JP2005125504A - Injection molding method - Google Patents

Injection molding method Download PDF

Info

Publication number
JP2005125504A
JP2005125504A JP2003360386A JP2003360386A JP2005125504A JP 2005125504 A JP2005125504 A JP 2005125504A JP 2003360386 A JP2003360386 A JP 2003360386A JP 2003360386 A JP2003360386 A JP 2003360386A JP 2005125504 A JP2005125504 A JP 2005125504A
Authority
JP
Japan
Prior art keywords
resin
mold
mold cavity
injection molding
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003360386A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamaki
宏 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003360386A priority Critical patent/JP2005125504A/en
Publication of JP2005125504A publication Critical patent/JP2005125504A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily obtain a good molded product free from appearance failure by extending the resin flowing length of the molten resin within a mold in an injection molding method for injecting the molten resin in a mold cavity especially through a film gate to fill the mold cavity. <P>SOLUTION: The mold cavity is preliminarily filled with a pressurized gas and the molten thermoplastic resin is subsequently injected so that the moving speed of a flow front becomes higher than a slide causing speed to generate a plug flow. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、熱可塑性樹脂の射出成形において、樹脂の金型キャビティへの充填を容易にする成形法に関する。   The present invention relates to a molding method for facilitating filling of a resin mold cavity in injection molding of a thermoplastic resin.

熱可塑性樹脂の射出成形において、通常、樹脂は金型キャビティに充填するのに充分な流動性を持つ温度まで加熱、溶融し成形される。溶融樹脂の流動性は、金型キャビティへの充填の容易さを決めるだけではなく、充填後に十分な圧力がキャビティ内の樹脂へ伝わるかどうかも左右するため、成形品の寸法精度、外観だけでなく、光ディスクなどの成形品で要求される金型表面の微細情報の高度な転写にも影響を与え、樹脂の加工性を決める重要な因子である。流動性を表す一つの指標として、溶融樹脂の粘度がある。   In the injection molding of a thermoplastic resin, the resin is usually heated and melted to a temperature having sufficient fluidity to fill the mold cavity and molded. The flowability of the molten resin not only determines the ease of filling the mold cavity, but also determines whether sufficient pressure is transmitted to the resin in the cavity after filling, so only the dimensional accuracy and appearance of the molded product It is also an important factor that determines the processability of the resin by affecting the advanced transfer of fine information on the mold surface required for molded products such as optical disks. One index representing fluidity is the viscosity of the molten resin.

熱可塑性樹脂は溶融粘度が高く、成形材料として流動性に劣る。このため、成形品の光沢ムラ、ウェルドラインなどの外観不良や、光ディスクのピットなどに代表される金型表面の微細形状の転写不良を起こしやすく、薄肉の部品では樹脂が完全に充填できなくなるといった問題があった。   A thermoplastic resin has a high melt viscosity and is inferior in fluidity as a molding material. For this reason, it is easy to cause appearance defects such as uneven gloss of the molded product, weld line, and fine shape transfer of the mold surface typified by optical disk pits, and thin parts cannot be completely filled with resin. There was a problem.

従来、流動性を高めるための樹脂の改質手段には、次の3種があった。   Conventionally, there are the following three types of resin reforming means for improving fluidity.

第一は樹脂の分子量を低くする方法で、平均分子量を下げたり、分子量分布を広げ、特に低分子量成分を増したりするものであるが、流動性は増すものの衝撃強度や耐薬品性が低下するといった問題がある。   The first is to lower the molecular weight of the resin, which lowers the average molecular weight, broadens the molecular weight distribution, especially increases the low molecular weight components, but reduces the impact strength and chemical resistance, while increasing the fluidity. There is a problem.

第二は分子中にコモノマを導入する方法であるが、熱時剛性が低下する問題がある。   The second is a method of introducing a comonomer into a molecule, but there is a problem that the stiffness during heating is lowered.

第三はミネラルオイルなどの低分子量の油状物質や、高級脂肪酸エステルなどの可塑剤を添加する方法であり、可塑剤により熱時剛性が低下したり、成形時に可塑剤が金型に付着して汚すなどの問題があった。   The third is a method of adding low molecular weight oily substances such as mineral oil and plasticizers such as higher fatty acid esters. The plasticizer reduces the stiffness during heating, or the plasticizer adheres to the mold during molding. There were problems such as fouling.

また、流動性を高める成形条件としては、樹脂温度や金型温度を高めることが効果的である。しかし、高い樹脂温度は樹脂自身や添加剤の熱分解を引き起こし、成形品強度の低下、樹脂劣化物による異物の発生、金型汚れ、変色などの問題が発生しやすくなり、また、金型温度を高くすると、型内の樹脂の冷却が遅くなり、成形サイクルタイムが長くなるといった問題があった。   Further, as a molding condition for improving fluidity, it is effective to increase the resin temperature and the mold temperature. However, the high resin temperature causes thermal decomposition of the resin itself and additives, and it tends to cause problems such as reduced strength of molded products, generation of foreign substances due to resin degradation products, mold contamination, and discoloration. When the value is increased, there is a problem that the cooling of the resin in the mold is delayed and the molding cycle time is increased.

一方、例えば以下に掲げる非特許文献1など、多くの文献に示されるように、二酸化炭素を樹脂に吸収させると、樹脂の可塑剤として働き、ガラス転移温度を低下させることが知られており、例えば特許文献1や特許文献2には、二酸化炭素などのガスを熱可塑性樹脂中に含ませ、溶融樹脂の流動性を向上させる方法が示されている。この二酸化炭素を用いる方法は、成形後は二酸化炭素が成形品から放出されてしまうため、物性を損なうことがなく、しかも金型の汚れ、成形サイクルの遅延を発生させない利点がある。   On the other hand, as shown in many documents such as Non-Patent Document 1 listed below, it is known that when carbon dioxide is absorbed into a resin, it acts as a plasticizer for the resin and lowers the glass transition temperature, For example, Patent Document 1 and Patent Document 2 disclose a method for improving the fluidity of a molten resin by including a gas such as carbon dioxide in a thermoplastic resin. This method using carbon dioxide has an advantage that carbon dioxide is released from the molded product after molding, so that physical properties are not impaired, and mold contamination and molding cycle delay do not occur.

J. Appl.Polym.Sci.,Vol.30,2633(1985)J. et al. Appl. Polym. Sci. , Vol. 30, 2633 (1985) 特開平5−318541号公報Japanese Patent Laid-Open No. 5-318541 特許第3218397号公報Japanese Patent No. 32189797

しかしながら、従来の二酸化炭素を用いた射出成形の場合、例えば薄板状の成形品を成形する場合などにおいては、二酸化炭素で溶融樹脂の流動性を高めているにも拘わらず、金型内での溶融樹脂の樹脂流動長が十分に得られず、二酸化炭素を多量に樹脂に溶解させると、成形品表面に発生する発泡模様の発生を防止しにくくなるなど、外観不良を生じやすい問題がある。   However, in the case of conventional injection molding using carbon dioxide, for example, in the case of molding a thin plate-shaped molded product, the fluidity of the molten resin is enhanced with carbon dioxide, but in the mold. If the resin flow length of the molten resin is not sufficiently obtained and a large amount of carbon dioxide is dissolved in the resin, there is a problem that appearance defects are likely to occur, such as it is difficult to prevent the occurrence of a foaming pattern generated on the surface of the molded product.

本発明は、上記問題点に鑑みてなされたもので、金型キャビティ内へ溶融樹脂を射出充填する射出成形方法において、金型内での溶融樹脂の樹脂流動長を延ばし、外観不良のない良好な成形品を容易に得られるようにすることを目的とする。   The present invention has been made in view of the above problems, and in an injection molding method for injecting and filling molten resin into a mold cavity, the resin flow length of the molten resin in the mold is extended, and there is no appearance defect. An object of the present invention is to easily obtain a simple molded product.

上記課題を解決するため本発明者らは検討の結果、特定の流体と樹脂の組み合わせにおいて、あらかじめ流体を金型キャビティに存在させ、樹脂充填中に流体が樹脂と金型表面の界面に入り込んで、樹脂と金型表面との間に流体層が介在した状態で樹脂が金型内を流動すると、樹脂が金型表面をすべりながら流れ、樹脂の見かけ上の流動抵抗が減少して、金型内での溶融樹脂の樹脂流動長が延びることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have studied, and in a specific fluid and resin combination, the fluid is present in the mold cavity in advance, and the fluid enters the interface between the resin and the mold surface during resin filling. When the resin flows in the mold with the fluid layer interposed between the resin and the mold surface, the resin flows while sliding on the mold surface, and the apparent flow resistance of the resin decreases, and the mold The present inventors have found that the resin flow length of the molten resin is extended and completed the present invention.

すなわち、本発明の第1は、溶融した熱可塑性樹脂を金型キャビティへ射出充填する射出成形方法において、加圧ガスを予め金型キャビティに充填し、次いで溶融した熱可塑性樹脂を、フローフロントの移動速度が滑り発生速度以上の速度となるように射出することを特徴とする射出成形方法を提供するもので、加圧ガスが二酸化炭素であることを好ましい態様として含むものである。   That is, the first aspect of the present invention is an injection molding method in which a molten thermoplastic resin is injected and filled into a mold cavity, a pressurized gas is previously filled into the mold cavity, and then the molten thermoplastic resin is added to the flow front. The injection molding method is characterized in that the injection is performed so that the moving speed is equal to or higher than the slip generation speed, and the preferred embodiment includes that the pressurized gas is carbon dioxide.

また、本発明の第2は、溶融した熱可塑性樹脂を金型キャビティへ射出充填する射出成形方法において、滑剤を予め金型キャビティ内面に塗布し、次いで溶融した熱可塑性樹脂を、フローフロントの移動速度が滑り発生速度以上の速度となるように射出することを特徴とする射出成形方法を提供するものである。   The second aspect of the present invention is an injection molding method in which a molten thermoplastic resin is injection-filled into a mold cavity. A lubricant is previously applied to the inner surface of the mold cavity, and then the molten thermoplastic resin is moved to the flow front. The injection molding method is characterized in that the injection is performed so that the speed is equal to or higher than the slip generation speed.

さらに上記本発明の第1と第2は、フローフロントの移動速度が10m/秒以上であることをその好ましい態様として含むものである。   Further, the first and second aspects of the present invention include that the movement speed of the flow front is 10 m / sec or more as a preferable mode.

本発明によれば、金型内に射出した溶融樹脂が金型表面に対して滑り、プラグフロー状態となって樹脂流動長が延びることから、良好な充填状態が得られ、外観不良のない良好な成形品が容易に得られるものである。   According to the present invention, the molten resin injected into the mold slides with respect to the mold surface, becomes a plug flow state, and the resin flow length is extended. Therefore, a good filling state is obtained, and there is no appearance defect. Can be easily obtained.

本発明をさらに詳細に説明する。   The present invention will be described in further detail.

本発明の射出成形法で使用される熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、ポリ塩化ビニル、アクリル樹脂、スチレン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、ポリフェニレンエーテル、変成ポリフェニレンエーテル樹脂、全芳香族ポリエステル(液晶ポリマー)、ポリアセタール、ポリカーボネート、ポリエーテルイミド、ポリエーテルサルフォン、ポリアミド系樹脂、ポリサルフォン、ポリエーテルエーテルケトン、ポリエーテルケトンなどの一種またはこれらを二種以上混合したブレンド物、さらにはこれらに各種充填材を配合した配合物を挙げることができる。   Examples of the thermoplastic resin used in the injection molding method of the present invention include polyethylene, polypropylene, polyvinyl chloride, acrylic resin, styrene resin, polyethylene terephthalate, polybutylene terephthalate, polyarylate, polyphenylene ether, modified polyphenylene ether resin, One kind of wholly aromatic polyester (liquid crystal polymer), polyacetal, polycarbonate, polyetherimide, polyethersulfone, polyamide resin, polysulfone, polyetheretherketone, polyetherketone, or a blend of two or more of these, Furthermore, the compound which mix | blended various fillers with these can be mentioned.

ここでいうスチレン系樹脂とは、スチレンを必須原料とするホモポリマ、コポリマおよびこれらのポリマと他の樹脂より得られるポリマーブレンドであり、ポリスチレンまたはABS樹脂であることが好ましい。また、ポリスチレンとは、スチレンホモポリマまたは樹脂相中にゴムが分布したゴム強化ポリスチレンである。   Styrenic resin here is a polymer blend obtained from homopolymers, copolymers, and these polymers and other resins using styrene as an essential raw material, and is preferably polystyrene or ABS resin. Polystyrene is styrene homopolymer or rubber-reinforced polystyrene in which rubber is distributed in the resin phase.

本発明の射出成形方法の第1は、加圧ガスを予め金型キャビティに充填しておいてから溶融樹脂を射出する方法であり、第2は、滑剤を予め金型キャビティ内面に塗布しておいてから溶融樹脂を射出する方法である。   The first injection molding method of the present invention is a method of injecting a molten resin after filling the mold cavity with the pressurized gas in advance, and the second is applying the lubricant to the inner surface of the mold cavity in advance. This is a method of injecting a molten resin after placing it.

上記ガスおよび滑剤としては、射出された溶融樹脂と金型表面の間に介在することで、金型表面に対する溶融樹脂の滑り性を向上させるものであることの他、樹脂や金型、成形機素材を劣化させないこと、成形する環境に対し危険性がないこと、安価であること、また成形後に成形品表面から速やかに揮発することなどを満たすものであることが好ましい。   The gas and lubricant include a resin, a mold and a molding machine in addition to improving the slipperiness of the molten resin with respect to the mold surface by being interposed between the injected molten resin and the mold surface. It is preferable that the raw material is not deteriorated, that there is no danger to the molding environment, is inexpensive, and that it quickly volatilizes from the surface of the molded product after molding.

金型キャビティに充填するガスとしては、例えば二酸化炭素、窒素などの不活性ガス、場合によっては炭素数1〜5の飽和炭化水素およびその一部水素をフッ素で置換したフロンなどのガスを用いることができ、これらを二種以上併用することもできるが、溶融樹脂に溶解しやすく、また溶融樹脂に溶解することによる可塑化作用が大きく、金型表面状態の成形品への転写性を向上させる効果が高いことから、二酸化炭素が最も好ましく、金型キャビティ内の二酸化炭素濃度が80重量%以上となるように充填することが好ましい。   As the gas filled in the mold cavity, for example, an inert gas such as carbon dioxide or nitrogen, or a saturated hydrocarbon having 1 to 5 carbon atoms or a gas such as chlorofluorocarbon in which part of the hydrogen is substituted with fluorine is used. These can be used in combination of two or more, but they are easy to dissolve in the molten resin and have a large plasticizing effect by being dissolved in the molten resin, improving the transferability to the molded product in the mold surface state. Since the effect is high, carbon dioxide is most preferable, and it is preferable to fill so that the carbon dioxide concentration in the mold cavity is 80% by weight or more.

ガスは各種温度のガスが使用できる。大気温度のガスは勿論、加熱ガスも良好に使用できる。加熱ガスの場合、二酸化炭素を溶解し易い液体の気化物と二酸化炭素の混合ガスは良好に使用できる。   Gases of various temperatures can be used. Not only atmospheric temperature gas but also heated gas can be used well. In the case of a heated gas, a mixed gas of liquid vapor and carbon dioxide that easily dissolves carbon dioxide can be used favorably.

滑剤としては、例えば水、アルコール、炭化水素系やシリコン系もしくはフッ素系などの溶剤またはオイルなどの液体を挙げることができる。これらは単独でも二種以上を併用することもできる。また、この滑剤と上記加圧ガスを併用することもできる。   Examples of the lubricant include water, alcohol, hydrocarbon-based, silicon-based, fluorine-based solvents, and liquids such as oil. These can be used alone or in combination of two or more. Moreover, this lubricant and the above pressurized gas can be used in combination.

本発明の射出成形方法の第1においては、溶融樹脂の射出に先立って、加圧ガスを予め金型キャビティに充填しておく。つまり、前記加圧ガスを用いたカウンタプレッシャ成形を行う。   In the first injection molding method of the present invention, prior to the injection of the molten resin, the pressurizing gas is filled in the mold cavity in advance. That is, counter pressure molding using the pressurized gas is performed.

金型キャビティ内の加圧ガスの圧力は、使用するガスの種類や樹脂によっても相違するが、1〜15MPaであることが好ましい。金型キャビティ内の加圧ガスの圧力が低過ぎると、射出時に金型キャビティ内を流動する溶融樹脂のフローフロントの移動速度が後述する滑り発生速度以上の速度となるために極めて高速で射出することが必要となり、設備的負担が大きくなる。また、ガス圧力が15MPaを超えると金型を開こうとする力が無視できなくなったり、金型キャビティのシールが難しくなるなどの問題が生じやすい。   The pressure of the pressurized gas in the mold cavity varies depending on the type of gas used and the resin, but is preferably 1 to 15 MPa. If the pressure of the pressurized gas in the mold cavity is too low, the moving speed of the flow front of the molten resin that flows in the mold cavity at the time of injection becomes higher than the slip generation speed described later, so that the injection is performed at a very high speed. It becomes necessary and the burden on facilities increases. In addition, when the gas pressure exceeds 15 MPa, the force for opening the mold cannot be ignored, and problems such as difficulty in sealing the mold cavity are likely to occur.

本発明の射出成形方法の第2においては、溶融樹脂の射出に先立って、滑剤を予め金型表面に塗布しておく。   In the second injection molding method of the present invention, a lubricant is previously applied to the mold surface prior to the injection of the molten resin.

上記滑剤の塗布量は、使用する滑剤の種類や樹脂によっても相違するが、金型表面が十分に濡れる程度の量であることが好ましい。塗布量が少な過ぎると、溶融樹脂の金型表面に対する滑りが得にくくなり、溶融樹脂のフローフロントの速度を後述する滑り発生速度以上の速度にしにくくなる。また、過剰の塗布量とすると、得られる成形品表面への滑剤の残留量が多くなる。   The amount of the lubricant applied varies depending on the type of lubricant and the resin used, but is preferably an amount sufficient to wet the mold surface. When the coating amount is too small, it becomes difficult to obtain the slip of the molten resin with respect to the mold surface, and it becomes difficult to make the flow front speed of the molten resin higher than the slip generation speed described later. Moreover, when it is set as an excessive application amount, the residual amount of the lubricant on the surface of the obtained molded product increases.

本発明においては、上記加圧ガスの充填または滑剤の塗布を行った後、溶融樹脂を金型キャビティに射出充填する。この時、金型キャビティ内を流動する溶融樹脂のフローフロントの移動速度が滑り発生速度以上の速度となる射出速度とする。この滑り発生速度とは、金型キャビティ内に流入した溶融樹脂と金型表面との界面に加圧ガスまたは滑剤が入り込むことで、溶融樹脂が金型表面に対して滑りながら流動する速度で、プラグフローを生じる速度である。   In the present invention, after filling the pressurized gas or applying the lubricant, the molten resin is injected and filled into the mold cavity. At this time, the injection speed is set such that the moving speed of the flow front of the molten resin flowing in the mold cavity is equal to or higher than the slip generation speed. The slip generation speed is a speed at which the molten resin flows while sliding against the mold surface by entering a pressurized gas or a lubricant into the interface between the molten resin flowing into the mold cavity and the mold surface. This is the speed at which plug flow occurs.

上記溶融樹脂のフローフロントの速度が滑り発生速度となる射出速度は、使用樹脂、金型キャビティ内のガス圧、滑剤の塗布量、金型の構造などによって相違するが、ある金型において、同じ加圧ガスの充填条件下または同じ滑剤の塗布条件下で、射出速度を変えて溶融樹脂を射出して金型内の流動長を測定したときに、流動長が急に延びる点として把握することができる。   The injection speed at which the flow front speed of the molten resin becomes the slip generation speed differs depending on the resin used, the gas pressure in the mold cavity, the amount of lubricant applied, the structure of the mold, etc. When the flow length in the mold is measured by injecting molten resin at different injection speeds under pressurized gas filling conditions or under the same lubricant application conditions, this should be understood as a point where the flow length suddenly increases. Can do.

予め金型キャビティに加圧ガスを充填した場合、溶融樹脂を射出充填中または射出充填完了直後に金型内の加圧ガスを金型外に放出し、溶融樹脂の充填を促すことが好ましい。また、上記のようにして溶融樹脂を射出充填した後は、樹脂を高い圧力下で冷却固化する通常の保圧方法を併用することができる。保圧方法としては、金型キャビティ内に溶融樹脂の補充圧力を加える樹脂保圧法、樹脂中や樹脂金型界面にガスなどの圧力流体を注入する圧力流体注入法、金型キャビティ体積を減少させる射出圧縮法などがあげられる。   When the mold cavity is preliminarily filled with the pressurized gas, it is preferable to release the pressurized gas in the mold to the outside of the mold during injection filling of the molten resin or immediately after completion of the injection filling to promote filling of the molten resin. Moreover, after injection-filling molten resin as mentioned above, the normal pressure-holding method of cooling and solidifying resin under high pressure can be used together. As a pressure holding method, a resin pressure holding method in which a molten resin replenishment pressure is applied to the mold cavity, a pressure fluid injection method in which a pressure fluid such as a gas is injected into the resin or the resin mold interface, and the mold cavity volume is reduced Examples include injection compression.

本発明では、射出する溶融状態の樹脂に二酸化炭素などの可塑剤を溶解させ、流動性を向上させておくこともできる。二酸化炭素を可塑剤として溶解させた溶融樹脂を射出する場合、射出充填時にフローフロントで発泡してしまわないよう、カウンタプレッシャを加えておくことが好ましい、本発明の加圧ガスを用いた方法は、カウンタプレッシャ成形でもあるため、同時に上記発泡の抑制を行うこともできる。また、滑剤を用いた方法の場合、同時に加圧ガスによる金型キャビティの加圧を行うことで、上記発泡の抑制を図ることができる。   In the present invention, a plasticizer such as carbon dioxide can be dissolved in the molten resin to be injected to improve fluidity. When injecting a molten resin in which carbon dioxide is dissolved as a plasticizer, it is preferable to add a counter pressure so as not to cause foaming at the flow front during injection filling, the method using the pressurized gas of the present invention Since it is also counter pressure molding, it is possible to suppress the foaming at the same time. In the case of a method using a lubricant, the foaming can be suppressed by simultaneously pressurizing the mold cavity with a pressurized gas.

本発明で良好に成形される成形品としては、光学機器部品、弱電機器、電子機器、事務機器などのハウジング、各種自動車部品、各種日用品、などの熱可塑性樹脂射出成形品を挙げることができる。特に好ましくは、薄肉で長い流動長を要求される部品であり、電気・電子機器、事務機器に使用されるコネクタ、ハウジング、電池パック、メモリパックなどである。ハンディパソコンの薄肉筐体などの用途では、成形が容易になり、成形品の品質が向上したり、製品デザインの自由度が増したりすることが期待できる。   Examples of molded articles that are favorably molded according to the present invention include thermoplastic resin injection molded articles such as housings for optical equipment parts, weak electrical equipment, electronic equipment, office equipment, various automobile parts, and various daily necessities. Particularly preferred are thin parts that require a long flow length, such as connectors, housings, battery packs, memory packs, etc. used in electrical / electronic equipment and office equipment. In applications such as thin-walled housings for handy personal computers, it can be expected that molding will be easier, the quality of molded products will be improved, and the degree of freedom in product design will be increased.

以下に実施例及び比較例を用いて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

まず、実施例および比較例で用いた材料および装置などについて説明する。   First, materials and devices used in Examples and Comparative Examples will be described.

射出成形に使用した樹脂は、液晶ポリマ(東レ製「シベラスL204G35H」)、ゴム強化ポリスチレン(PSジャパン製「PSJポリスチレン433」)、ガラス繊維強化ポリアミド樹脂(旭化成製「レオナ1402G」)、ポリプロピレン(日本ポリケム製「ノバテックBC8」)で、成形前はペレット状である。   Resin used for injection molding is liquid crystal polymer (“Siberus L204G35H” manufactured by Toray), rubber reinforced polystyrene (“PSJ polystyrene 433” manufactured by PS Japan), glass fiber reinforced polyamide resin (“Leona 1402G” manufactured by Asahi Kasei), polypropylene (Japan) Polychem "Novatec BC8") and before forming it is in the form of pellets.

予め金型キャビティに充填するガスとしては、純度99%以上の二酸化炭素の他、窒素を使用した。また滑剤としては、シリコン系離型剤(信越シリコーン製「KF96SP」)、防錆油(呉工業製「CRC3−36」)を使用した。   Nitrogen was used in addition to carbon dioxide having a purity of 99% or more as a gas previously filled in the mold cavity. Further, as a lubricant, a silicon release agent (“KF96SP” manufactured by Shin-Etsu Silicone) and a rust preventive oil (“CRC3-36” manufactured by Kure Industries) were used.

成形機は住友重機械工業製SG125M−HPを使用した。スクリュ径は32mmである。   SG125M-HP manufactured by Sumitomo Heavy Industries, Ltd. was used as the molding machine. The screw diameter is 32 mm.

金型としては、厚み0.2〜1.0mm、幅5mm、長さ400mmの試験部(金型キャビティ)を有する流動長測定金型を用いた。   As the mold, a flow length measuring mold having a test part (mold cavity) having a thickness of 0.2 to 1.0 mm, a width of 5 mm, and a length of 400 mm was used.

金型は、金型表面は鏡面とし、ノズルタッチ部直径3.5mm、根本部直径6mmで、長さ75mmのスプル、厚み3mm、幅4mm、長さ20mmのランナから、4mmの間で厚みを漸減させながら試験部につながっている構造とした。試験部のランナと反対の端部にはガス供給と開放のための直径1mmで金型外に通じる穴を設けてガス供給装置と接続し、試験部の外周にガスシールのためにOリングを設け、試験部を気密構造とした。   The mold has a mirror surface, the nozzle touch part diameter is 3.5 mm, the root part diameter is 6 mm, the sprue is 75 mm long, the thickness is 3 mm, the width is 4 mm, and the runner is 20 mm long. The structure is connected to the test section while gradually decreasing. At the end of the test section opposite the runner, a hole with a diameter of 1 mm for gas supply and release is connected to the gas supply device, and an O-ring is attached to the outer periphery of the test section for gas sealing. Provided, and the test section had an airtight structure.

ガス供給装置としては、液化二酸化炭素を充填したボンベを35℃で保温したものをガス供給源とし、このガス供給源から加温器を通り、減圧弁にて所定圧力に調圧された後、約40℃に保温された内容量100cm3のガス溜にガスを溜めることができるものを用いた。試験部へのガス供給は、ガス溜の下流にある供給用電磁弁を開け、同時に試験部内を外気に開放する開放用電磁弁を閉じることで行われ、樹脂充填中はガス溜と試験部はつながっており、樹脂充填が終了すると同時に、供給用電磁弁を閉じ、開放用電磁弁を開けることで、試験部内のガスを金型外に放出できるようにした。 As the gas supply device, a gas cylinder filled with liquefied carbon dioxide is kept at 35 ° C., and the gas supply source is passed through a heater and adjusted to a predetermined pressure by a pressure reducing valve. A gas reservoir capable of storing gas in a gas reservoir having an internal volume of 100 cm 3 and maintained at about 40 ° C. was used. The gas supply to the test unit is performed by opening the supply solenoid valve downstream of the gas reservoir and simultaneously closing the open solenoid valve that opens the inside of the test unit to the outside air. At the same time as the resin filling was completed, the supply solenoid valve was closed and the release solenoid valve was opened, so that the gas in the test part could be released out of the mold.

射出成形時のシリンダ設定温度は、液晶ポリマー(LCP)で310℃、ガラス繊維強化ポリアミド樹脂(PA−GF)で290℃、ゴム強化ポリスチレン(HIPS)およびポリプロピレン(PP)で240℃とした。   The cylinder set temperature during injection molding was 310 ° C. for liquid crystal polymer (LCP), 290 ° C. for glass fiber reinforced polyamide resin (PA-GF), and 240 ° C. for rubber reinforced polystyrene (HIPS) and polypropylene (PP).

実施例1
熱風乾燥機中で140℃で5時間乾燥した液晶ポリマーと、金型表面温度110℃で試験部厚み0.2mmの金型とを用い、金型に、二酸化炭素を8MPaで満たした後、樹脂充填時間0.026秒、シリンダ内樹脂圧200MPaで、溶融させた上記液晶ポリマーを充填した。その時の樹脂流動長は280mmであった。
Example 1
A liquid crystal polymer dried at 140 ° C. for 5 hours in a hot air dryer and a mold having a mold surface temperature of 110 ° C. and a thickness of a test portion of 0.2 mm were filled in the mold with carbon dioxide at 8 MPa. The melted liquid crystal polymer was filled at a filling time of 0.026 seconds and an in-cylinder resin pressure of 200 MPa. The resin flow length at that time was 280 mm.

比較例1
金型に二酸化炭素を充填しなかった点以外は実施例1と同様にして液晶ポリマーを射出充填した。その結果、樹脂流動長は43mmであった。
Comparative Example 1
A liquid crystal polymer was injection filled in the same manner as in Example 1 except that the mold was not filled with carbon dioxide. As a result, the resin flow length was 43 mm.

実施例2
二酸化炭素の充填に替えて、金型に窒素を8MPaで満たした点以外は実施例1と同様にして液晶ポリマーを射出充填した。その結果、樹脂流動長は250mmであった。
Example 2
Instead of filling with carbon dioxide, the liquid crystal polymer was injected and filled in the same manner as in Example 1 except that the mold was filled with nitrogen at 8 MPa. As a result, the resin flow length was 250 mm.

実施例3
二酸化炭素の充填に替えて、シリコン系離型剤を金型表面が十分に濡れる程度に塗布した点以外は実施例1と同様にして液晶ポリマーを射出充填した。その結果、樹脂流動長は180mmであった。
Example 3
Instead of filling with carbon dioxide, the liquid crystal polymer was injected and filled in the same manner as in Example 1 except that a silicon release agent was applied to such an extent that the mold surface was sufficiently wetted. As a result, the resin flow length was 180 mm.

実施例4
二酸化炭素の充填に替えて、防錆油を金型表面が十分に濡れる程度に塗布した点以外は実施例1と同様にして液晶ポリマーを射出充填した。その結果、樹脂流動長は200mmであった。
Example 4
Instead of filling with carbon dioxide, liquid crystal polymer was injected and filled in the same manner as in Example 1 except that rust preventive oil was applied to such an extent that the mold surface was sufficiently wetted. As a result, the resin flow length was 200 mm.

上記実施例1〜4および比較例1における樹脂流動長などをまとめて表1に示す。なお、表における改善率は、樹脂流動長の改善の度合いを示すもので、射出前のガスの圧入または金型表面への滑剤の塗布を行わなかった場合(表1では比較例1)の樹脂流動長を基準に何倍の樹脂流動長となっているかを示すものである。   The resin flow lengths in Examples 1 to 4 and Comparative Example 1 are collectively shown in Table 1. The improvement rate in the table indicates the degree of improvement in the resin flow length, and the resin in the case where the injection of gas before injection or the application of the lubricant to the mold surface was not performed (Comparative Example 1 in Table 1). This indicates how many times the resin flow length is based on the flow length.

Figure 2005125504
Figure 2005125504

実験例1および比較例2
ガラス繊維強化ポリアミド樹脂と、金型表面温度85℃で試験部厚み0.5mmの金型とを用い、金型に、二酸化炭素を8MPaで満たした後、樹脂充填時間を0.024〜0.28秒の範囲で変え、シリンダ内樹脂圧200MPaで、溶融させたガラス繊維強化ポリアミド樹脂を充填した(実験例1)。また、二酸化炭素を充填しなかった他は同様にして溶融ガラス繊維強化ポリアミド樹脂を射出充填した(比較例2)。それぞれの樹脂流動長を表2および図1に示す。なお、表における移動速度は、試験部内における樹脂のフローフロントの移動速度である。
Experimental Example 1 and Comparative Example 2
A glass fiber reinforced polyamide resin and a mold having a mold surface temperature of 85 ° C. and a test section thickness of 0.5 mm were used. After filling the mold with carbon dioxide at 8 MPa, the resin filling time was 0.024 to 0.00. The melted glass fiber reinforced polyamide resin was filled at a resin pressure in the cylinder of 200 MPa in a range of 28 seconds (Experimental Example 1). Further, a molten glass fiber reinforced polyamide resin was injected and filled in the same manner except that carbon dioxide was not filled (Comparative Example 2). Each resin flow length is shown in Table 2 and FIG. The moving speed in the table is the moving speed of the resin flow front in the test section.

表2および図1から分かるように、試験部の厚みが0.5mmの場合、樹脂充填時間が0.077秒以下になると改善の効果が現れ、特に樹脂充填時間が0.040秒以下となると改善の効果が顕著である。この場合、滑り発生速度は、樹脂充填時間が0.140秒と0.077秒の間に存在していると考えられる。   As can be seen from Table 2 and FIG. 1, when the thickness of the test part is 0.5 mm, an improvement effect appears when the resin filling time is 0.077 seconds or less, and particularly when the resin filling time is 0.040 seconds or less. The effect of improvement is remarkable. In this case, it is considered that the slip generation speed exists between the resin filling time of 0.140 seconds and 0.077 seconds.

ここで、射出成形機のスクリュが、充填時間−0.005秒(成形機動作応答時間の1/2)の間は一定速度で移動し、樹脂の圧縮性がないものと仮定したときのフローフロントの移動速度をスクリュの移動時間と樹脂流動長とから計算すると、滑り発生速度は約10m/秒程度と推測される。   Here, the flow when it is assumed that the screw of the injection molding machine moves at a constant speed during the filling time of -0.005 seconds (1/2 of the molding machine operation response time) and there is no resin compressibility. When the front moving speed is calculated from the screw moving time and the resin flow length, the slip generation speed is estimated to be about 10 m / sec.

Figure 2005125504
Figure 2005125504

実験例2および比較例3
試験部厚み1.0mmの金型を用い、樹脂充填時間を0.029〜0.082秒の範囲で変えた他は実験例1および比較例2と同様にして、樹脂流動長を測定した。それぞれの樹脂流動長を表3および図2に示す。
Experimental Example 2 and Comparative Example 3
The resin flow length was measured in the same manner as in Experimental Example 1 and Comparative Example 2 except that a mold having a thickness of 1.0 mm was used and the resin filling time was changed in the range of 0.029 to 0.082 seconds. Each resin flow length is shown in Table 3 and FIG.

表3および図2から分かるように、試験部の厚みが1.5mmの場合、樹脂充填時間が0.060秒以下になると改善の効果が現れる。この場合、滑り発生速度は、樹脂充填時間が0.082秒と0.060秒の間に存在しており、約10m/秒であると推測される。   As can be seen from Table 3 and FIG. 2, when the thickness of the test part is 1.5 mm, the improvement effect appears when the resin filling time is 0.060 seconds or less. In this case, the slip generation speed is estimated to be about 10 m / second, with the resin filling time existing between 0.082 seconds and 0.060 seconds.

Figure 2005125504
Figure 2005125504

実験例3および比較例4
ガラス繊維強化ポリアミド樹脂と、金型表面温度85℃で試験部厚み1.0mmの金型とを用い、金型に、大気圧の空気から8MPa二酸化炭素まで変えて満たした後、それぞれ樹脂充填時間をほぼ0.030秒の一定値とし、シリンダ内樹脂圧200MPaで、溶融させたガラス繊維強化ポリアミド樹脂を充填した。それぞれの樹脂流動長を表4および図3に示す。なお、試験部内を大気圧の空気とした場合(比較例4)のCO2圧力を0とする。
Experimental Example 3 and Comparative Example 4
Using a glass fiber reinforced polyamide resin and a mold having a mold surface temperature of 85 ° C. and a test section thickness of 1.0 mm, filling the mold by changing from atmospheric air to 8 MPa carbon dioxide, and then filling each resin Was set to a constant value of approximately 0.030 seconds, and the melted glass fiber reinforced polyamide resin was filled at a resin pressure in the cylinder of 200 MPa. Each resin flow length is shown in Table 4 and FIG. Note that the CO 2 pressure when the inside of the test section is atmospheric air (Comparative Example 4) is set to zero.

表4および図3から分かるように、滑り発生速度は試験部内の二酸化炭素圧力により変わり、本実験例3および比較例4のフローフロント移動速度の場合、6MPa以上の二酸化炭素圧力で滑りが発生していると考えられる。   As can be seen from Table 4 and FIG. 3, the slip generation speed varies depending on the carbon dioxide pressure in the test section, and in the case of the flow front moving speeds of this Experimental Example 3 and Comparative Example 4, slip occurs at a carbon dioxide pressure of 6 MPa or more. It is thought that.

Figure 2005125504
Figure 2005125504

実施例5および比較例5
ゴム強化ポリスチレンと、金型表面温度60℃で試験部厚み0.2mmの金型とを用い、金型に、二酸化炭素を8MPaで満たした後、樹脂充填時間0.026秒、シリンダ内樹脂圧200MPaで、溶融させたゴム強化ポリスチレンを充填した(実施例5)。樹脂流動長は90mmであった。また、二酸化炭素を充填しなかった他は同様にして溶融ゴム強化ポリスチレンを射出充填した(比較例5)。樹脂流動長は53mmであった。各結果を表5に示す
Example 5 and Comparative Example 5
Using rubber reinforced polystyrene and a mold having a mold surface temperature of 60 ° C. and a test part thickness of 0.2 mm, the mold was filled with carbon dioxide at 8 MPa, then the resin filling time was 0.026 seconds, and the resin pressure in the cylinder was Filled with molten rubber reinforced polystyrene at 200 MPa (Example 5). The resin flow length was 90 mm. Further, a molten rubber reinforced polystyrene was injected and filled in the same manner except that carbon dioxide was not filled (Comparative Example 5). The resin flow length was 53 mm. Each result is shown in Table 5.

Figure 2005125504
Figure 2005125504

比較例6および7
ポリプロピレンと、金型表面温度60℃で試験部厚み0.2mmの金型とを用い、金型に、二酸化炭素を8MPaで満たした後、樹脂充填時間0.026秒、シリンダ内樹脂圧200MPaで、溶融させたポリプロピレンを充填した(比較例6)。樹脂流動長は42mmであった。また、二酸化炭素を充填しなかった他は同様にしてポリプロピレンを射出充填した(比較例7)。樹脂流動長は47mmであった。各結果を表6に示す。
Comparative Examples 6 and 7
Using polypropylene and a mold having a mold surface temperature of 60 ° C. and a test section thickness of 0.2 mm, the mold was filled with carbon dioxide at 8 MPa, then the resin filling time was 0.026 seconds, and the resin pressure in the cylinder was 200 MPa. And filled with molten polypropylene (Comparative Example 6). The resin flow length was 42 mm. Further, polypropylene was injected and filled in the same manner except that carbon dioxide was not filled (Comparative Example 7). The resin flow length was 47 mm. Table 6 shows the results.

いずれの場合も射出されたポリプロピレンと金型の間に滑りは発生していないと考えられる。   In any case, it is considered that no slip occurred between the injected polypropylene and the mold.

Figure 2005125504
Figure 2005125504

実施例6および比較例8
二酸化炭素の充填を行わずに、金型表面に防錆油を塗布した後、射出時間を0.033〜2.4秒の範囲で変えた以外は比較例6と同様にしてポリプロピレンを射出充填した。そのときの樹脂流動長を表7に示す。
Example 6 and Comparative Example 8
Without filling with carbon dioxide, after applying rust preventive oil to the mold surface, polypropylene was injected and filled in the same manner as in Comparative Example 6 except that the injection time was changed in the range of 0.033 to 2.4 seconds. did. Table 7 shows the resin flow length at that time.

Figure 2005125504
Figure 2005125504

実験例1と比較例2の結果を示すグラフである。6 is a graph showing the results of Experimental Example 1 and Comparative Example 2. 実験例2と比較例3の結果を示すグラフである。6 is a graph showing the results of Experimental Example 2 and Comparative Example 3. 実験例3と比較例4の結果を示すグラフである。6 is a graph showing the results of Experimental Example 3 and Comparative Example 4.

Claims (4)

溶融した熱可塑性樹脂を金型キャビティへ射出充填する射出成形方法において、加圧ガスを予め金型キャビティに充填し、次いで溶融した熱可塑性樹脂を、フローフロントの移動速度が滑り発生速度以上の速度となるように射出することを特徴とする射出成形方法。 In an injection molding method in which molten thermoplastic resin is injected and filled into a mold cavity, pressurized gas is prefilled into the mold cavity, and then the flow rate of the flow front of the molten thermoplastic resin exceeds the slip generation speed. An injection molding method characterized by injecting so that 加圧ガスが二酸化炭素であることを特徴とする請求項1に記載の射出成形方法。 The injection molding method according to claim 1, wherein the pressurized gas is carbon dioxide. 溶融した熱可塑性樹脂を金型キャビティへ射出充填する射出成形方法において、滑剤を予め金型キャビティ内面に塗布し、次いで溶融した熱可塑性樹脂を、フローフロントの移動速度が滑り発生速度以上の速度となるように射出することを特徴とする射出成形方法。 In an injection molding method in which a molten thermoplastic resin is injected and filled into a mold cavity, a lubricant is applied in advance to the inner surface of the mold cavity, and then the molten thermoplastic resin has a moving speed of the flow front higher than the slip generation speed. An injection molding method characterized in that the injection is performed. フローフロントの移動速度が10m/秒以上であることを特徴とする請求項1〜3いずれか1項に記載の射出成型方法。 The injection molding method according to any one of claims 1 to 3, wherein a moving speed of the flow front is 10 m / sec or more.
JP2003360386A 2003-10-21 2003-10-21 Injection molding method Withdrawn JP2005125504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360386A JP2005125504A (en) 2003-10-21 2003-10-21 Injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360386A JP2005125504A (en) 2003-10-21 2003-10-21 Injection molding method

Publications (1)

Publication Number Publication Date
JP2005125504A true JP2005125504A (en) 2005-05-19

Family

ID=34640706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360386A Withdrawn JP2005125504A (en) 2003-10-21 2003-10-21 Injection molding method

Country Status (1)

Country Link
JP (1) JP2005125504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040023A (en) * 2007-08-06 2009-02-26 Fukuhara Co Ltd Method and apparatus for feeding nitrogen gas to injection molding machine
JP2010052235A (en) * 2008-08-27 2010-03-11 Asahi Kasei Chemicals Corp Method of injection-molding thin-walled molded object having high appearance
JP2021030512A (en) * 2019-08-21 2021-03-01 トヨタ自動車株式会社 Injection foam molding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040023A (en) * 2007-08-06 2009-02-26 Fukuhara Co Ltd Method and apparatus for feeding nitrogen gas to injection molding machine
JP2010052235A (en) * 2008-08-27 2010-03-11 Asahi Kasei Chemicals Corp Method of injection-molding thin-walled molded object having high appearance
JP2021030512A (en) * 2019-08-21 2021-03-01 トヨタ自動車株式会社 Injection foam molding method
JP7147716B2 (en) 2019-08-21 2022-10-05 トヨタ自動車株式会社 Injection foam molding method

Similar Documents

Publication Publication Date Title
JP3218397B2 (en) Injection molding of thermoplastic resin
JP4758732B2 (en) Thermoplastic injection molding method using supercritical fluid
JP3349070B2 (en) Molding method of thermoplastic resin
Chen et al. Establishment of gas counter pressure technology and its application to improve the surface quality of microcellular injection molded parts
US6884380B2 (en) Method of injection molding of thermoplastic resin
EP0826477B1 (en) Method for molding thermoplastic resin
JP2005125504A (en) Injection molding method
JP5075506B2 (en) Manufacturing method of foam molded article
Xu et al. Advanced structural foam molding using a continuous polymer/gas melt flow stream
JP3096904B2 (en) Injection molding of amorphous thermoplastic resin
Cabrera et al. Pressurized water pellets and supercritical nitrogen in injection molding
JP3875587B2 (en) Gas-assisted injection molding method of thermoplastic resin
JP2001062862A (en) Method for injection molding amorphous thermoplastic
JP2001341152A (en) Injection molding machine
JP4902831B2 (en) Injection molding of polymer alloy
JP3875586B2 (en) Molding method of thermoplastic resin
JP2002192549A (en) Expanded injection moldings
JP2001030283A (en) Method for injection molding aliphatic polyketone
JPH11245257A (en) Injection molding of thermoplastic resin
JP2001191364A (en) Method for molding silicone rubber composite molded product
JP5771058B2 (en) Molding method of resin
JP2002036280A (en) Method for injection-molding irregular sectional molding
JP2004034381A (en) Foaming injection-molding method for uneven thickness molded article
Patel The effects of process conditions on the properties of injection molded liquid silicone rubber
JP2741648B2 (en) Polyacetal resin molded product

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109