JP2002309006A - Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product - Google Patents

Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product

Info

Publication number
JP2002309006A
JP2002309006A JP2001116852A JP2001116852A JP2002309006A JP 2002309006 A JP2002309006 A JP 2002309006A JP 2001116852 A JP2001116852 A JP 2001116852A JP 2001116852 A JP2001116852 A JP 2001116852A JP 2002309006 A JP2002309006 A JP 2002309006A
Authority
JP
Japan
Prior art keywords
resin
carbon dioxide
rubber
reinforced styrene
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001116852A
Other languages
Japanese (ja)
Other versions
JP2002309006A5 (en
Inventor
Hisao Ando
久雄 安東
Yoshimasa Iwabuchi
義昌 岩渕
Kazumi Nomura
一己 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Techno Corp
Original Assignee
Asahi Kasei Corp
Asahi Techno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Asahi Techno Corp filed Critical Asahi Kasei Corp
Priority to JP2001116852A priority Critical patent/JP2002309006A/en
Publication of JP2002309006A publication Critical patent/JP2002309006A/en
Publication of JP2002309006A5 publication Critical patent/JP2002309006A5/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/174Applying a pressurised fluid to the outer surface of the injected material inside the mould cavity, e.g. for preventing shrinkage marks

Abstract

PROBLEM TO BE SOLVED: To provide a rubber-reinforced styrene resin injection molded product having good surface smoothness and surface electroconductivity, comprising carbon fibers and suitable for a mobile electronic equipment housing. SOLUTION: This injection molded product is obtained by dissolving carbon dioxide in a rubber-reinforced styrene resin containing 2-30 wt.% of the carbon fibers or an alloy containing the rubber-reinforced styrene resin, reducing the solidifying temperature and injection filling the resultant molten resin into a metal mold cavity previously pressurized with carbon dioxide gas. The injection molded product has <100 Ω/square value of surface resistivity and >=90% surface glossiness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭素繊維強化ゴム強
化スチレン系樹脂射出成形品であり、特に携帯電話等の
モバイル電子機器筐体に良好に使用できる射出成形品に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced rubber reinforced styrene resin injection molded article, and more particularly to an injection molded article which can be favorably used for a mobile electronic device housing such as a mobile phone.

【0002】[0002]

【従来の技術】モバイルパソコン、携帯電話等のモバイ
ル電子機器筐体等は近年多量に使用され、その性能を向
上させ、生産コストを引き下げることが要求されてい
る。モバイル電子機器の筐体等に要求されることは、薄
肉、軽量で機械的な物性に優れていることは当然である
が、近年これに加えて更に課題として挙げられているこ
とは、表面導電性、電磁波遮蔽性、易塗装性等である。
2. Description of the Related Art In recent years, mobile electronic devices such as mobile personal computers and mobile phones have been used in large quantities, and there is a demand for improving their performance and reducing production costs. Of course, what is required for the housing and the like of mobile electronic devices is that they are thin, lightweight, and have excellent mechanical properties. Properties, electromagnetic wave shielding properties, easy paintability, etc.

【0003】薄肉、軽量で機械的な物性に優れ、表面導
電性、電磁波遮蔽性を有し、表面が平滑で塗装性に優れ
たモバイル電子機器筐体の射出成形品として、近年炭素
繊維強化樹脂射出成形品が多く使用されている。ABS
樹脂等のゴム強化スチレン系樹脂の有する耐衝撃性、剛
性、耐熱性、耐薬品性等の性能とその経済的な価格か
ら、ゴム強化スチレン系樹脂或いはゴム強化スチレン系
樹脂を主体とした各種アロイが樹脂相として選択されて
いる。これに更に剛性等の機械的性質を向上させ、更に
表面導電性、電磁波遮蔽性を付与するため炭素繊維を配
合した炭素繊維強化ゴム強化スチレン系樹脂射出成形品
が使用されている。
In recent years, carbon fiber reinforced resin has been used as an injection molded product for a mobile electronic device housing which is thin, lightweight, has excellent mechanical properties, has surface conductivity and electromagnetic wave shielding properties, has a smooth surface, and has excellent paintability. Injection molded products are often used. ABS
Various alloys mainly composed of rubber-reinforced styrene resin or rubber-reinforced styrene resin based on the impact resistance, rigidity, heat resistance, chemical resistance, etc. of rubber reinforced styrene resin such as resin and its economical price. Is selected as the resin phase. In addition, a carbon fiber reinforced rubber reinforced styrene resin injection molded article containing carbon fibers for further improving mechanical properties such as rigidity and further imparting surface conductivity and electromagnetic wave shielding properties is used.

【0004】炭素繊維強化ゴム強化スチレン系樹脂射出
成形品をモバイル電子機器筐体に使用する場合には、射
出成形後に塗装等の後加工をして使用されるため、射出
成形品の表面は極力平滑で塗装性に優れていることが要
求されている。しかしながら、樹脂に機械的性質を向上
させうる量の炭素繊維を配合すると一般に成形品外観が
悪くなり、それをモバイル電子機器筐体として使用する
には複数回の塗装が必要になる等の後加工に多大の費用
がかかることが課題とされている。
[0004] When a carbon fiber reinforced rubber reinforced styrene resin injection molded product is used for the housing of a mobile electronic device, the surface of the injection molded product is used as much as possible after painting or the like after injection molding. It is required to be smooth and excellent in paintability. However, if carbon fiber is added to the resin in an amount that can improve the mechanical properties, the appearance of the molded product generally deteriorates, and post-processing such as multiple coatings is required to use it as a housing for mobile electronic devices. The problem is that it is very expensive.

【0005】金型温度を高くして射出成形すれば、型表
面転写性は良くなるが、生産性が低下し、現実的ではな
い。生産性低下を極力小さくし、射出成形品外観を良く
する手段もいくつか紹介されている。例えば次の型表面
転写性改良の方法等が紹介されている。 1. 金型に熱媒と冷媒を交互に流して金型表面の加
熱、冷却を繰り返す方法(Plastic Techn
ology,VOL.34(June),150(19
88)等) 2. 成形直前に高周波誘導加熱で金型表面を選択的に
加熱する方法(USP4439492等) 3. 金型表面に絶縁層と導電層を設け、導電層に通電
して加熱する方法(Polym.Eng.Sci.,V
ol.34(11),894(1994)等) 4. 金型表面を輻射加熱する方法(合成樹脂,Vo
l.42(1),48(1996)等) 5、 金型表面を断熱層で被覆し、成形樹脂自身の熱で
金型表面を加熱しつつ成形する断熱層被覆法(USP5
362226,WO97/04938等)
[0005] When injection molding is carried out at a high mold temperature, the mold surface transferability is improved, but the productivity is reduced, which is not practical. Several methods for minimizing the decrease in productivity and improving the appearance of injection molded products have been introduced. For example, the following method for improving the mold surface transferability is introduced. 1. A method of repeating heating and cooling of the mold surface by alternately flowing a heat medium and a coolant through the mold (Plastic Techn)
logic, VOL. 34 (June), 150 (19
88) etc.) 2. 2. A method of selectively heating the mold surface by high frequency induction heating immediately before molding (US Pat. No. 4,439,492). A method in which an insulating layer and a conductive layer are provided on a mold surface, and the conductive layer is energized and heated (Polym. Eng. Sci., V
ol. 34 (11), 894 (1994), etc.) 4. Radiation heating of mold surface (synthetic resin, Vo
l. 42 (1), 48 (1996) etc.) 5. A heat insulating layer coating method (USP5) in which a mold surface is covered with a heat insulating layer and the mold surface is molded while heating the mold surface with the heat of the molding resin itself.
362226, WO97 / 04938, etc.)

【0006】B.H.Kimの報告(Polym.Pl
ast.Technol.Eng.,Vol.25
(1),73 (1986))では、成形直前に電気等
の外部エネルギーで金型表面を加熱する上記の1、2、
3、4の方法を、ActiveControl法、それ
に対して、外部エネルギーを加えず、成形樹脂自身の熱
で金型表面を加熱する5の方法をPassive Co
ntrol法と称している。Active Contr
ol法も、Passive Control法もいずれ
も射出成形時に金型表面を加熱しつつ成形する方法であ
る。即ち、射出された溶融樹脂が金型壁面に押し付けら
れる時に金型表面を該樹脂の固化温度付近或いはそれ以
上に加熱しておくことにより型表面転写性を良くする成
形法である。単に金型温度を高く設定して成形する方法
も考え方は同様である。
B. H. Kim's report (Polym. Pl.
ast. Technol. Eng. , Vol. 25
In (1), 73 (1986)), the mold surface is heated by external energy such as electricity just before molding, as described in the above 1, 2, 3
The methods 3 and 4 are the Active Control method, while the method 5 which heats the mold surface by the heat of the molding resin itself without applying external energy is the passive control method.
This is called the control method. Active Contr
Both the ol method and the passive control method are methods of molding while heating the mold surface during injection molding. That is, this is a molding method in which the mold surface is heated to a temperature near or above the solidification temperature of the resin when the injected molten resin is pressed against the mold wall surface, thereby improving the mold surface transferability. The idea is the same for a method of simply forming a mold at a high mold temperature.

【0007】[0007]

【発明が解決しようとする課題】上記したように、炭素
繊維強化ゴム強化スチレン系樹脂を一般に使用される上
記の型表面転写性向上技術を用いて射出成形すると、型
表面転写性は良くなり、表面光沢度は向上するが、その
一方で表面電気抵抗値が大きくなり、この点で炭素繊維
配合効果が低減される。
As described above, when a carbon fiber reinforced rubber-reinforced styrene resin is injection-molded by using the above-mentioned commonly used mold surface transfer property improving technique, the mold surface transfer property is improved. Although the surface glossiness is improved, on the other hand, the surface electric resistance value is increased, and in this respect, the carbon fiber blending effect is reduced.

【0008】本発明の課題は、炭素繊維強化ゴム強化ス
チレン系樹脂射出成形品の射出成形において生産性を大
きく損なうことなく、特にモバイル電子機器筐体として
の好ましい各種物性、型表面転写性、表面導電性等を満
たした射出成形品を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide various preferable physical properties, mold surface transferability, and surface properties particularly for a housing of a mobile electronic device without significantly impairing productivity in injection molding of a carbon fiber reinforced rubber reinforced styrene resin injection molded article. An object of the present invention is to provide an injection molded product satisfying conductivity or the like.

【0009】[0009]

【課題を解決するための手段】即ち、本発明は以下の各
項からなる。
That is, the present invention comprises the following items.

【0010】(1)炭素繊維を2〜30重量%含有する
熱可塑性樹脂射出成形品であり、樹脂相はゴム強化スチ
レン系樹脂或いはゴム強化スチレン系樹脂を含むアロイ
からなり、該成形品の表面電気抵抗値が100Ω/□未
満で、且つ表面光沢度が90%以上であることを特徴と
する炭素繊維強化ゴム強化スチレン系樹脂射出成形品。
(1) A thermoplastic resin injection-molded article containing 2 to 30% by weight of carbon fiber, wherein the resin phase is made of a rubber-reinforced styrene-based resin or an alloy containing a rubber-reinforced styrene-based resin. A carbon fiber reinforced rubber reinforced styrene resin injection molded article having an electric resistance value of less than 100 Ω / □ and a surface glossiness of 90% or more.

【0011】(2)上記(1)において、樹脂相が、ゴ
ム強化スチレン系樹脂、ゴム強化スチレン系樹脂/ポリ
カーボネート系アロイ、ゴム強化スチレン系樹脂/ポリ
フェニレンエーテル系アロイ、ゴム強化スチレン系樹脂
/ポリブチレンテレフタレート系アロイの中から選択さ
れる射出成形品。
(2) In the above (1), the resin phase is a rubber reinforced styrene resin, a rubber reinforced styrene resin / polycarbonate alloy, a rubber reinforced styrene resin / polyphenylene ether alloy, a rubber reinforced styrene resin / poly Injection molded products selected from butylene terephthalate alloys.

【0012】(3)上記(1)または(2)において、
二酸化炭素を充填した金型キャビティに、溶融した熱可
塑性樹脂を充填する射出成形法で成形した射出成形品。
(3) In the above (1) or (2),
An injection-molded product formed by injection molding, in which a mold cavity filled with carbon dioxide is filled with a molten thermoplastic resin.

【0013】(4)上記(3)において、二酸化炭素を
上記熱可塑性樹脂の固化温度で、該熱可塑性樹脂に0.
1重量%以上溶解する圧力で金型キャビティに存在さ
せ、次いで溶融した熱可塑性樹脂を充填する射出成形法
で成形した射出成形品。
(4) In the above (3), carbon dioxide is added to the thermoplastic resin at a solidification temperature of the thermoplastic resin.
An injection-molded article formed by an injection molding method in which the resin is present in a mold cavity at a pressure at which 1% by weight or more is dissolved, and then filled with a molten thermoplastic resin.

【0014】(5)上記(3)において、0.2重量%
以上の二酸化炭素を高圧下で溶解させた溶融状態の熱可
塑性樹脂を、流動樹脂のフローフロントで発泡が起きな
い圧力以上の二酸化炭素ガス体で予め加圧した金型キャ
ビティに充填する射出成形法で成形した射出成形品。
(5) In the above (3), 0.2% by weight
Injection molding method in which a molten thermoplastic resin in which the above-mentioned carbon dioxide is dissolved under high pressure is filled in a mold cavity pre-pressurized with a carbon dioxide gas body having a pressure of not less than a pressure at which foaming does not occur at the flow front of the flowing resin. Injection molded product molded with.

【0015】[0015]

【発明の実施の形態】本発明者等は、炭素繊維強化ゴム
強化スチレン系樹脂射出成形品において、型表面転写性
を良くし、表面光沢度を向上させ、且つ表面導電性の低
下が少ない成形品の成形方法について検討した結果、本
発明に至った。即ち、一般に使用される上記の型表面転
写性向上技術を用いた射出成形法ではなく、金型キャビ
ティへの樹脂射出工程中に、金型に接する樹脂表面の固
化温度を低下させつつ成形する熱可塑性樹脂の成形法を
用いると、型表面転写性と表面導電性を両立できる良好
な射出成形品が得られることを発見した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have found that a carbon fiber-reinforced rubber-reinforced styrene-based resin injection molded article has improved mold surface transferability, improved surface glossiness, and reduced surface conductivity. As a result of studying the molding method of the product, the present invention was reached. That is, instead of the injection molding method using the above-described generally used mold surface transfer property improving technology, during the step of injecting the resin into the mold cavity, the heat is formed while lowering the solidification temperature of the resin surface in contact with the mold. It has been found that using a molding method of a plastic resin, a good injection-molded product can be obtained that can achieve both mold surface transferability and surface conductivity.

【0016】本発明に関連する公知文献として、特開平
10−128783号公報に、金型キャビティへの樹脂
射出工程中に、金型に接する樹脂表面の固化温度を低下
させつつ成形する成形法についての記載がある。しか
し、この公知文献には本発明が主張しようとしている炭
素繊維強化ゴム強化スチレン系樹脂の型表面転写性と表
面導電性の両立等に係わることについての記載はない。
As a publicly known document related to the present invention, Japanese Patent Application Laid-Open No. Hei 10-128873 discloses a molding method in which during the step of injecting a resin into a mold cavity, the molding is performed while lowering the solidification temperature of the resin surface in contact with the mold. There is a description. However, there is no description in this known document that the present invention is concerned with compatibility between the mold surface transferability and the surface conductivity of the carbon fiber reinforced rubber-reinforced styrene resin.

【0017】以下本発明を詳しく説明する。Hereinafter, the present invention will be described in detail.

【0018】本発明の樹脂相はゴム強化スチレン系樹脂
或いはゴム強化スチレン系樹脂を含むアロイからなり、
好ましくはゴム強化スチレン系樹脂、ゴム強化スチレン
系樹脂/ポリカーボネート系アロイ、ゴム強化スチレン
系樹脂/ポリフェニレンエーテル系アロイ、ゴム強化ス
チレン系樹脂/ポリブチレンテレフタレート系アロイ等
の中から選択される。
The resin phase of the present invention comprises a rubber-reinforced styrene resin or an alloy containing a rubber-reinforced styrene resin,
Preferably, it is selected from rubber reinforced styrene resin, rubber reinforced styrene resin / polycarbonate alloy, rubber reinforced styrene resin / polyphenylene ether alloy, rubber reinforced styrene resin / polybutylene terephthalate alloy, and the like.

【0019】本発明に述べるゴム強化スチレン系樹脂と
はゴム状重合体に芳香族ビニル単量体及び不飽和ニトリ
ル単量体を含む単量体混合物をグラフト重合させて得ら
れるグラフト重合体、または該グラフト重合体と芳香族
ビニル単量体及び不飽和ニトリル単量体を含む単量体混
合物を重合させて得られるビニル共重合体との混合物か
らなり、且つビニル化合物単位に対する不飽和ニトリル
化合物単位の割合が15〜45重量%である熱可塑性樹
脂組成物である。
The rubber-reinforced styrenic resin described in the present invention is a graft polymer obtained by graft-polymerizing a rubber-like polymer with a monomer mixture containing an aromatic vinyl monomer and an unsaturated nitrile monomer, or A mixture of the graft polymer and a vinyl copolymer obtained by polymerizing a monomer mixture containing an aromatic vinyl monomer and an unsaturated nitrile monomer, and an unsaturated nitrile compound unit based on a vinyl compound unit. Is 15 to 45% by weight.

【0020】ゴム強化スチレン系樹脂はゴム状重合体に
芳香族ビニル単量体及び不飽和ニトリル単量体を含む単
量体混合物をグラフト重合させて得られるグラフト重合
体のみからなる場合と、該グラフト重合体と芳香族ビニ
ル単量体及び不飽和ニトリル単量体を含む単量体混合物
を共重合させて得られる重合体との混合物からなる場合
とがある。芳香族ビニル単量体及び不飽和ニトリル単量
体を含む単量体を共重合させて得られるビニル共重合体
は、グラフト重合体を製造する過程で成形したもので
も、グラフト重合体の製造とは別の過程で製造したもの
であってもよい。
The rubber-reinforced styrenic resin comprises only a graft polymer obtained by graft-polymerizing a monomer mixture containing an aromatic vinyl monomer and an unsaturated nitrile monomer onto a rubber-like polymer. It may consist of a mixture of a graft polymer and a polymer obtained by copolymerizing a monomer mixture containing an aromatic vinyl monomer and an unsaturated nitrile monomer. A vinyl copolymer obtained by copolymerizing a monomer containing an aromatic vinyl monomer and an unsaturated nitrile monomer can be used in the production of a graft polymer, even when molded in the process of producing a graft polymer. May be manufactured in another process.

【0021】グラフト重合体におけるゴム状重合体とし
ては、芳香族ビニル単量体及び不飽和ニトリル単量体が
グラフト重合可能であり、ガラス転移温度が0℃以下の
ゴム状重合体であれば用いることができる。具体的には
ポリブタジエン、スチレン−ブタジエン共重合ゴム、ア
クリロニトリル−ブタジエン共重合ゴム等のジエン系ゴ
ム、ポリアクリル酸ブチル等のアクリル系ゴム、ポリイ
ソプレン、ポリクロロプレン、エチレン−プロピレンゴ
ム、エチレン−プロピレン−非共役ジエン三元共重合ゴ
ム、スチレン−ブタジエンブロック共重合ゴム、スチレ
ン−イソプレンブロック共重合ゴム、及びそれらの水素
添加物等を使用することができる。これらの重合体の中
で、好ましくは、ポリブタジエン、スチレン−ブタジエ
ン共重合ゴム、アクリロニトリル−ブタジエン共重合ゴ
ム、ポリアクリル酸ブチル等が挙げられる。
As the rubbery polymer in the graft polymer, an aromatic vinyl monomer and an unsaturated nitrile monomer can be graft-polymerized, and any rubbery polymer having a glass transition temperature of 0 ° C. or lower can be used. be able to. Specifically, polybutadiene, styrene-butadiene copolymer rubber, diene rubber such as acrylonitrile-butadiene copolymer rubber, acrylic rubber such as polybutyl acrylate, polyisoprene, polychloroprene, ethylene-propylene rubber, ethylene-propylene- Non-conjugated diene terpolymer rubber, styrene-butadiene block copolymer rubber, styrene-isoprene block copolymer rubber, hydrogenated products thereof, and the like can be used. Among these polymers, preferred are polybutadiene, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, polybutyl acrylate, and the like.

【0022】芳香族ビニル単量体としては、スチレン、
α−メチルスチレン、p−メチルスチレン、ビニルトル
エン、クロルスチレン等が挙げられる。好ましくは、ス
チレンである。不飽和ニトリル単量体としては、アクリ
ロニトリル、メタクリロニトリル等が挙げられる。好ま
しくは、アクリロニトリルである。芳香族ビニル単量体
及び不飽和ニトリル単量体と共重合可能な単量体として
は、メチルメタクリレート、メチルアクリレート、ブチ
ルアクリレート、エチルアクリレートなどのアルキル
(メタ)アクリレート類、アクリル酸、メタクリル酸な
どの(メタ)アクリル酸類等が挙げられる。
As the aromatic vinyl monomer, styrene,
α-methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene and the like. Preferably, it is styrene. Examples of the unsaturated nitrile monomer include acrylonitrile and methacrylonitrile. Preferably, it is acrylonitrile. Examples of monomers copolymerizable with an aromatic vinyl monomer and an unsaturated nitrile monomer include alkyl (meth) acrylates such as methyl methacrylate, methyl acrylate, butyl acrylate, and ethyl acrylate, acrylic acid, and methacrylic acid. (Meth) acrylic acids and the like.

【0023】ゴム強化スチレン系樹脂中のゴム状重合体
の割合は、1〜60重量%の範囲で用いられるが、必要
とする機械的強度、剛性、耐熱性に応じて決められる。
好ましくは、5〜50重量%であり、より好ましくは1
0〜30重量%である。
The proportion of the rubbery polymer in the rubber-reinforced styrene resin is used in the range of 1 to 60% by weight, and is determined according to the required mechanical strength, rigidity and heat resistance.
Preferably, it is 5 to 50% by weight, more preferably 1 to 50% by weight.
0 to 30% by weight.

【0024】ゴム強化スチレン系熱可塑性樹脂の具体例
としては、スチレン−ブタジエン共重合体(HIP
S)、アクリロニトリル−スチレン−ブタジエン共重合
体(ABS樹脂)、(メタ)アクリル酸メチル−アクリ
ロニトリル−スチレン−ブタジエン共重合体(MABS
樹脂)等がある。
Specific examples of the rubber-reinforced styrene-based thermoplastic resin include a styrene-butadiene copolymer (HIP
S), acrylonitrile-styrene-butadiene copolymer (ABS resin), methyl (meth) acrylate-acrylonitrile-styrene-butadiene copolymer (MABS)
Resin).

【0025】特に、アクリロニトリルを20〜40重量
%含有し、且つブタジエンゴムを30〜50重量%含有
するABS樹脂、ブタジエンゴムを10〜40重量%含
有するMABS樹脂が好ましい。
In particular, an ABS resin containing 20 to 40% by weight of acrylonitrile and 30 to 50% by weight of butadiene rubber, and a MABS resin containing 10 to 40% by weight of butadiene rubber are preferable.

【0026】本発明に述べるゴム強化スチレン系樹脂を
含むアロイとは、ゴム強化スチレン系樹脂を10重量%
以上含有するアロイであり、好ましくは15重量%以上
含有するアロイであり、ゴム強化スチレン系樹脂/ポリ
カーボネート系アロイ、ゴム強化スチレン系樹脂/ポリ
フェニレンエーテル系アロイ、ゴム強化スチレン系樹脂
/ポリブチレンテレフタレート系アロイ等が好ましい。
ABS樹脂/ポリカーボネート系アロイは、双方の相性
が比較的良いポリマーアロイであり、特に良好に使用で
きる。ここに述べるポリカーボネートとは、ポリカーボ
ネート及び/またはコポリエステルポリカーボネートで
ある。本発明において使用されるポリカーボネートは、
公知のホスゲン法または溶融法等により作られた芳香族
ポリカーボネートである(例えば特開昭63−2153
67号公報及び特開平2−124934号公報参照)。
The alloy containing a rubber-reinforced styrene resin described in the present invention means that the rubber-reinforced styrene resin is 10% by weight.
An alloy containing at least 15% by weight or more, preferably a rubber-reinforced styrene-based resin / polycarbonate-based alloy, a rubber-reinforced styrene-based resin / polyphenylene ether-based alloy, a rubber-reinforced styrene-based resin / polybutylene terephthalate-based alloy Alloys and the like are preferred.
The ABS resin / polycarbonate alloy is a polymer alloy having a relatively good compatibility between both, and can be used particularly favorably. The polycarbonates mentioned here are polycarbonates and / or copolyester polycarbonates. Polycarbonate used in the present invention,
An aromatic polycarbonate produced by a known phosgene method or a melting method (for example, JP-A-63-2153).
No. 67 and JP-A-2-124934).

【0027】異なる高分子間のブレンドは、分子レベル
まで混じり合う相溶系の組み合わせは少なく、多くは非
相溶系である。非相溶系ポリマーアロイでは、異種ポリ
マーの相溶性を改善するため、相溶化剤の利用が広く使
用されている。高分子相溶化剤としては、ランダム共重
合体、交互共重合体、ブロック共重合体、グラフト共重
合体等がある。ポリマーAとポリマーBの相溶化剤とし
て一般に使用されているのは、A−B型共重合体、A−
C型共重合体(共重合体の片方のみブレンド成分と同
種)、C−D型共重合体(ブレンド成分ポリマーと異な
る成分の共重合体)、E型(ランダム共重合体)の4種
類がある。本発明においてもこれらの相溶化剤を配合し
たアロイは良好に使用できる。
In the blend between different polymers, there are few combinations of compatible systems which are mixed up to the molecular level, and many are incompatible systems. In the case of incompatible polymer alloys, use of a compatibilizer is widely used in order to improve the compatibility of different polymers. Examples of the polymer compatibilizer include a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer. Commonly used compatibilizers for polymer A and polymer B are AB type copolymers and A-type copolymers.
There are four types: C-type copolymer (only one of the copolymers is the same as the blend component), CD-type copolymer (a copolymer of a component different from the blend component polymer), and E-type (random copolymer). is there. In the present invention, alloys containing these compatibilizers can be used favorably.

【0028】本発明に述べる炭素繊維とは、ISO47
2補遺5 1996に定義されている有機物を原料プリ
カーサーとし、熱処理によって得られた90重量%以上
の炭素からなる繊維である。原料的分類としてPAN
(ポリアクリロニトリル)系炭素繊維、ピッチ系炭素繊
維、レーヨン系炭素繊維が使用できるがPAN系炭素繊
維が最も好ましい。炭素繊維にニッケル、銀等をメッキ
した繊維も良好に使用できる。
The carbon fiber described in the present invention is ISO 47
2 Supplement 5 A fiber comprising 90% by weight or more of carbon obtained by heat treatment using an organic substance defined in 1996 as a raw material precursor. PAN as a raw material classification
(Polyacrylonitrile) -based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber can be used, but PAN-based carbon fiber is most preferred. Fiber obtained by plating nickel, silver, etc. on carbon fiber can also be used favorably.

【0029】炭素繊維の配合量は2〜30重量%であ
り、好ましくは4〜20重量%、さらに好ましくは5〜
15重量%である。
The compounding amount of the carbon fiber is 2 to 30% by weight, preferably 4 to 20% by weight, more preferably 5 to 20% by weight.
15% by weight.

【0030】炭素繊維は長い方が好ましく、一般に長繊
維強化樹脂とよばれている長繊維が配合された樹脂が好
ましい。炭素繊維が長くなれば成形品の各種物性は向上
し、更に導電性も向上する。射出成形後の成形品中の繊
維長を長くするには、成形機へ投入する原料樹脂中の繊
維長が長い方が好ましい。しかし、成形機ホッパでの樹
脂の食い込み性を考慮する必要があり、ホッパへ投入す
る樹脂のペレット長(長炭素繊維はペレットの長手方向
にほぼ併行に配合されており、ペレット長は炭素繊維長
にほぼ等しい)は一般に20mm以下が好ましく、更に
好ましくは15mm以下であり、一般には4〜10mm
程度のものが広く使用される。長炭素繊維のマスターバ
ッチ、即ち炭素繊維を樹脂中に分散させ易い分散性に優
れた樹脂に、平均繊維長が2〜20mmの、好ましくは
5〜15mm長の炭素繊維を60〜90重量%配合した
ペレットからなるマスターバッチを、樹脂にブレンドし
て射出成形する方法も使用できる。
The carbon fiber is preferably longer, and a resin containing a long fiber, which is generally called a long fiber reinforced resin, is preferable. As the carbon fiber lengthens, the various physical properties of the molded product improve, and the conductivity also improves. In order to lengthen the fiber length in the molded article after the injection molding, it is preferable that the fiber length in the raw material resin charged into the molding machine is long. However, it is necessary to consider the biteability of the resin in the molding machine hopper, and the pellet length of the resin to be fed into the hopper (long carbon fibers are blended almost in parallel with the longitudinal direction of the pellets, and the pellet length is the carbon fiber length ) Is generally preferably 20 mm or less, more preferably 15 mm or less, and generally 4 to 10 mm.
Some are widely used. 60 to 90% by weight of a carbon fiber having an average fiber length of 2 to 20 mm, preferably 5 to 15 mm in a masterbatch of long carbon fibers, that is, a resin excellent in dispersibility in which carbon fibers are easily dispersed in the resin. A method in which a master batch composed of pellets thus formed is blended with a resin and injection molded is used.

【0031】射出成形品中の繊維長と成形品性能との関
連については、プラスチックスエージ、36巻(1
1)、272(1990)等に、ガラス繊維について述
べられており、成形品中の繊維長が長い程優れた性能を
有することが述べられているが、炭素繊維についても同
様である。成形中に繊維の折損を極力少なくする装置及
び条件で射出成形されることが好ましい。
Regarding the relationship between the fiber length in the injection molded product and the performance of the molded product, see Plastic Swage, Vol. 36 (1).
1), 272 (1990) and the like describe glass fibers, and it is described that the longer the fiber length in a molded product, the better the performance. However, the same applies to carbon fibers. It is preferable that the injection molding is performed by using an apparatus and conditions for minimizing fiber breakage during molding.

【0032】本発明に述べる表面光沢度とは、JIS
Z8741において入射角度60°で測定した値であ
る。
The surface glossiness described in the present invention is defined by JIS
This is a value measured at an incident angle of 60 ° in Z8741.

【0033】本発明の炭素繊維強化ゴム強化スチレン系
樹脂射出成形品の表面光沢度は90%以上であり、好ま
しくは90〜99%である。
The surface glossiness of the carbon fiber reinforced rubber reinforced styrene resin injection molded article of the present invention is 90% or more, and preferably 90 to 99%.

【0034】本発明に述べる易塗装性とは、成形品の表
面が平滑で、塗装が容易で、一回の塗装でフローマーク
等の外観不良も消すことができ、且つ塗膜の密着性に優
れていることをいう。表面平滑性を本発明では表面光沢
度で示している。密着性は塗膜に碁盤目に傷をつけ、そ
れのセロテープ(登録商標)剥離試験(JIS K54
00)で評価する。
The ease of coating described in the present invention means that the surface of a molded article is smooth, coating is easy, appearance defects such as flow marks can be eliminated by one coating, and adhesion of the coating film is improved. It is superior. In the present invention, the surface smoothness is indicated by the surface glossiness. Adhesion is caused by scratching the coating film on a cross-cut, and its cellotape (registered trademark) peel test (JIS K54).
00).

【0035】本発明に述べる表面電気抵抗値とは、JI
S K7194の導電性プラスチックスの4探針法によ
る抵抗率試験方法に準拠し、三菱化学(株)製「Lor
esta EP(MCP−T350)ESPプローブ」
にて測定した値である。
The surface electric resistance value described in the present invention is defined as JI
According to the resistivity test method for conductive plastics of SK7194 by the four probe method, “Lor” manufactured by Mitsubishi Chemical Corporation.
esta EP (MCP-T350) ESP probe "
It is a value measured in.

【0036】本発明に述べる電磁遮蔽性とは、ISO/
IEC GUIDE25に基づいた試験所として認めら
れた測定機関にてアドバンテスト法にて測定した値であ
る。
The electromagnetic shielding property described in the present invention is defined as ISO /
It is a value measured by the Advantest method at a measuring institution recognized as a laboratory based on IEC GUIDE25.

【0037】本発明に述べるモバイル電子機器筐体と
は、携帯電話、モバイルパソコン、電卓等の一般に携帯
されながら使用される電子機器の筐体である。これらは
軽量であることが好ましく、比較的薄肉の成形品、同一
成形品の中に厚肉部と薄肉部を共に有する偏肉成形品等
が使用される。また本発明の成形品は、モバイル電子機
器筐体の塗装品に限らず、自動車部材としての樹脂部材
・電子機器筐体又は内装部材・室内ゲーム機樹脂部材・
小遊技動体を用いる室内ゲーム機樹脂部材・電子回路応
用遊技機等の樹脂部材、基板を保護するカバー類、IC
チップに使用されるICカバー・ケース類、等の樹脂部
材に用いる事ができる。具体的には、アンテナ部材、ス
テアリングホイール部材、アウトドアハンドル部材、カ
ーナビゲーション部材、室内ゲーム機筐体又は内装部
材、パソコン筐体又は内装部材、ワードプロセッサー筐
体又は内装部材、CDプレーヤー筐体又は内装部材、ヘ
ッドホンステレオ筐体又は内装部材、トランシーバー筐
体又は内装部材、カメラ筐体又は内装部材、CPUパッ
ケージ、本体の電子回路を制御するIC等のカバー類、
代換機筐体、上皿、下皿、ハンドル、プラ枠、裏機構本
体、タンク、タンクレール、本体カバー、配線カバー、
基板カバー、入賞球ガイド、入賞球通路カバー、検出プ
レート、検出SWカバー、満タンSWレバー、球出口部
カバー、排出部カバー、止め具、球出口ブロック、球抜
きベース、等の樹脂部材に用いる事ができる。
The housing of the mobile electronic device described in the present invention is a housing of an electronic device generally used while being carried, such as a mobile phone, a mobile personal computer, and a calculator. These are preferably lightweight, and a relatively thin molded product, an uneven molded product having both a thick portion and a thin portion in the same molded product, and the like are used. Further, the molded article of the present invention is not limited to a painted article of a mobile electronic device housing, but may be a resin member as an automobile member, an electronic device housing or interior member, an indoor game machine resin member, or the like.
Resin member of indoor game machine using small game moving object, resin member of electronic circuit application game machine, etc., cover for protecting substrate, IC
It can be used for resin members such as IC covers and cases used for chips. Specifically, antenna members, steering wheel members, outdoor handle members, car navigation members, indoor game machine housings or interior members, personal computer housings or interior members, word processor housings or interior members, CD player housings or interior members , A headphone stereo housing or interior member, a transceiver housing or interior member, a camera housing or interior member, a CPU package, a cover such as an IC for controlling an electronic circuit of the main body,
Substitute machine case, upper plate, lower plate, handle, plastic frame, back mechanism body, tank, tank rail, body cover, wiring cover,
Used for resin members such as substrate cover, winning ball guide, winning ball passage cover, detection plate, detection SW cover, full SW lever, ball exit cover, discharge cover, stopper, ball exit block, ball extraction base, etc. Can do things.

【0038】本発明の成形品の最大の特徴である、表面
導電性と光沢度を両立させ得ることは、表面が平滑であ
るにもかかわらず、炭素繊維が表面層に残っていること
にあると推定される。従来一般に使用されている、前記
の各種型表面転写性改良成形法で成形すると、炭素繊維
が成形品表面層から大きく沈むことにより転写性を発現
させている。炭素繊維が大きく沈むと、表面導電性が大
きく低下する。
The greatest feature of the molded article of the present invention, that it can achieve both surface conductivity and glossiness, is that carbon fibers remain in the surface layer despite its smooth surface. It is estimated to be. When molded by the above-mentioned various mold surface transferability improving molding methods generally used in the past, the transferability is exhibited by the carbon fiber largely sinking from the surface layer of the molded product. When the carbon fiber sinks greatly, the surface conductivity is greatly reduced.

【0039】本発明の成形品は射出成形法を厳しく選択
して成形することにより初めて得られる。
The molded article of the present invention can be obtained only by strictly selecting an injection molding method and molding.

【0040】次に本発明の炭素繊維強化ゴム強化スチレ
ン系樹脂射出成形品を良好に成形する射出成形法につい
て述べる。本発明の成形品は次の成形法により良好に得
られる。
Next, an injection molding method for favorably molding the carbon fiber reinforced rubber reinforced styrene resin injection molded article of the present invention will be described. The molded article of the present invention can be favorably obtained by the following molding method.

【0041】即ち、二酸化炭素を充填した金型キャビテ
ィに、溶融した熱可塑性樹脂を充填する射出成形法であ
る。好ましくは、二酸化炭素を樹脂の固化温度で、樹脂
に0.1重量%以上溶解する圧力で金型キャビティに存
在させ、次いで溶融した熱可塑性樹脂を充填する射出成
形法である。また、好ましくは、0.2重量%以上の二
酸化炭素ガスを高圧下で溶解させて樹脂流動性を改良し
た溶融状態の熱可塑性樹脂を、流動樹脂のフローフロン
トで発泡が起きない圧力以上の二酸化炭素で予め加圧し
た金型キャビティに充填する射出成形法である。これら
本発明の成形品が得られる好ましい成形法について次に
詳しく説明する。
That is, this is an injection molding method in which a mold cavity filled with carbon dioxide is filled with a molten thermoplastic resin. Preferably, an injection molding method is used in which carbon dioxide is present in a mold cavity at a solidification temperature of the resin at a pressure that dissolves the resin in an amount of 0.1% by weight or more, and then the molten thermoplastic resin is filled. Further, preferably, a thermoplastic resin in a molten state in which 0.2% by weight or more of carbon dioxide gas has been dissolved under high pressure to improve the resin fluidity is used. This is an injection molding method of filling a mold cavity pre-pressed with carbon. Preferred molding methods for obtaining these molded articles of the present invention will be described in detail below.

【0042】上記成形法は、従来、金型表面の転写を阻
害すると考えられていた金型キャビティ内のガス体に着
目した成形法であり、その効果が発現されるメカニズム
は次のように考えられる。射出成形では、樹脂は金型キ
ャビティ内を常に層流で流れ、冷却された金型壁面に接
触するとその界面に固化層が形成され、後から充填され
る樹脂はその固化層の内側を流動して前進し、樹脂流動
先端部(フローフロント)に達してから金型壁面に向か
うファウンテンフローと呼ばれる流動をする。金型キャ
ビティを二酸化炭素で、適度なガス圧力で満たしてから
樹脂を充填すると、二酸化炭素は流動樹脂のフローフロ
ントで吸収されたり、金型と樹脂の界面に入り込み樹脂
表面層に溶解する。樹脂に溶解したガス体は可塑剤とし
て作用し、極めて薄い樹脂表面層だけ固化温度を選択的
に低下させたり、樹脂の溶融粘度を下げる。極めて薄い
樹脂表面層だけ固化温度が下がり、該固化温度が金型表
面温度以下となれば、樹脂充填工程中の固化が起きず、
成形品の金型表面転写性を著しく改良することができる
ことになる。樹脂表面層に溶解した二酸化炭素は、時間
とともに樹脂内部に拡散し、樹脂表面層の固化温度が上
昇するため、通常の樹脂冷却時間内で表面層は固化し、
製品として取り出すことができる。この結果、型表面転
写性に優れた、表面平滑な成形品が得られる。
The above-described molding method focuses on the gas inside the mold cavity, which has conventionally been considered to inhibit the transfer of the mold surface. The mechanism by which the effect is exhibited is considered as follows. Can be In injection molding, the resin always flows in a laminar flow in the mold cavity, and when it contacts the cooled mold wall, a solidified layer is formed at the interface, and the resin to be filled later flows inside the solidified layer. After flowing to the resin flow front end (flow front), a flow called fountain flow flows toward the mold wall surface. When the resin is filled after filling the mold cavity with carbon dioxide at an appropriate gas pressure, the carbon dioxide is absorbed at the flow front of the flowing resin or enters the interface between the mold and the resin and dissolves in the resin surface layer. The gas dissolved in the resin acts as a plasticizer and selectively lowers the solidification temperature of only an extremely thin resin surface layer or lowers the melt viscosity of the resin. When the solidification temperature of only an extremely thin resin surface layer is lowered and the solidification temperature is lower than the mold surface temperature, no solidification occurs during the resin filling step,
The mold surface transferability of the molded product can be remarkably improved. The carbon dioxide dissolved in the resin surface layer diffuses into the resin with time, and the solidification temperature of the resin surface layer rises, so the surface layer solidifies within the usual resin cooling time,
Can be taken out as a product. As a result, a molded product having excellent mold surface transferability and having a smooth surface can be obtained.

【0043】この射出成形法が本発明の成形品の成形に
適している理由は、射出成形時に極めて薄い表面層だけ
の固化温度を選択的に低下させつつ成形するため、樹脂
中の炭素繊維を深く沈ませることなく、型表面転写性を
良くできることにあり、その結果型表面転写性と表面導
電性の両立ができると推定される。
The reason that this injection molding method is suitable for molding the molded article of the present invention is that the carbon fiber in the resin is formed by selectively lowering the solidification temperature of only an extremely thin surface layer during injection molding. It is presumed that the mold surface transfer property can be improved without sinking deeply, and as a result, both the mold surface transfer property and the surface conductivity can be achieved.

【0044】金型キャビティに封入する二酸化炭素圧力
は、高い圧力になるほど多量の二酸化炭素が樹脂に溶解
するため、より固化温度が低くなり、低い金型温度でも
樹脂充填工程中の固化を防止できることになる。実用的
には、要求する型表面転写性の程度、樹脂の種類、金型
温度等から必要な二酸化炭素圧力が決まり、金型温度を
比較的高く設定すれば低い二酸化炭素圧力で十分な転写
性を得ることもできる。圧力の下限は、樹脂に溶解した
二酸化炭素の可塑剤効果から決まり、好ましくは樹脂の
固化温度において、平衡状態で熱可塑性樹脂に0.1重
量%に溶解する圧力であり、更に好ましくは0.5重量
%溶解する圧力である。ここで用いる二酸化炭素の樹脂
への溶解度は、圧力降下法による測定値であり、炭素繊
維を含有する熱可塑性樹脂に二酸化炭素が溶解した状態
を100重量%とする。低い圧力で使用する場合は、キ
ャビティを可能な限り二酸化炭素で置換することが好ま
しい。また、圧力の上限は、特に限定はないが、あまり
に高圧になると金型を開こうとする力が無視できなくな
ったり、金型のシールが難しくなるなどの問題が生じや
すいことから、15MPa以下が実用的であり、好まし
くは10MPa以下である。ガス圧力は1工程に使用す
るガス体の量を最小限に押さえ、金型のシールやガス供
給装置の構造を簡単にするために、要求する効果が得ら
れる範囲で低い方が好ましい。型閉時に型内に残る空気
は、型締め中や型締め完了後に二酸化炭素で置換した方
が好ましい。樹脂充填後、キャビティ外に押し出された
二酸化炭素を解放し、大気圧とする。二酸化炭素の解放
は、キャビティ内を溶融樹脂で満たした後に行う。樹脂
充填後は金型表面状態を成形品に転写するため、成形品
表面が固化するまでキャビティ内の樹脂に十分な圧力を
与えることが望ましい。
As the pressure of carbon dioxide filled in the mold cavity becomes higher, a larger amount of carbon dioxide is dissolved in the resin, so that the solidification temperature becomes lower, and the solidification during the resin filling step can be prevented even at a low mold temperature. become. Practically, the required carbon dioxide pressure is determined by the required mold surface transferability, the type of resin, the mold temperature, etc., and if the mold temperature is set relatively high, sufficient transferability can be achieved with a low carbon dioxide pressure. You can also get The lower limit of the pressure is determined by the plasticizer effect of carbon dioxide dissolved in the resin, and is preferably a pressure at which 0.1% by weight of the carbon dioxide is dissolved in the thermoplastic resin in an equilibrium state at the solidification temperature of the resin. It is the pressure at which 5% by weight is dissolved. The solubility of carbon dioxide in the resin used here is a value measured by a pressure drop method, and the state in which carbon dioxide is dissolved in a thermoplastic resin containing carbon fibers is defined as 100% by weight. When used at low pressure, it is preferable to replace the cavity with carbon dioxide as much as possible. The upper limit of the pressure is not particularly limited. However, if the pressure is too high, the force for opening the mold cannot be ignored, and problems such as difficulty in sealing the mold are likely to occur. It is practical, and preferably 10 MPa or less. In order to minimize the amount of gas used in one process and to simplify the structure of the mold seal and the gas supply device, the gas pressure is preferably as low as possible within the range where the required effects can be obtained. It is preferable that the air remaining in the mold when the mold is closed be replaced with carbon dioxide during or after the mold is closed. After filling the resin, the carbon dioxide pushed out of the cavity is released to atmospheric pressure. Release of carbon dioxide is performed after filling the inside of the cavity with the molten resin. After the resin is filled, it is desirable to apply a sufficient pressure to the resin in the cavity until the surface of the molded product is solidified in order to transfer the surface state of the mold to the molded product.

【0045】本発明の成形品を良好に成形する、別の好
ましい成形法として、0.2重量%以上の二酸化炭素ガ
スを高圧下で溶解させて樹脂流動性を良くした溶融状態
の熱可塑性樹脂を、流動樹脂のフローフロントで発泡が
起きない圧力以上の二酸化炭素ガス体で予め加圧した金
型キャビティに充填する射出成形法が使用できる。一般
にカウンタープレッシャ法と呼ばれている射出成形法
を、二酸化炭素を用いて行う成形法である。あらかじめ
金型キャビティを溶融樹脂のフローフロントで発泡が起
きない圧力以上、或いは、微少の発泡が起きてもその発
泡セル中の発泡ガスがフローフロントの樹脂層を食い破
らない圧力以上に二酸化炭素で加圧状態にして、溶融熱
可塑性樹脂を射出する成形法である。
As another preferred molding method for favorably molding the molded article of the present invention, a thermoplastic resin in a molten state in which 0.2% by weight or more of carbon dioxide gas is dissolved under high pressure to improve the resin fluidity. Injection molding method is used to fill a mold cavity pre-pressurized with a carbon dioxide gas substance having a pressure not lower than the pressure at which foaming does not occur at the flow front of the fluid resin. This is a molding method in which an injection molding method generally called a counter pressure method is performed using carbon dioxide. In advance, the mold cavity is filled with carbon dioxide at a pressure higher than the pressure at which foaming does not occur at the flow front of the molten resin, or at a pressure higher than the pressure at which the foaming gas in the foaming cells does not break through the resin layer at the flow front even if slight foaming occurs. This is a molding method in which a molten thermoplastic resin is injected under a pressurized state.

【0046】二酸化炭素は熱可塑性樹脂に良く溶解して
良好な可塑剤になって熱可塑性樹脂の流動性を向上させ
る。本発明で溶融状態の熱可塑性樹脂に溶解させる二酸
化炭素量は0.2重量%以上が好ましい。流動性を顕著
に向上させるには0.3重量%以上が更に好ましい。ま
た、本発明では二酸化炭素の溶解量の最大量は特に制限
はないが、樹脂中に二酸化炭素を溶解させる方法や二酸
化炭素量に対する樹脂の流動性向上効果から、実用的な
二酸化炭素溶解量は10重量%以下が好ましく、更に好
ましくは8重量%以下である。尚、上記二酸化炭素溶解
量は、炭素繊維を含有する熱可塑性樹脂に二酸化炭素が
溶解した状態を100重量%として示す。
Carbon dioxide dissolves well in the thermoplastic resin and becomes a good plasticizer to improve the fluidity of the thermoplastic resin. In the present invention, the amount of carbon dioxide dissolved in the molten thermoplastic resin is preferably 0.2% by weight or more. In order to remarkably improve the fluidity, it is more preferably at least 0.3% by weight. In the present invention, the maximum amount of dissolved carbon dioxide is not particularly limited, but from the method of dissolving carbon dioxide in the resin and the effect of improving the fluidity of the resin with respect to the amount of carbon dioxide, the practical amount of dissolved carbon dioxide is It is preferably at most 10% by weight, more preferably at most 8% by weight. In addition, the said carbon dioxide dissolution amount shows the state with which the carbon dioxide melt | dissolved in the thermoplastic resin containing a carbon fiber as 100 weight%.

【0047】熱可塑性樹脂に二酸化炭素を溶解させる方
法として、次の二つの方法が好ましい。一つは、あらか
じめ粒状や粉状の樹脂を二酸化炭素雰囲気中に置き二酸
化炭素を吸収させて、成形機に供給する方法で、この場
合二酸化炭素の圧力に比例して吸収量が増大する。この
方法では、可塑化時に樹脂が加熱されるに従って樹脂中
の二酸化炭素の一部が揮散するため、溶融樹脂中の二酸
化炭素量はあらかじめ吸収させた量よりも少なくなる。
このため、成形機のホッパなど樹脂の供給経路も二酸化
炭素雰囲気にすることが望ましい。他の方法は、成形機
のシリンダ内で樹脂を可塑化するとき、または可塑化し
た樹脂に二酸化炭素を溶解させる方法で、成形機のホッ
パ付近を二酸化炭素雰囲気にしたり、スクリュの中間部
や先端、シリンダから可塑化樹脂に二酸化炭素を注入す
る。スクリュやシリンダの中間部から二酸化炭素を注入
する場合には、注入部付近のスクリュ溝深さを深くし
て、樹脂圧力を低くすることが好ましい。
As a method for dissolving carbon dioxide in a thermoplastic resin, the following two methods are preferred. One is a method in which a granular or powdery resin is placed in a carbon dioxide atmosphere in advance to absorb carbon dioxide and then supplied to a molding machine. In this case, the amount of absorption increases in proportion to the pressure of carbon dioxide. In this method, a part of carbon dioxide in the resin is volatilized as the resin is heated during plasticization, so that the amount of carbon dioxide in the molten resin is smaller than the amount previously absorbed.
For this reason, it is desirable that the supply path of the resin such as the hopper of the molding machine is also in a carbon dioxide atmosphere. Another method is to plasticize the resin in the cylinder of the molding machine, or to dissolve carbon dioxide in the plasticized resin. Inject carbon dioxide from the cylinder into the plasticized resin. When carbon dioxide is injected from an intermediate portion of a screw or a cylinder, it is preferable to increase the depth of the screw groove near the injection portion to lower the resin pressure.

【0048】熱可塑性樹脂中の二酸化炭素は、熱可塑性
樹脂が固化した後に成形品を大気中に放置すれば徐々に
大気中に放散する。放散により成形品に気泡を生じるこ
とはなく、放散後の成形品の性能は本来熱可塑性樹脂が
有するものと変わらない。
The carbon dioxide in the thermoplastic resin is gradually released into the air if the molded article is left in the air after the thermoplastic resin has solidified. No bubbles are generated in the molded article due to the radiation, and the performance of the molded article after the radiation is essentially the same as that of the thermoplastic resin.

【0049】二酸化炭素の各樹脂への溶解量、二酸化炭
素溶解による樹脂のガラス転移温度の低下については、
各種文献にも記載がある。成形加工’96,279(1
989)、J.Appl.Polym.Sci.,Vo
l.30,4019(1985)、J.Appl.Po
lym.Sci.,Vol.30,2633(198
5)、J.Membrane Sci.,Vol.5,
63(1979)等に記載があり、二酸化炭素は極めて
良好な可塑剤の働きをする。
Regarding the amount of carbon dioxide dissolved in each resin and the decrease in the glass transition temperature of the resin due to the dissolution of carbon dioxide,
It is also described in various documents. Forming '96, 279 (1
989); Appl. Polym. Sci. , Vo
l. 30, 4019 (1985); Appl. Po
lym. Sci. , Vol. 30, 2633 (198
5). Membrane Sci. , Vol. 5,
63 (1979) and the like, and carbon dioxide functions as a very good plasticizer.

【0050】本発明では射出圧縮成形等の密閉した金型
キャビティへ樹脂を充填して成形した成形品も、本発明
の射出成形品に含まれるものとする。
In the present invention, a molded product obtained by filling a resin into a closed mold cavity such as injection compression molding and the like is also included in the injection molded product of the present invention.

【0051】本発明の成形品を良好に成形する代表的な
装置と成形法について図面を用いて説明する。
A typical apparatus and molding method for favorably molding the molded article of the present invention will be described with reference to the drawings.

【0052】図1は、本発明の成形品の成形を実施する
射出成形装置システムを示す。この装置システムは、本
発明の成形品の好ましい成形法である、二酸化炭素を充
填した金型キャビティに、溶融した熱可塑性樹脂を充填
する射出成形法と、0.2重量%以上の二酸化炭素ガス
を高圧下で溶解させた溶融状態の熱可塑性樹脂を、流動
樹脂のフローフロントで発泡が起きない圧力以上の二酸
化炭素ガス体で予め加圧した金型キャビティに充填する
射出成形法を実施しうる装置システムである。
FIG. 1 shows an injection molding apparatus system for molding a molded article of the present invention. This apparatus system is a preferred molding method of the molded article of the present invention, an injection molding method of filling a molten thermoplastic resin in a mold cavity filled with carbon dioxide, and a carbon dioxide gas of 0.2% by weight or more. Injection molding method in which a thermoplastic resin in a molten state obtained by dissolving under a high pressure is filled in a mold cavity pre-pressurized with a carbon dioxide gas body having a pressure not lower than a pressure at which foaming does not occur at the flow front of the fluid resin. It is a device system.

【0053】図1の装置システムは、熱可塑性樹脂の加
熱可塑化と射出を行う射出シリンダ2と、金型7の型締
め装置3から基本的になる射出成形装置1に、二酸化炭
素発生源4、液化二酸化炭素昇圧装置5、二酸化炭素供
給装置6を付加し、二酸化炭素を二酸化炭素発生源4よ
り液化二酸化炭素昇圧装置5に供給し、昇圧した液化二
酸化炭素を二酸化炭素供給装置6へ供給し、更にガス化
した二酸化炭素を射出シリンダ2と金型7へ供給する二
酸化炭素供給路9、10、11、12を有する。二酸化
炭素供給路13がホッパ8にも連結することもできる。
射出シリンダ2、ホッパ8、金型キャビティへのそれぞ
れの二酸化炭素供給路は二酸化炭素圧力等をそれぞれ独
立に制御でき、独立に供給できる供給路であることが好
ましい。射出シリンダ2のほぼ中央部にはガス注入口が
設けられており、二酸化炭素ガスの注入が可能となって
いる。ホッパ8より供給された樹脂ペレットは適度なス
クリュ背圧をかけた状態でスクリュ回転され、二酸化炭
素を溶解しつつ溶融可塑化され、射出シリンダ先端部の
ノズルから射出される。ノズルは適度なスクリュ背圧を
かけてスクリュ回転しても、樹脂のドュルーリングが生
じない様に、バルブノズルを有していることが好まし
い。
The apparatus system shown in FIG. 1 includes an injection cylinder 2 for performing heat plasticization and injection of a thermoplastic resin, and an injection molding apparatus 1 which basically includes a mold clamping device 3 for a mold 7, and a carbon dioxide generation source 4. And a liquefied carbon dioxide booster 5 and a carbon dioxide supply device 6 are added, carbon dioxide is supplied from the carbon dioxide generation source 4 to the liquefied carbon dioxide booster 5, and the pressurized liquefied carbon dioxide is supplied to the carbon dioxide supply device 6. And carbon dioxide supply paths 9, 10, 11, and 12 for supplying gasified carbon dioxide to the injection cylinder 2 and the mold 7. The carbon dioxide supply path 13 can also be connected to the hopper 8.
It is preferable that each of the carbon dioxide supply paths to the injection cylinder 2, the hopper 8, and the mold cavity be a supply path that can independently control the carbon dioxide pressure and the like and can supply the carbon dioxide pressure and the like independently. A gas injection port is provided substantially at the center of the injection cylinder 2 so that carbon dioxide gas can be injected. The resin pellets supplied from the hopper 8 are rotated while applying an appropriate screw back pressure, melt-plasticized while dissolving carbon dioxide, and injected from the nozzle at the tip of the injection cylinder. It is preferable that the nozzle has a valve nozzle so that even when the screw is rotated by applying an appropriate screw back pressure, the drooling of the resin does not occur.

【0054】二酸化炭素発生源4と液化二酸化炭素昇圧
装置5では二酸化炭素は液化状態であり、この装置間は
二酸化炭素の臨界温度(31.1℃)未満に保持されて
いる。一方、二酸化炭素供給装置6から射出成形機1の
間は二酸化炭素がガス化状態であり、臨界温度を超える
温度に保持されている。好ましくは臨界温度より3℃以
上高い温度、或いは臨界温度より3℃以上低い温度にそ
れぞれ制御することが好ましい。
In the carbon dioxide generating source 4 and the liquefied carbon dioxide pressure increasing device 5, the carbon dioxide is in a liquefied state, and the temperature between the devices is kept below the critical temperature of carbon dioxide (31.1 ° C.). On the other hand, between the carbon dioxide supply device 6 and the injection molding machine 1, carbon dioxide is in a gasified state, and is maintained at a temperature exceeding the critical temperature. Preferably, the temperature is controlled to a temperature higher than the critical temperature by 3 ° C. or more, or a temperature lower by 3 ° C. or more than the critical temperature.

【0055】図2は本発明の成形品を良好に成形する金
型の構造と二酸化炭素供給装置の詳細を示す。図2にお
いて、金型キャビティ14にはスプルより樹脂が注入さ
れる。金型キャビティ14外周には二酸化炭素供給と解
放のための深さ0.05mm程度のベントスリット15
とベント16、及びベント16から金型外に通じる穴1
7を設けて二酸化炭素からなるカウンタガス供給装置と
接続し、ベントスリットと穴17の外周にガスシールの
ためにOリング18を設け、キャビティを気密構造とす
る。
FIG. 2 shows the details of the structure of a mold for satisfactorily molding the molded article of the present invention and the carbon dioxide supply device. In FIG. 2, a resin is injected into the mold cavity 14 from a sprue. A vent slit 15 with a depth of about 0.05 mm for supplying and releasing carbon dioxide is provided around the mold cavity 14.
And vent 16, and hole 1 communicating from vent 16 to the outside of the mold
7 is connected to a counter gas supply device made of carbon dioxide, an O-ring 18 is provided around the vent slit and the hole 17 for gas sealing, and the cavity has an airtight structure.

【0056】液化二酸化炭素を充填したボンベ19を5
0℃で保温しガス供給源として用いる。二酸化炭素は容
器より加温器20を通り、減圧弁21にて所定圧力に調
圧された後、約40℃に保温されたガス溜22に溜めら
れる。金型キャビティ14へのガス供給は、ガス溜の下
流にある供給用電磁弁23を開け、同時に解放用電磁弁
24を閉じることで行われ、樹脂充填中はガス溜22と
金型キャビティ14はつながっている。樹脂充填が終了
するとほぼ同時に、供給用電磁弁23を閉じ、解放用電
磁弁24を開けることで二酸化炭素を金型外に解放す
る。
The cylinder 19 filled with liquefied carbon dioxide was
Keep at 0 ° C and use as gas supply source. The carbon dioxide passes through the heater 20 from the container, is adjusted to a predetermined pressure by the pressure reducing valve 21, and is then stored in the gas reservoir 22 kept at about 40 ° C. The gas supply to the mold cavity 14 is performed by opening the supply electromagnetic valve 23 located downstream of the gas reservoir and simultaneously closing the release electromagnetic valve 24. During the resin filling, the gas reservoir 22 and the mold cavity 14 are connected to each other. linked. Almost simultaneously with the completion of the resin filling, the supply electromagnetic valve 23 is closed and the release electromagnetic valve 24 is opened to release carbon dioxide from the mold.

【0057】図3は3種類の炭素繊維強化ゴム強化スチ
レン系樹脂射出成形品の表面付近の断面拡大図を示す。
(3−1)は本発明の成形品断面であり、樹脂相34に
炭素繊維35が分散しており、炭素繊維35は表面36
近くに存在するが、表面に飛び出している炭素繊維はほ
とんどない。(3−2)は射出成形時に金型表面を加熱
して成形する、型表面転写性改良成形法で成形した成形
品断面であり、炭素繊維が成形品内部に沈み、成形品表
層部には存在しない。(3−3)は一般の射出成形法で
成形した成形品断面であり、炭素繊維37が成形品表面
に飛び出している。本発明の表面導電性と表面平滑性の
両立は、(3−1)に示す様に炭素繊維35が表面36
近くに存在するが、表面に飛び出している炭素繊維はほ
とんどないことに起因すると推定される。
FIG. 3 is an enlarged cross-sectional view near the surface of three types of carbon fiber reinforced rubber reinforced styrene resin injection molded articles.
(3-1) is a cross section of the molded article of the present invention, in which carbon fibers 35 are dispersed in a resin phase 34, and the carbon fibers 35
Although present nearby, there are few carbon fibers protruding to the surface. (3-2) is a cross section of a molded article molded by a mold surface transferability improving molding method in which a mold surface is heated and molded at the time of injection molding, in which carbon fibers sink inside the molded article, and the surface layer of the molded article has not exist. (3-3) is a cross section of a molded product formed by a general injection molding method, in which the carbon fibers 37 protrude from the surface of the molded product. The compatibility between the surface conductivity and the surface smoothness of the present invention is as follows.
It is presumed that this is due to the fact that there is almost no carbon fiber protruding to the surface although present nearby.

【0058】[0058]

【実施例】以下に実施例を用いて本発明の効果をさらに
具体的に説明する。
EXAMPLES The effects of the present invention will be described more specifically with reference to the following examples.

【0059】〔炭素繊維強化ゴム強化スチレン系樹脂及
び射出シリンダ温度〕ゴム強化スチレン系樹脂(ABS
樹脂、旭化成(株)製「スタイラックABS121」)
を用いた長炭素繊維14重量%配合ペレットを使用し
た。該ペレットは、直径7μmの炭素繊維が12000
本ペレットの長手方向に並んで配合されており、ペレッ
ト長は7mmであり、炭素繊維長も7mmである。射出
シリンダ温度は250℃で成形した。
[Carbon fiber reinforced rubber reinforced styrene resin and injection cylinder temperature] Rubber reinforced styrene resin (ABS)
Resin, "Stylac ABS121" manufactured by Asahi Kasei Corporation)
The pellets containing 14% by weight of the long carbon fiber using the same were used. The pellets were made of carbon fibers having a diameter of 7 μm of 12000.
The pellets are blended side by side in the longitudinal direction, the pellet length is 7 mm, and the carbon fiber length is also 7 mm. The injection cylinder temperature was 250 ° C.

【0060】〔二酸化炭素〕二酸化炭素としては純度9
9%以上の二酸化炭素を使用した。
[Carbon dioxide] The purity of carbon dioxide is 9
9% or more carbon dioxide was used.

【0061】〔射出成形機〕図1に示す装置を使用し
た。射出成形機は住友重機械工業製「SG125M−H
P」を使用した。
[Injection molding machine] The apparatus shown in FIG. 1 was used. Injection molding machine "SG125M-H" manufactured by Sumitomo Heavy Industries, Ltd.
P "was used.

【0062】〔金型〕金型は図2に示す構造のものを用
いた。成形品は厚み2mmで縦横各120mm、60mmの
長方形平板である。
[Mold] A mold having the structure shown in FIG. 2 was used. The molded product is a rectangular flat plate having a thickness of 2 mm, length and width of 120 mm and 60 mm each.

【0063】〔成形品の塗装性〕アクリル系塗料(オリ
ジン電気(株)製の「プラネットSV」(塗料)と「プ
ラネットS1」(シンナ)を使用)を射出成形品に塗布
した。次いで、JISK5400に基づき、塗膜に碁盤
目に傷をつけ、それのセロテープ(登録商標)剥離試験
を行い、塗膜の剥離が5%以下のもの、及び一回の塗装
でフローマーク等の外観不良が見えなくなるものの両方
を満たすものを良品とし、○印とした。
[Coating property of molded article] An acrylic paint (using "Planet SV" (paint) and "Planet S1" (Thinna) manufactured by Origin Electric Co., Ltd.) was applied to the injection molded article. Next, based on JIS K5400, the coating film is scratched and subjected to a Cellotape (registered trademark) peeling test. The peeling of the coating film is 5% or less. A product satisfying both of those in which the defect disappears is regarded as a non-defective product and is marked with a circle.

【0064】(実施例1)図1と図2に示す成形装置を
用い、二酸化炭素を6MPaに充填した金型キャビティ
に、溶融した炭素繊維強化ゴム強化スチレン系樹脂を充
填する成形法で射出成形した。成形品の性能結果を表1
に示す。得られた成形品は表面光沢度、表面電気抵抗
値、電磁波遮蔽性、塗装性、引張強度、曲げ強度のいず
れにも優れ、モバイル電子機器筐体として優れた性能を
有していた。成形品表面層付近の顕微鏡観察結果は図3
(3−1)に示す様な炭素繊維分散を示し、炭素繊維は
表面近くに存在するが、成形品表面に飛び出している炭
素繊維はほとんどなかった。
Example 1 Using a molding apparatus shown in FIGS. 1 and 2, injection molding was performed by a molding method in which a mold cavity filled with carbon dioxide at 6 MPa was filled with a molten carbon fiber reinforced rubber reinforced styrene resin. did. Table 1 shows the performance results of molded products.
Shown in The obtained molded article was excellent in surface glossiness, surface electric resistance, electromagnetic wave shielding property, paintability, tensile strength, and bending strength, and had excellent performance as a mobile electronic device housing. Figure 3 shows the results of microscopic observation of the surface layer near the molded product.
Carbon fiber dispersion as shown in (3-1) was exhibited, and although carbon fibers were present near the surface, almost no carbon fibers protruded to the surface of the molded product.

【0065】(実施例2)図1、図2に示す成形装置を
用いて射出成形した。射出シリンダに二酸化炭素ガスを
圧入し、樹脂中に0.5重量%の二酸化炭素を溶解さ
せ、二酸化炭素を6MPaに充填した金型キャビティ
に、溶融した炭素繊維配合ゴム強化スチレン系樹脂を充
填する成形法で射出成形した。成形品の性能結果を表1
に示す。得られた成形品は表面光沢度、表面電気抵抗
値、電磁波遮蔽性、塗装性、引張強度、曲げ強度のいず
れにも優れ、モバイル電子機器筐体として優れた性能を
有していた。
Example 2 Injection molding was performed using the molding apparatus shown in FIGS. Carbon dioxide gas is injected into the injection cylinder, 0.5% by weight of carbon dioxide is dissolved in the resin, and the mold cavity filled with carbon dioxide at 6 MPa is filled with the molten carbon fiber compounded rubber reinforced styrene resin. It was injection molded by a molding method. Table 1 shows the performance results of molded products.
Shown in The obtained molded article was excellent in surface glossiness, surface electric resistance, electromagnetic wave shielding property, paintability, tensile strength, and bending strength, and had excellent performance as a mobile electronic device housing.

【0066】(実施例3)ABS樹脂/ポリカーボネー
ト系アロイ(旭化成(株)製「CA113」、ABS樹
脂/ポリカーボネートの重量比30/70)を用い、実
施例1と同様に射出成形を行った。得られた成形品の性
能結果を表1に示す。表1に示される通り、得られた成
形品の性能は実施例1とほぼ同様であった。
Example 3 Injection molding was carried out in the same manner as in Example 1 using an ABS resin / polycarbonate alloy (“CA113” manufactured by Asahi Kasei Corporation, weight ratio of ABS resin / polycarbonate 30/70). Table 1 shows the performance results of the obtained molded articles. As shown in Table 1, the performance of the obtained molded product was almost the same as that of Example 1.

【0067】(比較例1)図1と図2に示す成形装置を
用い、二酸化炭素を金型キャビティに充填しない一般射
出成形法で炭素繊維強化ゴム強化スチレン系樹脂を成形
した。成形品の性能結果を表1に示す。成形品は表面光
沢度が低く、表面には目立つフローマークもあり、これ
をモバイル電子機器筐体として使用するには少なくとも
二回の塗装を必要とした。また、成形品表面層付近の顕
微鏡観察結果は図3(3−3)に示す様な炭素繊維分散
であり、表面に飛び出している炭素繊維が多数存在して
いた。
Comparative Example 1 Using a molding apparatus shown in FIGS. 1 and 2, a carbon fiber reinforced rubber reinforced styrene resin was molded by a general injection molding method in which carbon dioxide was not filled in a mold cavity. Table 1 shows the performance results of the molded products. The molded article had a low surface gloss and also had noticeable flow marks on the surface, which required at least two coatings to be used as a mobile electronic device housing. In addition, the result of microscopic observation near the surface layer of the molded product was a carbon fiber dispersion as shown in FIG. 3 (3-3), and a large number of carbon fibers projecting to the surface were present.

【0068】(比較例2)旭化成(株)のBSM成形技
術(成形直前に高周波誘導加熱で金型表面を選択的に加
熱して射出成形する方法)を用いて炭素繊維強化ゴム強
化スチレン系樹脂を射出成形した。この射出成形法では
金型キャビティに射出された樹脂が金型表面に接する時
点の金型表面温度が120℃になる成形条件で射出成形
した。成形品の性能結果を表1に示す。得られた成形品
は表面光沢度には優れるが、表面電気抵抗値が大きく、
電磁波遮蔽性に劣っていた。成形品表面層付近の断面の
顕微鏡観察結果は図3(3−2)に示す様な炭素繊維分
散であり、炭素繊維は表面付近から沈み込み、表層部の
炭素繊維濃度が著しく低下していた。
(Comparative Example 2) Carbon fiber reinforced rubber reinforced styrenic resin using Asahi Kasei Corporation's BSM molding technique (a method of selectively heating the mold surface by high frequency induction heating immediately before molding and injection molding). Was injection molded. In this injection molding method, injection molding was performed under molding conditions in which the mold surface temperature at the time when the resin injected into the mold cavity came into contact with the mold surface was 120 ° C. Table 1 shows the performance results of the molded products. The obtained molded product is excellent in surface glossiness, but has a large surface electric resistance value,
Electromagnetic wave shielding was poor. The result of microscopic observation of the cross section near the surface layer of the molded product was a carbon fiber dispersion as shown in FIG. 3 (3-2). The carbon fiber sank from near the surface, and the carbon fiber concentration in the surface layer was significantly reduced. .

【0069】(比較例3)炭素繊維を含有しないゴム強
化スチレン系樹脂を用いて、一般射出成形法で射出成形
した。得られた成形品の性能結果を表1に示す。当然の
ことながら、炭素繊維を含まないゴム強化スチレン系樹
脂成形品は外観には優れるが、表面電気抵抗値が大き
く、電磁波遮蔽性に劣り、且つ機械的な性質でも劣って
いた。
Comparative Example 3 Injection molding was performed by a general injection molding method using a rubber-reinforced styrene resin containing no carbon fiber. Table 1 shows the performance results of the obtained molded articles. As a matter of course, the rubber-reinforced styrene resin molded product containing no carbon fiber is excellent in appearance, but has a large surface electric resistance value, is inferior in electromagnetic wave shielding properties, and is inferior in mechanical properties.

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【発明の効果】以上説明したように、本発明の射出成形
品は、良好な表面導電性と表面平滑性とが両立してお
り、塗装が容易で生産性にも優れている。よって、薄
肉、軽量、機械的強度が要求される各種用途に好ましく
用いられ、特に、表面導電性、電磁波遮蔽性が要求され
るモバイル電子機器筐体に好ましく用いられる。
As described above, the injection-molded article of the present invention has both good surface conductivity and surface smoothness, and is easy to coat and excellent in productivity. Therefore, it is preferably used for various applications that require a thin wall, light weight, and mechanical strength, and is particularly preferably used for a mobile electronic device housing that requires surface conductivity and electromagnetic wave shielding properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の成形品を成形する射出成形装置システ
ムを示す。
FIG. 1 shows an injection molding apparatus system for molding a molded article of the present invention.

【図2】本発明の成形品を成形する金型と二酸化炭素供
給装置を示す。
FIG. 2 shows a mold for molding the molded article of the present invention and a carbon dioxide supply device.

【図3】本発明の射出成形品と他の一般射出成形品の表
面層付近の断面拡大図を示す。
FIG. 3 is an enlarged cross-sectional view near the surface layer of the injection molded article of the present invention and another general injection molded article.

【符号の説明】[Explanation of symbols]

1 成形装置 2 射出シリンダ 3 型締め装置 4 二酸化炭素発生源 5 液化二酸化炭素昇圧装置 6 二酸化炭素供給装置 7 金型 8 ホッパ 9、10、11、12、13 二酸化炭素供給路 14 金型キャビティ 15 ベントスリット 16 ベント 17 穴 18 Oリング 19 ボンベ 20 加温器 21 減圧弁 22 ガス溜 23 供給用減圧弁 24 解放用減圧弁 34 樹脂相 35 炭素繊維 36 成形品表面 37 成形品表面に飛び出した炭素繊維 DESCRIPTION OF SYMBOLS 1 Molding apparatus 2 Injection cylinder 3 Mold clamping apparatus 4 Carbon dioxide generation source 5 Liquefied carbon dioxide booster 6 Carbon dioxide supply apparatus 7 Mold 8 Hopper 9, 10, 11, 12, 13 Carbon dioxide supply path 14 Mold cavity 15 Vent Slit 16 Vent 17 Hole 18 O-ring 19 Cylinder 20 Heater 21 Pressure reducing valve 22 Gas reservoir 23 Supply pressure reducing valve 24 Release pressure reducing valve 34 Resin phase 35 Carbon fiber 36 Molded product surface 37 Carbon fiber jumped out to molded product surface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 67/02 C08L 67/02 69/00 69/00 71/12 71/12 // B29K 25:00 B29K 25:00 67:00 67:00 69:00 69:00 71:00 71:00 105:00 105:00 (72)発明者 岩渕 義昌 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成株式会社内 (72)発明者 野村 一己 埼玉県児玉郡上里町嘉美1600番地6 Fターム(参考) 4F071 AA22 AA45 AA50 AA51 AA77 AB03 AD01 AE17 BA01 BB05 BC07 4F206 AA13 AA25 AA28 AA32 AB25 AD16 AR025 JA07 JF01 JN27 4J002 BC02W BN14W BN15W CF07X CG00X CH07X DA016 FA046 FD016 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 67/02 C08L 67/02 69/00 69/00 71/12 71/12 // B29K 25:00 B29K 25:00 67:00 67:00 69:00 69:00 71:00 71:00 105: 00 105: 00 (72) Inventor Yoshimasa Iwabuchi 1-3-1 Yoko, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Asahi Kasei Corporation (72) Inventor Kazumi Nomura 1600, Kami Kamisato-cho, Kodama-gun, Saitama 6F F-term (reference) 4F071 AA22 AA45 AA50 AA51 AA77 AB03 AD01 AE17 BA01 BB05 BC07 4F206 AA13 AA25 AA28 AA32 AB25 AD16 AR025 JA07 4 CF07X CG00X CH07X DA016 FA046 FD016

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維を2〜30重量%含有する熱可
塑性樹脂射出成形品であり、樹脂相はゴム強化スチレン
系樹脂或いはゴム強化スチレン系樹脂を含むアロイから
なり、該成形品の表面電気抵抗値が100Ω/□未満
で、且つ表面光沢度が90%以上であることを特徴とす
る炭素繊維強化ゴム強化スチレン系樹脂射出成形品。
1. A thermoplastic resin injection-molded article containing 2 to 30% by weight of carbon fiber, wherein a resin phase is made of a rubber-reinforced styrene-based resin or an alloy containing a rubber-reinforced styrene-based resin. A carbon fiber reinforced rubber reinforced styrene resin injection molded article having a resistance value of less than 100 Ω / □ and a surface glossiness of 90% or more.
【請求項2】 上記樹脂相が、ゴム強化スチレン系樹
脂、ゴム強化スチレン系樹脂/ポリカーボネート系アロ
イ、ゴム強化スチレン系樹脂/ポリフェニレンエーテル
系アロイ、ゴム強化スチレン系樹脂/ポリブチレンテレ
フタレート系アロイの中から選択される請求項1に記載
の射出成形品。
2. The resin phase is a rubber reinforced styrene resin, a rubber reinforced styrene resin / polycarbonate alloy, a rubber reinforced styrene resin / polyphenylene ether alloy, a rubber reinforced styrene resin / polybutylene terephthalate alloy. The injection molded product according to claim 1, which is selected from the group consisting of:
【請求項3】 二酸化炭素を充填した金型キャビティ
に、溶融した熱可塑性樹脂を充填する射出成形法で成形
した請求項1または2に記載の炭素繊維強化ゴム強化ス
チレン系樹脂射出成形品。
3. A carbon fiber reinforced rubber reinforced styrene resin injection molded article according to claim 1 or 2, which is molded by an injection molding method in which a molten thermoplastic resin is filled in a mold cavity filled with carbon dioxide.
【請求項4】 二酸化炭素を上記熱可塑性樹脂の固化温
度で、該熱可塑性樹脂に0.1重量%以上溶解する圧力
で金型キャビティに存在させ、次いで溶融した熱可塑性
樹脂を充填する射出成形法で成形した請求項3に記載の
炭素繊維強化ゴム強化スチレン系樹脂射出成形品。
4. Injection molding in which carbon dioxide is present in a mold cavity at a solidification temperature of the thermoplastic resin and at a pressure that dissolves the thermoplastic resin in an amount of 0.1% by weight or more, and then filled with the molten thermoplastic resin. The carbon fiber reinforced rubber reinforced styrene resin injection molded article according to claim 3, which is molded by a method.
【請求項5】 0.2重量%以上の二酸化炭素を高圧下
で溶解させた溶融状態の熱可塑性樹脂を、流動樹脂のフ
ローフロントで発泡が起きない圧力以上の二酸化炭素ガ
ス体で予め加圧した金型キャビティに充填する射出成形
法で成形した請求項3に記載の炭素繊維強化ゴム強化ス
チレン系樹脂射出成形品。
5. A thermoplastic resin in a molten state in which 0.2% by weight or more of carbon dioxide is dissolved under a high pressure is preliminarily pressurized with a carbon dioxide gas at a pressure not to cause foaming at a flow front of a fluid resin. The carbon fiber reinforced rubber reinforced styrene resin injection molded article according to claim 3, which is molded by an injection molding method of filling the molded mold cavity.
JP2001116852A 2001-04-16 2001-04-16 Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product Pending JP2002309006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001116852A JP2002309006A (en) 2001-04-16 2001-04-16 Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116852A JP2002309006A (en) 2001-04-16 2001-04-16 Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product

Publications (2)

Publication Number Publication Date
JP2002309006A true JP2002309006A (en) 2002-10-23
JP2002309006A5 JP2002309006A5 (en) 2008-05-29

Family

ID=18967516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116852A Pending JP2002309006A (en) 2001-04-16 2001-04-16 Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product

Country Status (1)

Country Link
JP (1) JP2002309006A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059033A1 (en) * 2003-12-18 2005-06-30 Lion Corporation Conductive thermoplastic resin composition and formed article using same
JP2009131970A (en) * 2007-11-28 2009-06-18 Mitsubishi Engineering Plastics Corp Front panel of flat panel display and injection molding method thereof
JP2009280746A (en) * 2008-05-23 2009-12-03 Tokyo Institute Of Technology Composite material member with uniform surface resistivity
KR100942491B1 (en) 2007-12-21 2010-02-12 제일모직주식회사 Thermoplastics elastomer/polyester resin composition and preparation method thereof
JP2017177695A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Apparatus and method for injection molding

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271439A (en) * 1988-04-23 1989-10-30 Toho Rayon Co Ltd Electrically-conductive plastic molding material
JPH06287437A (en) * 1993-03-30 1994-10-11 Nippon Zeon Co Ltd Thermoplastic resin composition
JPH10100184A (en) * 1996-09-27 1998-04-21 Asahi Chem Ind Co Ltd Method for molding synthetic resin
JPH10128783A (en) * 1996-09-03 1998-05-19 Asahi Chem Ind Co Ltd Method for molding thermoplastic resin
JPH10235695A (en) * 1997-02-28 1998-09-08 Asahi Chem Ind Co Ltd Novel molding method for synthetic resin
JPH11292981A (en) * 1998-04-15 1999-10-26 Asahi Chem Ind Co Ltd Kneaded material of thermoplastic resin and its production
JP2000218711A (en) * 1999-02-02 2000-08-08 Asahi Chem Ind Co Ltd Carbon fiber-containing thermoplastic resin molded product
JP2000290514A (en) * 1999-04-13 2000-10-17 Toyo Ink Mfg Co Ltd Conductive resin composition and manufacture thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271439A (en) * 1988-04-23 1989-10-30 Toho Rayon Co Ltd Electrically-conductive plastic molding material
JPH06287437A (en) * 1993-03-30 1994-10-11 Nippon Zeon Co Ltd Thermoplastic resin composition
JPH10128783A (en) * 1996-09-03 1998-05-19 Asahi Chem Ind Co Ltd Method for molding thermoplastic resin
JPH10100184A (en) * 1996-09-27 1998-04-21 Asahi Chem Ind Co Ltd Method for molding synthetic resin
JPH10235695A (en) * 1997-02-28 1998-09-08 Asahi Chem Ind Co Ltd Novel molding method for synthetic resin
JPH11292981A (en) * 1998-04-15 1999-10-26 Asahi Chem Ind Co Ltd Kneaded material of thermoplastic resin and its production
JP2000218711A (en) * 1999-02-02 2000-08-08 Asahi Chem Ind Co Ltd Carbon fiber-containing thermoplastic resin molded product
JP2000290514A (en) * 1999-04-13 2000-10-17 Toyo Ink Mfg Co Ltd Conductive resin composition and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059033A1 (en) * 2003-12-18 2005-06-30 Lion Corporation Conductive thermoplastic resin composition and formed article using same
JP2005179470A (en) * 2003-12-18 2005-07-07 Lion Corp Conductive thermoplastic resin composition
JP2009131970A (en) * 2007-11-28 2009-06-18 Mitsubishi Engineering Plastics Corp Front panel of flat panel display and injection molding method thereof
KR100942491B1 (en) 2007-12-21 2010-02-12 제일모직주식회사 Thermoplastics elastomer/polyester resin composition and preparation method thereof
JP2009280746A (en) * 2008-05-23 2009-12-03 Tokyo Institute Of Technology Composite material member with uniform surface resistivity
JP2017177695A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Apparatus and method for injection molding

Similar Documents

Publication Publication Date Title
EP0906817B2 (en) Coated molded article, method of recycling the same and apparatus therefor
JP5575669B2 (en) Method and dispersion for forming a metal layer on a substrate, and metallizable thermoplastic molding compound
JPWO2003061939A1 (en) Method for producing recycled thermoplastic resin molded product
US9273204B2 (en) Uncoated highly reflective impact-resistant injection-molded article and process for producing same
CN101522956A (en) Method for applying a metal layer to a substrate
CN109312083B (en) Injection-molded body
WO1996030435A1 (en) Molded article laminated with acrylic film and acrylic film
KR101750603B1 (en) Thermoplastic resin composition and molded article prepared therefrom
CA2296931C (en) Automobile exterior components
JP2009007559A (en) Thermoplastic resin composition for blow molding and product of blow molding
JP2002309006A (en) Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product
WO2001096084A1 (en) Method of injection molding of thermoplastic resin
KR100643742B1 (en) Thermoplastic Resin Composition with Good Adhesion of Metal Plate and High Impact Strength
US6913831B2 (en) Coating material for recycling and a thermoplastic resin mold
JP2003238800A (en) Polyamide resin composition
JP5314311B2 (en) Thermoplastic resin composition and resin molded product
JP2001062862A (en) Method for injection molding amorphous thermoplastic
JP2001131418A (en) Thermoplastic resin composition, molding material, pellet for injection molding and molded product
US20080241514A1 (en) Method for forming plating film, polymer member, and method for producing the same
JP4902831B2 (en) Injection molding of polymer alloy
JP3875587B2 (en) Gas-assisted injection molding method of thermoplastic resin
JP4466062B2 (en) Styrene rubber-containing resin composition for IMC and IMC molded product
JP2001181515A (en) Resin composition
JPH1025394A (en) Rubber-reinforced styrene resin composition
JP2019099621A (en) Resin composition for metal joint, metal resin composite, and manufacturing method therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621