JPH10235695A - Novel molding method for synthetic resin - Google Patents

Novel molding method for synthetic resin

Info

Publication number
JPH10235695A
JPH10235695A JP4598697A JP4598697A JPH10235695A JP H10235695 A JPH10235695 A JP H10235695A JP 4598697 A JP4598697 A JP 4598697A JP 4598697 A JP4598697 A JP 4598697A JP H10235695 A JPH10235695 A JP H10235695A
Authority
JP
Japan
Prior art keywords
molding
synthetic resin
mold
mold cavity
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4598697A
Other languages
Japanese (ja)
Inventor
Hiroshi Kataoka
紘 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4598697A priority Critical patent/JPH10235695A/en
Publication of JPH10235695A publication Critical patent/JPH10235695A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1701Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • B29C2043/527Heating or cooling selectively cooling, e.g. locally, on the surface of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1701Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free
    • B29C2045/1702Component parts, details or accessories; Auxiliary operations using a particular environment during moulding, e.g. moisture-free or dust-free dissolving or absorbing a fluid in the plastic material

Abstract

PROBLEM TO BE SOLVED: To provide a novel molding method for providing a molding having excellent external appearance and stress crack resistance. SOLUTION: The method for molding by injecting synthetic resin in a mold cavity comprises the steps of fully filling the cavity with specific gas of three times of the solubility as large as solubility of the air and/or nitrogen in the resin at the time of molding, and injecting the resin in the cavity at least at a low flowing velocity of 200mm/sec or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は合成樹脂の成形法に
関する。
[0001] The present invention relates to a method for molding a synthetic resin.

【0002】[0002]

【従来の技術】合成樹脂の射出成形において、成形の生
産性の低下を最小限におさえて、型表面再現性を良くす
ることはこれまで常に要求されてきた課題である。一般
に合成樹脂の金型キャビティの流動速度が低いと型表面
再現性が悪い。更に射出圧力あるいは型締力が低い低圧
射出成形法では、型表面再現性が悪くなりやすい。特に
この低圧射出成形では、型表面再現性を改良することが
強く要求されてきた。
2. Description of the Related Art In injection molding of a synthetic resin, it has always been a challenge to improve mold surface reproducibility while minimizing a decrease in molding productivity. Generally, when the flow velocity of the synthetic resin mold cavity is low, the mold surface reproducibility is poor. Further, in a low-pressure injection molding method having a low injection pressure or a low mold clamping force, the reproducibility of the mold surface tends to deteriorate. Particularly in this low-pressure injection molding, it has been strongly required to improve the mold surface reproducibility.

【0003】射出圧力あるいは型締力が低い低圧射出成
形法について、これまで広く紹介され、実用されてい
る。低圧射出成形法として、Plastics Tec
hnology,April p.44(1994)、
あるいはUSP 4101617等に紹介されているガ
スアシスト射出成形法がある。この成形法は金型キャビ
ティへ合成樹脂を射出し、次いで合成樹脂の射出圧力よ
り低い圧力のガス体を射出する成形方法であり、ガス体
の圧力損失が小さいことを利用して合成樹脂流動端部に
まで均一に射出圧力を伝達し、低圧射出成形を行う方法
である。
[0003] Low-pressure injection molding methods with low injection pressure or mold clamping force have been widely introduced and put into practice. Plastics Tec is a low-pressure injection molding method.
hnology, April p. 44 (1994),
Alternatively, there is a gas assist injection molding method introduced in US Pat. This molding method is a molding method in which a synthetic resin is injected into a mold cavity, and then a gas material having a pressure lower than the injection pressure of the synthetic resin is injected. This is a method in which the injection pressure is uniformly transmitted to the parts and low-pressure injection molding is performed.

【0004】EP 0599009A1に示されている
オリゴマーアシスト射出成形法及び液体アシスト射出成
形法は同様にオリゴマーや液体を用いて低圧射出成形を
行う方法である。型締めプレートを若干後退させて金型
キャビティを肉厚にした状態で合成樹脂を射出し、次い
で型締めプレートを前進させて金型キャビティを所定の
肉厚に縮小することにより合成樹脂を低圧力で金型キャ
ビティ全体に充填する射出圧縮成形が最近広く使用され
ている。
The oligomer-assisted injection molding method and the liquid-assisted injection molding method shown in EP 059909A1 are methods for similarly performing low-pressure injection molding using an oligomer or a liquid. The synthetic resin is injected in a state where the mold cavity is thickened by slightly retreating the mold clamping plate, and then the synthetic resin is injected at a low pressure by moving the mold clamping plate forward to reduce the mold cavity to a predetermined thickness. Injection compression molding, which fills the entire mold cavity, has recently been widely used.

【0005】射出圧縮成形と同様の成形工程で、合成樹
脂を金型キャビティに押出成形で注入する押出圧縮成形
も使用されている。極めて低い射出圧力で、極めて低速
で射出を行うHettinga低圧射出成形法が、合成
樹脂,37(9) p.34(1992)等に紹介され
ており、成形品の形状によって良好に使用されている。
In the same molding process as injection compression molding, extrusion compression molding in which a synthetic resin is injected into a mold cavity by extrusion molding is also used. The Hettinga low pressure injection molding method, which performs injection at an extremely low speed at an extremely low injection pressure, is disclosed in Synthetic Resins, 37 (9) p. 34 (1992), etc., and are favorably used depending on the shape of the molded product.

【0006】これらの低圧射出成形では一般の射出成形
に比較して合成樹脂の充填圧力は低く、合成樹脂の型キ
ャビティ流動速度はおそくなる。この様に合成樹脂の型
キャビティ流動速度がおそくなると、射出成形品表面の
金型表面再現性は悪く、粗面になり、また耐ストレスク
ラック性(以後SCRと略称する。)も悪くなり、改良
が要求されている。
[0006] In these low-pressure injection moldings, the filling pressure of the synthetic resin is lower than in general injection molding, and the flow velocity of the synthetic resin in the mold cavity is lower. As described above, when the flow velocity of the synthetic resin in the mold cavity is reduced, the reproducibility of the mold surface of the injection-molded product is poor, the surface is rough, and the stress crack resistance (hereinafter abbreviated as SCR) is also deteriorated. Is required.

【0007】一般の射出成形では成形条件を種々変化さ
せて金型表面再現性や耐溶剤性を良くすることが行われ
ている。各種成形条件の中で最も影響のあるのは金型温
度であり、金型温度を合成樹脂の軟化温度付近まで上げ
ることが有効である。しかし、金型温度を高くすると、
可塑化された樹脂の冷却固化に必要な冷却時間が長くな
り成形能率が下がる。このため、金型温度を高くするこ
となく型表面の再現性を良くし、また、金型温度を高く
しても必要な冷却時間が長くならない方法が要求されて
おり、これを満たす試みがいくつか紹介されている。
In general injection molding, various molding conditions are used to improve mold surface reproducibility and solvent resistance. Among the various molding conditions, the most influential is the mold temperature, and it is effective to increase the mold temperature to around the softening temperature of the synthetic resin. However, when the mold temperature is increased,
The cooling time required for cooling and solidifying the plasticized resin is prolonged, and the molding efficiency is reduced. Therefore, there is a need for a method that improves the reproducibility of the mold surface without increasing the mold temperature and that does not increase the required cooling time even if the mold temperature is increased. Has been introduced.

【0008】一般の射出成形で金型キャビティを形成す
る型壁面を熱伝導率の小さい物質で被覆することにより
金型表面再現性を良くする断熱層被覆金型法については
WO93/06980等で紹介されている。成形直前に
金型表面を高周波誘導加熱する方法が、特公昭58−4
0504号公報や、USP 4340551、USP
4439492等に紹介されている。
In WO93 / 06980, etc., a method for coating a heat insulating layer for improving the reproducibility of a mold surface by coating the mold wall surface forming a mold cavity with a material having a low thermal conductivity in general injection molding is introduced. Have been. The method of high-frequency induction heating of the mold surface immediately before molding is disclosed in
No. 0504, USP 4,340,551, USP
4,439,492.

【0009】成形直前に金型キャビティに加熱ガス体を
吹き込み、型表面を加熱する方法が、特公昭45−22
020号、特開平6−170943号、特開平8−24
4072号の各公報等に紹介されている。金型に加熱
用、冷却用の孔をそれぞれとりつけておき交互に熱媒、
冷媒を流して金型の加熱、冷却を繰り返す方法も行われ
ている。
A method of blowing a heated gas body into a mold cavity immediately before molding to heat the mold surface is disclosed in Japanese Patent Publication No. 45-22 / 1972.
No. 020, JP-A-6-170943, JP-A-8-24
No. 4072, each publication. Heating and cooling holes are attached to the mold, and the heating medium is alternately
A method of repeating heating and cooling of a mold by flowing a coolant has also been performed.

【0010】[0010]

【発明が解決しようとする課題】本発明は、金型キャビ
ティ内の合成樹脂の流動速度が遅い時に型表面再現性が
悪くなるのを改良する成形法を提供することを目的とす
るものである。ガスアシスト射出成形、オリゴマーアシ
スト射出成形、射出圧縮成形、押出圧縮成形、Hett
inga低圧射出成形等の低圧射出成形では合成樹脂の
金型キャビティ流動速度が一般におそく、更にしばしば
その樹脂流動速度が流動中に急に変化する。流動速度が
おそいことにより金型表面再現性が悪く、更にその流動
速度が急に変化したところに一般にヘジテーションマー
クと称される見苦しいフローマークが生ずる。更に、合
成樹脂の型キャビティ流動速度がおそくなることにより
SCRが悪くなる。特にガスアシスト射出成形では成形
品のリブに形成されるガスチャンネル付近の表面に見苦
しいフローマークが発生しやすい。これらの外観不良や
SCRを改良することが要求されており、本発明はこれ
等に答えようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a molding method for improving the deterioration of mold surface reproducibility when the flow velocity of a synthetic resin in a mold cavity is low. . Gas assisted injection molding, oligomer assisted injection molding, injection compression molding, extrusion compression molding, Hett
In low pressure injection molding such as inga low pressure injection molding, the flow velocity of a synthetic resin in a mold cavity is generally slow, and more often the resin flow velocity changes abruptly during flow. The slow flow velocity results in poor mold surface reproducibility, and an awkward flow mark generally called a hesitation mark occurs when the flow velocity changes suddenly. Further, the SCR deteriorates due to the slow flow rate of the mold cavity of the synthetic resin. Particularly in gas-assisted injection molding, unsightly flow marks tend to occur on the surface near the gas channel formed in the rib of the molded product. It is required to improve these appearance defects and SCR, and the present invention is intended to answer these.

【0011】[0011]

【課題を解決するための手段】本発明者らは、金型キャ
ビティの樹脂低速流動、低射出圧力等と成形品の型表面
再現性の関係を研究し、更に成形品のSCR等との関係
を研究して本発明に至った。すなわち、本発明は、 1. 金型キャビティに合成樹脂を射出して成形する成
形法において、成形時における合成樹脂への溶解度が空
気及び/又は窒素の合成樹脂への溶解度の3倍以上であ
るガス体で金型キャビティを満たし、合成樹脂の金型キ
ャビティ流動速度が200mm/秒以下の低速射出を少
なくとも含む射出を行う合成樹脂の成形法。 2. 合成樹脂の金型キャビティ流動速度が100mm
/秒以下の低速射出を少なくとも含む射出を行う上記1
の合成樹脂の成形法。 3. ガス体で金型キャビティを大気圧に満たして成形
を行う上記1又は2の合成樹脂の成形法。 4. ガス体で金型キャビティを大気圧を越え、1.1
MPa未満の加圧状態に満たして成形を行う上記1又は
2の合成樹脂の成形法。 5. ガス体で金型キャビティを1.1MPa以上、1
0MPa未満の加圧状態に満たして成形を行う上記1又
は2の合成樹脂の成形法。 6. 金型キャビティに合成樹脂を射出して成形する成
形法が下記の低圧成形法から選択される成形法である上
記1、2、3、4又は5の合成樹脂の成形法。 (1)ガスアシスト射出成形。 (2)液体アシスト射出成形。 (3)オリゴマーアシスト射出成形。 (4)射出圧縮成形。 (5)押出圧縮成形。 (6)Hettinga射出成形。 7. 下記の型表面再現性改良成形法から選択される成
形法と併用する上記1、2、3、4、5又は6の合成樹
脂の成形法。 (1)断熱層被覆金型を使用する成形法。 (2)成形直前に金型表面を高周波誘導加熱する成形
法。 (3)成形直前に金型キャビティに加熱ガス体を吹き込
む成形法。 (4)金型に熱媒と冷媒を交互に流して成形する成形
法。 8. ガス体が炭酸ガスあるいは炭酸ガスを主成分とす
るガス体である上記1、2、3、4、5、6又は7の合
成樹脂の成形法。
The present inventors have studied the relationship between the low flow rate of resin in the mold cavity, low injection pressure, etc., and the reproducibility of the mold surface of the molded product. Have been studied to arrive at the present invention. That is, the present invention provides: In a molding method in which a synthetic resin is injected into a mold cavity and molded, the mold cavity is filled with a gas having a solubility in the synthetic resin at the time of molding that is three times or more the solubility of air and / or nitrogen in the synthetic resin. And a method of molding a synthetic resin by performing injection including at least low-speed injection of a synthetic resin having a mold cavity flow velocity of 200 mm / sec or less. 2. Mold cavity flow speed of synthetic resin is 100mm
1 above that performs injection including at least low-speed injection of not more than /
Molding method of synthetic resin. 3. The method for molding a synthetic resin according to the above 1 or 2, wherein the molding is performed by filling the mold cavity with a gas body at atmospheric pressure. 4. The gaseous body passes over the mold cavity above atmospheric pressure, 1.1
The method for molding a synthetic resin according to the above 1 or 2, wherein the molding is performed under a pressurized state of less than MPa. 5. The mold cavity is set to 1.1 MPa or more with a gas
The method for molding a synthetic resin according to the above 1 or 2, wherein the molding is performed under a pressurized state of less than 0 MPa. 6. The molding method of the above-mentioned 1, 2, 3, 4 or 5 wherein the molding method of injecting the synthetic resin into the mold cavity and molding is selected from the following low pressure molding methods. (1) Gas assist injection molding. (2) Liquid-assisted injection molding. (3) Oligomer assist injection molding. (4) Injection compression molding. (5) Extrusion compression molding. (6) Hettinga injection molding. 7. The molding method of the above-mentioned 1, 2, 3, 4, 5, or 6, which is used in combination with a molding method selected from the following mold surface reproducibility improving molding methods. (1) A molding method using a mold coated with a heat insulating layer. (2) A molding method in which the surface of a mold is subjected to high-frequency induction heating immediately before molding. (3) A molding method in which a heated gas body is blown into a mold cavity immediately before molding. (4) A molding method in which a heat medium and a refrigerant are alternately flowed into a mold to form the mold. 8. The method of molding a synthetic resin according to the above 1, 2, 3, 4, 5, 6, or 7, wherein the gas is carbon dioxide or a gas mainly containing carbon dioxide.

【0012】以下に本発明について詳しく説明する。本
発明に使用される合成樹脂は一般の射出成形に使用でき
る熱可塑性樹脂であり、ポリエチレン、ポリプロピレン
等のポリオレフィン、ポリスチレン、スチレン−アクリ
ロニトリル共重合体、ゴム強化ポリスチレン等のスチレ
ン系樹脂、ポリアミド、ポリエステル、ポリカーボネー
ト、ポリオキシメチレン、メタクリル樹脂、塩化ビニー
ル樹脂等である。合成樹脂には1〜60重量%の樹脂強
化物が含有されていることが好ましい。樹脂強化物とは
各種ゴム、ガラス繊維、カーボン繊維等の各種繊維、タ
ルク、炭酸カルシウム、カオリン等の無機粉末等であ
る。特に良好に使用できるのはゴム強化合成樹脂であ
り、その中で更に良好に使用できるのはゴム強化スチレ
ン系樹脂である。ゴム強化ポリスチレン、ABS樹脂、
AAS樹脂、MBS樹脂等は最も良好に使用できる。
Hereinafter, the present invention will be described in detail. The synthetic resin used in the present invention is a thermoplastic resin that can be used for general injection molding, such as polyethylene, polyolefin such as polypropylene, polystyrene, styrene-acrylonitrile copolymer, styrene-based resin such as rubber-reinforced polystyrene, polyamide, and polyester. , Polycarbonate, polyoxymethylene, methacrylic resin, vinyl chloride resin and the like. The synthetic resin preferably contains 1 to 60% by weight of a resin reinforcement. The resin-reinforced material includes various fibers such as various rubbers, glass fibers, and carbon fibers, and inorganic powders such as talc, calcium carbonate, and kaolin. Particularly preferred are rubber-reinforced synthetic resins, and among them, rubber-reinforced styrene-based resins are more preferably used. Rubber reinforced polystyrene, ABS resin,
AAS resin, MBS resin and the like can be most preferably used.

【0013】本発明法で成形される成形品は各種光学部
品、弱電機器や電子機器等のハウジング、各種日用品、
各種工業部品等の一般に使用される合成樹脂射出成形品
である。本発明に述べる金型とは、鉄又は鉄を主成分と
する鋼材、アルミニウム又はアルミニウムを主成分とす
る合金、亜鉛合金、ベリリウム−銅合金等の一般に合成
樹脂の成形に使用されている金型を包含する。特に鋼材
から成る金型が良好に使用できる。
The molded articles formed by the method of the present invention include various optical parts, housings for light electric appliances and electronic appliances, various daily necessities,
It is a commonly used synthetic resin injection molded product such as various industrial parts. The mold described in the present invention is a mold generally used for molding a synthetic resin such as iron or a steel material containing iron as a main component, aluminum or an alloy containing aluminum as a main component, a zinc alloy, and a beryllium-copper alloy. Is included. Particularly, a mold made of a steel material can be used favorably.

【0014】本発明の成形法には、金型キャビティに合
成樹脂を注入して成形する成形法が広く使用でき、一般
の射出成形が良好に使用できる。特に良好に使用できる
のは低圧射出成形である。低圧射出成形は、ガスアシス
ト射出成形、液体アシスト射出成形、オリゴマーアシス
ト射出成形、射出圧縮成形、押出圧縮成形、Hetti
nga低圧射出成形等の中から選択される。
As the molding method of the present invention, a molding method in which a synthetic resin is injected into a mold cavity and molded can be widely used, and general injection molding can be favorably used. A particularly good use is in low pressure injection molding. Low-pressure injection molding includes gas-assisted injection molding, liquid-assisted injection molding, oligomer-assisted injection molding, injection compression molding, extrusion compression molding, and Hetti.
nga low pressure injection molding or the like.

【0015】本発明の成形では、合成樹脂の型キャビテ
ィ流動速度が200mm/秒以下、好ましくは100m
m/秒以下の低速射出を少なくとも含む射出成形で成形
される。これには合成樹脂の射出速度が一時的に低速に
なる場合、瞬間的に流動が止まる場合、全体的に低速の
場合等の各種が含まれる。合成樹脂の型キャビティ流動
速度は金型キャビティの樹脂流動距離と合成樹脂の射出
時間を射出スクリューの前進時間等で測定すること等に
より算出できる。ガスアシスト射出成形で合成樹脂を射
出し、次いでガス体を射出して型キャビティを満たす場
合、一般に合成樹脂を高圧で射出し、次いでガス体を一
般に合成樹脂の半分以下の圧力で射出して成形するが、
低圧のガスに切り替えた後の樹脂流動速度は大幅に低下
する。高圧の合成樹脂を低圧のガス体に切り替える所
に、見苦しいフローマークが発生し、一般にヘジテーシ
ョンマークといわれている。ヘジテーションマークより
先の部分は樹脂は低速で流れ、型表面再現性が一般に悪
くなる。
In the molding of the present invention, the flow velocity of the synthetic resin in the mold cavity is 200 mm / sec or less, preferably 100 m / sec.
Molded by injection molding including at least low-speed injection of m / sec or less. This includes various cases such as a case where the injection speed of the synthetic resin temporarily becomes low, a case where the flow stops momentarily, and a case where the injection speed of the synthetic resin is entirely low. The flow velocity of the synthetic resin in the mold cavity can be calculated by measuring the flow distance of the resin in the mold cavity and the injection time of the synthetic resin based on the advancement time of the injection screw and the like. When plastic resin is injected by gas-assisted injection molding, and then a gas body is injected to fill the mold cavity, the synthetic resin is generally injected at a high pressure, and then the gas body is generally injected at a pressure less than half of the synthetic resin. But
The resin flow rate after switching to a low pressure gas is significantly reduced. Where a high-pressure synthetic resin is switched to a low-pressure gas, an unsightly flow mark is generated, which is generally called a hesitation mark. The resin flows at a low speed in a portion ahead of the hesitation mark, and the mold surface reproducibility generally deteriorates.

【0016】本発明の型キャビティを満たすガス体は、
成形時におけるガス体の合成樹脂への溶解度が3倍以上
のガス体であり、好ましくは4倍以上、更に好ましくは
5倍以上で、溶解度が大きい程好ましいガス体である。
成形時における溶解度とは合成樹脂の固化温度付近で、
且つ合成樹脂の成形圧力下における溶解度である。更に
ガス体は樹脂を劣化させないこと、安価であること、大
きな環境破壊性が少ないこと等の制約から選定される。
樹脂に対するガスの溶解度は、圧力降下法等により測定
される。
The gas filling the mold cavity of the present invention is:
It is a gas body having a solubility of the gas body in the synthetic resin of 3 times or more at the time of molding, preferably 4 times or more, more preferably 5 times or more, and the larger the solubility, the more preferable the gas body.
The solubility during molding is around the solidification temperature of the synthetic resin,
And the solubility under the molding pressure of the synthetic resin. Further, the gas body is selected from the constraints of not deteriorating the resin, being inexpensive, and having little environmental destruction.
The solubility of the gas in the resin is measured by a pressure drop method or the like.

【0017】本発明の型キャビティを満たすガス体とし
ては、炭酸ガス、炭化水素、ハロゲン化物等が好まし
く、特に好ましくは炭酸ガスである。ガス体は溶解度が
大きいものを含む2種以上の混合物であっても使用でき
る。炭酸ガスに空気が混入したガス体でも、その溶解度
が3倍以上であれば本発明に使用できる。炭酸ガスと空
気の混合ガスの場合、炭酸ガスが50容量%以上である
ことが好ましく、更に好ましくは70容量%以上、特に
好ましくは90容量%以上であり、最も好ましくは95
容量%以上で、限りなく100%に近い程好ましい。
The gaseous substance filling the mold cavity of the present invention is preferably a carbon dioxide gas, a hydrocarbon, a halide or the like, and particularly preferably a carbon dioxide gas. The gas body can be used even if it is a mixture of two or more kinds including those having high solubility. A gas body in which air is mixed with carbon dioxide gas can be used in the present invention as long as its solubility is three times or more. In the case of a mixed gas of carbon dioxide and air, the content of carbon dioxide is preferably 50% by volume or more, more preferably 70% by volume or more, particularly preferably 90% by volume or more, and most preferably 95% by volume or more.
It is preferable that the content is not less than 100% by volume and as close to 100% as possible.

【0018】炭酸ガスは合成樹脂に良く溶解して良好な
可塑剤になって合成樹脂の流動性を向上させ、特に良好
に使用できる。次に炭酸ガスの各合成樹脂への溶解量、
炭酸ガス溶解による合成樹脂のガラス転移温度(以後T
gと略称する。)の低下等について図を用いて説明す
る。図2〜図11は各種文献に記載の報告を示したもの
である。すなわち、図2と図3は、成形加工,96
p.279(1989)より、図4、図5、図6、図7
と図10は、J.Appl.Polym.Sci.,V
ol.30 p.4019(1985)より、図8と図
11はJ.Polym.Sci.,Vol.30 p.
2633(1985)より、図9はJ.Membran
e Sci.,Vol.5 p.63(1979)から
それぞれ引用した図である。図中の炭酸ガスの各樹脂へ
の溶解量を示すC(cm3 CO2 (STP)/cm3
olymer)は、樹脂に溶解した炭酸ガスの35℃、
20気圧における容量である。
Carbon dioxide gas dissolves well in the synthetic resin, becomes a good plasticizer, improves the fluidity of the synthetic resin, and can be used particularly favorably. Next, the amount of carbon dioxide dissolved in each synthetic resin,
Glass transition temperature of synthetic resin by dissolution of carbon dioxide (hereinafter T
Abbreviated as g. ) Will be described with reference to the drawings. 2 to 11 show reports described in various documents. In other words, FIGS.
p. 279 (1989), FIGS. 4, 5, 6, and 7
And FIG. Appl. Polym. Sci. , V
ol. 30 p. 8 and FIG. 11 are J. 4019 (1985). Polym. Sci. , Vol. 30 p.
FIG. 9 shows the results of J. 2633 (1985). Membran
e Sci. , Vol. 5 p. 63 (1979). C (cm 3 CO 2 (STP) / cm 3 p) indicating the amount of carbon dioxide dissolved in each resin in the figure.
polymer) is 35 ° C. of carbon dioxide dissolved in the resin,
The capacity at 20 atm.

【0019】図2と図3はポリスチレン(PS)への炭
酸ガスと窒素ガスの溶解量を示した図であり、炭酸ガス
は窒素ガスの約10倍の溶解量があり、可塑化効果が大
きい。図4と図5は炭酸ガスのポリスチレンへの溶解量
を示し、図6は炭酸ガス溶解によるTgの低下量を示
す。ポリスチレンは炭酸ガスを溶解させることにより容
易にTg低下が達成できる。
FIGS. 2 and 3 show the dissolution amounts of carbon dioxide and nitrogen gas in polystyrene (PS). Carbon dioxide has a dissolution amount of about 10 times that of nitrogen gas and has a large plasticizing effect. . 4 and 5 show the amount of carbon dioxide dissolved in polystyrene, and FIG. 6 shows the amount of decrease in Tg due to the dissolution of carbon dioxide. Polystyrene can easily reduce Tg by dissolving carbon dioxide gas.

【0020】図7と図8はポリメチルメタクリレート
(PMMA)とポリフッ化ビニリデン(PVF2)ポリ
マーアロイへの炭酸ガスの溶解量と、炭酸ガス溶解によ
るTgの低下量を示した図であり、炭酸ガス溶解により
Tg低下を行うことができる。図9と図10はポリカー
ボネート(PC)とポリスルホンへの炭酸ガス溶解量を
示した図である。
FIGS. 7 and 8 are graphs showing the amount of carbon dioxide dissolved in polymethyl methacrylate (PMMA) and polyvinylidene fluoride (PVF 2 ) polymer alloys and the decrease in Tg due to the dissolution of carbon dioxide. Tg can be reduced by gas dissolution. FIGS. 9 and 10 show the amounts of dissolved carbon dioxide in polycarbonate (PC) and polysulfone.

【0021】樹脂にポリスチレン、ガス体に炭酸ガスを
使用した場合、ポリスチレンの固化温度100℃で炭酸
ガスは圧力約1.5MPaで1重量%溶解する。一方、
ポリスチレンと窒素の組合せでは、同じ条件下で窒素は
0.1重量%以下しか溶けず、金型と樹脂の界面に窒素
が存在することで、金型表面状態の成形品への転写状態
が低くなる。窒素がウエルドラインに残ればウエルドラ
インの目立ちが大きくなり、エアートラップとして一般
部に残れば痘痕状の跡が残る。
When polystyrene is used as the resin and carbon dioxide is used as the gas, the carbon dioxide gas is dissolved at a solidification temperature of 100 ° C. at a pressure of about 1.5 MPa and 1% by weight. on the other hand,
In the combination of polystyrene and nitrogen, only 0.1% by weight or less of nitrogen dissolves under the same conditions, and the presence of nitrogen at the interface between the mold and the resin lowers the transfer state of the mold surface state to the molded product. Become. If nitrogen remains on the weld line, the weld line becomes more conspicuous, and if it remains on the general part as an air trap, a trace of pox remains.

【0022】図11は各合成樹脂の炭酸ガス溶解による
Tg低下量をまとめて示した図である。炭酸ガス溶解量
によるTgの低下量はポリカーボネートを除けばほぼ同
一である。ポリカーボネートは炭酸ガス溶解によるTg
の低下が特に大きい。型キャビティを満たすガス体は各
種圧力で使用されるが、一般には大気圧から10MPa
の範囲で選択されることが好ましい。本発明に述べる特
定ガス圧力は絶対圧で示す。すなわち、0.1MPaが
ほぼ大気圧に相当する。特定ガス体の圧力は成形法の種
類、特定ガスの種類等により選択して使用される。一工
程に使用するガスの量を最小限に押さえ、金型のシール
やガス供給装置の構造を簡単にするために必要範囲内で
低い方が好ましく、一般に大気圧〜5MPaが特に好ま
しい。圧力が高くなると金型を開こうとする力が無視で
きなくなったり、金型のシールが難しくなること、安全
性等の点で問題が生じやすい。
FIG. 11 is a diagram collectively showing the amount of decrease in Tg due to dissolution of carbon dioxide in each synthetic resin. The decrease in Tg due to the dissolved amount of carbon dioxide is almost the same except for polycarbonate. Polycarbonate is Tg by dissolving carbon dioxide
Is particularly large. The gas filling the mold cavity is used at various pressures, but generally from atmospheric pressure to 10 MPa
Is preferably selected in the range. The specific gas pressure described in the present invention is indicated by an absolute pressure. That is, 0.1 MPa substantially corresponds to the atmospheric pressure. The pressure of the specific gas body is selected and used depending on the type of the molding method, the type of the specific gas, and the like. In order to minimize the amount of gas used in one step and to simplify the structure of the mold seal and the gas supply device, the pressure is preferably as low as possible and generally from atmospheric pressure to 5 MPa. If the pressure is increased, the force for opening the mold cannot be ignored, the sealing of the mold becomes difficult, and problems such as safety tend to occur.

【0023】金型キャビティに射出された溶融合成樹脂
は金型キャビティで樹脂流動先端部(フローフロント)
に達してから金型壁面に向かい、冷却された金型壁面に
接触して冷却固化され、金型壁面上に固化層を形成す
る、いわゆるファウンテンフローと称される流れをす
る。金型壁面に接触した合成樹脂に直ちに高圧力がかか
れば、型表面再現性は良くなるが、型壁面に接触した合
成樹脂にゆっくりと圧力がかかれば、合成樹脂は冷却が
進んでから型壁面に押し付けられることになり、型表面
再現性は悪くなる。従って、高速射出を行うと型表面再
現性は一般に良く、低速射出を行うと型表面再現性は悪
くなる。
The molten synthetic resin injected into the mold cavity flows into the resin cavity at the mold cavity (flow front).
After that, it flows toward the mold wall surface, contacts the cooled mold wall surface, is cooled and solidified, and forms a solidified layer on the mold wall surface. Immediately applying a high pressure to the synthetic resin in contact with the mold wall improves the mold surface reproducibility, but if a slow pressure is applied to the synthetic resin in contact with the mold wall, the synthetic resin will cool down before the mold wall And the mold surface reproducibility deteriorates. Therefore, when the high-speed injection is performed, the mold surface reproducibility is generally good, and when the low-speed injection is performed, the mold surface reproducibility is deteriorated.

【0024】本発明は金型キャビティを炭酸ガス等の成
形時における合成樹脂への溶解度が空気及び/又は窒素
の合成樹脂への溶解度の3倍以上であるガス体で満たし
て射出成形し、射出された合成樹脂に該ガス体を吸収さ
せながら成形する方法である。すなわち、フローフロン
トに達した合成樹脂は金型キャビティのガス体に接触
し、該ガス体の一部分が合成樹脂のフローフロント部分
に吸収される。該ガス体を吸収した合成樹脂は軟化温度
が低下し、それが型壁面に押し付けられて型表面再現性
が良くなる。射出速度が遅い程フローフロントの合成樹
脂と金型キャビティのガス体との接触時間が長くなり、
該ガス体吸収時間が長くなる結果、フローフロントに達
した合成樹脂が吸収するガス体の量は多量になる。この
ことから、金型キャビティを成形時における合成樹脂へ
の溶解度が空気及び/又は窒素の合成樹脂への溶解度の
3倍以上であるガス体で満たして成形した場合には、合
成樹脂の金型キャビティ流動速度が遅い程、金型キャビ
ティを該ガス体で満たした効果は大きく現れ、型表面再
現性の向上効果が大きくなる。
According to the present invention, the mold cavity is filled with a gas having a solubility in the synthetic resin of at least three times the solubility of air and / or nitrogen in the synthetic resin at the time of molding carbon dioxide or the like, and injection molding is performed. This is a method in which the synthetic resin is molded while absorbing the gas. That is, the synthetic resin that has reached the flow front comes into contact with the gas in the mold cavity, and a part of the gas is absorbed by the flow front of the synthetic resin. The softening temperature of the synthetic resin having absorbed the gas body is lowered, and the softening temperature is pressed against the mold wall surface to improve mold surface reproducibility. The slower the injection speed, the longer the contact time between the flow front synthetic resin and the gas in the mold cavity,
As a result of the longer gas absorption time, the amount of gas absorbed by the synthetic resin that has reached the flow front is increased. From this, when the mold cavity is filled with a gas having a solubility in the synthetic resin at the time of molding that is three times or more the solubility of air and / or nitrogen in the synthetic resin, the mold of the synthetic resin is molded. The lower the cavity flow rate, the greater the effect of filling the mold cavity with the gas, and the greater the effect of improving mold surface reproducibility.

【0025】このことを図12を用いて説明する。図1
2は合成樹脂の金型キャビティ流動速度と成形品の光沢
度(型表面が鏡面の場合、型表面再現性と同一意味を有
する)の関係を示すグラフ図であり、一般の射出成形で
は曲線Yに示すカーブをとる。本発明の金型キャビティ
を成形時における合成樹脂への溶解度が空気及び/又は
窒素の合成樹脂への溶解度の3倍以上であるガス体で満
たして射出成形を行うと曲線Xで示すカーブをとる。低
速射出の時の光沢度の差△Aは高速射出の時の光沢度の
差△Bより大きくなる。すなわち、低速射出のときに上
記ガス体で金型キャビティを満たす効果が大きくなる。
This will be described with reference to FIG. FIG.
2 is a graph showing the relationship between the flow rate of the mold cavity of the synthetic resin and the glossiness of the molded product (which has the same meaning as the mold surface reproducibility when the mold surface is a mirror surface). Take the curve shown in When the mold cavity of the present invention is filled with a gas having a solubility in synthetic resin of 3 or more times greater than the solubility of air and / or nitrogen in synthetic resin at the time of molding, and injection molding is performed, a curve X is obtained. . The gloss difference ΔA at the time of low-speed injection is larger than the gloss difference ΔB at the time of high-speed injection. That is, the effect of filling the mold cavity with the gas body at the time of low-speed injection is increased.

【0026】金型キャビティを満たすガス体のガス圧力
が高い程、合成樹脂に吸収されるガス量は多くなり、型
表面再現性の向上効果は大きくなるが、ガス圧力が低く
ても低速射出の効果はそれ相応に現れる。ガス体圧力は
必要に応じて選択され、大気圧、大気圧を越え1.1M
Pa未満の圧力、1.1MPaを越え10MPa未満の
圧力等が使用される。該ガス体の圧力が低い場合には、
他の型表面再現性を良くする他の各種成形法と併用して
使用することが好ましい。
The higher the gas pressure of the gas filling the mold cavity, the greater the amount of gas absorbed by the synthetic resin, and the greater the effect of improving mold surface reproducibility. The effect appears accordingly. The gas pressure is selected as required, and is atmospheric pressure, over atmospheric pressure and 1.1M
A pressure of less than Pa, a pressure of more than 1.1 MPa and less than 10 MPa, or the like is used. When the pressure of the gas body is low,
It is preferable to use it in combination with other various molding methods for improving other mold surface reproducibility.

【0027】更に本発明を図面を用いて説明する。図1
3は、本発明が実施される低圧射出成形の、ガスアシス
ト射出成形、オリゴマーアシスト射出成形、液体アシス
ト射出成形を説明する図である。図14はガスアシスト
射出成形品に形成されるガスチャンネル付近の成形品断
面を示す。
Further, the present invention will be described with reference to the drawings. FIG.
FIG. 3 is a diagram illustrating gas-assisted injection molding, oligomer-assisted injection molding, and liquid-assisted injection molding of low-pressure injection molding in which the present invention is implemented. FIG. 14 shows a cross section of a molded article near a gas channel formed in a gas assist injection molded article.

【0028】図15は、各種流体の温度と粘度の関係を
示す。図16は、ガスアシスト射出成形等の別の成形例
を示す。図17は、本発明が実施される低圧射出成形の
うちの射出圧縮成形を説明する図である。図13におい
て、金型1で形成される型キャビティ2に、合成樹脂3
を射出し、次いでガス体5を射出して金型キャビティ2
を満たし、次いで金型1を開いて成形品6を取り出す。
合成樹脂3は高射出圧力で射出されるが、ガス体5の注
入圧力は合成樹脂3の射出圧力より大幅に低く、一般に
合成樹脂の射出圧力の半分以下であり、低圧射出成形と
なる。従って、射出された合成樹脂の型キャビティ内流
動速度は、射出が合成樹脂からガス体に切り替わる時に
連動して変化する。この流動速度が変化する所4に、成
形品表面に一般にヘジテーションマークと称される見苦
しいフローマークが残る。更にこのヘジテーションマー
クから流動端部までの間は金型表面再現性も悪くなる。
又、更に低流動速度で充填されると、成形品のSCRも
悪くなる。
FIG. 15 shows the relationship between the temperature and the viscosity of various fluids. FIG. 16 shows another example of molding such as gas-assisted injection molding. FIG. 17 is a diagram illustrating injection compression molding of low pressure injection molding in which the present invention is implemented. In FIG. 13, a synthetic resin 3 is placed in a mold cavity 2 formed by a mold 1.
And then inject a gas body 5 to mold cavity 2
Is satisfied, and then the mold 1 is opened and the molded product 6 is taken out.
Although the synthetic resin 3 is injected at a high injection pressure, the injection pressure of the gas body 5 is significantly lower than the injection pressure of the synthetic resin 3 and generally less than half the injection pressure of the synthetic resin, resulting in low-pressure injection molding. Therefore, the flow velocity of the injected synthetic resin in the mold cavity changes in conjunction with the switching of the injection from the synthetic resin to the gas body. Where the flow velocity changes, an unsightly flow mark generally called a hesitation mark remains on the surface of the molded article. Further, the mold surface reproducibility is poor between the hesitation mark and the flow end.
In addition, if the filling is performed at a lower flow rate, the SCR of the molded product also deteriorates.

【0029】本発明は、これらの問題点を改良した成形
法である。すなわち、金型キャビティを炭酸ガス等の成
形時における合成樹脂への溶解度が空気及び/又は窒素
の合成樹脂への溶解度の3倍以上である特定ガス体で満
たした状態で射出成形を行い、合成樹脂の金型キャビテ
ィ内の流動速度が遅くなるとそれだけ特定ガス体の合成
樹脂への吸収量を多くし、型表面再現性を良くする。ガ
スアシスト射出成形では金型キャビティを満たす量の合
成樹脂を射出し、次いで合成樹脂が金型内で冷却して収
縮する量のガス体を圧入する方法も広く使用されてい
る。ガス体は金型キャビティの厚肉部を選択的に進み、
ガスチャンネルを形成する。このガスチャンネル付近の
成形品表面に発生する各種フローマーク等の改良にも本
発明は有効である。図14において、ガスアシスト射出
成形では成形品7のリブ8の根元の厚肉部にガスチャン
ネル9が形成される。このガスチャンネル9の表面部1
0に発生するフローマークを本発明法により改良でき
る。
The present invention is a molding method which solves these problems. That is, injection molding is performed in a state where the mold cavity is filled with a specific gas body having a solubility in synthetic resin of 3 times or more that of air and / or nitrogen in synthetic resin at the time of molding carbon dioxide or the like. As the flow velocity of the resin in the mold cavity decreases, the amount of the specific gas absorbed by the synthetic resin increases, thereby improving the mold surface reproducibility. In gas-assisted injection molding, a method of injecting an amount of synthetic resin that fills a mold cavity and then press-fitting an amount of gas that shrinks by cooling the synthetic resin in the mold is also widely used. The gas body selectively travels through the thick part of the mold cavity,
Form a gas channel. The present invention is also effective in improving various flow marks and the like generated on the surface of the molded article near the gas channel. In FIG. 14, in the gas assist injection molding, a gas channel 9 is formed in a thick portion at the base of the rib 8 of the molded product 7. Surface 1 of this gas channel 9
The flow mark generated at 0 can be improved by the method of the present invention.

【0030】ガスアシスト射出成形のガス体を他の流体
に変えても同様な結果が得られる。図15は表1に示す
各種流体の温度と粘度の関係を示す図であり、射出時の
温度に於いて、最初に射出される合成樹脂の粘度の1/
50以下の粘度の流体であれば同様に使用できる。流体
として液体を使用した場合が液体アシスト射出成形であ
り、低分子量重合体を使用した場合がオリゴマーアシス
ト射出成形である。この液体アシスト射出成形、オリゴ
マーアシスト射出成形においても図13及び図14で説
明したことと同様の結果を得る。
Similar results can be obtained by changing the gas body of the gas-assisted injection molding to another fluid. FIG. 15 is a graph showing the relationship between the temperature and the viscosity of the various fluids shown in Table 1, and shows that at the temperature at the time of injection, 1/100 of the viscosity of the synthetic resin injected first.
A fluid having a viscosity of 50 or less can be similarly used. The case where a liquid is used as a fluid is liquid-assisted injection molding, and the case where a low molecular weight polymer is used is oligomer-assisted injection molding. In the liquid-assisted injection molding and the oligomer-assisted injection molding, the same result as that described with reference to FIGS. 13 and 14 is obtained.

【0031】[0031]

【表1】 [Table 1]

【0032】図16はガスアシスト射出成形で成形され
た別の成形品を示す。図16において、成形品11には
ゲート12から樹脂流動端部13へ厚肉部14が形成さ
れている。ゲート12から合成樹脂を射出し、次いでガ
ス体を射出するとガス体は厚肉部を選択的に進行し、ガ
スチャンネル15が形成される。このガスチャンネル1
5のガス体圧力により樹脂流動端部13へ均一に注入圧
力が伝達される。図16(a)の成形品のA−A′断面
を同(b)に示す。この成形品においても、図13で説
明したことと同様な金型表面再現性やSCRの問題が起
こり、本発明の成形法を用いることにより良好な成形品
を得る。
FIG. 16 shows another molded article formed by gas-assisted injection molding. In FIG. 16, a thick part 14 is formed on a molded product 11 from a gate 12 to a resin flowing end 13. When the synthetic resin is injected from the gate 12 and then the gas is injected, the gas selectively travels through the thick portion, and the gas channel 15 is formed. This gas channel 1
The injection pressure is uniformly transmitted to the resin flowing end 13 by the gas pressure of 5. FIG. 16B shows an AA ′ cross section of the molded product in FIG. Also in this molded product, the same problem of the mold surface reproducibility and SCR as described with reference to FIG. 13 occurs, and a good molded product is obtained by using the molding method of the present invention.

【0033】図17は本発明で述べる低圧射出成形の一
つである射出圧縮成形を示す。図17において、射出成
形機の型締めプレートを若干後退させることにより金型
1の移動側を後退させて金型キャビティ2を肉厚にした
状態で、合成樹脂3を射出し、次いで型締プレートを前
進させることにより金型1の移動側を前進させて金型キ
ャビティを所定の肉厚にすることにより、合成樹脂を低
圧力で金型キャビティに充填する。合成樹脂が射出さ
れ、次いで金型キャビティ肉厚を減少し始める段階で型
キャビティ内の合成樹脂の流動速度が一般に変化し、そ
の変化する所4に見苦しいフローマークが発生する。ま
た、型キャビティの肉厚を減少することにより低圧で型
キャビティを満たす時の、合成樹脂の型キャビティ流動
速度は遅く、従ってその部分の成形品の金型表面再現性
は悪くなり、光沢度は悪くなる。更に、合成樹脂の型キ
ャビティ流動速度が遅くなることにより、成形品のSC
Rも悪くなる。本発明法を用いることにより、これらの
外観不良、SCRを改善する。図17において、合成樹
脂を射出成形機から射出する代わりに、押出成形機から
注入して圧縮する、押出圧縮成形においても同様の効果
が得られる。
FIG. 17 shows injection compression molding which is one of the low pressure injection moldings described in the present invention. In FIG. 17, the synthetic resin 3 is injected while the mold cavity 2 is made thick by retreating the mold 1 by slightly retracting the mold clamping plate of the injection molding machine, and then injecting the mold clamping plate. The synthetic resin is filled into the mold cavity at a low pressure by advancing the mold 1 to advance the moving side of the mold 1 to make the mold cavity a predetermined thickness. At the stage where the synthetic resin is injected and then the mold cavity thickness begins to decrease, the flow velocity of the synthetic resin in the mold cavity generally changes, producing unsightly flow marks at the points of change. In addition, when filling the mold cavity with a low pressure by reducing the thickness of the mold cavity, the flow velocity of the synthetic resin in the mold cavity is slow, so that the reproducibility of the mold surface of the molded product in that part is deteriorated, and the glossiness is reduced. Deteriorate. Further, since the flow velocity of the synthetic resin in the mold cavity is reduced, the SC
R also gets worse. By using the method of the present invention, these poor appearance and SCR are improved. In FIG. 17, instead of injecting the synthetic resin from the injection molding machine, the same effect can be obtained in the extrusion compression molding in which the resin is injected from the extrusion molding machine and compressed.

【0034】図18は合成樹脂の金型キャビティ内の流
動パターンを示し、図19は樹脂流動により剪断発熱が
起こることを示す。図18において、冷却された金型2
2で構成される金型キャビティへ加熱可塑化された合成
樹脂が射出されると、射出された合成樹脂は冷却された
型壁面に接して直ちに固化層23を形成する。そして引
き続き射出される合成樹脂は該固化層23の中を進行
し、フローフロント16に達してから型壁面へ向かう流
れ17、いわゆるファウンテンフローをする。合成樹脂
の流速18は速度分布曲線20に示す様に金型キャビテ
ィの中心19で最も速く、固化層23に近づく程遅くな
る。本発明は金型キャビティを炭酸ガス等の成形時にお
ける合成樹脂への溶解度が空気及び/又は窒素の合成樹
脂への溶解度の3倍以上である特定ガス体で満たして射
出成形し、射出された合成樹脂が該特定ガス体を吸収し
ながら成形する方法である。すなわち、フローフロント
に達した合成樹脂は特定ガス体に接触し、特定ガス体の
一部がフローフロントの合成樹脂に吸収される。特定ガ
ス体を吸収した合成樹脂は軟化温度が低下し、型表面再
現性が良くなる。射出速度が遅い程特定ガス体吸収時間
が長くなり、フローフロント部の合成樹脂が吸収する特
定ガス体の量は多量になる。このことから、金型キャビ
ティを特定ガス体で満たして成形した場合には、合成樹
脂の金型キャビティ流動速度が遅い程、特定ガス体を用
いる効果は大きく現れ、型表面再現性の向上効果が大き
くなる。
FIG. 18 shows a flow pattern of the synthetic resin in the mold cavity, and FIG. 19 shows that shear heat is generated by the flow of the resin. In FIG. 18, the cooled mold 2
When the synthetic resin that has been heat-plasticized is injected into the mold cavity constituted by 2, the injected synthetic resin comes into contact with the cooled mold wall surface and immediately forms the solidified layer 23. Then, the subsequently injected synthetic resin proceeds in the solidified layer 23, reaches the flow front 16 and then flows 17 toward the mold wall surface, so-called fountain flow. The flow rate 18 of the synthetic resin is the highest at the center 19 of the mold cavity as shown by the velocity distribution curve 20, and becomes slower as it approaches the solidified layer 23. According to the present invention, the mold cavity is filled with a specific gas having a solubility in synthetic resin, such as carbon dioxide, which is three times or more greater than the solubility of air and / or nitrogen in the synthetic resin, and injection molding is performed. This is a method in which the synthetic resin is molded while absorbing the specific gas body. That is, the synthetic resin that has reached the flow front contacts the specific gas body, and a part of the specific gas body is absorbed by the synthetic resin at the flow front. The softening temperature of the synthetic resin that has absorbed the specific gas body is lowered, and the mold surface reproducibility is improved. The lower the injection speed, the longer the specific gas body absorption time and the larger the amount of the specific gas body absorbed by the synthetic resin in the flow front portion. From this, when the mold cavity is filled with the specific gas body and molded, the effect of using the specific gas body increases as the flow velocity of the synthetic resin in the mold cavity decreases, and the effect of improving the mold surface reproducibility is reduced. growing.

【0035】流動中の合成樹脂には剪断速度分布曲線2
1に示す剪断力が発生し、剪断力に比例する発熱が起こ
る。この発熱量は射出速度が大きい時には極めて大きな
量であり、固化層に接する位置に発生し、固化層の増大
を阻止する働きをする。射出速度によりどの程度の発熱
が起こるかを図19に示す。図19は合成樹脂流動速度
を変化させて、その発熱量を次の条件で計算し、金型充
填直後の合成樹脂の温度分布を示したものである。 金型 :鋼鉄 金型キャビティサイズ:60×290×2mm(幅×長
さ×厚み) 合成樹脂 :旭化成ポリスチレン492 合成樹脂温度:240℃ 金型温度 : 50℃ 射出充填時間:0.1秒、0.4秒、1.0秒 計算に使用したソフト:MOLD FLOW PTY
Ltd.製のMOLDFLOW/FLOW ゲートからの位置が25mm(A),145mm
(B),265mm(C)の3点で樹脂充填直後の樹脂
断面方向の温度分布を示す。合成樹脂の流動速度が速い
時にはその発熱量が極めて大きく、その発熱が固化層に
沿って起こるため、固化層の成長が押さえられ、固化層
が薄い状態で充填される。すなわち、合成樹脂の一般の
射出成形では自己発熱により固化層の増大を押さえ、流
路を確保しつつ成形する。これに対して、低速射出では
発熱が少なく、低速流動により流動中に固化層が厚くな
り、固化層が厚い状態で充填される。低速射出成形では
この意味からは極めて流動に厳しい条件で射出成形して
いることになる。この固化層が厚くなることが成形品の
SCRを悪くしていると推定される。本発明は金型キャ
ビティを炭酸ガス等の成形時における合成樹脂への溶解
度が空気及び/又は窒素の合成樹脂への溶解度の3倍以
上である特定ガス体で満たして射出成形し、射出された
合成樹脂が該特定ガス体を吸収しながら成形する方法で
あり、特定ガス体を吸収して軟化温度が低下した合成樹
脂が固化層を形成することになり、それだけ固化層を薄
くできる。射出速度が遅い程特定ガス体吸収時間が長く
なり、フローフロントに達した合成樹脂が吸収する特定
ガス体の量は多量になり、それだけ固化層の厚みを薄く
できる。
A shear rate distribution curve 2 is shown for the flowing synthetic resin.
The shear force shown in FIG. 1 is generated, and heat is generated in proportion to the shear force. This heat value is extremely large when the injection speed is high, and is generated at a position in contact with the solidified layer, and functions to prevent the solidified layer from increasing. FIG. 19 shows how much heat is generated depending on the injection speed. FIG. 19 shows the temperature distribution of the synthetic resin immediately after filling the mold by changing the flow rate of the synthetic resin and calculating the calorific value under the following conditions. Mold: Steel Mold cavity size: 60 × 290 × 2 mm (width × length × thickness) Synthetic resin: Asahi Kasei Polystyrene 492 Synthetic resin temperature: 240 ° C. Mold temperature: 50 ° C. Injection filling time: 0.1 second, 0 .4 seconds, 1.0 seconds Software used for calculation: MOLD FLOW PTY
Ltd. 25mm (A), 145mm from the MOLDFLOW / FLOW gate
(B) and three points of 265 mm (C) show the temperature distribution in the cross-section of the resin immediately after filling the resin. When the flow rate of the synthetic resin is high, the amount of heat generation is extremely large, and the heat is generated along the solidified layer, so that the growth of the solidified layer is suppressed, and the solidified layer is filled in a thin state. That is, in general injection molding of a synthetic resin, the solidification layer is suppressed from increasing due to self-heating, and molding is performed while securing a flow path. On the other hand, the low-speed injection generates less heat, and the low-speed flow causes the solidified layer to be thickened during the flow, and the solidified layer is filled in a thick state. In this sense, low-speed injection molding means that injection molding is performed under extremely severe conditions for flow. It is presumed that the thickened solidified layer deteriorates the SCR of the molded product. According to the present invention, the mold cavity is filled with a specific gas having a solubility in synthetic resin, such as carbon dioxide, which is three times or more greater than the solubility of air and / or nitrogen in the synthetic resin, and injection molding is performed. This is a method in which the synthetic resin is molded while absorbing the specific gas body. The synthetic resin having a reduced softening temperature by absorbing the specific gas body forms a solidified layer, and the solidified layer can be thinned accordingly. The slower the injection speed, the longer the absorption time of the specific gas body, the greater the amount of the specific gas body absorbed by the synthetic resin that has reached the flow front, and the thinner the solidified layer can be.

【0036】本発明では成形品のSCRを改良する効果
もあり、次にSCRが改良されることを図20で説明す
る。図20に於いて、冷却された金属金型で合成樹脂を
射出成形すると、射出された溶融樹脂は冷却された型壁
面に接触して表層に直ちに固化層24が形成され、該固
化層24が断熱層となって内核25は徐々に冷却されて
収縮する。十分に冷却した成形品には、内核25の収縮
により表層である固化層24に圧縮応力が残留し、その
残留圧縮応力は内核25の厚みCと表層である固化層2
4の厚みSの比、C/Sに比例する(20−(a)
I)。特定ガス体で満たした金型キャビティを用いて射
出成形した場合の射出直後に形成される固化層24は、
特定ガス体を満たしていない一般の金型で射出成形した
場合に比較して薄くなり、十分に冷却した成形品の残留
圧縮応力はC′/S′に比例して大きくなり(20−
(b)I)、その残留圧縮応力は特定ガス体を満たして
いない一般金型で成形した場合より大きい。この射出成
形品に曲げ応力がかかると、成形品の凹側26の圧縮応
力は更に大きくなり、成形品の凸側27は圧縮応力が解
放されて引っ張り応力がかかる(20−(a)II)、
(20−(b)II)。表層の残留圧縮応力が大きい
(b)の場合には、曲げた場合にかかる表面引っ張り応
力は小さくなる。合成樹脂の圧縮強度は引っ張り強度に
比べて大幅に大きいため、合成樹脂に曲げ応力をかけた
場合には成形品の凸側から破壊されるのが一般である。
従って、成形品の表層の引っ張り応力が小さくなる
(b)の方が破壊されにくくなる。この様に、特定ガス
体を満たした金型で成形された成形品は応力をかけた場
合の耐破壊力が強くなり、これがSCRが強くなる理由
と推定される。
The present invention also has the effect of improving the SCR of the molded article. Next, the improvement of the SCR will be described with reference to FIG. In FIG. 20, when synthetic resin is injection-molded in a cooled metal mold, the injected molten resin comes into contact with the cooled mold wall surface, and a solidified layer 24 is immediately formed on the surface layer. The inner core 25 is gradually cooled and contracts as a heat insulating layer. In the sufficiently cooled molded product, compressive stress remains in the solidified layer 24 as the surface layer due to shrinkage of the inner core 25, and the residual compressive stress is determined by the thickness C of the inner core 25 and the solidified layer 2 as the surface layer.
4 is proportional to the thickness S ratio, C / S (20- (a)
I). The solidified layer 24 formed immediately after injection when injection molding is performed using a mold cavity filled with a specific gas body,
As compared with the case of injection molding with a general mold not filled with a specific gas body, the molded product becomes thinner, and the residual compressive stress of a sufficiently cooled molded product increases in proportion to C '/ S' (20-
(B) I), its residual compressive stress is larger than that of a case where it is molded by a general mold that does not fill the specific gas body. When bending stress is applied to the injection molded article, the compressive stress on the concave side 26 of the molded article is further increased, and the compressive stress is released on the convex side 27 of the molded article and tensile stress is applied (20- (a) II). ,
(20- (b) II). When the residual compressive stress of the surface layer is large (b), the surface tensile stress applied when bending is small. Since the compressive strength of the synthetic resin is much higher than the tensile strength, when a bending stress is applied to the synthetic resin, the synthetic resin is generally broken from the convex side of the molded product.
Therefore, when the tensile stress of the surface layer of the molded product is reduced (b), the molded product is less likely to be broken. As described above, the molded article molded by the mold filled with the specific gas body has a high fracture resistance when a stress is applied, which is presumed to be the reason that the SCR becomes strong.

【0037】低圧射出成形では合成樹脂の型キャビティ
流動速度がおそくなることを図21で説明する。図21
は射出成形時に型壁面にかかる樹脂圧力の経時変化を、
一般の射出成形とガスアシスト射出成形についてその差
異をモデル的に示す。図21において、ゲート付近の圧
力曲線をA、aで示し、流動端部付近の圧力曲線をC、
cで示し、流動途中の圧力曲線をB、bで示す。一般の
射出成形の場合、ゲート付近にかかる圧力はAとA′の
曲線で上昇してフルショットで最大となり、樹脂流動途
中にかかる圧力はBの曲線で上昇してフルショットで最
大となり、流動端部付近にかかる圧力はCの曲線で上昇
してフルショットで最大となり、それぞれ保圧時間とと
もに低下してゆく。A、B、Cのそれぞれの最大値はゲ
ートに近い程大きく、成形品の位置により最終的にかか
る圧力が大きく異なる。
The low flow rate of the synthetic resin in the mold cavity in low pressure injection molding will be described with reference to FIG. FIG.
Shows the change over time of the resin pressure applied to the mold wall during injection molding.
The difference between general injection molding and gas assist injection molding is shown as a model. In FIG. 21, the pressure curves near the gate are indicated by A and a, and the pressure curves near the flow end are indicated by C and A.
The pressure curve in the middle of the flow is indicated by B and b. In the case of general injection molding, the pressure applied to the vicinity of the gate rises in the curve of A and A 'and becomes the maximum in the full shot, and the pressure applied in the middle of the resin flow rises in the curve B and becomes the maximum in the full shot. The pressure applied to the vicinity of the end increases in the curve of C, becomes maximum at the full shot, and decreases with the dwell time. The maximum value of each of A, B, and C increases as the position is closer to the gate, and the final applied pressure greatly differs depending on the position of the molded product.

【0038】これに対して、ガスアシスト射出成形の場
合、最初に樹脂を高圧で射出し、射出途中で樹脂の射出
を止め、樹脂射出圧力より大幅に低い圧力のガス体を射
出して金型キャビティを満たす。このガスアシスト射出
成形でゲート付近にかかる圧力はまずAの曲線で上昇
し、射出途中で樹脂をガス体に切り替えるところ28で
樹脂圧力はガス体とほぼ同一圧力になり、その後a曲線
の様に一定圧力で推移する。樹脂流動途中のガス体が射
出されるところの圧力曲線はbの曲線で上昇し、フルシ
ョット時にガス体圧力とほぼ同一となり、保圧時はその
圧力が維持される。流動端部付近の圧力曲線はcで示さ
れ、フルショット時にガス体圧力とほぼ同一となり、保
圧時はその圧力がほぼ維持される。ガスアシスト射出成
形ではゲート付近、流動途中、流動端部のいずれもフル
ショット時にはほぼ同一圧力になることに特徴がある。
この結果、ガスアシスト射出成形では成形品に残留する
応力が均一になり、成形品の寸法精度が良くなる長所を
有する。ガスアシスト射出成形では曲線bと曲線cに示
す様に、樹脂圧力の立ち上がり方がゆっくりであり、こ
の部分の型キャビティ内流動速度はおそくなり、この部
分の成形品外観、SCRが悪くなる。本発明は特にこの
部分の改良ができる。
On the other hand, in the case of gas-assisted injection molding, the resin is first injected at a high pressure, the injection of the resin is stopped during the injection, and a gas having a pressure significantly lower than the resin injection pressure is injected. Fill the cavity. In this gas-assisted injection molding, the pressure applied to the vicinity of the gate first rises in a curve A, and the resin is switched to a gas during injection. At 28, the resin pressure becomes substantially the same as that of the gas. It changes at a constant pressure. The pressure curve at the point where the gas body is injected during the flow of the resin rises as indicated by the curve b, becomes almost the same as the gas body pressure at the time of a full shot, and is maintained at the time of holding pressure. The pressure curve near the flow end is indicated by c, which is almost the same as the gas pressure at the time of a full shot, and that pressure is almost maintained at the time of dwell. Gas assist injection molding is characterized in that the pressure near the gate, during the flow, and at the end of the flow are almost the same during a full shot.
As a result, the gas-assisted injection molding has the advantage that the stress remaining on the molded product becomes uniform and the dimensional accuracy of the molded product is improved. In the gas assist injection molding, as shown by the curves b and c, the rise of the resin pressure is slow, the flow speed in the mold cavity in this portion is slow, and the appearance of the molded product and the SCR in this portion are deteriorated. The present invention can particularly improve this part.

【0039】本発明は既存の各種の型表面再現性を良く
する成形法と組み合わせて使用することは良好にでき
る。金型キャビティの特定ガス体圧力が低い場合、特に
特定ガス体圧力が1.1MPa未満の場合には良好に使
用できる。特定ガス体圧力が1.1MPa以上の場合、
安全性の面で高圧ガス取締法で厳しく規制されており、
1.1MPa未満で使用することが好ましい。 (1)断熱層被覆金型を使用する成形法。 (2)成形直前に金型表面を高周波誘導加熱する成形
法。 (3)成形直前に金型キャビティに加熱ガス体を吹き込
む成形法。 (4)金型に熱媒と冷媒を交互に流して成形する成形
法。
The present invention can be favorably used in combination with existing molding methods for improving the reproducibility of various mold surfaces. When the specific gas body pressure in the mold cavity is low, particularly when the specific gas body pressure is less than 1.1 MPa, it can be used favorably. When the specific gas pressure is 1.1 MPa or more,
Strictly regulated by the High Pressure Gas Control Law in terms of safety,
It is preferable to use at less than 1.1 MPa. (1) A molding method using a mold coated with a heat insulating layer. (2) A molding method in which the surface of a mold is subjected to high-frequency induction heating immediately before molding. (3) A molding method in which a heated gas body is blown into a mold cavity immediately before molding. (4) A molding method in which a heat medium and a refrigerant are alternately flowed into a mold to form the mold.

【0040】成形直前に金型表面を高周波誘導加熱する
方法は特公昭58−40504号公報や、USP434
0551、USP4439492等に記載の方法であ
る。成形直前に金型キャビティに加熱ガス体を吹き込
み、型表面を加熱する方法は、特公昭45−22020
号、特開平6−170943号、特開平8−24407
2号の各公報等に記載の方法である。
A method of high-frequency induction heating of a mold surface immediately before molding is disclosed in Japanese Patent Publication No. 58-40504, US Pat.
0551, US Pat. No. 4,439,492 and the like. A method of blowing a heated gas body into a mold cavity immediately before molding to heat the mold surface is disclosed in Japanese Patent Publication No. 45-22020.
JP-A-6-170943, JP-A-8-24407
This is the method described in each publication of No. 2.

【0041】金型に加熱用、冷却用の孔をそれぞれとり
つけておき交互に熱媒、冷媒を流して金型の加熱、冷却
を繰り返す方法も使用できる。この場合熱媒は水蒸気が
特に適しており、冷媒は水が適している。断熱層被覆金
型法はWO93/06980等で紹介されている成形法
であり、金属金型の型キャビティを形成する表面に断熱
層を被覆した金型を用いた成形法である。耐熱性重合体
からなる断熱層で被覆した断熱層被覆金型が好ましく、
更に断熱層表面に薄肉金属層がある断熱層被覆金型を用
いることもできる。断熱層被覆金型について次に詳しく
説明する。断熱層被覆金型の断熱層に良好に使用される
耐熱性重合体とは、成形される合成樹脂の成形温度付
近、あるいはそれ以上の軟化温度を有する重合体であ
り、好ましくは、ガラス転移温度が140℃以上、好ま
しくは160℃以上、及び/又は融点が200℃以上、
更に好ましくは250℃以上の耐熱性重合体である。耐
熱性重合体の熱伝導率は一般に0.0001〜0.00
2cal/cm・sec・℃であり、金属より大幅に小
さい。また、該耐熱性重合体の破断伸度は3.5%以上
が好ましく、更に好ましくは5%以上の靭性のある重合
体が好ましい。破断伸度の測定法はASTMD638に
準じて行い、測定時の引っ張り速度は5mm/分であ
る。断熱層として良好に使用できる重合体は、主鎖に芳
香環を有する耐熱性重合体であり、例えば、有機溶剤に
溶解する各種非結晶性耐熱重合体、各種ポリイミド等が
良好に使用できる。非結晶性耐熱性重合体としては、ポ
リスルホン、ポリエーテルスルホン、ポリエーテルイミ
ド等である。これらの非結晶性耐熱性重合体にはカーボ
ン繊維等の充填材を配合することにより熱膨張係数を低
下させて本発明の断熱層として使用することができる。
ポリイミドは各種あるが、直鎖型高分子量ポリイミド、
ポリアミドイミド、一部架橋型のポリイミドが良好に使
用できる。一般に直鎖型高分子量ポリイミドは破断伸度
が大きく強靭であり、耐久性に優れており特に良好に使
用できる。更に、選択された熱硬化性樹脂も断熱層とし
て使用できる。すなわち、ガラス転移温度が140℃以
上で、破断伸度が3.5%以上の熱硬化性樹脂硬化物が
良好に使用できる。更に、熱膨張係数を小さくした熱硬
化性樹脂硬化物、すなわち各種充填材を適量配合したエ
ポキシ樹脂等が使用できる。エポキシ樹脂は一般に熱膨
張係数が大きく、金属金型との熱膨張係数の差は大き
い。しかし、熱膨張係数が小さいガラス、シリカ、タル
ク、クレー、珪酸ジルコニウム、珪酸リチウム、炭酸カ
ルシウム、アルミナ、マイカ等の粉体や粒子、ガラス繊
維、ウイスカー、炭素繊維等の繊維等の適量をエポキシ
樹脂に配合し、金属金型との熱膨張係数の差を小さくし
た充填材配合エポキシ樹脂は断熱層として良好に使用で
きる。これらの充填材配合エポキシ樹脂に、更にポリエ
ーテルスルホン、ポリエーテルイミド、ナイロン、ゴム
等の強靭性を与える各種配合物を加え、熱膨張係数を下
げ、且つ、強靭性を与えた配合エポキシ樹脂は良好に使
用できる。
It is also possible to use a method in which heating and cooling holes are attached to a mold, and a heating medium and a coolant are alternately flowed to repeatedly heat and cool the mold. In this case, steam is particularly suitable for the heat medium, and water is suitable for the refrigerant. The heat-insulating layer coating mold method is a molding method introduced in WO93 / 06980 or the like, and is a molding method using a mold in which a surface forming a mold cavity of a metal mold is covered with a heat-insulating layer. A heat-insulating layer-coated mold covered with a heat-insulating layer made of a heat-resistant polymer is preferable,
Furthermore, a heat-insulating-layer-coated mold having a thin metal layer on the heat-insulating layer surface can also be used. Next, the heat-insulating-layer-coated mold will be described in detail. The heat-resistant polymer favorably used for the heat-insulating layer of the heat-insulating layer-coated mold is a polymer having a softening temperature near or above the molding temperature of the synthetic resin to be molded, and is preferably a glass transition temperature. Is 140 ° C. or higher, preferably 160 ° C. or higher, and / or has a melting point of 200 ° C. or higher,
More preferably, it is a heat-resistant polymer having a temperature of 250 ° C. or higher. The heat conductivity of the heat-resistant polymer is generally 0.0001 to 0.00
2 cal / cm · sec · ° C., which is much smaller than metal. Further, the elongation at break of the heat-resistant polymer is preferably at least 3.5%, more preferably a polymer having a toughness of at least 5%. The elongation at break is measured according to ASTM D638, and the tensile speed at the time of measurement is 5 mm / min. The polymer that can be used favorably as the heat insulating layer is a heat-resistant polymer having an aromatic ring in the main chain. For example, various amorphous heat-resistant polymers and various polyimides that are soluble in an organic solvent can be used. Examples of the non-crystalline heat-resistant polymer include polysulfone, polyethersulfone, and polyetherimide. These amorphous heat-resistant polymers can be used as the heat-insulating layer of the present invention by lowering the coefficient of thermal expansion by adding a filler such as carbon fiber.
There are various types of polyimide, linear high molecular weight polyimide,
Polyamideimide and partially crosslinked polyimide can be used favorably. In general, straight-chain high molecular weight polyimides have large breaking elongation, are tough, have excellent durability, and can be used particularly favorably. Furthermore, selected thermosetting resins can also be used as a heat insulating layer. That is, a cured thermosetting resin having a glass transition temperature of 140 ° C. or more and a breaking elongation of 3.5% or more can be used favorably. Further, a thermosetting resin cured product having a small coefficient of thermal expansion, that is, an epoxy resin containing various fillers in an appropriate amount can be used. Epoxy resins generally have a large coefficient of thermal expansion, and the difference in coefficient of thermal expansion from a metal mold is large. However, an appropriate amount of powder such as glass, silica, talc, clay, zirconium silicate, lithium silicate, calcium carbonate, alumina, and mica having a small coefficient of thermal expansion, glass fiber, whisker, carbon fiber, etc. The epoxy resin mixed with a filler in which the difference in the coefficient of thermal expansion from the metal mold is reduced can be favorably used as a heat insulating layer. To these filler-compounded epoxy resins, various compounds which impart toughness such as polyethersulfone, polyetherimide, nylon, rubber, etc. are added to lower the thermal expansion coefficient, and the compounded epoxy resin which gives toughness is Can be used well.

【0042】断熱層上に更に薄肉の金属層を被覆した金
型も使用できる。金属層は種々の方法で被覆できるが、
メッキにより良好に被覆される。ここに述べるメッキは
化学メッキ(無電解メッキ)と電解メッキである。一般
には次の工程のいくつかを経てメッキされる。すなわ
ち、まず断熱層に接して化学メッキが行われる。前処理
→化学腐食(酸やアルカリによる化学エッチング:表面
を適度な凹凸にする)→中和→感受性化処理(合成樹脂
表面に還元力のある金属塩を吸着させて活性化を効果あ
らしめる)→活性化処理(触媒作用を有するパラジウム
等の貴金属を樹脂表面に付与)→化学メッキ(化学ニッ
ケルメッキ、化学銅メッキ等)→電解メッキ(電解ニッ
ケルメッキ、電解銅メッキ、電解クロムメッキ等)。
A mold in which a thin metal layer is further coated on the heat insulating layer can be used. The metal layer can be coated in various ways,
Good coverage by plating. The plating described here is chemical plating (electroless plating) and electrolytic plating. Generally, plating is performed through some of the following steps. That is, first, chemical plating is performed in contact with the heat insulating layer. Pretreatment → Chemical corrosion (chemical etching with acid or alkali: making the surface moderately uneven) → Neutralization → Sensitization treatment (Adsorption of a reducing metal salt on the surface of the synthetic resin to activate it) → Activation treatment (a precious metal such as palladium having a catalytic action is applied to the resin surface) → Chemical plating (chemical nickel plating, chemical copper plating, etc.) → electrolytic plating (electrolytic nickel plating, electrolytic copper plating, electrolytic chromium plating, etc.).

【0043】断熱層とメッキ層の密着力を増大させるた
め、断熱層の最表面を形成する断熱材に炭酸カルシウ
ム、酸化珪素、酸化チタン、炭酸バリウム、硫酸バリウ
ム等の無機物、各種重合体等の有機物の微粉末を配合
し、化学腐食で該粉末を溶出して表面を適度な凹凸にす
ることは極めて良好に使用できる。図22は本発明の成
形法を実施する金型の一例であり、型キャビティの、成
形時における合成樹脂への溶解度が空気及び/又は窒素
の合成樹脂への溶解度の3倍以上である特定ガス体をシ
ールする型構造の一例を示す。図22において、型キャ
ビティ38を構成する金型39のパーティング全面には
ガス体が容易に通過できる隙間29があり、ガス体用の
溝30がその周囲に設けられている。型キャビティの加
圧ガス体をシールするために周囲にOリング用溝31が
あり、Oリング32が設置されている。ガス体用溝30
には通路33がつながり、特定ガス体源34と安全弁3
5につながっている。特定ガス体源34のガス体は開閉
弁36の開閉で型キャビティ38に供給される。特定ガ
ス体を成形直前に型キャビティに吹き込み、スプルー3
7より排出して、型キャビティ38を特定ガス体で満た
す。型キャビティ38を大気圧の特定ガス体で満たした
状態でスプルー37に射出成形機のノズルを接触させ、
必要に応じて加圧状態にした後、合成樹脂を射出する。
合成樹脂の射出に応じて型キャビティの特定ガス体の圧
力は増大するが、この型キャビティのガス体圧力を安全
弁35で調節する。
In order to increase the adhesion between the heat-insulating layer and the plating layer, the heat-insulating material forming the outermost surface of the heat-insulating layer may be made of an inorganic material such as calcium carbonate, silicon oxide, titanium oxide, barium carbonate, barium sulfate, or various polymers. It is possible to mix the fine powder of an organic substance and elute the powder by chemical corrosion to make the surface have appropriate unevenness. FIG. 22 shows an example of a mold for carrying out the molding method of the present invention, in which a specific gas having a mold cavity whose solubility in a synthetic resin at the time of molding is at least three times the solubility of air and / or nitrogen in a synthetic resin. 1 shows an example of a mold structure for sealing a body. In FIG. 22, a gap 29 through which a gas body can easily pass is provided on the entire parting surface of a mold 39 constituting a mold cavity 38, and a groove 30 for the gas body is provided around the gap 29. An O-ring groove 31 is provided around the periphery to seal the pressurized gas body in the mold cavity, and an O-ring 32 is provided. Gas body groove 30
Is connected to the passage 33, the specific gas body source 34 and the safety valve 3
It is connected to 5. The gas of the specific gas source 34 is supplied to the mold cavity 38 by opening and closing the on-off valve 36. A specific gas is blown into the mold cavity immediately before molding, and the sprue 3
7, the mold cavity 38 is filled with a specific gas. The nozzle of the injection molding machine is brought into contact with the sprue 37 while the mold cavity 38 is filled with a specific gas body at atmospheric pressure,
After pressurized as required, synthetic resin is injected.
Although the pressure of the specific gas in the mold cavity increases in response to the injection of the synthetic resin, the pressure of the gas in the mold cavity is adjusted by the safety valve 35.

【0044】本発明を射出成形で主に説明したが、金型
キャビティへ合成樹脂を注入する他の成形法も同様に使
用できる。
Although the present invention has been described mainly with respect to injection molding, other molding methods for injecting a synthetic resin into a mold cavity can be used as well.

【0045】[0045]

【発明の実施の形態】次の金型、物質、測定法等を使用
する。 金型:鋼材(S55C)でつくられ、型キャビティは2
mm(厚み)×100mm×100mmサイズでサイド
ゲートを有する。型表面は鏡面状であり、クロムメッキ
されている。 断熱層被覆金型:断熱層被覆金型としてポリイミド被覆
金型を使用する。 (1) ポリイミド前駆体及び硬化後のポリイミド:直
鎖型高分子量ポリイミド前駆体溶液(東レ(株)製 ト
レニース#3000 商品名)。硬化後のポリイミドの
性能は、Tgが300℃、熱伝導率が0.0005ca
l/cm・sec・℃。 (2) ポリイミド被覆金型:各主金型に、ポリイミド
前駆体溶液を塗布し、160℃に加熱して部分イミド化
し、次いで該塗布、160℃加熱を2回から4回繰り返
し、最後に290℃まで加熱して、100%イミド化し
て型表面をポリイミド被覆し、該表面を鏡面状に研磨し
て、所定のポリイミド厚みのポリイミド被覆金型をつく
る。 射出成形する合成樹脂:ゴム強化ポリスチレン(旭化成
工業(株)製 スタイロン495 商品名(HIPS4
95という。)) 光沢度の測定法:JIS K7105、反射角度 60
DESCRIPTION OF THE PREFERRED EMBODIMENTS The following molds, substances, measuring methods and the like are used. Mold: made of steel (S55C), mold cavity is 2
mm (thickness) x 100 mm x 100 mm, and has a side gate. The mold surface is mirror-like and chrome-plated. Heat insulation layer coating mold: A polyimide coating mold is used as the heat insulation layer coating mold. (1) Polyimide precursor and cured polyimide: straight-chain high molecular weight polyimide precursor solution (Trenice # 3000, trade name, manufactured by Toray Industries, Inc.). The performance of the cured polyimide was as follows: Tg: 300 ° C., thermal conductivity: 0.0005 ca
l / cm · sec · ° C. (2) Polyimide coated mold: A polyimide precursor solution is applied to each main mold, heated to 160 ° C. to partially imidize, and then the coating and heating at 160 ° C. are repeated 2 to 4 times. The mold surface is heated to 100 ° C., imidized to 100%, and the surface of the mold is coated with polyimide, and the surface is polished to a mirror surface to form a polyimide-coated mold having a predetermined polyimide thickness. Synthetic resin to be injection molded: rubber reinforced polystyrene (Stylon 495 manufactured by Asahi Kasei Corporation) (HIPS4
95. )) Gloss measurement method: JIS K7105, reflection angle 60
Every time

【0046】[0046]

【実施例1】断熱層のない金型と、0.025mm厚み
と0.05mm厚みのポリイミドを各々被覆したポリイ
ミド被覆金型を用い、HIPS495を射出成形する。
成形条件は、シリンダー温度220℃、金型温度35℃
である。射出成形機の油圧コントロールバルブを調節す
ることにより、射出シリンダーの前進速度を一定にし、
合成樹脂の型キャビティ内の流動速度を一定にして射出
成形を行う。合成樹脂の各流動速度で成形して、成形品
の光沢度を測定し、図1に示す。更に金型キャビティを
1.0MPaの炭酸ガスで満たし、0.025mmのポ
リイミド層被覆金型を用いて成形する。合成樹脂の型キ
ャビティ流動速度により、成形品光沢度は著しく異な
り、流動速度が大きい程成形品光沢度は大きくなる。炭
酸ガスで金型キャビティを満たす効果は、合成樹脂の金
型内流動速度が200mm/秒以下の場合に大きく、1
00mm/秒以下の場合には更に大きくなる。
EXAMPLE 1 HIPS 495 is injection-molded using a mold without a heat insulating layer and a polyimide-coated mold coated with a polyimide having a thickness of 0.025 mm and a thickness of 0.05 mm, respectively.
Molding conditions are: cylinder temperature 220 ° C, mold temperature 35 ° C
It is. By adjusting the hydraulic control valve of the injection molding machine, the forward speed of the injection cylinder is kept constant,
Injection molding is performed at a constant flow rate of the synthetic resin in the mold cavity. The molded article was molded at each flow rate of the synthetic resin, and the gloss of the molded article was measured. The results are shown in FIG. Further, the mold cavity is filled with a carbon dioxide gas of 1.0 MPa, and molded using a 0.025 mm polyimide layer-coated mold. The gloss of the molded product differs significantly depending on the flow velocity of the mold cavity of the synthetic resin, and the gloss of the molded product increases as the flow speed increases. The effect of filling the mold cavity with carbon dioxide gas is significant when the flow velocity of the synthetic resin in the mold is 200 mm / sec or less.
When it is less than 00 mm / sec, it becomes even larger.

【0047】[0047]

【発明の効果】本発明法により、成形品外観及びSCR
に優れた射出成形品が得られる。
According to the method of the present invention, the appearance of molded articles and SCR
An injection-molded article excellent in quality can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における合成樹脂の型キャビティ流動
速度と成形品の光沢度の関係を示すグラフ図である。
FIG. 1 is a graph showing the relationship between the flow rate of a synthetic resin mold cavity and the glossiness of a molded product in Example 1.

【図2】ポリスチレンへの炭酸ガス溶解量を示すグラフ
図である。
FIG. 2 is a graph showing the amount of carbon dioxide dissolved in polystyrene.

【図3】ポリスチレンへの窒素ガス溶解量を示すグラフ
図である。
FIG. 3 is a graph showing the amount of dissolved nitrogen gas in polystyrene.

【図4】ポリスチレンへの炭酸ガス溶解量を示すグラフ
図である。
FIG. 4 is a graph showing the amount of carbon dioxide dissolved in polystyrene.

【図5】ポリスチレンへの炭酸ガス溶解量を示すグラフ
図である。
FIG. 5 is a graph showing the amount of carbon dioxide dissolved in polystyrene.

【図6】ポリスチレンへの炭酸ガスの溶解による、Tg
の低下量を示すグラフ図である。
FIG. 6 shows Tg by dissolving carbon dioxide gas in polystyrene.
It is a graph which shows the fall amount of.

【図7】PMMA/PVF2 系ポリマーアロイへの炭酸
ガス溶解量を示すグラフ図である。
FIG. 7 is a graph showing the amount of carbon dioxide dissolved in a PMMA / PVF 2 polymer alloy.

【図8】PMMA/PVF2 系ポリマーアロイへの炭酸
ガスの溶解による、Tgの低下量を示すグラフ図であ
る。
FIG. 8 is a graph showing the amount of decrease in Tg due to dissolution of carbon dioxide in a PMMA / PVF 2 polymer alloy.

【図9】ポリカーボネートへの炭酸ガス溶解量を示すグ
ラフ図である。
FIG. 9 is a graph showing the amount of carbon dioxide dissolved in polycarbonate.

【図10】ポリスルホンへの炭酸ガス溶解量を示すグラ
フ図である。
FIG. 10 is a graph showing the amount of carbon dioxide dissolved in polysulfone.

【図11】各合成樹脂の炭酸ガス溶解によるTgの低下
を示すグラフ図である。
FIG. 11 is a graph showing a decrease in Tg due to dissolution of carbon dioxide in each synthetic resin.

【図12】合成樹脂の流動速度と成形品の光沢度の関係
を示すグラフ図である。
FIG. 12 is a graph showing the relationship between the flow rate of a synthetic resin and the glossiness of a molded product.

【図13】本発明が実施される低圧射出成形の、ガスア
シスト射出成形、オリゴマーアシスト射出成形、液体ア
シスト射出成形を説明する図である。
FIG. 13 is a diagram illustrating gas-assisted injection molding, oligomer-assisted injection molding, and liquid-assisted injection molding of low-pressure injection molding in which the present invention is implemented.

【図14】ガスアシスト射出成形品のガスチャンネル付
近を示す部分断面図である。
FIG. 14 is a partial cross-sectional view showing the vicinity of a gas channel of a gas-assisted injection molded product.

【図15】各種流体の温度と粘度の関係を示すグラフ図
である。
FIG. 15 is a graph showing the relationship between temperature and viscosity of various fluids.

【図16】ガスアシスト射出成形で成形された成形品の
一例の(a)上面図である。(b)AA′線における断
面図である。
FIG. 16 is a (a) top view of an example of a molded article formed by gas-assisted injection molding. (B) It is sectional drawing in the AA 'line.

【図17】本発明が実施される低圧射出成形のうちの射
出圧縮成形を説明する図である。
FIG. 17 is a diagram illustrating injection compression molding of low pressure injection molding in which the present invention is implemented.

【図18】合成樹脂の金型キャビティ流動パターンを示
す説明図である。
FIG. 18 is an explanatory view showing a mold cavity flow pattern of a synthetic resin.

【図19】合成樹脂の金型キャビティ流動中の剪断発熱
の計算値を示す図である。
FIG. 19 is a diagram showing calculated values of shear heat generation during flow of a synthetic resin in a mold cavity.

【図20】成形時における合成樹脂への溶解度が空気及
び/又は窒素の合成樹脂への溶解度の3倍以上である特
定ガス体でキャビティを満たした金型を用いることによ
り、低速射出成形でSCRが改善されることを示す説明
図である。(a)特定ガス体を満たしていない一般の金
型を用いた場合と(b)特定ガス体で満たした金型を用
いた場合である。
FIG. 20 shows an SCR in low-speed injection molding by using a mold whose cavity is filled with a specific gas body whose solubility in synthetic resin at the time of molding is at least three times the solubility of air and / or nitrogen in synthetic resin. It is explanatory drawing which shows that is improved. (A) a case using a general mold not filled with the specific gas body, and (b) a case using a mold filled with the specific gas body.

【図21】合成樹脂の射出成形時に型壁面にかかる樹脂
圧力の経時変化を示すグラフ図である。
FIG. 21 is a graph showing a change over time of a resin pressure applied to a mold wall surface during injection molding of a synthetic resin.

【図22】本発明を実施する金型構造を示す断面図であ
る。
FIG. 22 is a sectional view showing a mold structure embodying the present invention.

【符号の説明】[Explanation of symbols]

1 金型 2 型キャビティ 3 合成樹脂 4 流動速度が変化する所 5 ガス体 6 成形品 7 成形品 8 リブ 9 ガスチャンネル 10 表面部 11 成形品 12 ゲート 13 樹脂流動端部 14 厚肉部 15 ガスチャンネル 16 流動先端 17 型壁面へ向かう流れ 18 合成樹脂の流速 19 金型キャビティの中心 20 速度分布曲線 21 剪断速度分布曲線 22 金型 23 固化層 24 固化層 25 内核 26 成形品の凹側 27 成形品の凸側 28 樹脂をガスに切り替えるところ 29 隙間 30 ガス体用の溝 31 Oリング用の溝 32 Oリング 33 通路 34 ガス体源 35 安全弁 36 開閉弁 37 スプルー 38 金型キャビティ 39 金型 DESCRIPTION OF SYMBOLS 1 Mold 2 Mold cavity 3 Synthetic resin 4 Where flow velocity changes 5 Gas body 6 Molded product 7 Molded product 8 Rib 9 Gas channel 10 Surface part 11 Molded product 12 Gate 13 Resin flow end part 14 Thick part 15 Gas channel 16 Flow Tip 17 Flow toward Mold Wall 18 Flow Rate of Synthetic Resin 19 Center of Mold Cavity 20 Velocity Distribution Curve 21 Shear Velocity Distribution Curve 22 Mold 23 Solidified Layer 24 Solidified Layer 25 Inner Core 26 Concave Side of Molded Article 27 Molded Article Convex side 28 Where resin is switched to gas 29 Gap 30 Gas groove 31 O-ring groove 32 O-ring 33 Passage 34 Gas source 35 Safety valve 36 Open / close valve 37 Sprue 38 Mold cavity 39 Mold

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 金型キャビティに合成樹脂を射出して成
形する成形法において、成形時における合成樹脂への溶
解度が空気及び/又は窒素の合成樹脂への溶解度の3倍
以上であるガス体で金型キャビティを満たし、合成樹脂
の金型キャビティ流動速度が200mm/秒以下の低速
射出を少なくとも含む射出を行う合成樹脂の成形法。
In a molding method in which a synthetic resin is injected into a mold cavity and molded, a gas body whose solubility in the synthetic resin at the time of molding is at least three times the solubility of air and / or nitrogen in the synthetic resin. A method of molding a synthetic resin that fills a mold cavity and performs injection including at least low-speed injection at a flow rate of the synthetic resin of 200 mm / sec or less.
【請求項2】 合成樹脂の金型キャビティ流動速度が1
00mm/秒以下の低速射出を少なくとも含む射出を行
う請求項1の合成樹脂の成形法。
2. The mold cavity flowing velocity of the synthetic resin is 1
2. The method of molding a synthetic resin according to claim 1, wherein injection including at least low-speed injection of not more than 00 mm / sec.
【請求項3】 ガス体で金型キャビティを大気圧に満た
して成形を行う請求項1又は2の合成樹脂の成形法。
3. The method for molding a synthetic resin according to claim 1, wherein the molding is performed by filling the mold cavity with a gaseous substance to atmospheric pressure.
【請求項4】 ガス体で金型キャビティを大気圧を越
え、1.1MPa未満の加圧状態に満たして成形を行う
請求項1又は2の合成樹脂の成形法。
4. The method for molding a synthetic resin according to claim 1, wherein the molding is performed by filling the mold cavity with a gas body at a pressure exceeding atmospheric pressure and less than 1.1 MPa.
【請求項5】 ガス体で金型キャビティを1.1MPa
以上、10MPa未満の加圧状態に満たして成形を行う
請求項1又は2の合成樹脂の成形法。
5. The mold cavity is set to 1.1 MPa with a gas body.
The method of molding a synthetic resin according to claim 1 or 2, wherein the molding is performed under a pressurized state of less than 10 MPa.
【請求項6】 金型キャビティに合成樹脂を射出して成
形する成形法が下記の低圧成形法から選択される成形法
である請求項1、2、3、4又は5の合成樹脂の成形
法。 (1)ガスアシスト射出成形 (2)液体アシスト射出成形 (3)オリゴマーアシスト射出成形 (4)射出圧縮成形 (5)押出圧縮成形 (6)Hettinga低圧射出成形
6. The molding method for a synthetic resin according to claim 1, wherein the molding method for injecting the synthetic resin into the mold cavity is a molding method selected from the following low pressure molding methods. . (1) Gas assist injection molding (2) Liquid assist injection molding (3) Oligomer assist injection molding (4) Injection compression molding (5) Extrusion compression molding (6) Hettinga low pressure injection molding
【請求項7】 下記の型表面再現性改良成形法から選択
される成形法と併用する請求項1、2、3、4、5又は
6の合成樹脂の成形法。 (1)断熱層被覆金型を使用する成形法。 (2)成形直前に金型表面を高周波誘導加熱する成形
法。 (3)成形直前に金型キャビティに加熱ガス体を吹き込
む成形法。 (4)金型に熱媒と冷媒を交互に流して成形する成形
法。
7. The method for molding a synthetic resin according to claim 1, which is used in combination with a molding method selected from the following mold surface reproducibility improving molding methods. (1) A molding method using a mold coated with a heat insulating layer. (2) A molding method in which the surface of a mold is subjected to high-frequency induction heating immediately before molding. (3) A molding method in which a heated gas body is blown into a mold cavity immediately before molding. (4) A molding method in which a heat medium and a refrigerant are alternately flowed into a mold to form the mold.
【請求項8】 ガス体が炭酸ガスあるいは炭酸ガスを主
成分とするガス体である請求項1、2、3、4、5、6
又は7の合成樹脂の成形法。
8. The gas body according to claim 1, wherein the gas body is carbon dioxide gas or a gas body mainly composed of carbon dioxide gas.
Or the molding method of the synthetic resin of 7.
JP4598697A 1997-02-28 1997-02-28 Novel molding method for synthetic resin Pending JPH10235695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4598697A JPH10235695A (en) 1997-02-28 1997-02-28 Novel molding method for synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4598697A JPH10235695A (en) 1997-02-28 1997-02-28 Novel molding method for synthetic resin

Publications (1)

Publication Number Publication Date
JPH10235695A true JPH10235695A (en) 1998-09-08

Family

ID=12734489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4598697A Pending JPH10235695A (en) 1997-02-28 1997-02-28 Novel molding method for synthetic resin

Country Status (1)

Country Link
JP (1) JPH10235695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309006A (en) * 2001-04-16 2002-10-23 Asahi Kasei Corp Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309006A (en) * 2001-04-16 2002-10-23 Asahi Kasei Corp Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product

Similar Documents

Publication Publication Date Title
JP2673623B2 (en) Synthetic resin molding method
US20020136861A1 (en) Thermoplastic resin foam molding
CN109624202B (en) Gas-assisted injection molding method for automobile roof handle
JPH10235695A (en) Novel molding method for synthetic resin
JPH0872086A (en) Low-pressure injection molding method
WO1995028275A1 (en) Hollow integral shaft-including structural part of resin and injection molding method for production of the same
JPH10337744A (en) Manufacture of fiber reinforced thermoplastic resin molded product, and molded product
JP3318101B2 (en) Mold for molding synthetic resin
JPH10193378A (en) Injection molding method and injection molded product with hollow part
JP2714308B2 (en) New injection molding method
JPH1067032A (en) Manufacture of hollow injection-molded product
JP3076737B2 (en) Hollow injection molding of thermoplastic resin
JP2000006198A (en) Injection molding die
EP0657267A2 (en) Method for improving surface quality of foamed thermoplastic molded articles
JPH0970860A (en) Molded product fitted with reinforcing rib and molding thereof
JP2002292703A (en) Method for injection-molding molded product having high- grade appearance
JP2002292674A (en) Injection molding method for molding having good appearance
JPH06198667A (en) Injection molding method of synthetic resin
JP3580623B2 (en) Flapper made of thermoplastic resin
JPH1190953A (en) Injection molding method of resin molding having hollow part and molding apparatus
JPH10100184A (en) Method for molding synthetic resin
JPH079452A (en) Mold for molding synthetic resin
JP2001300979A (en) Method for producing multi-layer polyamide resin molding
JP3790317B2 (en) Gas combined injection molding method
JPH1016001A (en) Forming of synthetic resin molding with wall of ununiform thickness and mold used for this forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A977 Report on retrieval

Effective date: 20050727

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050906

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110