved in polystyrene.
FIG. 5 is a graph showing a decrease in Tg due to dissolution of carbon dioxide in polystyrene.
FIG. 6 is a graph showing the amount of carbon dioxide dissolved in a PMMA / PVF2 polymer alloy.
FIG. 7 is a graph showing a decrease in Tg due to dissolution of carbon dioxide in a PMMA / PVF2 polymer alloy.
FIG. 8 is a graph showing the amount of carbon dioxide dissolved in polycarbonate.
FIG. 9 is a graph showing the amount of carbon dioxide dissolved in polysulfone.
FIG. 10 is a diagram showing a decrease in Tg due to carbon dioxide dissolution of each synthetic resin.
FIG. 11 is a view showing a cross section of a portion directly related to the present invention of an injection molding machine nozzle for carrying out the present invention.
FIG. 12 is a view showing a cross section of a part directly related to the present invention of a mold for carrying out the present invention.
FIG. 13 is a diagram showing a structure of a gas supply device for carrying out the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Injection cylinder 2 Nozzle 3 Nozzle tip 4 Needle valve 5 Outer nozzle 6 Space 7 Passage 8 Clearance 9 Gas passage groove 10 Hole communicating from the gas passage groove to the outside of the mold 11 O ring 12 Extrusion pin 13 Cavity block 14 Backup plate 15 U Packing 16 Cylinder 17 Heater 18 Pressure reducing valve 19 Gas reservoir 20 Supply solenoid valve 21 Release solenoid valve 22 Pressure release valve

Claims (1)

溶融した熱可塑性樹脂を金型に充填して成形する成形法において、該樹脂の固化温度における該樹脂への溶解度が空気及び/又は窒素の2倍以上であるガス体を、該樹脂の固化温度において、平衡状態で0.1重量%以上樹脂に溶解する圧力で金型キャビティに充填し、次いで上記樹脂を該金型キャビティに充填して、樹脂充填工程中に上記ガス体を該樹脂表面に溶解させて金型に接する該樹脂表面の固化温度を低下させつつガスアシスト射出成形することを特徴とする熱可塑性樹脂のガスアシスト射出成形法。In a molding method in which a molten thermoplastic resin is filled into a mold and molded, a gas body whose solubility in the resin at the solidification temperature of the resin is twice or more that of air and / or nitrogen is used as the solidification temperature of the resin. in, was filled in a mold cavity at a pressure which is soluble in 0.1% by weight or more resins in equilibrium, then filled with the resin in the mold cavity, the gas body in a resin filling process into the resin surface A gas-assisted injection molding method for a thermoplastic resin, characterized in that gas-assisted injection molding is performed while lowering the solidification temperature of the resin surface that is dissolved and in contact with the mold.
JP2002100710A 1996-09-03 2002-04-03 Gas-assisted injection molding method of thermoplastic resin Expired - Fee Related JP3875587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100710A JP3875587B2 (en) 1996-09-03 2002-04-03 Gas-assisted injection molding method of thermoplastic resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23281896 1996-09-03
JP8-232818 1996-09-03
JP2002100710A JP3875587B2 (en) 1996-09-03 2002-04-03 Gas-assisted injection molding method of thermoplastic resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23676397A Division JP3349070B2 (en) 1996-09-03 1997-09-02 Molding method of thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2002307476A JP2002307476A (en) 2002-10-23
JP3875587B2 true JP3875587B2 (en) 2007-01-31

Family

ID=26530679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100710A Expired - Fee Related JP3875587B2 (en) 1996-09-03 2002-04-03 Gas-assisted injection molding method of thermoplastic resin

Country Status (1)

Country Link
JP (1) JP3875587B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605046B2 (en) * 2006-02-22 2011-01-05 セイコーエプソン株式会社 Method for manufacturing light guide plate
JP5606032B2 (en) * 2009-09-18 2014-10-15 キヤノン株式会社 Molded product manufacturing method and gas assist injection mold
US9395470B2 (en) * 2012-04-05 2016-07-19 Canon Kabushiki Kaisha Molded-article manufacturing method, mold, and optical element including fresnel lens
JP7147716B2 (en) * 2019-08-21 2022-10-05 トヨタ自動車株式会社 Injection foam molding method

Also Published As

Publication number Publication date
JP2002307476A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP3349070B2 (en) Molding method of thermoplastic resin
JP3218397B2 (en) Injection molding of thermoplastic resin
JP4758732B2 (en) Thermoplastic injection molding method using supercritical fluid
US8360401B2 (en) Storage container, method for molding resin, and method for forming plating film
EP0826477B1 (en) Method for molding thermoplastic resin
KR101992701B1 (en) Mold device, injection molding system, and molding manufacturing method
US6322735B1 (en) Method for molding thermoplastic resin
JP3445778B2 (en) Injection molding method
JP3875587B2 (en) Gas-assisted injection molding method of thermoplastic resin
JP3096904B2 (en) Injection molding of amorphous thermoplastic resin
JP3875586B2 (en) Molding method of thermoplastic resin
JPH11179750A (en) Injection molding method using gas together
JP2001062862A (en) Method for injection molding amorphous thermoplastic
JPH11245257A (en) Injection molding of thermoplastic resin
JP2001341152A (en) Injection molding machine
JP3964350B2 (en) Manufacturing method of molded products
JP5771058B2 (en) Molding method of resin
JP2007190878A (en) Method of injection molding for thermoplastic resin product, and mold for use in the same
JPH11245252A (en) Method for injection-molding of amorphous resin
JP2005125504A (en) Injection molding method
JP2002309006A (en) Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product
JP2001353742A (en) Method for injection-molding recycled resin
JP2004223879A (en) Gas pressurizing injection molding method
JPH11245250A (en) Method for injection-molding of amorphous resin
JPH10286840A (en) New molding method of synthetic resin

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20051107

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees