JP5771058B2 - Molding method of resin - Google Patents

Molding method of resin Download PDF

Info

Publication number
JP5771058B2
JP5771058B2 JP2011098057A JP2011098057A JP5771058B2 JP 5771058 B2 JP5771058 B2 JP 5771058B2 JP 2011098057 A JP2011098057 A JP 2011098057A JP 2011098057 A JP2011098057 A JP 2011098057A JP 5771058 B2 JP5771058 B2 JP 5771058B2
Authority
JP
Japan
Prior art keywords
resin
mold
carbon dioxide
cavity
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011098057A
Other languages
Japanese (ja)
Other versions
JP2012228810A (en
Inventor
山木 宏
宏 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2011098057A priority Critical patent/JP5771058B2/en
Publication of JP2012228810A publication Critical patent/JP2012228810A/en
Application granted granted Critical
Publication of JP5771058B2 publication Critical patent/JP5771058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/174Applying a pressurised fluid to the outer surface of the injected material inside the mould cavity, e.g. for preventing shrinkage marks

Description

本発明は、樹脂の成形方法に関し、例えば、金型表面状態を成形品表面に高度に転写する樹脂の成形方法に関する。   The present invention relates to a resin molding method, for example, a resin molding method for highly transferring a mold surface state onto a surface of a molded product.

熱可塑性樹脂の成形において、通常、金型の温度は成形樹脂の固化する温度よりも十分に低い温度に保たれる。これは、熱伝導性が著しく低い樹脂素材を、短時間で溶融状態から、成形品として取り出せる温度にまで冷却するために必要なことである。また、金型表面状態を高度に成形品に転写するには粘度が低い状態の樹脂を高い圧力で金型に押しつける必要がある。しかし、樹脂の固化温度よりも金型温度が低いと、樹脂充填と樹脂の固化が同時に進行することになり、樹脂流動先端部付近で金型に接触した樹脂は、急激に冷却され粘度が高くなるとともに、金型表面に低い圧力で押し付けられた状態で固化するため、金型表面状態を高度に成形品に転写することは困難となる。このため通常の射出成形では、光沢ムラ、ウェルドライン、フローマーク、ジェッティングなどの外観不良や、光ディスクなどの精密成形品では微細なピットの転写不良を起こしやすく、薄肉部品ではショートショットを起こすこともある。金型表面の転写性を高めるには、樹脂充填工程中の樹脂の固化を防止し、最小限にとどめることが必要となる。   In the molding of thermoplastic resins, the temperature of the mold is usually kept at a temperature sufficiently lower than the temperature at which the molding resin solidifies. This is necessary for cooling a resin material having extremely low thermal conductivity from a molten state to a temperature at which it can be taken out as a molded product in a short time. In addition, in order to transfer the mold surface state to a molded product highly, it is necessary to press a resin having a low viscosity against the mold with a high pressure. However, if the mold temperature is lower than the resin solidification temperature, resin filling and resin solidification proceed simultaneously, and the resin that contacts the mold near the resin flow front is rapidly cooled and has a high viscosity. At the same time, since it solidifies in a state of being pressed against the mold surface with a low pressure, it is difficult to highly transfer the mold surface state to a molded product. For this reason, normal injection molding tends to cause poor appearance such as uneven gloss, weld lines, flow marks, jetting, and fine pits in precision molded products such as optical disks, and short shots in thin-walled parts. There is also. In order to improve the transferability of the mold surface, it is necessary to prevent the resin from solidifying during the resin filling process and minimize it.

熱可塑性樹脂の射出成形などでは、成形サイクルタイムを長くせず、経済的に金型表面転写性を高めることが常に要求されてきた。金型表面転写性を高める手段としてこれまで種々の方法が提案されており、例えば、以下の方法が提案されている。
1.金型に熱媒と冷媒を交互に流して金型表面の加熱、冷却を繰り返す方法(非特許文献1参照)
2.成形直前に高周波誘導加熱で金型表面を選択的に加熱する方法(特許文献1参照)
3.金型表面に絶縁層と導電層を設け、導電層に通電して加熱する方法(非特許文献2参照)
4.金型表面を輻射加熱する方法(非特許文献3参照)
5.金型表面を断熱層で被覆し、成形樹脂自身の熱で金型表面を加熱しつつ成形する断熱層被覆法(特許文献2及び特許文献3参照)
In the injection molding of thermoplastic resin and the like, it has always been required to economically improve the mold surface transferability without increasing the molding cycle time. Various methods have been proposed so far as means for improving the mold surface transferability. For example, the following methods have been proposed.
1. A method of repeatedly heating and cooling the mold surface by alternately flowing a heat medium and a refrigerant through the mold (see Non-Patent Document 1)
2. A method of selectively heating the mold surface by high-frequency induction heating immediately before molding (see Patent Document 1)
3. A method in which an insulating layer and a conductive layer are provided on the mold surface, and the conductive layer is energized and heated (see Non-Patent Document 2).
4). Method of radiant heating the mold surface (see Non-Patent Document 3)
5. A heat insulating layer coating method in which a mold surface is covered with a heat insulating layer, and the mold surface is heated with the heat of the molding resin itself (see Patent Document 2 and Patent Document 3).

これらの成形方法は、いずれも射出成形時に金型表面を加熱しつつ成形する成形方法である。すなわち、射出された溶融樹脂が金型壁面に押し付けられる時に金型表面を該樹脂の固化温度以上に加熱されていることにより金型表面転写性を改良する成形方法である。   All of these molding methods are molding methods in which molding is performed while heating the mold surface during injection molding. That is, it is a molding method that improves the mold surface transferability by heating the mold surface above the solidification temperature of the resin when the injected molten resin is pressed against the mold wall surface.

他の成形方法として、本件発明者らは、二酸化炭素などの樹脂に溶解しやすいガスを樹脂の可塑剤として用いる成形方法を提案している(特許文献4及び特許文献5参照)。一方、例えば、可視光の波長以下のような微細な形状を表面に転写した成形品や成形方法についても提案されている(特許文献6から特許文献8参照)。   As another molding method, the present inventors have proposed a molding method using a gas that is easily dissolved in a resin such as carbon dioxide as a plasticizer for the resin (see Patent Document 4 and Patent Document 5). On the other hand, for example, a molded product and a molding method in which a fine shape having a wavelength equal to or smaller than the wavelength of visible light is transferred to the surface have been proposed (see Patent Document 6 to Patent Document 8).

米国特許公報第4439492号明細書U.S. Pat. No. 4,439,492 米国特許公報第5362226号明細書U.S. Pat. No. 5,362,226 国際公開第1997/04938号パンフレットInternational Publication No. 1997/04938 Pamphlet 特許第3349070号公報Japanese Patent No. 3349070 特許第3218397号公報Japanese Patent No. 32189797 特開2009−190276号公報JP 2009-190276 A 特開2009−190277号公報JP 2009-190277 A 特開2010−201842号公報JP 2010-201842 A

Plastic Technology,VOL.34(June),150(1988)Plastic Technology, VOL. 34 (June), 150 (1988) Polym.Eng.Sci.,Vol.34(11),894(1994)Polym.Eng.Sci., Vol.34 (11), 894 (1994) 合成樹脂,Vol.42(1),48(1996)Synthetic resin, Vol.42 (1), 48 (1996)

しかしながら、特許文献1、及び非特許文献1から非特許文献3に記載された技術においては、金型表面を加熱、冷却する時間が必要となることから生産性が低下しやすい問題がある。また、特許文献2及び特許文献3に記載された技術においては、断熱被覆に微細な機能性パタンを付与することが難しい。また、これらの成形方法には、1)溶融樹脂から放散される揮発成分により金型表面の微細凹凸パタンの凹部が埋まり、樹脂に転写される形状が変わってしまう、2)金型と樹脂との接触面積が大きいことから離型が難しく、離型時に樹脂微細凹凸パタンの凸部が引き伸ばされ、微細凹凸パタンの形状が変わってしまうなど、転写の忠実性、生産性に劣るなどの問題もある。   However, in the techniques described in Patent Document 1 and Non-Patent Document 1 to Non-Patent Document 3, there is a problem that productivity tends to be lowered because time for heating and cooling the mold surface is required. Moreover, in the technique described in patent document 2 and patent document 3, it is difficult to provide a fine functional pattern to heat insulation coating. In addition, these molding methods include: 1) the concave portions of the fine uneven pattern on the mold surface are filled with volatile components dissipated from the molten resin, and the shape transferred to the resin changes. 2) the mold and the resin It is difficult to release due to the large contact area, and the convex part of the resin fine uneven pattern is stretched at the time of mold release, and the shape of the fine uneven pattern changes, resulting in inferior transfer fidelity and productivity. is there.

また、本件発明者らが提案した特許文献4及び特許文献5に記載された技術においても、金型表面に存在する凹凸形状が5μm〜10μm程度の開口幅でアスペクト比(凹みの深さ/開口幅)が1を越えるような場合には、成形時、樹脂によって金型凹み内部に二酸化炭素が閉じ込められ、樹脂に二酸化炭素が完全に溶け込めずに樹脂の充填不良や、最終充填部付近が過剰な二酸化炭素により発泡し、白化するなどの不良を生じることがあった。また、特許文献6から特許文献8に記載の技術においても、上記に示す転写の連続的な忠実性や生産性の問題を解決するものではない。   Also, in the techniques described in Patent Document 4 and Patent Document 5 proposed by the present inventors, the uneven shape present on the mold surface has an opening ratio of about 5 μm to 10 μm and an aspect ratio (depth of recess / opening). When the width is greater than 1, carbon dioxide is trapped inside the mold recess by the resin during molding, and carbon dioxide does not completely dissolve in the resin. In some cases, such as foaming by white carbon dioxide causes whitening. Further, the techniques described in Patent Document 6 to Patent Document 8 do not solve the above-described problems of continuous fidelity of transfer and productivity.

本発明は、かかる点に鑑みてなされたものであり、金属表面の微細凹凸パタンを高度に成形品に転写でき、しかも、生産性及び経済性に優れる樹脂の成形方法を提供することを目的とする。   The present invention has been made in view of such points, and an object of the present invention is to provide a resin molding method capable of highly transferring a fine uneven pattern on a metal surface to a molded product and having excellent productivity and economy. To do.

上記課題を解決するため、本発明者らは、近年、技術進歩が著しいナノインプリントを射出成形で達成するべく鋭意検討を行った結果、本件発明者らが既に出願した特許文献4及び特許文献5に示される技術をもとに、従来技術では得られない著しい効果が得られることを見出し、本発明を完成させるに至った。本発明者らは、従来転写することが難しいと考えられていた高アスペクト比の形状、たとえば可視光線用の反射防止構造(モス・アイ構造)のような、特定の寸法とアスペクト比を有する微細凹凸パタンであっても、従来の金型表面加熱法とは異なる成形方法を用いることにより、金型表面状態が成形品に高度に再現性良く転写できることを見出し、本発明を完成するに至った。すなわち本発明は、次の各発明からなる。   In order to solve the above problems, the present inventors have made extensive studies in recent years to achieve nanoimprint with remarkable technological progress by injection molding. As a result, the present inventors have already filed Patent Document 4 and Patent Document 5 which have already been filed. Based on the technique shown, it has been found that a significant effect that cannot be obtained by the prior art can be obtained, and the present invention has been completed. The present inventors have developed a high aspect ratio shape that has been considered difficult to transfer in the past, such as an antireflection structure (moss-eye structure) for visible light, and a fine size having a specific size and aspect ratio. Even with an uneven pattern, by using a molding method different from the conventional mold surface heating method, it was found that the mold surface state can be transferred to the molded product with high reproducibility, and the present invention has been completed. . That is, the present invention comprises the following inventions.

本発明の樹脂の成形方法は、金型表面に設けられた微細凹凸パタンを樹脂表面に転写する樹脂の成形方法であって、二酸化炭素の液化を防止しつつあらかじめ二酸化炭素を1MPa〜15MPaの圧力でキャビティに充填してから、0.1重量%以上の二酸化炭素が溶解した液状樹脂を前記キャビティに充填する樹脂充填工程を有し、前記樹脂表面に転写される微細凹凸パタンの形状が、前記金型表面の凹みに樹脂を充填することで、先の丸い円錐状の突起を平面上に多数構成した構造、又は長く直線状に伸びる板状の突起が互いに平行に並んだ構造に形成され、前記金型の微細凹凸パタンが、凹みの開口部を楕円で近似した場合に、短軸の長さが3μm以下であり、前記凹みの深さと前記短軸の長さの比(前記凹み深さ/前記短軸の長さ)が0.5以上、4.0以下であることを特徴とする。 The resin molding method of the present invention is a resin molding method for transferring a fine unevenness pattern provided on the mold surface to the resin surface, and the pressure of carbon dioxide is 1 MPa to 15 MPa in advance while preventing liquefaction of carbon dioxide. And filling the cavity with a liquid resin in which 0.1% by weight or more of carbon dioxide is dissolved, and the shape of the fine uneven pattern transferred to the resin surface is By filling the recess on the mold surface with resin, it is formed into a structure in which a large number of round conical protrusions are configured on the plane, or plate-like protrusions that extend in a straight line are arranged in parallel to each other, When the concave / convex pattern of the mold approximates the opening of the recess with an ellipse, the length of the short axis is 3 μm or less, and the ratio of the depth of the recess to the length of the short axis (the depth of the recess) / Length of the short axis) 0.5 above, characterized in that 4.0 or less.

この方法によれば、樹脂充填工程においてあらかじめ所定圧力の二酸化炭素を充填したキャビティに所定量の二酸化炭素を溶解した液状樹脂を充填することから、樹脂中の揮発成分の放散を抑制できるので、微細凹凸パタンの凹みに対する液状樹脂の揮発成分の付着を抑制することが可能となる。また、所定量の二酸化炭素を溶解した液状樹脂を充填することから、液状樹脂の固化の防止、粘度上昇の抑制、及び粘度の低減が可能となる。さらに、液状樹脂の冷却固化時において、微細凹凸パタンを転写して樹脂表面から二酸化炭素が揮発するので、金型からの樹脂の離形性が向上する。これにより、金属表面の微細凹凸パタンを高度に成形品に転写することができるので、製品形状の自由度が向上し、種々の機能を発現できるナノプリントが可能となる。また、生産性及び経済性に優れた樹脂の成形方法を実現することが可能となる。   According to this method, since a liquid resin in which a predetermined amount of carbon dioxide is dissolved is filled in a cavity filled with carbon dioxide at a predetermined pressure in the resin filling step, the emission of volatile components in the resin can be suppressed. It becomes possible to suppress adhesion of volatile components of the liquid resin to the recesses of the uneven pattern. In addition, since the liquid resin in which a predetermined amount of carbon dioxide is dissolved is filled, it is possible to prevent the liquid resin from solidifying, suppress an increase in viscosity, and reduce the viscosity. Further, when the liquid resin is cooled and solidified, the fine uneven pattern is transferred and carbon dioxide is volatilized from the surface of the resin, so that the releasability of the resin from the mold is improved. Thereby, since the fine uneven | corrugated pattern of a metal surface can be highly transcribe | transferred to a molded article, the freedom degree of a product shape improves and the nanoprint which can express a various function is attained. In addition, it is possible to realize a resin molding method excellent in productivity and economy.

本発明の樹脂の成形方法においては、前記樹脂が、熱可塑性樹脂であることが好ましい。   In the resin molding method of the present invention, the resin is preferably a thermoplastic resin.

本発明の樹脂の成形方法においては、前記熱可塑性樹脂が、非晶性熱可塑性樹脂、又は結晶化度40%以下の結晶性熱可塑性樹脂であることが好ましい。   In the resin molding method of the present invention, the thermoplastic resin is preferably an amorphous thermoplastic resin or a crystalline thermoplastic resin having a crystallinity of 40% or less.

本発明の樹脂の成形方法においては、前記凹みの前記開口部の短軸長さが、1.0μm以下であることが好ましい。   In the resin molding method of the present invention, it is preferable that the minor axis length of the opening of the dent is 1.0 μm or less.

本発明の樹脂の成形方法においては、前記凹みの前記開口部の短軸長さが、0.3μm以下であることが好ましい。   In the resin molding method of the present invention, it is preferable that the minor axis length of the opening of the recess is 0.3 μm or less.

本発明の樹脂の成形方法においては、前記微細凹凸パタンが可視光線用の反射防止構造(モス・アイ構造)であることが好ましい。   In the resin molding method of the present invention, it is preferable that the fine concavo-convex pattern is a visible light antireflection structure (moth-eye structure).

本発明の樹脂の成形方法においては、前記微細凹凸パタンが縞状のライン・アンド・スペース構造であることが好ましい。   In the resin molding method of the present invention, the fine uneven pattern preferably has a striped line and space structure.

本発明によれば、金属表面の微細凹凸パタンを高度に成形品に転写でき、しかも、生産性及び経済性に優れる樹脂の成形方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fine uneven | corrugated pattern of a metal surface can be highly transcribe | transferred to a molded article, and also the molding method of resin excellent in productivity and economical efficiency can be provided.

本実施の形態に係る金型の微細凹凸パタンの模式図である。It is a schematic diagram of the fine uneven | corrugated pattern of the metal mold | die which concerns on this Embodiment. 本実施の形態に係る金型及び二酸化炭素供給装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the metal mold | die and carbon dioxide supply apparatus which concern on this Embodiment. 本実施の形態に係る金型の模式図である。It is a schematic diagram of the metal mold | die which concerns on this Embodiment. 本実施の形態に係る反射防止構造(モス・アイ構造)の断面構造を示す走査型電子顕微鏡写真である。3 is a scanning electron micrograph showing a cross-sectional structure of an antireflection structure (moth-eye structure) according to the present embodiment. 本実施の形態に係るライン・アンド・スペース構造の断面構造を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the cross-sectional structure of the line and space structure which concerns on this Embodiment.

本発明者は、従来、金型表面の転写を阻害すると考えられていたキャビティ内のガスに着目した。本発明の効果が発現されるメカニズムは、以下のように考えられる。   The inventor of the present invention paid attention to the gas in the cavity, which was conventionally considered to inhibit the transfer of the mold surface. The mechanism by which the effect of the present invention is manifested is considered as follows.

射出成形では、樹脂はキャビティ内を常に層流で流れ、冷却された金型壁面に接触するとその界面に固化層が形成される。後から充填される樹脂はその固化層の内側を流動して前進し、樹脂流動先端部に達してから金型壁面に向かうファウンテンフローと呼ばれる流動をする。キャビティを二酸化炭素などの樹脂に溶解しやすい特定のガスで、適度なガス圧力で満たしてから樹脂を充填すると、ガスは流動樹脂の先端部で吸収され、または金型と樹脂の界面に入り込み樹脂表面層に溶解する。樹脂に溶解したガスは可塑剤として作用し、樹脂表面付近のみ固化温度を選択的に低下させ、樹脂の粘度を下げる。薄い樹脂表面層のみ固化温度が下がり、固化温度が金型表面温度以下となれば、樹脂充填工程中の固化が起きず、成形品の金型表面転写性を著しく改良することができることになる。樹脂表面層に溶解したガスは、時間とともに樹脂内部に拡散し、樹脂表面層の固化温度が上昇するため、通常の樹脂冷却時間内で表面層は固化し、製品として取り出すことができる。   In injection molding, the resin always flows through the cavity in a laminar flow, and when it comes into contact with the cooled mold wall surface, a solidified layer is formed at the interface. The resin to be filled later flows and advances inside the solidified layer, and flows as a fountain flow toward the mold wall surface after reaching the resin flow front end. When filling the cavity with a specific gas that is easily dissolved in a resin such as carbon dioxide and filling it with an appropriate gas pressure, the gas is absorbed at the tip of the fluidized resin or enters the interface between the mold and the resin. Dissolves in the surface layer. The gas dissolved in the resin acts as a plasticizer, selectively lowering the solidification temperature only near the resin surface, and lowering the viscosity of the resin. If only the thin resin surface layer has a solidification temperature lowered and the solidification temperature is lower than the mold surface temperature, solidification during the resin filling process does not occur, and the mold surface transferability of the molded product can be remarkably improved. Since the gas dissolved in the resin surface layer diffuses into the resin with time and the solidification temperature of the resin surface layer rises, the surface layer solidifies within a normal resin cooling time and can be taken out as a product.

また、特定量の二酸化炭素を液状樹脂に溶解させておくと、成形中のみ二酸化炭素が可塑剤として機能し、成形後成形品は変形せずに二酸化炭素が大気中に放散するため、樹脂性能を変えることなく液状樹脂の粘度を低減し、成形を容易にできることから、さらに微細凹凸パタンの転写が容易になる。   Also, if a specific amount of carbon dioxide is dissolved in the liquid resin, carbon dioxide functions as a plasticizer only during molding, and after molding, the molded product is not deformed, and carbon dioxide is diffused into the atmosphere. Since the viscosity of the liquid resin can be reduced and molding can be facilitated without changing the thickness, the transfer of the fine uneven pattern is further facilitated.

キャビティに液状の樹脂を充填する際に、樹脂が熱可塑性の場合、樹脂に含まれる低分子量で揮発しやすい添加剤や不純物が、樹脂流動先端部から放散し、金型表面に付着するが、金型表面に比較的深い凹部からなる微細凹凸パタンが存在する場合、この揮発成分の付着により凹部が埋まり、樹脂に転写される形状が変わってしまう。しかし、二酸化炭素などのガスでキャビティをあらかじめ加圧しておくと、樹脂流動先端部から揮発分が放散しにくくなり、揮発成分により凹部が埋まることを防止でき、わずかに揮発成分が付着したとしても、樹脂表層に溶解した二酸化炭素などのガスが可塑剤として働き、揮発成分は樹脂に溶解吸収されやすくなることから、凹部への沈着が防止できると考えられる。   When filling the cavity with a liquid resin, if the resin is thermoplastic, additives and impurities that are low in molecular weight and easily volatilize are diffused from the tip of the resin flow and adhere to the mold surface. When a fine uneven pattern consisting of relatively deep recesses exists on the mold surface, the recesses are filled by the adhesion of the volatile components, and the shape transferred to the resin changes. However, if the cavity is pre-pressurized with a gas such as carbon dioxide, it will be difficult for volatile components to dissipate from the tip of the resin flow, and it will be possible to prevent the recesses from being filled with volatile components. Since gas such as carbon dioxide dissolved in the resin surface layer acts as a plasticizer and volatile components are easily dissolved and absorbed in the resin, it is considered that deposition in the recesses can be prevented.

樹脂が固化した後に、成形品を離型する際には、樹脂表面から二酸化炭素などのガスが放散しようとするために、金型と樹脂との付着が抑制され、離型が容易になると考えられる。この結果、特定の構造を有する微細凹凸パタンの転写において、キャビティを二酸化炭素などの樹脂に溶解しやすい特定のガスで加圧して成形する本発明に至った。   When the molded product is released after the resin has solidified, gas such as carbon dioxide tends to be released from the resin surface, which prevents adhesion between the mold and the resin and facilitates release. It is done. As a result, in the transfer of the fine concavo-convex pattern having a specific structure, the present invention has been achieved in which the cavity is pressurized and molded with a specific gas that is easily dissolved in a resin such as carbon dioxide.

以下、本発明の一実施の形態について、添付図面を参照して詳細に説明する。
本実施の形態に係る樹脂の成形方法は、金型表面に設けられた微細凹凸パタンを樹脂表面に転写する樹脂の成形方法である。本実施の形態に係る樹脂の成形方法においては、あらかじめ二酸化炭素を1MPa〜15MPaの圧力でキャビティに充填してから、0.1重量%以上の二酸化炭素が溶解した液状樹脂をキャビティに充填する樹脂充填工程を有し、金型の微細凹凸パタンが、凹みの開口部を楕円で近似した場合に、短軸の長さが3μm以下であり、凹みの深さと前記短軸の長さの比(凹み深さ/短軸の長さ)が0.5以上、4.0以下である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
The resin molding method according to the present embodiment is a resin molding method in which a fine uneven pattern provided on the mold surface is transferred to the resin surface. In the resin molding method according to the present embodiment, the cavity is previously filled with carbon dioxide at a pressure of 1 MPa to 15 MPa, and then the resin is filled with a liquid resin in which 0.1% by weight or more of carbon dioxide is dissolved. When the fine irregular pattern of the mold has a filling step and the opening of the depression is approximated by an ellipse, the length of the minor axis is 3 μm or less, and the ratio of the depth of the depression to the length of the minor axis ( The depth of the dent / the length of the minor axis) is 0.5 or more and 4.0 or less.

(樹脂)
本発明で使用される樹脂としては、一般の射出成形などに使用できる熱可塑性樹脂である。良好に使用できるのは非結晶性熱可塑性樹脂、若しくは非結晶性樹脂が主成分の熱可塑性ポリマーアロイ、又は結晶化度が低い一部の結晶性熱可塑性樹脂である。このような樹脂としては、例えば、ポリプロピレン、ポリ塩化ビニル、アクリル樹脂、スチレン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、ポリフェニレンエーテル、変成ポリフェニレンエーテル樹脂、シクロオレフィン系樹脂、全芳香族ポリエステル、ポリカーボネート、ポリエーテルイミド、ポリエーテルサルフォン、ポリアミド系樹脂、ポリサルフォン、ポリエーテルエーテルケトン、ポリエーテルケトンなどの熱可塑性のプラスチック材料、及びこれらを一種または二種以上混合したブレンド物、これらに各種充填材を配合した物である。結晶化度が低い一部の結晶性熱可塑性樹脂としては、ポリプロピレン、ポリブチレンテレフタレート、ナイロン6などがあげられ、結晶化度として40%以下であることが好ましい。また、シリコーン樹脂、フェノール系樹脂、ウレタン系樹脂、エポキシ系樹脂など一部の熱硬化性の樹脂であってもよい。樹脂としては、ガス溶解による可塑剤効果を利用して固化温度を低下させる観点から、非結晶性熱可塑性樹脂が特に好ましく、結晶化温度で固化する結晶性樹脂にあっても可塑剤効果が比較的大きいといった観点から、結晶化度が40%以下の結晶性熱可塑性樹脂であれば好ましく使用できる。
(resin)
The resin used in the present invention is a thermoplastic resin that can be used for general injection molding and the like. An amorphous thermoplastic resin, a thermoplastic polymer alloy mainly composed of an amorphous resin, or a part of a crystalline thermoplastic resin having a low crystallinity can be used favorably. Examples of such resins include polypropylene, polyvinyl chloride, acrylic resin, styrene resin, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyphenylene ether, modified polyphenylene ether resin, cycloolefin resin, wholly aromatic polyester, Thermoplastic plastic materials such as polycarbonate, polyetherimide, polyethersulfone, polyamide resin, polysulfone, polyetheretherketone, polyetherketone, and blends of these, or a mixture of two or more of these, various fillings It is a compounded material. Some crystalline thermoplastic resins having a low crystallinity include polypropylene, polybutylene terephthalate, nylon 6, and the like, and the crystallinity is preferably 40% or less. Moreover, some thermosetting resins, such as a silicone resin, a phenol resin, a urethane resin, and an epoxy resin, may be used. As the resin, an amorphous thermoplastic resin is particularly preferable from the viewpoint of lowering the solidification temperature by utilizing a plasticizer effect by gas dissolution, and the plasticizer effect is compared even with a crystalline resin solidified at the crystallization temperature. From the viewpoint of a large size, a crystalline thermoplastic resin having a crystallinity of 40% or less can be preferably used.

(ガス)
本発明においては、キャビティに樹脂を充填する樹脂充填工程の前に、キャビティにガス(二酸化炭素)を充填する。このガスとしては、熱可塑性樹脂への溶解度が大きく、樹脂の可塑化効果を有するガスが好ましく、安全性、価格、取り扱いやすさなどの点から二酸化炭素が最も好ましい。ガスが、キャビティに存在することで、樹脂充填工程中にガスが樹脂表面に吸収されて、金型に接する樹脂表面の固化温度を低下させることができる。樹脂への溶解度が低い空気や、窒素程度のガスでは、従来から知られるように、キャビティ中で金型表面の転写を阻害するだけであり、樹脂の固化温度において少なくとも窒素の2倍以上の樹脂への溶解度が必要である。また、ガスは、樹脂を劣化させないこと、金型や成形する環境に対し危険性がないこと、安価であることなどの観点から選定される。ガスとしては、溶解度が大きいものであれば2種以上の混合物であっても使用できる。二酸化炭素以外のガスとしては、炭化水素、及びその一部水素をフッ素などで置換したフロンなどがあり、使用する熱可塑性樹脂により最適な物が選択される。
(gas)
In the present invention, gas (carbon dioxide) is filled in the cavity before the resin filling step of filling the cavity with resin. As this gas, a gas having a high solubility in a thermoplastic resin and having a plasticizing effect of the resin is preferable, and carbon dioxide is most preferable from the viewpoints of safety, cost, and ease of handling. The presence of the gas in the cavity allows the gas to be absorbed by the resin surface during the resin filling step, thereby reducing the solidification temperature of the resin surface in contact with the mold. As is known in the art, air having low solubility in the resin or a gas such as nitrogen only inhibits the transfer of the mold surface in the cavity, and the resin is at least twice as nitrogen as the resin solidification temperature. Solubility in is required. The gas is selected from the viewpoints of not deteriorating the resin, no danger to the mold and molding environment, and low cost. As the gas, a mixture of two or more kinds can be used as long as the solubility is high. Gases other than carbon dioxide include hydrocarbons and chlorofluorocarbons in which part of the hydrogen is substituted with fluorine, and the most suitable one is selected depending on the thermoplastic resin used.

キャビティに封入するガス圧力は、高い圧力になるほど多量のガスが樹脂に溶解するため、より固化温度が低くなり、低い金型温度でも樹脂充填工程中の固化を防止できる。実用的には、要求する金型表面転写性の程度、樹脂やガスの種類、金型温度などから必要なガス圧力が決まり、高い溶解性を持つガスを使用し、金型温度を高く設定すれば低いガス圧力で十分な転写性を得ることもできる。圧力の下限は、樹脂に溶解したガスの可塑剤効果から決まり、二酸化炭素の場合、実用的には1MPa程度である。また、圧力の上限は、特に限定はないが、あまりに高圧になると金型を開こうとする力が無視できなくなり、金型のシールが難しくなるなどの問題が生じやすいことから、15MPa以下が実用的である。ガス圧力は1工程に使用するガスの量を最小限に押さえ、金型のシールやガス供給装置の構造を簡単にするために、要求する効果が得られる範囲で低い方が好ましい。   As the gas pressure sealed in the cavity is higher, a larger amount of gas is dissolved in the resin, so that the solidification temperature is lower, and solidification during the resin filling process can be prevented even at a low mold temperature. In practice, the required gas pressure is determined by the required degree of mold surface transferability, the type of resin or gas, the mold temperature, etc., use a highly soluble gas, and set the mold temperature high. For example, sufficient transferability can be obtained with a low gas pressure. The lower limit of the pressure is determined by the plasticizer effect of the gas dissolved in the resin, and practically about 1 MPa in the case of carbon dioxide. The upper limit of the pressure is not particularly limited, but if the pressure is too high, the force to open the mold cannot be ignored and problems such as difficulty in sealing the mold are likely to occur. Is. In order to minimize the amount of gas used in one process and simplify the structure of the mold seal and the gas supply device, the gas pressure is preferably as low as possible within the range where the required effect can be obtained.

型閉時に型内に残る空気は、型締め中や型締め完了後に使用するガスで置換した方が好ましい。また、使用するガス圧力が1MPaを越えるような場合、空気の影響はほとんど無視できる。樹脂充填後、キャビティ外に押し出されたガスを解放し、大気圧とする。ガスの解放は、キャビティ内を溶融樹脂で満たした後に行う。   The air remaining in the mold when the mold is closed is preferably replaced with a gas used during the mold clamping or after the mold clamping is completed. Further, when the gas pressure used exceeds 1 MPa, the influence of air can be almost ignored. After the resin is filled, the gas pushed out of the cavity is released to atmospheric pressure. The gas is released after filling the cavity with molten resin.

樹脂充填後は金型表面状態を成形品に転写するため、成形品表面が固化するまでキャビティ内の樹脂に十分な圧力を与えることが望ましい。特に、金型表面にある微細凹凸パタンの凹みが比較的深い場合には、凹み内部のガス圧力に対抗して樹脂を金型に押しつける必要があり、このような場合には通常の成形よりも高い圧力を樹脂に与えることが望ましい。   Since the mold surface state is transferred to the molded product after the resin is filled, it is desirable to apply sufficient pressure to the resin in the cavity until the surface of the molded product is solidified. In particular, when the dent of the fine unevenness pattern on the mold surface is relatively deep, it is necessary to press the resin against the mold against the gas pressure inside the dent. It is desirable to apply a high pressure to the resin.

本発明では、キャビティを二酸化炭素で加圧するだけでなく、液状樹脂中に二酸化炭素を可塑剤として溶解することにより粘度を低減し、キャビティ表面の微細凹凸パタンへの樹脂充填を容易にすることもできる。   In the present invention, not only pressurizing the cavity with carbon dioxide, but also reducing the viscosity by dissolving carbon dioxide as a plasticizer in the liquid resin, and facilitating resin filling into the fine uneven pattern on the cavity surface. it can.

液状樹脂に溶解して粘度を低下させる可塑剤の種類としては、本発明では二酸化炭素を使用しているが、液状樹脂に対する溶解度が大きく、樹脂や金型、成形機素材を劣化させないこと、成形する環境に対し危険性がないこと、安価であること、また成形後に成形品から速やかに揮発することなどの制約を満たす物であればよい。場合によっては飽和炭化水素およびその一部水素をフッ素で置換したフロン、水、アルコールなどの液体も併用でき、これらの2種以上の混合物であっても併用できる。二酸化炭素は樹脂に良く溶解して良好な可塑剤になり、液状樹脂の流動性を向上させる。   As the type of plasticizer that dissolves in the liquid resin and lowers the viscosity, carbon dioxide is used in the present invention, but the solubility in the liquid resin is large and the resin, mold, molding machine material is not deteriorated, molding As long as there is no danger to the environment to be used, it is inexpensive, and it can satisfy any constraints such as rapid volatilization from the molded product after molding. In some cases, saturated hydrocarbons and liquids such as chlorofluorocarbon, water, and alcohol in which part of the hydrogen is substituted with fluorine can be used together, and even a mixture of two or more of these can be used together. Carbon dioxide dissolves well in the resin and becomes a good plasticizer, improving the fluidity of the liquid resin.

本発明では、液状樹脂に溶解させる二酸化炭素量は0.1重量%以上である。流動性を顕著に向上させるには0.1重量%以上が必要であり、好ましくは0.2重量%以上である。また、二酸化炭素の溶解量の最大量は3重量%程度である。これは、二酸化炭素をむやみに増やしても二酸化炭素量に対する樹脂の流動性を向上する効果が少なくなる場合があることや、二酸化炭素の気化により樹脂が発泡しやすくなり、キャビティを二酸化炭素で加圧して樹脂充填工程中に、液状樹脂のフローフロントで発泡を防止するとしても、必要となる金型内のガス圧力が著しく高くなるためである。好ましい二酸化炭素の溶解量は3重量%以下である。   In the present invention, the amount of carbon dioxide dissolved in the liquid resin is 0.1% by weight or more. In order to remarkably improve the fluidity, 0.1% by weight or more is necessary, and preferably 0.2% by weight or more. The maximum amount of carbon dioxide dissolved is about 3% by weight. This is because even if carbon dioxide is increased unnecessarily, the effect of improving the fluidity of the resin with respect to the amount of carbon dioxide may be reduced. This is because, even if the foaming is prevented by the flow front of the liquid resin during the resin filling process, the required gas pressure in the mold is remarkably increased. A preferable amount of carbon dioxide dissolved is 3% by weight or less.

液状樹脂に二酸化炭素を溶解させると、金型表面の微細凹凸パタンの凹み中に閉じ込められた二酸化炭素の吸収性が向上する傾向があると考えられ、より高いアスペクト比を持つ凹みにおいても樹脂充填が可能となる。   Dissolving carbon dioxide in a liquid resin is thought to tend to improve the absorbability of carbon dioxide trapped in the recesses in the fine unevenness pattern on the mold surface, and filling the resin even in recesses with a higher aspect ratio Is possible.

熱可塑性樹脂に二酸化炭素を溶解させる方法としては、次の二つの方法が好ましい。一つは、あらかじめ粒状や粉状の樹脂を二酸化炭素雰囲気中に置き二酸化炭素を吸収させて、成形機に供給する方法であり、二酸化炭素の圧力や雰囲気温度、吸収させる時間により吸収量が決まる。この方法では、可塑化時に樹脂が加熱されるに従って樹脂中の二酸化炭素の一部が揮散するため、溶融樹脂中の二酸化炭素量はあらかじめ吸収させた量よりも少なくなる。このため、成形機のホッパなど樹脂の供給経路も二酸化炭素雰囲気にすることが望ましい。もう一つの方法は、成形機のシリンダ内で樹脂を可塑化するときや、可塑化した樹脂に二酸化炭素を溶解させる方法で、成形機のホッパ付近を二酸化炭素雰囲気にする、またはスクリュの中間部や先端、シリンダから可塑化樹脂に二酸化炭素を注入する方法である。スクリュやシリンダの中間部から二酸化炭素を注入する場合には、注入部付近のスクリュ溝深さを深くして、樹脂圧力を低くすることが好ましい。また、二酸化炭素を注入後、樹脂中に均一に溶解、分散させるため、スクリュにダルメージや混練ピンなどのミキシング機構を付けたり、樹脂流路にスタティックミキサを設けることが好ましい。射出成形機としては、インラインスクリュ方式でもスクリュプリプラ方式でも使用できるが、スクリュプリプラ方式は、樹脂を可塑化する押出し機部分のスクリュデザインや二酸化炭素の注入位置の変更が容易であることから、特に好ましい。   As a method for dissolving carbon dioxide in the thermoplastic resin, the following two methods are preferable. One is a method in which a granular or powdery resin is placed in a carbon dioxide atmosphere in advance to absorb carbon dioxide and then supplied to the molding machine. The amount of absorption is determined by the pressure of carbon dioxide, the atmospheric temperature, and the time for absorption. . In this method, since a part of carbon dioxide in the resin is volatilized as the resin is heated during plasticization, the amount of carbon dioxide in the molten resin is less than the amount absorbed in advance. For this reason, it is desirable that the resin supply path such as the hopper of the molding machine is also in a carbon dioxide atmosphere. Another method is to plasticize the resin in the cylinder of the molding machine, or to dissolve carbon dioxide in the plasticized resin so that the vicinity of the hopper of the molding machine has a carbon dioxide atmosphere or the middle part of the screw. In this method, carbon dioxide is injected into the plasticizing resin from the tip or cylinder. When carbon dioxide is injected from the middle part of the screw or cylinder, it is preferable to increase the screw groove depth near the injection part to lower the resin pressure. Further, in order to uniformly dissolve and disperse the carbon dioxide in the resin after injecting the carbon dioxide, it is preferable to add a mixing mechanism such as a dull mage or a kneading pin to the screw, or to provide a static mixer in the resin flow path. As an injection molding machine, either an in-line screw method or a screw prep plastic method can be used, but since the screw prep plastic method is easy to change the screw design of the extruder part that plasticizes the resin and the injection position of carbon dioxide, preferable.

本発明では、あらかじめキャビティを、樹脂充填中に溶融樹脂のフローフロントで発泡が起きない圧力以上に二酸化炭素で加圧状態にしてから、射出成形する。キャビティに封入するガス圧力は、成形品表面の発泡模様が消える最低圧力以上であれば成形は可能であるが、高度な転写性が要求される場合には、成形機の型締め力や金型のシール性能に応じ、可能な限りガス圧力を高めることが望ましい。樹脂充填後は、金型表面状態を成形品に転写するため、成形品表面が固化するまでキャビティ内の樹脂に十分な圧力で加圧することが望ましい。樹脂の加圧方法としてはキャビティに溶融樹脂を補充する樹脂保圧、樹脂中や樹脂金型界面にガスなどの圧力流体を注入する方法、キャビティ体積を減少させる射出圧縮法などがあげられる。通常は、樹脂が冷却固化するまで樹脂が発泡しない高い圧力で樹脂を加圧するが、樹脂表面が固化した後に、加圧圧力を低減することで成形品の中心部を発泡させることもできる。   In the present invention, the cavity is preliminarily pressurized with carbon dioxide above the pressure at which foaming does not occur at the flow front of the molten resin during resin filling, and then injection molding is performed. Molding is possible if the gas pressure enclosed in the cavity is higher than the minimum pressure that eliminates the foam pattern on the surface of the molded product, but if high transferability is required, the mold clamping force of the molding machine or the mold It is desirable to increase the gas pressure as much as possible according to the sealing performance. After the resin filling, in order to transfer the mold surface state to the molded product, it is desirable to pressurize the resin in the cavity with sufficient pressure until the molded product surface is solidified. Examples of the resin pressurizing method include a resin holding pressure in which a molten resin is replenished in the cavity, a method of injecting a pressure fluid such as a gas into the resin or the resin mold interface, and an injection compression method of reducing the cavity volume. Normally, the resin is pressurized at a high pressure at which the resin does not foam until the resin cools and solidifies. However, after the resin surface is solidified, the center of the molded product can be foamed by reducing the pressure.

熱可塑性樹脂中の二酸化炭素は、熱可塑性樹脂が固化した後に成形品を大気中に放置すれば徐々に大気中に放散する。放散により成形品に気泡を生じることはなく、放散後の成形品の性能は本来熱可塑性樹脂が有するものと変わらない。   Carbon dioxide in the thermoplastic resin gradually diffuses into the atmosphere if the molded product is left in the atmosphere after the thermoplastic resin has solidified. Bubbles are not generated in the molded product due to the diffusion, and the performance of the molded product after the diffusion is essentially the same as that of the thermoplastic resin.

(微細凹凸パタン)
図1Aは、本実施の形態に係る金型の微細パタンの模式的な平面図であり、図1Bは、図1Aの一点鎖線の拡大断面図である。本発明においては、金型表面(微細凹凸パタン形成面10)に存在する微細凹凸パタンの深さを規定する方法として、微細凹凸パタンの凹みの開口部11を楕円で近似している。ここで、近似した楕円内部の2焦点を通る直線を長軸とし、この長軸の垂直二等分線を楕円内部に引いた線分を短軸D1とする。このとき、楕円の短軸D1の長さが3μm以下で、凹みの深さD2と短軸D1の長さの比(凹みの深さD2/短軸D1の長さ、アスペクト比)が0.5以上、4.0以下である場合、上記のように、キャビティを二酸化炭素で加圧した後に樹脂を充填すると、高い生産性を保ったまま、転写性、離型性を著しく改良することができる。ここで短軸長さが1mm程度と大きい場合は、樹脂充填工程中の表面固化の影響が少なくなり形状の転写は比較的容易で、二酸化炭素の効果は顕著とはいえず、離型性についても汎用のシリコーン系離型剤などを用いることで改良が可能である。また、開口部11の短軸D1の長さとしては、二酸化炭素の効果が顕著に得られる観点から1.0μm以下であることが好ましく、0.3μm以下であることがより好ましい。
(Fine uneven pattern)
FIG. 1A is a schematic plan view of a fine pattern of a mold according to the present embodiment, and FIG. 1B is an enlarged cross-sectional view of a dashed line in FIG. 1A. In the present invention, as a method for defining the depth of the fine concavo-convex pattern existing on the mold surface (fine concavo-convex pattern forming surface 10), the opening 11 in the dent of the fine concavo-convex pattern is approximated by an ellipse. Here, a straight line passing through the two focal points inside the approximated ellipse is defined as a major axis, and a line segment obtained by drawing a perpendicular bisector of the major axis inside the ellipse is defined as a minor axis D1. At this time, the length of the minor axis D1 of the ellipse is 3 μm or less, and the ratio of the depth D2 of the recess to the length of the minor axis D1 (the depth D2 of the recess / the length of the minor axis D1, the aspect ratio) is 0. In the case of 5 or more and 4.0 or less, as described above, filling the resin after pressurizing the cavity with carbon dioxide can remarkably improve transferability and releasability while maintaining high productivity. it can. Here, when the minor axis length is as large as about 1 mm, the influence of surface solidification during the resin filling process is reduced and the transfer of the shape is relatively easy, and the effect of carbon dioxide cannot be said to be remarkable. Can also be improved by using a general-purpose silicone release agent. In addition, the length of the short axis D1 of the opening 11 is preferably 1.0 μm or less, and more preferably 0.3 μm or less from the viewpoint that the effect of carbon dioxide is remarkably obtained.

短軸長さが小さくなるに従い、樹脂充填工程中の表面固化の影響が無視できなくなる。短軸の長さが10μm〜100μm程度の微細凹凸パタンを形成する場合において、凹みの深さと短軸の長さの比(凹みの深さ/短軸の長さ)が0.5以上になると、金型温度を一定に保つ通常の成形方法では転写が難しく、樹脂充填工程中に金型表面温度を樹脂の固化温度以上に保つなどの手法が必要となる。特に短軸の長さが5μm以下、さらには3μm以下の場合において、凹みの深さ/短軸の長さの値が0.5以上になると、再現性良く微細凹凸パタンを転写するためには、樹脂充填工程中の表面固化を防止するだけでなく、金型の凹部への樹脂揮発成分の沈着を抑制する必要がある。また良好な離型性を保つためには、従来の塗布型離型剤では凹みが埋まってしまうことから、単分子皮膜形成形の離型剤が必要になるが、金型表面温度が高いと安定した離型性を保つことが難しく、キャビティを二酸化炭素で加圧することが必要になる。短軸の長さの下限については、現状では数mm角といった実用レベルの比較的大面積にわたり、微細凹凸パタンを得ることが難しく実証できないが、45nmの短軸長さを用いた実施例から推測すると、10nm(0.01μm)程度の転写は可能であると考えられる。   As the minor axis length becomes smaller, the influence of surface solidification during the resin filling process cannot be ignored. In the case of forming a fine concavo-convex pattern having a minor axis length of about 10 μm to 100 μm, when the ratio of the depth of the recess to the length of the minor axis (the depth of the recess / the length of the minor axis) is 0.5 or more. In a normal molding method that keeps the mold temperature constant, transfer is difficult, and a technique such as keeping the mold surface temperature above the solidification temperature of the resin during the resin filling process is required. In particular, when the length of the short axis is 5 μm or less, further 3 μm or less, and the value of the depth of the dent / the length of the short axis is 0.5 or more, in order to transfer the fine uneven pattern with good reproducibility. In addition to preventing surface solidification during the resin filling process, it is necessary to suppress deposition of resin volatile components in the recesses of the mold. In addition, in order to maintain good mold release properties, the conventional coating mold release agent fills the dent, so a monomolecular film-forming mold release agent is required, but if the mold surface temperature is high It is difficult to maintain stable releasability, and it is necessary to pressurize the cavity with carbon dioxide. As for the lower limit of the short axis length, it is difficult to obtain a fine uneven pattern over a relatively large area of practical level such as several mm square at present, but it is estimated from an example using a short axis length of 45 nm. Then, it is considered that transfer of about 10 nm (0.01 μm) is possible.

ここで、凹みの深さ/短軸の長さの値が0.5未満でも、二酸化炭素による金型の凹部の汚れ防止や離型性を改善する効果は得られるが、樹脂充填が比較的容易であることから効果は顕著とはいえない。また、凹みの深さ/短軸の長さの値が4.0を越えるような場合は、凹みの開口部形状や樹脂の流動方向にもよるが、樹脂充填中に二酸化炭素が凹みから逃げにくくなる。また、場合によっては二酸化炭素が凹み内部で圧縮され、樹脂の充填を妨げることもあることから、凹みの深さ/短軸の長さの値は4.0以下が実用的といえる。   Here, even if the value of the depth of the dent / the length of the minor axis is less than 0.5, the effect of preventing contamination of the mold recess by the carbon dioxide and improving the releasability can be obtained, but the resin filling is relatively Since it is easy, the effect is not remarkable. Also, if the value of the depth of the dent / length of the minor axis exceeds 4.0, carbon dioxide escapes from the dent during resin filling, depending on the shape of the opening of the dent and the flow direction of the resin. It becomes difficult. In some cases, carbon dioxide may be compressed inside the dent and hinder the filling of the resin, so that the value of the dent depth / minor axis length is 4.0 or less.

(ガス供給装置及び金型)
キャビティ内にガスを供給し、又はキャビティ内のガスを排出するガス供給装置、ガス配管および金型においては、ガスの液化を防ぐための対策をとることが好ましい。これはガスの液化が起きるような温度では、高いガス圧力が得られないばかりか、キャビティ内で液化ガスが樹脂に触れると多量のガスが樹脂中に溶け込み、ガス圧力解放後に成形品表面が発泡し、外観不良を起こすためである。液化防止の対策としては、ガスを加温器により加熱し、ガスの流路や金型の温度もガスの臨界温度以上に保つことや、樹脂充填時にキャビティからガスが押し出されことによる大幅な圧力上昇を防止するために、キャビティと配管内のガス圧力を任意の範囲に保つことのできる圧力解放弁や、キャビティからガスが逆流可能なガス溜めを設けることがあげられる。
(Gas supply device and mold)
In a gas supply device, a gas pipe, and a mold for supplying gas into the cavity or discharging the gas in the cavity, it is preferable to take measures to prevent gas liquefaction. This is because not only high gas pressure cannot be obtained at a temperature at which gas liquefaction occurs, but also when the liquefied gas touches the resin in the cavity, a large amount of gas dissolves in the resin, and the surface of the molded product foams after releasing the gas pressure. This is to cause an appearance defect. Measures to prevent liquefaction include heating the gas with a heater and keeping the temperature of the gas flow path and mold above the critical temperature of the gas, and significant pressure due to the gas being pushed out of the cavity during resin filling. In order to prevent the rise, a pressure release valve capable of keeping the gas pressure in the cavity and the pipe in an arbitrary range and a gas reservoir capable of backflowing the gas from the cavity can be provided.

通常、カウンタプレッシャ成形などで金型を気密構造にするには、パーティング面や各プレート間Oリングでシールし、キャビティに連通する突き出しピンなどの可動ピンもOリングや半径方向の断面形状がU字形状のゴムパッキンでシールする、または突き出しピンが固定された突き出しプレート部分全体を覆い気密とするなどの方法が採られている。   Normally, in order to make the mold airtight by counter pressure molding, etc., the parting surface and the O-ring between each plate are sealed, and the movable pin such as a protruding pin communicating with the cavity also has an O-ring or radial cross-sectional shape. A method such as sealing with a U-shaped rubber packing, or covering the entire protruding plate portion to which the protruding pin is fixed is hermetically sealed.

また、可動ピンをパッキンでシールする場合、キャビティとパッキン間でピンまわりの隙間に入った加圧ガスは、樹脂充填により隙間に閉じこめられ、成形品表面が冷え金型表面から離れると、キャビティに流れ出し、十分に固まっていない成形品表面を凹ませ、型開き時に成形品を膨らませ変形させることがある。このような問題が生じる場合は、ピンまわりの隙間に入った加圧ガスを、キャビティ以外の経路から金型外に排出できる溝や穴を金型に設け、樹脂充填後、キャビティから押し出されたガスの排出と同時に排気することが望ましい。   In addition, when sealing the movable pin with packing, the pressurized gas that has entered the gap around the pin between the cavity and the packing is confined in the gap due to resin filling, and when the surface of the molded product cools away from the mold surface, it enters the cavity. The molded product surface that flows out and is not sufficiently solid may be recessed, and the molded product may expand and deform when the mold is opened. When such a problem occurs, a groove or hole that can discharge the pressurized gas that has entered the gap around the pin to the outside of the mold from a path other than the cavity is provided in the mold, and after being filled with the resin, it is pushed out of the cavity. It is desirable to exhaust at the same time as the gas is discharged.

キャビティへのガスの注入は、一般にキャビティのガス抜きに用いられる金型構造を用いれば可能であり、キャビティ外周のパーティング面に設けたスリット、金型入れ子や突き出しピンの隙間、ガス抜きピン、多孔質焼結体でできた入れ子などが使用できる。   Gas injection into the cavity is possible by using a mold structure generally used for venting the cavity, slits provided on the parting surface on the outer periphery of the cavity, gaps between mold inserts and ejector pins, vent pins, An insert made of a porous sintered body can be used.

図2に、金型1及びガス供給装置としての二酸化炭素供給系2の構成の一例を示す。
図2に示すように、金型1は、型を閉じた状態でキャビティ20を構成するキャビティブロック21と、キャビティ20に加熱溶融した樹脂を導入するゲート22及びスプル23と、冷却固化した樹脂をキャビティ20から離形する突出しピン24と、を備える。また、金型1は、二酸化炭素供給系2からキャビティ20にガス(二酸化炭素ガス)を導入すると共に、キャビティ20からガスを金型1外に排出するための通気孔25と、キャビティ20内の気密性を高めるOリング26とを備える。
In FIG. 2, an example of a structure of the metal mold | die 1 and the carbon dioxide supply system 2 as a gas supply apparatus is shown.
As shown in FIG. 2, the mold 1 includes a cavity block 21 that constitutes the cavity 20 in a state in which the mold is closed, a gate 22 and a sprue 23 that introduce heat-melted resin into the cavity 20, and a cooled and solidified resin. And a protruding pin 24 that is separated from the cavity 20. The mold 1 also introduces gas (carbon dioxide gas) from the carbon dioxide supply system 2 into the cavity 20, and vents 25 for discharging the gas from the cavity 20 to the outside of the mold 1, And an O-ring 26 for improving airtightness.

キャビティ20を構成するキャビティブロック21の表面には、微細凹凸パタンが形成されており、この微細パタンが樹脂成形品に転写されるようになっている。ゲート22及びスプル23は、キャビティ20内に溶融状態の樹脂を導入するように設けられる。キャビティ20の外側には、ガスの給排気用の溝としてのベント27が設けられる。ベント27は、ベントスリット28、及び通気孔25を介してベント27から金型1外に設けられた二酸化炭素供給系2に連通される。   A fine uneven pattern is formed on the surface of the cavity block 21 constituting the cavity 20, and this fine pattern is transferred to the resin molded product. The gate 22 and the sprue 23 are provided so as to introduce molten resin into the cavity 20. A vent 27 is provided outside the cavity 20 as a gas supply / exhaust groove. The vent 27 communicates with the carbon dioxide supply system 2 provided outside the mold 1 through the vent slit 28 and the vent hole 25.

図3Aは、金型1の模式的な平面図であり、図3Bは、図3Aの一点鎖線の拡大断面図である。なお、図3Aにおいては、図2に示したキャビティ20内をスプル23側から見た平面図を示している。図3Aに示すように、キャビティ20内の中央部に、平面視略矩形形状の微細凹凸パタン形成面10が設けられている。この微細凹凸パタン形成面10を含み、微細凹凸パタン形成面10より僅かに大きな領域が、ゲート22から樹脂が充填される製品領域41となる。製品領域41の外側には、キャビティ20に対するガスの給排気用溝としてのベント27が設けられる。ベント27は、通気孔25を介して金型1外に連通される。このベント27の外側には、Oリング26が設けられ、キャビティ20内の気密が保持される。   FIG. 3A is a schematic plan view of the mold 1, and FIG. 3B is an enlarged cross-sectional view taken along one-dot chain line in FIG. 3A. 3A is a plan view of the inside of the cavity 20 shown in FIG. 2 as viewed from the sprue 23 side. As shown in FIG. 3A, a fine concavo-convex pattern forming surface 10 having a substantially rectangular shape in a plan view is provided in the central portion in the cavity 20. A region including the fine unevenness pattern forming surface 10 and slightly larger than the fine unevenness pattern forming surface 10 becomes a product region 41 filled with resin from the gate 22. A vent 27 as a gas supply / exhaust groove for the cavity 20 is provided outside the product region 41. The vent 27 communicates with the outside of the mold 1 through the vent hole 25. An O-ring 26 is provided outside the vent 27, and the airtightness in the cavity 20 is maintained.

二酸化炭素供給系2は、二酸化炭素供給源としてのCOボンベ31と、二酸化炭素ガスを減圧して所定の圧力に調整する減圧弁32と、キャビティ20内に供給する二酸化炭素を溜めるガス溜33と、キャビティ20内への二酸化炭素ガスの供給/停止を切替える電磁弁34とを備える。 The carbon dioxide supply system 2 includes a CO 2 cylinder 31 serving as a carbon dioxide supply source, a pressure reducing valve 32 for reducing the pressure of carbon dioxide gas to a predetermined pressure, and a gas reservoir 33 for storing carbon dioxide supplied into the cavity 20. And an electromagnetic valve 34 for switching supply / stop of carbon dioxide gas into the cavity 20.

二酸化炭素供給系2においては、液化炭酸ガスを充填したボンベ31を50℃で保温しガス供給源として用いる。二酸化炭素ガスは、減圧弁32にて所定圧力に調圧された後、約40℃に保温されたガス溜33に溜められる。キャビティ20内へのガス供給は、ガス溜33の下流にある電磁弁34を開閉することで行われる。樹脂充填中はガス溜33とキャビティ20が連通した状態となる。樹脂充填が終了するとほぼ同時に、電磁弁34を動作することで、ベント27から通気孔25内のガスを金型1外に開放する。   In the carbon dioxide supply system 2, a cylinder 31 filled with liquefied carbon dioxide is kept at 50 ° C. and used as a gas supply source. The carbon dioxide gas is adjusted to a predetermined pressure by the pressure reducing valve 32 and then stored in a gas reservoir 33 kept at a temperature of about 40 ° C. Gas supply into the cavity 20 is performed by opening and closing an electromagnetic valve 34 downstream of the gas reservoir 33. During the resin filling, the gas reservoir 33 and the cavity 20 are in communication with each other. Almost simultaneously with the completion of the resin filling, the solenoid valve 34 is operated to release the gas in the vent hole 25 from the vent 27 to the outside of the mold 1.

次に、金型1及び二酸化炭素供給系2を用いた本実施の形態に係る樹脂の成形方法の一例について説明する。まず、金型1を閉じて型締めを行った後に、樹脂充填工程において、COボンベ31から減圧弁32を介して金型1のキャビティ20内に二酸化炭素を供給し、キャビティ20内の圧力を1MPa〜15MPaに調圧する。次に、金型1のスプル23及びゲート22を介して、あらかじめ成形機シリンダ内で二酸化炭素を溶解した溶融樹脂をキャビティ20内に充填する。ここで、液状樹脂の充填の際に、キャビティ20内が所定の圧力となっているので、樹脂に含まれる揮発成分の放散が抑制され、キャビティ20内の微細凹凸パタン10内部への揮発成分の付着を抑制できる。また、キャビティ20内に充填された樹脂が、キャビティ20内を展開する際に、キャビティ20内に充填された二酸化炭素及びあらかじめ樹脂に溶解された二酸化炭素により、樹脂の粘度上昇の抑制及び固化の防止が可能となる。 Next, an example of a resin molding method according to the present embodiment using the mold 1 and the carbon dioxide supply system 2 will be described. First, after the mold 1 is closed and the mold is clamped, carbon dioxide is supplied from the CO 2 cylinder 31 into the cavity 20 of the mold 1 through the pressure reducing valve 32 in the resin filling step, and the pressure in the cavity 20 is increased. Is adjusted to 1 MPa to 15 MPa. Next, the molten resin in which carbon dioxide is dissolved in advance in the molding machine cylinder is filled into the cavity 20 through the sprue 23 and the gate 22 of the mold 1. Here, since the inside of the cavity 20 is at a predetermined pressure when the liquid resin is filled, the diffusion of the volatile component contained in the resin is suppressed, and the volatile component inside the fine uneven pattern 10 in the cavity 20 is suppressed. Adhesion can be suppressed. Further, when the resin filled in the cavity 20 expands in the cavity 20, the carbon dioxide filled in the cavity 20 and the carbon dioxide previously dissolved in the resin can suppress the increase in the viscosity of the resin and solidify the resin. Prevention becomes possible.

樹脂充填後はキャビティ20内に充填された樹脂を加圧し、微細凹凸パタンを樹脂表面に転写しながら冷却固化する。ここで、微細凹凸パタンを転写して冷却固化した成形品表面から二酸化炭素が揮発するので、微細凹凸パタン10からの樹脂の離形が容易となる。冷却固化工程の終了後、金型1の突出しピン24により、冷却固化した成形品をキャビティ20から離形する。   After the resin is filled, the resin filled in the cavity 20 is pressurized and solidified by cooling while transferring the fine uneven pattern onto the resin surface. Here, since the carbon dioxide is volatilized from the surface of the molded product that has been transferred and cooled and solidified by transferring the fine concavo-convex pattern, release of the resin from the fine concavo-convex pattern 10 is facilitated. After completion of the cooling and solidifying step, the molded product cooled and solidified is released from the cavity 20 by the protruding pins 24 of the mold 1.

以下、本発明の効果を明確にするために行った実施例、及び比較例により本発明の効果をさらに具体的に説明する。なお、本発明は、以下の実施例、及び比較例によって何ら限定されるものではない。   Hereinafter, the effects of the present invention will be described more specifically with reference to Examples and Comparative Examples performed to clarify the effects of the present invention. In addition, this invention is not limited at all by the following examples and comparative examples.

射出成形においては、樹脂としてアクリル樹脂(デルペット 80NH、旭化成ケミカルズ社製)を使用し、使用前に熱風乾燥機中で80℃、5時間乾燥して使用した。ガスとしては、純度99.5%以上の二酸化炭素を使用した。   In the injection molding, an acrylic resin (Delpet 80NH, manufactured by Asahi Kasei Chemicals Co., Ltd.) was used as the resin, and it was used after being dried in a hot air dryer at 80 ° C. for 5 hours before use. As the gas, carbon dioxide having a purity of 99.5% or more was used.

成形機としては、住友重機械工業製SG125M−HPのAMOTEC(登録商標)仕様を使用した。可塑化部分は、スクリュ径32mm、L/D23のベントタイプでベントを二酸化炭素で加圧できる構成とし、ノズルはシャットオフノズルとした。また、型締め・射出機構に連動しキャビティに二酸化炭素を給排気するガス供給ユニットを設置した。   As the molding machine, AMOTEC (registered trademark) specification of SG125M-HP manufactured by Sumitomo Heavy Industries, Ltd. was used. The plasticized portion was a vent type with a screw diameter of 32 mm and L / D23, and the vent could be pressurized with carbon dioxide, and the nozzle was a shut-off nozzle. In addition, a gas supply unit that supplies and exhausts carbon dioxide to the cavity is installed in conjunction with the mold clamping and injection mechanism.

金型としては、成形品形状が長方形のものを用いた。金型の製品部は、縦横各120、60mm、厚み2mmであり、ゲートは、幅3mm、厚み1mmでランド長さ3mmであり、ランナ断面が平均幅4mm、深さ4mmのほぼ正方形、ランナ長さが140mm、スプル平均直径4mm長さ55mmで、ノズルタッチ部の直径が3.5mmである。金型のキャビティ外周は、キャビティ、スプル、ランナの外周をOリングでシールして、キャビティを気密構造とし、ガス供給ユニットからキャビティに二酸化炭素を供給、排気できる構造とした。   As the mold, a mold having a rectangular shape was used. The product part of the mold is 120 and 60 mm in length and width, and the thickness is 2 mm. The gate is 3 mm in width, 1 mm in thickness and 3 mm in land length, and the runner cross section has an average width of 4 mm and a depth of 4 mm. 140 mm, sprue average diameter 4 mm, length 55 mm, and nozzle touch part diameter 3.5 mm. The outer periphery of the mold cavity was sealed with O-rings around the cavity, sprue, and runner, and the cavity had an airtight structure. Carbon dioxide could be supplied to the cavity from the gas supply unit and exhausted.

金型は、固定側に微細凹凸パタン転写用の0.3mm厚みのNi製スタンパを固定できる構造とし、移動側の表面は平滑な鏡面とした。スタンパは、反射防止構造(モス・アイ構造)と縞状のライン・アンド・スペース構造の2種類を用いた。図4に反射防止構造(モス・アイ構造)の断面構造の走査型電子顕微鏡写真を示し、図5にライン・アンド・スペース構造の断面構造の走査型電子顕微鏡写真を示す。反射防止構造は、先の丸い円錐状の突起を平面上に多数構成した構造である。スタンパの表面形状としては、凹みの開口部を楕円で近似したときの短軸の長さが約200nmであり、凹みの深さは約290nmであり、ピッチ約250nmで六方充填状に面上に凹みが並んでいた。また、ライン・アンド・スペース構造は、長く直線状に伸びる板状の突起が互いに平行に並んだ構造である。直線状に伸びる軸と直角の断面における形状はほぼ矩形状であり、スタンパの表面形状としては、直線状に伸びる溝状凹みの開口部の幅が約40nm、凹みの深さは約110nmで、ピッチ約100nmであった。射出成形時のシリンダ設定温度は260℃とし、金型キャビティの表面温度は90℃とした。   The mold was structured such that a 0.3 mm-thick Ni stamper for transferring fine uneven patterns could be fixed on the fixed side, and the surface on the moving side was a smooth mirror surface. Two types of stampers were used: an antireflection structure (moss-eye structure) and a striped line and space structure. FIG. 4 shows a scanning electron micrograph of the cross-sectional structure of the antireflection structure (moth-eye structure), and FIG. 5 shows a scanning electron micrograph of the cross-sectional structure of the line and space structure. The antireflection structure is a structure in which a large number of round conical protrusions are formed on a plane. As the surface shape of the stamper, the length of the short axis when the opening of the dent is approximated by an ellipse is about 200 nm, the depth of the dent is about 290 nm, and the pitch is about 250 nm on the surface in a hexagonal packing shape. The dents were lined up. The line-and-space structure is a structure in which long and straight plate-like protrusions are arranged in parallel to each other. The shape of the cross section perpendicular to the linearly extending axis is substantially rectangular, and as the surface shape of the stamper, the width of the opening of the grooved recess extending linearly is about 40 nm, and the depth of the recess is about 110 nm. The pitch was about 100 nm. The cylinder set temperature during injection molding was 260 ° C., and the mold cavity surface temperature was 90 ° C.

(実施例1)
微細凹凸パタン転写用スタンパに反射防止構造を用い、アクリル樹脂を成形機に投入しベント部に二酸化炭素を6MPaで供給して可塑化した。溶融アクリル樹脂を、8MPaの二酸化炭素を満たしたキャビティに、樹脂充填時間0.2秒で充填して、樹脂充填後、シリンダ内圧130MPaで5秒間保圧し、30秒間冷却した後に成形品を取り出した。キャビティ内の二酸化炭素は、保圧工程において大気中に開放した。この成形を300回連続で行い、100回ごとにサンプリングした。成形品の転写均一性を観察するために、移動側の表面を黒色に塗装して、入射角度約70度で白色光を当て反射光の色、明るさ、ムラを観察したが、いずれの成形品も均一に反射防止構造が転写されていることがわかった。成形品に含まれていた二酸化炭素量を測定するために、成形直後の成形品重量と、成形品を90℃の真空乾燥機中に10日間放置し一定重量になったときの成形品重量を測定したところ、成形品には0.9重量%の二酸化炭素が含まれていたことがわかり、溶融樹脂中にも同量の二酸化炭素が含まれていたと推定した。
Example 1
An antireflection structure was used for the fine uneven pattern transfer stamper, an acrylic resin was put into a molding machine, and carbon dioxide was supplied to the vent portion at 6 MPa for plasticization. A cavity filled with 8 MPa of carbon dioxide was filled with molten acrylic resin in a resin filling time of 0.2 seconds. After filling the resin, the pressure was maintained at a cylinder internal pressure of 130 MPa for 5 seconds, and after cooling for 30 seconds, the molded product was taken out. . The carbon dioxide in the cavity was released into the atmosphere during the pressure holding process. This molding was performed 300 times continuously and sampled every 100 times. In order to observe the transfer uniformity of the molded product, the surface on the moving side was painted black, and the color, brightness, and unevenness of the reflected light were observed by applying white light at an incident angle of about 70 degrees. It was found that the anti-reflective structure was evenly transferred to the product. In order to measure the amount of carbon dioxide contained in the molded product, the weight of the molded product immediately after molding and the weight of the molded product when the molded product was allowed to stand for 10 days in a vacuum dryer at 90 ° C. As a result of measurement, it was found that the molded product contained 0.9% by weight of carbon dioxide, and it was estimated that the same amount of carbon dioxide was contained in the molten resin.

(実施例2)
微細凹凸パタン転写用スタンパにライン・アンド・スペース構造を用い、実施例1と同様にアクリル樹脂を成形した。実施例1と同様に微細ラインと直角の方向から成形品の転写均一性を観察したが、いずれの成形品も均一にライン・アンド・スペース構造が転写されていることがわかった。
(Example 2)
An acrylic resin was molded in the same manner as in Example 1 by using a line and space structure for the fine uneven pattern transfer stamper. Similar to Example 1, the transfer uniformity of the molded product was observed from a direction perpendicular to the fine line, and it was found that the line-and-space structure was uniformly transferred to all the molded products.

(比較例1)
微細凹凸パタン転写用スタンパに反射防止構造を用い、二酸化炭素を用いることなく、実施例1と同様の条件でアクリル樹脂を成形した。連続成形は20回として、10回ごとにサンプリングした。連続成形後に、実施例1と同様の条件で1回アクリル樹脂を成形した。実施例1と同様に成形品の転写均一性を観察したが、20回の連続成形品は、いずれも反射光が多いことから転写状態が不十分であり、ゲート側の幅約15mmの範囲は特にフローマーク状の模様があり、転写状態もより低いことがわかった。21回目の実施例1と同様の条件における成形品は、反射光から20回目よりも転写状態は向上しているものの、ゲート側の模様が残り、実施例2の成形品よりも反射光量が多いことから、転写したパタンの高さが低くなっていることがわかった。
(Comparative Example 1)
An acrylic resin was molded under the same conditions as in Example 1 using an antireflection structure for the fine uneven pattern transfer stamper and using no carbon dioxide. The continuous molding was performed 20 times and sampled every 10 times. After continuous molding, an acrylic resin was molded once under the same conditions as in Example 1. The transfer uniformity of the molded product was observed in the same manner as in Example 1. However, since the continuous molded product of 20 times has a lot of reflected light, the transfer state is insufficient, and the range of the width of about 15 mm on the gate side is as follows. In particular, it was found that there was a flow mark pattern and the transfer state was lower. The molded product under the same conditions as in Example 21 of the 21st time, although the transfer state is improved from the reflected light compared to the 20th time, the pattern on the gate side remains and the amount of reflected light is larger than that of the molded product of Example 2. From this, it was found that the height of the transferred pattern was low.

(比較例2)
微細凹凸パタン転写用スタンパにライン・アンド・スペース構造を用い、アクリル樹脂を成形機に投入し可塑化した。金型キャビティ表面温度をあらかじめ130℃として、溶融アクリル樹脂をキャビティに樹脂充填時間0.2秒で充填した後、シリンダ内圧150MPaで5秒間保圧した。その後シリンダ内圧100MPaで保圧中に約3分間で金型キャビティの表面温度を80℃まで冷却し、成形品を取り出した。実施例1と同様に微細ラインと直角の方向から成形品の転写均一性を観察したが、転写面全体に光沢が異なるムラが生じていた。成形品の中央部を走査型電子顕微鏡により観察したところ、ライン・アンド・スペース構造の板状部分が、離型方向に不規則に引き伸ばされ、部分的に倒れていることがわかった。
(Comparative Example 2)
A line and space structure was used as a stamper for transferring fine uneven patterns, and acrylic resin was put into a molding machine for plasticization. The mold cavity surface temperature was set to 130 ° C. in advance, and the molten acrylic resin was filled into the cavity with a resin filling time of 0.2 seconds, and then held at a cylinder internal pressure of 150 MPa for 5 seconds. Thereafter, the surface temperature of the mold cavity was cooled to 80 ° C. in about 3 minutes during pressure holding at a cylinder internal pressure of 100 MPa, and the molded product was taken out. As in Example 1, the transfer uniformity of the molded product was observed from the direction perpendicular to the fine lines, but unevenness with different glossiness occurred on the entire transfer surface. When the central part of the molded product was observed with a scanning electron microscope, it was found that the plate-like part of the line-and-space structure was irregularly stretched in the releasing direction and partially collapsed.

実施例1、実施例2、及び比較例1において得られた成形品の微細凹凸パタン転写状態を評価するために、原子間力顕微鏡を用いて、成形品中央部の一辺約2μmの正方形部分のパタン高さを測定し、5個の連続する凹凸部分の最大、最少高さから平均値を求めた。実施例1、実施例2の結果を下記表1に示し、比較例1の結果を下記表2に示す。   In order to evaluate the fine concavo-convex pattern transfer state of the molded products obtained in Example 1, Example 2, and Comparative Example 1, using an atomic force microscope, a square part having a side of about 2 μm on the side of the central part of the molded product was used. The pattern height was measured, and the average value was obtained from the maximum and minimum heights of five consecutive uneven portions. The results of Example 1 and Example 2 are shown in Table 1 below, and the results of Comparative Example 1 are shown in Table 2 below.

表1及び表2から分かるように、実施例1、実施例2においては、安定して高い転写性が得られた。また、比較例1に示すように、二酸化炭素を用いない一般的な成形手法では転写性が低下した。比較例1においては、わずかに20回の成形において微細凹凸パタンの凹みが樹脂からの揮発物により部分的に埋まってしまったと考えられる。   As can be seen from Tables 1 and 2, in Examples 1 and 2, high transferability was stably obtained. Further, as shown in Comparative Example 1, the transferability was lowered by a general molding method not using carbon dioxide. In Comparative Example 1, it is considered that the dents in the fine uneven pattern were partially filled with volatiles from the resin after molding 20 times.

本発明は、金型表面の微細凹凸パタンを高度に成形品に転写でき、しかも、生産性及び経済性に優れる成形品の成形方法を実現できるという効果を有し、特に、透明な合成樹脂を用いて成形したレンチキュラーレンズ、フレネルレンズなどのレンズ、光ディスクなどの記録材料、液晶表示部品である導光板、拡散板、可視光線用の反射防止構造(モス・アイ構造)又はライン・アンド・スペース構造を有する光学部材、の各種光学部品、バイオミメティクス機能部品などの分野におけるナノインプリント技術として好適に用いることが可能となる。   The present invention has an effect that a fine uneven pattern on a mold surface can be transferred to a molded product at a high level, and a molded product molding method having excellent productivity and economy can be realized. Lenses such as lenticular lenses, Fresnel lenses, etc., recording materials such as optical discs, light guide plates that are liquid crystal display components, diffuser plates, antireflection structures for visible rays (moss / eye structures) or line and space structures It can be suitably used as a nanoimprint technique in the fields of various optical components, biomimetics functional components, and the like.

1 金型
2 二酸化炭素供給系
10 微細凹凸パタン形成面
11 開口部
20 キャビティ
21 キャビティブロック
22 ゲート
23 スプル
24 突出しピン
25 通気孔
26 Oリング
27 ベント
28 ベントスリット
31 CO2ボンベ
32 減圧弁
33 ガス溜
34 電磁弁
41 製品領域
DESCRIPTION OF SYMBOLS 1 Mold 2 Carbon dioxide supply system 10 Fine uneven | corrugated pattern formation surface 11 Opening 20 Cavity 21 Cavity block 22 Gate 23 Spru 24 Projection pin 25 Vent 26 O-ring 27 Vent 28 Vent slit 31 CO2 cylinder 32 Pressure reducing valve 33 Gas reservoir 34 Solenoid valve 41 product area

Claims (7)

金型表面に設けられた微細凹凸パタンを樹脂表面に転写する樹脂の成形方法であって、
二酸化炭素の液化を防止しつつあらかじめ二酸化炭素を1MPa〜15MPaの圧力でキャビティに充填してから、0.1重量%以上の二酸化炭素が溶解した液状樹脂を前記キャビティに充填する樹脂充填工程を有し、
前記樹脂表面に転写される微細凹凸パタンの形状が、前記金型表面の凹みに樹脂を充填することで、先の丸い円錐状の突起を平面上に多数構成した構造、又は長く直線状に伸びる板状の突起が互いに平行に並んだ構造に形成され、
前記金型の微細凹凸パタンが、凹みの開口部を楕円で近似した場合に、短軸の長さが3μm以下であり、前記凹みの深さと前記短軸の長さの比(前記凹み深さ/前記短軸の長さ)が0.5以上、4.0以下であることを特徴とする樹脂の成形方法。
A resin molding method for transferring a fine uneven pattern provided on a mold surface to a resin surface,
There is a resin filling step of filling the cavity with a liquid resin in which 0.1% by weight or more of carbon dioxide is dissolved after filling the cavity with carbon dioxide in advance at a pressure of 1 MPa to 15 MPa while preventing liquefaction of carbon dioxide. And
The shape of the fine concavo-convex pattern transferred to the resin surface is a structure in which a large number of round conical protrusions are formed on a flat surface or a long straight line by filling the recess in the mold surface with resin. It is formed in a structure in which plate-like protrusions are arranged in parallel with each other,
When the concave / convex pattern of the mold approximates the opening of the recess with an ellipse, the length of the short axis is 3 μm or less, and the ratio of the depth of the recess to the length of the short axis (the depth of the recess) / The length of the short axis) is 0.5 or more and 4.0 or less.
前記樹脂が、熱可塑性樹脂であることを特徴とする請求項1記載の樹脂の成形方法。   The resin molding method according to claim 1, wherein the resin is a thermoplastic resin. 前記熱可塑性樹脂が、非晶性熱可塑性樹脂、又は結晶化度40%以下の結晶性熱可塑性樹脂であることを特徴とする請求項2記載の樹脂の成形方法。   The method for molding a resin according to claim 2, wherein the thermoplastic resin is an amorphous thermoplastic resin or a crystalline thermoplastic resin having a crystallinity of 40% or less. 前記凹みの前記開口部の短軸長さが、1.0μm以下であることを特徴とする請求項1から請求項3のいずれかに記載の樹脂の成形方法。   The resin molding method according to any one of claims 1 to 3, wherein a short-axis length of the opening of the dent is 1.0 µm or less. 前記凹みの前記開口部の短軸長さが、0.3μm以下であることを特徴とする請求項1から請求項3のいずれかに記載の樹脂の成形方法。   The resin molding method according to any one of claims 1 to 3, wherein a short axis length of the opening of the dent is 0.3 µm or less. 前記微細凹凸パタンが可視光線用の反射防止構造(モス・アイ構造)であることを特徴とする請求項1から請求項5のいずれかに記載の樹脂の成形方法。   6. The method for molding a resin according to claim 1, wherein the fine uneven pattern is an antireflection structure (moss-eye structure) for visible light. 前記微細凹凸パタンが縞状のライン・アンド・スペース構造であることを特徴とする請求項1から請求項5のいずれかに記載の樹脂の成形方法。   6. The method for molding a resin according to claim 1, wherein the fine uneven pattern has a striped line and space structure.
JP2011098057A 2011-04-26 2011-04-26 Molding method of resin Expired - Fee Related JP5771058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011098057A JP5771058B2 (en) 2011-04-26 2011-04-26 Molding method of resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011098057A JP5771058B2 (en) 2011-04-26 2011-04-26 Molding method of resin

Publications (2)

Publication Number Publication Date
JP2012228810A JP2012228810A (en) 2012-11-22
JP5771058B2 true JP5771058B2 (en) 2015-08-26

Family

ID=47430789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011098057A Expired - Fee Related JP5771058B2 (en) 2011-04-26 2011-04-26 Molding method of resin

Country Status (1)

Country Link
JP (1) JP5771058B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175204A (en) * 2015-03-18 2016-10-06 東洋機械金属株式会社 Injection foam molding machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673623B2 (en) * 1991-10-01 1997-11-05 旭化成工業株式会社 Synthetic resin molding method
JPH09234740A (en) * 1995-07-25 1997-09-09 Asahi Chem Ind Co Ltd Molding of synthetic resin
JP3349070B2 (en) * 1996-09-03 2002-11-20 旭化成株式会社 Molding method of thermoplastic resin
JP3875326B2 (en) * 1996-11-11 2007-01-31 旭化成ケミカルズ株式会社 Injection molding method and optical component
JPH10320848A (en) * 1997-05-22 1998-12-04 Asahi Chem Ind Co Ltd Method for molding disk substrate for optical information recording
JP4357105B2 (en) * 1999-10-14 2009-11-04 旭化成ケミカルズ株式会社 Light guide plate and manufacturing method thereof
JP2003222701A (en) * 2002-01-29 2003-08-08 Seiko Epson Corp Optical parts and its manufacturing method
JP2003334846A (en) * 2002-05-22 2003-11-25 Hitachi Maxell Ltd Method for manufacturing foamed thermoplastic resin
JP4105753B2 (en) * 2006-08-14 2008-06-25 日立マクセル株式会社 Method for surface modification of plastic member, method for forming metal film, and method for manufacturing plastic member

Also Published As

Publication number Publication date
JP2012228810A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP3218397B2 (en) Injection molding of thermoplastic resin
JP4758732B2 (en) Thermoplastic injection molding method using supercritical fluid
US20050189665A1 (en) Method for producing light transmitting plate
US20040119204A1 (en) Process for producing light transmitting plate
JP3349070B2 (en) Molding method of thermoplastic resin
JP4184091B2 (en) Injection molding method
EP0826477B1 (en) Method for molding thermoplastic resin
US6322735B1 (en) Method for molding thermoplastic resin
JP5771058B2 (en) Molding method of resin
JP2010099861A (en) Resin molding rubber mold, resin molding apparatus, and resin molding method
JP3096904B2 (en) Injection molding of amorphous thermoplastic resin
JP2001062862A (en) Method for injection molding amorphous thermoplastic
JP3875587B2 (en) Gas-assisted injection molding method of thermoplastic resin
JP2004223888A (en) Injection molding method for thermoplastic resin
JP2009190276A (en) Injection molding method
JP4291038B2 (en) Mold apparatus and molding method
JP2009107276A (en) Injection molding method of thermoplastic resin
JP3875586B2 (en) Molding method of thermoplastic resin
JP2002192549A (en) Expanded injection moldings
JP2004330720A (en) Manufacturing method of molded article, mold used for manufacturing the same, and molded article
JP2004243590A (en) Injection mold, method for manufacturing molded object and light guide plate
KR102276124B1 (en) Foam injection molding, foam injection molding machine containing the same and method for preparing forming products using the same
JP2001353742A (en) Method for injection-molding recycled resin
JP5649695B2 (en) Thermoplastic resin injection molding method
JPH03138122A (en) Molding process for thick wall molded product and its molding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150626

R150 Certificate of patent or registration of utility model

Ref document number: 5771058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees