JPH11292981A - Kneaded material of thermoplastic resin and its production - Google Patents

Kneaded material of thermoplastic resin and its production

Info

Publication number
JPH11292981A
JPH11292981A JP10433698A JP10433698A JPH11292981A JP H11292981 A JPH11292981 A JP H11292981A JP 10433698 A JP10433698 A JP 10433698A JP 10433698 A JP10433698 A JP 10433698A JP H11292981 A JPH11292981 A JP H11292981A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
carbon dioxide
temperature
kneading
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10433698A
Other languages
Japanese (ja)
Other versions
JP4602490B2 (en
Inventor
Mutsumi Maeda
睦 前田
Hiroshi Yamaki
宏 山木
Hiroaki Ishikawa
弘昭 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10433698A priority Critical patent/JP4602490B2/en
Publication of JPH11292981A publication Critical patent/JPH11292981A/en
Application granted granted Critical
Publication of JP4602490B2 publication Critical patent/JP4602490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject foam-free kneaded material having excellent color tone, appearance, heat resistance and mechanical properties, useful in the field of electric/electronic field, or the like, by kneading a mixture of a thermoplastic resin and a specific amount of carbon dioxide gas and diffusing the carbon dioxide gas. SOLUTION: A mixture of (A) 100 pts.wt. of a thermoplastic resin e.g. a (rubber-reinforced) polystyrene, acrylic resin, modified polyphenylene ether resin [to be concrete, a resin obtained by adding <=500 pts.wt. of a (high-impact) polystyrene to 100 pts. wt. of a polyphenylene ether of a repeating unit of the formula (R1 to R4 are each H, a halogen, a primary or secondary 1-7C alkyl, phenyl or the like)]} and (B) 0.3-20 pts.wt. of carbon dioxide gas is melted and kneaded at a temperature of the glass transition temperature of the component A+<=150 deg.C to diffuse the component B during the kneading. Preferably, the component A having 110-250 deg.C glass transition temperature is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気・電子分野、自
動車分野、その他の各種工業材料分野、食品・包装分野
のプラスチック材料として利用できる熱可塑性樹脂混練
物及び、この混練物を用いて成形される熱可塑性樹脂成
形体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a kneaded thermoplastic resin which can be used as a plastic material in the fields of electric / electronics, automobiles, various other industrial materials, and food / packaging, and molded using the kneaded material. The present invention relates to a thermoplastic resin molded article.

【0002】[0002]

【従来の技術】熱可塑性樹脂は加工性・生産性に優れ、
溶融射出成形法や溶融押出成形法などの成形方法により
所望の形状の製品・部品を効率よく生産できるため、電
気・電子分野、自動車分野、その他の各種工業材料分
野、食品・包装分野の製品・部品用の材料として幅広く
用いられている。昨今、特に電気・電子分野、自動車分
野、その他の各種工業分野では製品・部品の耐熱性に関
する要求が厳しくなってきているため、多くの高耐熱性
熱可塑性樹脂が開発されているが、耐熱性の向上に伴い
熱可塑性樹脂をペレット状の熱可塑性樹脂混練物に加工
する溶融混練の加工温度も上昇し、分解温度に近づくた
めに種々の問題が発生している。
2. Description of the Related Art Thermoplastic resins have excellent workability and productivity.
Products and parts with the desired shape can be efficiently produced by molding methods such as melt injection molding and melt extrusion molding, so products in the electrical and electronic fields, automotive fields, various other industrial materials fields, and food and packaging fields It is widely used as a material for parts. In recent years, especially in the electric and electronic fields, the automobile field, and other various industrial fields, the demand for heat resistance of products and parts has become strict, so many high heat resistant thermoplastic resins have been developed. With the improvement of the temperature, the processing temperature of the melt-kneading for processing the thermoplastic resin into a pellet-shaped thermoplastic resin kneaded material also rises and approaches the decomposition temperature, which causes various problems.

【0003】即ち、熱可塑性樹脂混練物に加工する溶融
混練の加工温度が分解温度に近づくと熱劣化による変
色、炭化が起こるため、この熱可塑性樹脂混練物を用い
て成形される製品・部品の色調・外観に問題を生ずる。
この問題を解決するために、従来技術では熱安定剤、酸
化防止剤などの添加剤を熱可塑性樹脂に添加して溶融混
練する方法が提案されているが、高耐熱性熱可塑性樹脂
混練物では溶融混練の加工温度が高いために添加剤を添
加しても成形品の色調・外観は充分に改善されない。
[0003] That is, when the processing temperature of melt kneading for processing into a thermoplastic resin kneaded product approaches the decomposition temperature, discoloration and carbonization occur due to thermal degradation. A problem occurs in color tone and appearance.
In order to solve this problem, in the prior art, a method has been proposed in which additives such as a heat stabilizer and an antioxidant are added to a thermoplastic resin and melt-kneaded, but in the case of a high heat-resistant thermoplastic resin kneaded product. Due to the high processing temperature of the melt-kneading, the color tone and appearance of the molded product are not sufficiently improved even if additives are added.

【0004】また、添加剤を増量した熱可塑性樹脂混練
物を用いて成形すると、耐熱性・機械物性が逆に低下す
る問題が発生する。さらに、色調・外観を改良する技術
としてミネラルオイル等の可塑剤を、熱可塑性樹脂に添
加して溶融混練の加工温度を下げる方法も古くから行わ
れているが、この方法の熱可塑性樹脂混練物を用いて得
られる成形体には、色調・外観に関して良好であるが、
耐熱性及び機械物性が低下する。従って、従来技術の熱
可塑性樹脂混練物及び、これを加工して得られる成形体
は色調・外観と耐熱性・機械物性のバランスが不充分な
ため、産業界の要求に十分応えるものではない。
[0004] Further, when molding is performed using a thermoplastic resin kneaded material in which an additive is added in an increased amount, there arises a problem that heat resistance and mechanical properties are deteriorated. Furthermore, as a technique for improving the color tone and appearance, a method of adding a plasticizer such as mineral oil to a thermoplastic resin to lower the processing temperature for melt-kneading has been used for a long time. The molded product obtained using is good in color tone and appearance,
Heat resistance and mechanical properties decrease. Therefore, the thermoplastic resin kneaded product of the prior art and the molded product obtained by processing the same do not sufficiently meet the demands of the industry because the color tone / appearance and heat resistance / mechanical properties are insufficiently balanced.

【0005】特開平10−34726公報には、難成形
樹脂材料の押出し成形において、あらかじめ樹脂に炭酸
ガスなどの無機ガスを吸着させた後に、可塑化し押出し
賦形する方法が示されている。この方法では樹脂中に無
機ガスを含有したまま賦形するため、押出し物が発泡し
やすく、押出し物表面の発泡を防止するには、表面をダ
イ内で十分冷却する必要があり、熱可塑性樹脂の製造、
特に、熱可塑性樹脂混練物の製造に応用しようとしても
生産性の点で問題があった。また、特開平9−1047
80公報や特開平10−53662公報には、押出し発
泡体の製造方法として、加圧した炭酸ガスなどの発泡剤
を押出し機に注入する方法が示されているが、これらは
炭酸ガスを発泡剤として用いているに過ぎず、良好な樹
脂物性を有する樹脂混練物の製造法とは何ら関係がな
い。
Japanese Patent Application Laid-Open No. H10-34726 discloses a method of extruding a difficult-to-mold resin material by adsorbing an inorganic gas such as carbon dioxide to the resin in advance, plasticizing and extruding the resin. In this method, since the resin is shaped while containing the inorganic gas, the extruded product is easily foamed. To prevent foaming on the surface of the extruded product, it is necessary to sufficiently cool the surface in a die, and the thermoplastic resin is used. Manufacturing of,
In particular, there is a problem in terms of productivity even if it is applied to the production of a kneaded thermoplastic resin. Also, Japanese Patent Application Laid-Open No. 9-1047
80 and JP-A-10-53662 disclose a method of injecting a foaming agent such as pressurized carbon dioxide into an extruder as a method for producing an extruded foam. And has nothing to do with the method for producing a resin kneaded product having good resin physical properties.

【0006】[0006]

【発明が解決しようとする課題】本発明は、例えばペレ
ット形状の熱可塑性樹脂混練物を用いて得られる成形体
において、色調・外観と耐熱性・機械物性のバランスが
充分で、産業界の要求に十分応える成形体を提供するこ
と目的とする。即ち、本発明は溶融混練の工程における
熱可塑性樹脂の熱劣化による変色、炭化を抑制すること
により色調・外観を改善し、かつ耐熱性・機械物性を保
った熱可塑性樹脂混練物を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a molded article obtained by using, for example, a pellet-shaped thermoplastic resin kneaded material, in which the color tone / appearance and the heat resistance / mechanical properties are sufficiently balanced, and It is an object of the present invention to provide a molded article which sufficiently responds to That is, the present invention provides a thermoplastic resin kneaded product which improves color tone and appearance by suppressing discoloration and carbonization due to thermal deterioration of a thermoplastic resin in a melt-kneading process, and which maintains heat resistance and mechanical properties. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明者は、成形性・色
調・外観が優れ、かつ耐熱性・機械物性に優れる熱可塑
性樹脂混練物の製造方法に関して検討した結果、熱可塑
性樹脂の溶融混練加工において、熱可塑性樹脂(A)1
00重量部に対し、0.3〜20.0重量部の炭酸ガス
(B)を含有した混合物を溶融混練し、溶融混練中に炭
酸ガス(B)を放散する製造法により、発泡がなく、色
調・外観と耐熱性・機械物性の全てが良好な熱可塑性樹
脂混練物を高い生産性で製造可能であることを見出し
た。更に、得られた熱可塑性樹脂混練物を各種成形方法
で再加工して得られる成形体は色調・外観と耐熱性・機
械物性の全てが良好になることを見出し本発明を完成す
るに至った。
The inventors of the present invention have studied a method for producing a thermoplastic resin kneaded material having excellent moldability, color tone and appearance, and excellent heat resistance and mechanical properties. In processing, the thermoplastic resin (A) 1
A mixture containing 0.3 to 20.0 parts by weight of carbon dioxide gas (B) is melt-kneaded with respect to 00 parts by weight, and the production method of dispersing carbon dioxide gas (B) during melt-kneading produces no foaming. It has been found that a thermoplastic resin kneaded product having good color tone, appearance, heat resistance and mechanical properties can be produced with high productivity. Furthermore, the molded article obtained by reworking the obtained thermoplastic resin kneaded material by various molding methods has found that all of the color tone / appearance and heat resistance / mechanical properties are good, and have completed the present invention. .

【0008】即ち、本発明の熱塑性樹脂混練物は炭酸ガ
スの樹脂可塑化効果により溶融混練時の樹脂粘度が低減
し、せん断発熱を効果的に抑制できるため、熱劣化、変
色・炭化が起こらず優れた色調・外観を持つものであ
る。更に、本発明では溶融混練中に炭酸ガスを放散する
ため、加工後の熱可塑性樹脂混練物に炭酸ガスが残留し
ないので、熱可塑性樹脂の本来の耐熱性・機械物性を保
つ。従って、この熱可塑性樹脂混練物は発泡がなく、色
調・外観と耐熱性・機械物性の全てが良好であり、産業
界の要求に十分応える各種工業分野の製品・部品を提供
することが可能になる。また、この熱可塑性樹脂混練物
を更に再加工して得られる成形体も色調・外観と耐熱性
・機械物性全てが良好であり、産業界の要求に十分応え
る各種工業分野の製品・部品を提供することが可能にな
る。
That is, in the thermoplastic resin kneaded product of the present invention, the resin viscosity at the time of melt kneading is reduced due to the plasticizing effect of carbon dioxide gas, and shear heat generation can be effectively suppressed, so that thermal deterioration, discoloration and carbonization do not occur. It has excellent color tone and appearance. Furthermore, in the present invention, carbon dioxide gas is released during melt-kneading, so that carbon dioxide gas does not remain in the processed thermoplastic resin kneaded material, so that the thermoplastic resin maintains its original heat resistance and mechanical properties. Therefore, this thermoplastic resin kneaded product has no foaming, has good color tone / appearance, heat resistance / mechanical properties, and can provide products / parts in various industrial fields that sufficiently meet the demands of the industrial world. Become. In addition, molded products obtained by further reworking this thermoplastic resin kneaded product also have good color tone, appearance, heat resistance and mechanical properties, and provide products and parts in various industrial fields that fully meet the demands of the industry. It becomes possible to do.

【0009】本発明の熱可塑性樹脂(A)は溶融押出成
形法や溶融射出成形法などの成形方法により所望の形状
の製品・部品を生産でき、電気・電子分野、自動車分
野、その他の各種工業材料分野の製品・部品用の材料と
して幅広く用いられているプラスチック材料である。本
発明の熱可塑性樹脂(A)は成形可能なプラスチック材
料であれば、その一次構造、タクティシティー、高次構
造等の高分子構造、形状、製造法はいずれのものでも採
用できる。本発明の熱可塑性樹脂(A)は非晶性熱可塑
性樹脂と結晶性熱可塑性樹脂に分類される。
The thermoplastic resin (A) of the present invention can produce products and parts having a desired shape by a molding method such as a melt extrusion molding method or a melt injection molding method, and can be used in the electric and electronic fields, the automobile field, and various other industries. It is a plastic material widely used as a material for products and parts in the materials field. As long as the thermoplastic resin (A) of the present invention is a moldable plastic material, its primary structure, tacticity, high-order structure and other polymer structures, shapes and manufacturing methods can be adopted. The thermoplastic resin (A) of the present invention is classified into an amorphous thermoplastic resin and a crystalline thermoplastic resin.

【0010】本発明の非晶性熱可塑性樹脂の例として具
体的には、ポリスチレン、ポリ塩化ビニル、アクリル樹
脂、スチレン系樹脂、ポリアリレート、変成ポリフェニ
レンエーテル樹脂、ポリカーボネート、ポリエーテルイ
ミド、ポリエーテルサルフォン、ポリサルフォン等の熱
可塑性のプラスチック材料、及びこれらのプラスチック
材料を一種または二種以上混合したブレンド物である。
Specific examples of the amorphous thermoplastic resin of the present invention include polystyrene, polyvinyl chloride, acrylic resin, styrenic resin, polyarylate, modified polyphenylene ether resin, polycarbonate, polyetherimide, and polyether sal. It is a thermoplastic plastic material such as fon or polysulfone, and a blend of one or more of these plastic materials.

【0011】本発明のスチレン系樹脂とは、スチレンを
必須原料とするホモポリマー、コポリマー及びこれらの
ポリマーを他の樹脂より得られるポリマーブレンドであ
る。本発明のスチレン樹脂はポリスチレンまたはABS
樹脂であることが好ましい。本発明のポリスチレンと
は、スチレンホモポリマーまたは、樹脂相中にゴムが分
布したゴム強化ポリスチレンである。
The styrenic resin of the present invention is a homopolymer or a copolymer containing styrene as an essential raw material, and a polymer blend obtained by obtaining these polymers from other resins. The styrene resin of the present invention is polystyrene or ABS.
It is preferably a resin. The polystyrene of the present invention is a styrene homopolymer or a rubber-reinforced polystyrene in which rubber is distributed in a resin phase.

【0012】本発明の変性ポリフェニレンエーテル樹脂
とは、ポリフェニレンエーテルを溶融混練してなる樹脂
及び、ポリフェニレンエーテルをそのほかの組成物と混
合し溶融混練してなるポリマーアロイまたは、ポリマー
コンポジットである。本発明の変性ポリフェニレンエー
テル樹脂で好ましいものはポリフェニレンエーテル10
0重量部に対してポリスチレン、ハイインパクトポリス
チレン、シンジオタクチックポリスチレン、ゴム補強し
たシンジオタクチックポリスチレンを500重量部以下
の範囲、好ましくは200重量部以下を加えたものであ
る。本発明のポリフェニレンエーテル(以下、単にPP
Eと略記)は、結合単位が化1で示されるものである。
The modified polyphenylene ether resin of the present invention is a resin obtained by melting and kneading polyphenylene ether, and a polymer alloy or a polymer composite obtained by mixing and melting and kneading polyphenylene ether with another composition. The preferred modified polyphenylene ether resin of the present invention is polyphenylene ether 10
0 parts by weight of polystyrene, high impact polystyrene, syndiotactic polystyrene, or rubber-reinforced syndiotactic polystyrene in a range of 500 parts by weight or less, preferably 200 parts by weight or less. The polyphenylene ether of the present invention (hereinafter simply referred to as PP
The abbreviation E is one in which the bonding unit is represented by Chemical Formula 1.

【0013】[0013]

【化1】 Embedded image

【0014】化1の内、R1,R2,R3,およびR4
はそれぞれ、水素、ハロゲン、炭素数1〜7までの第一
級または第二級低級アルキル基、フェニル基、ハロアル
キル基、アミノアルキル基、炭化水素オキシ基または少
なくとも2個の炭素原子がハロゲン原子と酸素原子とを
隔てているハロ炭化水素オキシ基からなる群から選択さ
れるものであり、互いに同一でも異なっていてもよい。
Wherein R1, R2, R3 and R4
Is hydrogen, halogen, a primary or secondary lower alkyl group having 1 to 7 carbon atoms, a phenyl group, a haloalkyl group, an aminoalkyl group, a hydrocarbonoxy group or at least two carbon atoms each of which is a halogen atom. It is selected from the group consisting of a halohydrocarbon oxy group separating from an oxygen atom, and may be the same or different.

【0015】本発明のPPEは、0.5g/dl,クロ
ロホルム溶液を用い30℃で測定する還元粘度が、0.
15〜0.70の範囲、より好ましくは0.20〜0.
60の範囲にある重合体または共重合体である。本発明
のPPEは具体的には、ポリ(2,6−ジメチル−1,
4−フェニレンエーテル)、ポリ(2−メチル−6−エ
チル−1,4−フェニレンエーテル)、ポリ(2−メチ
ル−6−フェニル−1,4−フェニレンエーテル)、ポ
リ(2,6−ジクロロ−1,4−フェニレンエーテル)
等である。
The PPE of the present invention has a reduced viscosity of 0.3 g as measured at 30 ° C. using a chloroform solution of 0.5 g / dl.
In the range of 15 to 0.70, more preferably 0.20 to 0.
A polymer or copolymer in the range of 60. The PPE of the present invention is specifically composed of poly (2,6-dimethyl-1,1).
4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), poly (2-methyl-6-phenyl-1,4-phenylene ether), poly (2,6-dichloro- 1,4-phenylene ether)
And so on.

【0016】本発明のPPEの具体的例として、2,6
−ジメチルフェノールと他のフェノール類(例えば、
2,3,6−トリメチルフェノールや2−メチル−6−
ブチルフェノール)との共重合体のごときポリフェニレ
ンエーテル共重合体も挙げられる。本発明のPPEは、
ポリ(2,6−ジメチル−1,4−フェニレンエーテ
ル)、2,6−ジメチルフェノールと2,3,6−トリ
メチルフェノールとの共重合体が好ましく使用できる。
As specific examples of the PPE of the present invention, 2,6
-Dimethylphenol and other phenols (for example,
2,3,6-trimethylphenol or 2-methyl-6
Polybutylene ether copolymer such as a copolymer with butylphenol). The PPE of the present invention
Poly (2,6-dimethyl-1,4-phenylene ether) and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol can be preferably used.

【0017】本発明のPPEで最も好ましいのはポリ
(2,6−ジメチル−1,4−フェニレンエーテル)で
ある。本発明では、スチレン、スチレン系化合物、α,
β−不飽和カルボン酸、α,β−不飽和カルボン酸のエ
ステル、α,β−不飽和カルボン酸の酸無水物より選択
される1種または2種以上の化合物と上記PPEとを反
応して得られるPPE誘導体もPPEとして使用するこ
とができる。
Most preferred in the PPE of the present invention is poly (2,6-dimethyl-1,4-phenylene ether). In the present invention, styrene, a styrene-based compound, α,
reacting one or more compounds selected from β-unsaturated carboxylic acids, esters of α, β-unsaturated carboxylic acids, and acid anhydrides of α, β-unsaturated carboxylic acids with the above PPE The resulting PPE derivative can also be used as PPE.

【0018】本発明で使用するPPEの製造方法は限定
されない。本発明で使用するPPEの製造方法の例とし
て、米国特許第3306874明細書記載の第一銅塩と
アミンのコンプレックスを触媒として用い、2,6−キ
シレノールを酸化重合する方法がある。米国特許第33
06875、同第3257357および同第32573
58明細書、特公昭52−17880および特開昭50
−51197および同63−152628公報等に記載
された方法もPPEの製造方法として好ましい。
The method for producing PPE used in the present invention is not limited. As an example of the method for producing PPE used in the present invention, there is a method of oxidatively polymerizing 2,6-xylenol using a complex of a cuprous salt and an amine as a catalyst described in US Pat. No. 3,308,874. US Patent No. 33
06875, 3257357 and 32573
58 specification, JP-B-52-17880 and JP-A-Showa 50
The methods described in JP-A-51197 and JP-A-63-152628 are also preferable as a method for producing PPE.

【0019】本発明の結晶性熱可塑性樹脂の例として具
体的には、高密度ポリエチレン、低密度ポリエチレン、
直鎖低密度ポリエチレン、ポリプロピレン、シンジオタ
クティックポリスチレン、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、全芳香族ポリエステ
ル、ポリアセタール、ポリアミド系樹脂、ポリエーテル
エーテルケトン、ポリエーテルケトン等の熱可塑性のプ
ラスチック材料、及びこれらのプラスチック材料を一種
または二種以上混合したブレンド物、及び非晶性熱可塑
性樹脂と結晶性熱可塑性樹脂を混合したブレンド物であ
る。
Specific examples of the crystalline thermoplastic resin of the present invention include high-density polyethylene, low-density polyethylene,
Thermoplastic plastic materials such as linear low density polyethylene, polypropylene, syndiotactic polystyrene, polyethylene terephthalate, polybutylene terephthalate, wholly aromatic polyester, polyacetal, polyamide resin, polyetheretherketone, polyetherketone, and the like. A blend in which one or more plastic materials are mixed, and a blend in which an amorphous thermoplastic resin and a crystalline thermoplastic resin are mixed.

【0020】本発明の熱可塑性樹脂(A)は目的に応じ
所望の添加剤を添加しても良い。本発明の熱可塑性樹脂
(A)に使用する添加剤は、熱安定剤、酸化防止剤、U
V吸収剤、界面活性剤、滑剤、充填剤、難燃剤、顔料、
染料、耐衝撃性付与剤、ポリマー添加剤、フィラー、ガ
ラス繊維、カーボン繊維、無機繊維、ジアルキルパーオ
キサイド、ジアシルパーオキサイド、パーオキシエステ
ル、パーオキシカーボネート、ヒドロパーオキサイド、
パーオキシケタール等である。
The thermoplastic resin (A) of the present invention may contain a desired additive depending on the purpose. The additives used in the thermoplastic resin (A) of the present invention include a heat stabilizer, an antioxidant,
V absorber, surfactant, lubricant, filler, flame retardant, pigment,
Dye, impact modifier, polymer additive, filler, glass fiber, carbon fiber, inorganic fiber, dialkyl peroxide, diacyl peroxide, peroxyester, peroxycarbonate, hydroperoxide,
And peroxyketal.

【0021】本発明の炭酸ガス(B)とは、二酸化炭素
を主成分とする混合物である。即ち、本発明の炭酸ガス
(B)は、気体、液体、固体、超臨界状態、何れかの状
態の二酸化炭素又は、二種以上の状態の二酸化炭素を6
0重量%以上含有する混合物である。本発明の熱可塑性
樹脂(A)に炭酸ガス(B)を含有した混合物とは、熱
可塑性樹脂(A)に気体の炭酸ガス(B)を収着させた
もの、溶融した熱可塑性樹脂(A)に炭酸ガス(B)を
圧入したもの、熱可塑性樹脂(A)と炭酸ガス(B)が
共存する状態のものであれば、何れの状態のものでも採
用することができる。
The carbon dioxide (B) of the present invention is a mixture containing carbon dioxide as a main component. That is, the carbon dioxide gas (B) of the present invention is prepared by converting carbon dioxide in a gas, a liquid, a solid, or a supercritical state, carbon dioxide in any state, or carbon dioxide in two or more kinds.
It is a mixture containing 0% by weight or more. The mixture containing carbon dioxide (B) in the thermoplastic resin (A) of the present invention refers to a mixture of the thermoplastic resin (A) in which gaseous carbon dioxide (B) is sorbed, and a mixture of the thermoplastic resin (A) ) In which carbon dioxide gas (B) is press-fitted, or any state in which the thermoplastic resin (A) and carbon dioxide gas (B) coexist.

【0022】本発明の混合物に含有される炭酸ガス
(B)の量は、熱可塑性樹脂(A)100重量部に対
し、0.3〜20.0重量部である。本発明で熱可塑性
樹脂100重量部に含有される炭酸ガス(B)の量が
0.3重量部未満の場合、炭酸ガス(B)の樹脂可塑化
効果が不充分なため熱可塑性樹脂(A)の粘度は充分に
低下せず、溶融混練時のせん断発熱を効果的に抑制でき
ず、熱劣化による、変色・炭化が起こり、得られる熱可
塑性樹脂混練物は色調・外観の問題が生ずる。 本発明
で熱可塑性樹脂(A)100重量部に含有される炭酸ガ
ス(B)の量が20.0重量部を超える場合には、混合
物の状態が不安定なため、溶融混練の工程制御が困難に
なる。
The amount of carbon dioxide (B) contained in the mixture of the present invention is 0.3 to 20.0 parts by weight based on 100 parts by weight of the thermoplastic resin (A). In the present invention, when the amount of carbon dioxide (B) contained in 100 parts by weight of the thermoplastic resin is less than 0.3 parts by weight, the resin plasticizing effect of the carbon dioxide (B) is insufficient, so that the thermoplastic resin (A) ) Does not sufficiently decrease, shear heating during melt-kneading cannot be suppressed effectively, discoloration and carbonization occur due to thermal degradation, and the resulting thermoplastic resin kneaded product has problems in color tone and appearance. In the present invention, when the amount of carbon dioxide (B) contained in 100 parts by weight of the thermoplastic resin (A) exceeds 20.0 parts by weight, the state of the mixture is unstable, so that the process of the melt-kneading process is not controlled. It becomes difficult.

【0023】本発明の溶融混練とは、混合機を用い熱可
塑性樹脂を可塑化し溶融状態にし、混練した後、冷却し
固化する工程である。本発明の混合機とは、溶融混練で
きる装置であればその種類、構造、構成は何れのもので
も採用できる。本発明の混合機の例として、スタティッ
クミキサー、バンバリーミキサー、単軸押出機、コニー
ダー、2軸押出機などがある。
The melt kneading of the present invention is a step of plasticizing a thermoplastic resin by using a mixer, bringing the thermoplastic resin into a molten state, kneading, cooling and solidifying. The mixer, the type, the structure, and the configuration of the mixer of the present invention can be adopted as long as they can be melt-kneaded. Examples of the mixer of the present invention include a static mixer, a Banbury mixer, a single-screw extruder, a co-kneader, and a twin-screw extruder.

【0024】本発明の混合機として、単軸押出機、コニ
ーダー、2軸押出機が好ましい。本発明の混合機とし
て、コニーダー、2軸押出機が更に好ましい。本発明の
混合機として、2軸押出機が極めて好ましい。本発明の
熱可塑性樹脂混練物の形状は限定されない。本発明の熱
可塑性樹脂混練物の形状はペレット状が好ましく使用で
きる。ペレット状に加工する手段としては、例えば、混
合機として2軸押出機を使用する場合には、溶融混練し
た熱可塑性樹脂をストランド状にした後、カッターを用
いて切断するストランドカット法、溶融状態の熱可塑性
樹脂をカッターで切断するホットカット法、溶融状態の
熱可塑性樹脂を水中でカッターを用い切断するアンダー
ウォーター法が好ましい。
As the mixer of the present invention, a single screw extruder, a co-kneader and a twin screw extruder are preferable. As a mixer of the present invention, a co-kneader and a twin-screw extruder are more preferable. As the mixer of the present invention, a twin-screw extruder is very preferable. The shape of the thermoplastic resin kneaded product of the present invention is not limited. As the shape of the thermoplastic resin kneaded product of the present invention, a pellet shape can be preferably used. As a means for processing into a pellet, for example, when a twin-screw extruder is used as a mixer, a strand cutting method in which a melt-kneaded thermoplastic resin is formed into a strand and then cut using a cutter, The hot-cut method of cutting the thermoplastic resin with a cutter, and the underwater method of cutting the molten thermoplastic resin in water with a cutter are preferred.

【0025】炭酸ガスを放散する方法としては、例え
ば、混合機として2軸押出機を使用する場合には、溶融
混練中に2軸押出機のベントより炭酸ガスを大気に放散
したり、吸引ポンプに接続し放散する方法などがある。
この場合は、ベント部のガス圧力を調整して放散量を制
御することもできる。炭酸ガスを放散後の熱可塑性樹脂
のせん断発熱を抑制するため、放散する場所は、ダイに
近接した部分のベントであることが望ましい。
As a method of releasing carbon dioxide gas, for example, when a twin-screw extruder is used as a mixer, the carbon dioxide gas is released to the atmosphere from the vent of the twin-screw extruder during melt-kneading, or a suction pump is used. There is a method of connecting and dissipating.
In this case, the amount of emission can be controlled by adjusting the gas pressure in the vent portion. In order to suppress the shear heat generation of the thermoplastic resin after the carbon dioxide gas is diffused, it is desirable that the place where the carbon dioxide gas is diffused is a vent in a portion close to the die.

【0026】本発明では、実質的に熱可塑性樹脂混練物
の発泡が抑制できれば、溶融混練中の混合物から全ての
炭酸ガスを放散することは必ずしも必要ではない。本発
明において溶融混練中の混合物中に残る炭酸ガスは、例
えば、混合機として2軸押出機を使用する場合には、ダ
イ部分及び、冷却中のストランド表面から放散され、熱
可塑性樹脂混練物を発泡させることない。冷却後の熱可
塑性樹脂混練物中に残る炭酸ガスは、大気中に放置すれ
ば自然に放散し、熱可塑性樹脂混練物が発泡させること
はない。
In the present invention, it is not always necessary to emit all carbon dioxide from the mixture during melt-kneading as long as the foaming of the thermoplastic resin kneaded material can be substantially suppressed. In the present invention, the carbon dioxide gas remaining in the mixture during melt-kneading is, for example, when a twin-screw extruder is used as a mixer, is diffused from the die portion and the surface of the strand being cooled, and the thermoplastic resin kneaded material is removed. Does not foam. The carbon dioxide gas remaining in the thermoplastic resin kneaded material after cooling is naturally diffused when left in the air, and the thermoplastic resin kneaded material does not foam.

【0027】本発明の方法では、溶融混練における熱可
塑性樹脂混練物の変色・炭化の最も大きな原因である熱
可塑性樹脂固体が溶融するときにおこる非常に強いせん
断発熱を抑制できる。本発明では、溶融混練時の押出機
のシリンダー温度は熱可塑性樹脂を通常溶融混練する時
のシリンダー温度以下でかつ溶融混練が可能であれば何
れの温度でも、色調・外観が向上する。本発明の熱可塑
性樹脂混練物の製造方法では、熱可塑性樹脂(A)が非
晶性熱可塑性樹脂の場合には、溶融混練の加工温度が熱
可塑性樹脂(A)のガラス転移温度+150℃以下の温
度であるときに好ましい熱可塑性樹脂混練物が得られ
る。また、本発明の熱可塑性樹脂混練物の製造方法で
は、熱可塑性樹脂(A)が結晶性熱可塑性樹脂の場合、
溶融混練の加工温度が熱可塑性樹脂(A)の融点+10
0℃以下の温度であるときに好ましい熱可塑性樹脂混練
物が得られる。
According to the method of the present invention, it is possible to suppress a very strong shearing heat generated when the thermoplastic resin solid which is the largest cause of discoloration and carbonization of the thermoplastic resin kneaded material in the melt kneading is melted. In the present invention, the color tone and appearance are improved at any temperature of the extruder at the time of melt-kneading, which is lower than the cylinder temperature at which the thermoplastic resin is usually melt-kneaded and which can be melt-kneaded. In the method for producing a thermoplastic resin kneaded product of the present invention, when the thermoplastic resin (A) is an amorphous thermoplastic resin, the processing temperature for melt kneading is equal to or lower than the glass transition temperature of the thermoplastic resin (A) + 150 ° C. When the temperature is above, a preferable thermoplastic resin kneaded material is obtained. In the method for producing a thermoplastic resin kneaded product of the present invention, when the thermoplastic resin (A) is a crystalline thermoplastic resin,
The processing temperature of the melt-kneading is the melting point of the thermoplastic resin (A) +10
When the temperature is 0 ° C. or lower, a preferable thermoplastic resin kneaded material is obtained.

【0028】本発明の溶融混練の加工温度とは、加工中
の混合機の温度である。本発明の溶融混練の加工温度
は、実質的に差がなければ混合機の設定温度で代用でき
る。本発明では、溶融混練の加工温度が熱可塑性樹脂
(A)のガラス転移温度+100℃以下、もしくは融点
+70℃以下の温度の温度である場合は更に好ましい。
The processing temperature of the melt-kneading of the present invention is the temperature of the mixer during the processing. The processing temperature of the melt-kneading of the present invention can be replaced by the set temperature of the mixer if there is no substantial difference. In the present invention, it is more preferable that the processing temperature of the melt-kneading is a temperature equal to or lower than the glass transition temperature of the thermoplastic resin (A) + 100 ° C. or the melting point + 70 ° C.

【0029】本発明では、溶融混練の加工温度が熱可塑
性樹脂(A)のガラス転移温度+50℃以下、もしくは
融点+40℃以下の温度の温度である場合に極めて好ま
しい効果がみられる。本発明では、熱可塑性樹脂(A)
に炭酸ガス(B)を含有する方法として、溶融混練する
前に熱可塑性樹脂(A)と0.1MPa〜15MPaの
圧力の炭酸ガス(B)を0.1秒間以上接触させ、熱可
塑性樹脂(A)に炭酸ガス(B)を含有する方法が好ま
しい。
In the present invention, an extremely favorable effect is obtained when the processing temperature of the melt-kneading is a temperature equal to or lower than the glass transition temperature of the thermoplastic resin (A) + 50 ° C. or the melting point + 40 ° C. or lower. In the present invention, the thermoplastic resin (A)
As a method of containing carbon dioxide gas (B), a thermoplastic resin (A) is brought into contact with a carbon dioxide gas (B) at a pressure of 0.1 MPa to 15 MPa for 0.1 second or more before melt-kneading to obtain a thermoplastic resin (B). A method containing carbon dioxide (B) in A) is preferred.

【0030】本発明では、熱可塑性樹脂(A)に炭酸ガ
ス(B)を含有する方法として、溶融混練する前に熱可
塑性樹脂(A)と0.4MPa〜10MPaの圧力の炭
酸ガス(B)を10秒間以上接触させる方法が更に好ま
しい。本発明では、熱可塑性樹脂(A)に炭酸ガス
(B)を含有する方法として、溶融混練する前に熱可塑
性樹脂(A)と1MPa〜5MPaの圧力の炭酸ガス
(B)を100秒間以上接触させる方法が極めて好まし
い。
In the present invention, as a method of containing carbon dioxide (B) in the thermoplastic resin (A), the carbon dioxide (B) having a pressure of 0.4 MPa to 10 MPa is mixed with the thermoplastic resin (A) before melt-kneading. Is more preferable. In the present invention, as a method of containing carbon dioxide gas (B) in the thermoplastic resin (A), the thermoplastic resin (A) is contacted with the carbon dioxide gas (B) at a pressure of 1 MPa to 5 MPa for 100 seconds or more before melt-kneading. It is very preferable to use the method.

【0031】本発明では、熱可塑性樹脂(A)に炭酸ガ
ス(B)を含有する方法として、溶融混練過程にある熱
可塑性樹脂(A)と炭酸ガス(B)を押出機のシリンダ
ーより注入する方法も好ましく採用できる。この場合、
炭酸ガス(B)の注入圧力は、押出し機のガス注入位置
の樹脂圧力以上にすることが必要であり、ベントから注
入する場合は0.1MPa程度の低圧でも注入できる
が、押出し機の圧縮〜混練部から注入する場合は30M
Pa程度の圧力が必要になる。また、炭酸ガス(B)の
注入量を一定に保つことが重要であり、定量ポンプとし
てプランジャーポンプを用いたり、ガス流量を計測して
ガス供給圧をフィードバック制御するなどのガス流量制
御をすることが好ましい。
In the present invention, as a method of containing carbon dioxide (B) in the thermoplastic resin (A), the thermoplastic resin (A) and carbon dioxide (B) in the melt-kneading process are injected from a cylinder of an extruder. A method can also be preferably adopted. in this case,
The injection pressure of carbon dioxide gas (B) must be equal to or higher than the resin pressure at the gas injection position of the extruder. When the carbon dioxide gas (B) is injected from a vent, it can be injected at a low pressure of about 0.1 MPa. 30M when pouring from the kneading part
A pressure of about Pa is required. In addition, it is important to keep the injection amount of carbon dioxide gas (B) constant, and a gas flow rate control such as using a plunger pump as a metering pump or measuring the gas flow rate and performing feedback control of the gas supply pressure is performed. Is preferred.

【0032】いずれの方法で炭酸ガス(B)を熱可塑性
樹脂(A)に混合する場合でも、樹脂を押出し機に供給
するホッパ付近の雰囲気を炭酸ガスにすることが好まし
い。これは、高温の樹脂と酸素が接触し、樹脂が酸化劣
化するのを防止したり、可塑化安定性を阻害する窒素を
除くためである。本発明では、押出し混練に高い樹脂温
度が必要とされるような、熱可塑性樹脂(A)のガラス
転移温度が110℃〜250℃である場合に、熱可塑性
樹脂混練物の色調・外観は顕著に改善される。本発明の
非晶性熱可塑性樹脂のガラス転移温度は、熱可塑性樹脂
に対する示差熱走査型熱量計(DSC)の測定におい
て、20℃/分で昇温するときに得られる温度−熱流量
グラフのオンセット温度で定義される。
Regardless of the method in which the carbon dioxide gas (B) is mixed with the thermoplastic resin (A), the atmosphere near the hopper for supplying the resin to the extruder is preferably carbon dioxide gas. This is to prevent the high-temperature resin from coming into contact with oxygen to prevent the resin from being oxidized and degraded, and to remove nitrogen which impairs plasticization stability. In the present invention, when the glass transition temperature of the thermoplastic resin (A) is 110 ° C. to 250 ° C. such that a high resin temperature is required for extrusion kneading, the color tone and appearance of the thermoplastic resin kneaded product are remarkable. To be improved. The glass transition temperature of the amorphous thermoplastic resin of the present invention is the temperature-heat flow graph obtained when the temperature is increased at 20 ° C./min in the measurement of the thermoplastic resin with a differential scanning calorimeter (DSC). Defined by onset temperature.

【0033】本発明のガラス転移温度は、オンセット温
度が複数ある場合にはその内の最高の温度で定義され
る。本発明での結晶性熱可塑性樹脂の融点とは、示差熱
走査型熱量計(DSC)の測定を行い、20℃/分で昇
温するときに得られる温度−熱流量グラフのピークトッ
プ温度で定義される。本発明では熱可塑性樹脂が変性ポ
リフェニレンエーテル樹脂である場合、熱可塑性樹脂混
練物の色調改善効果が極めて顕著である。
The glass transition temperature of the present invention is defined by the highest temperature among a plurality of onset temperatures when there are a plurality of onset temperatures. The melting point of the crystalline thermoplastic resin in the present invention is defined as the peak top temperature of a temperature-heat flow graph obtained by measuring with a differential scanning calorimeter (DSC) and heating at 20 ° C./min. Defined. In the present invention, when the thermoplastic resin is a modified polyphenylene ether resin, the effect of improving the color tone of the thermoplastic resin kneaded product is extremely remarkable.

【0034】本発明の熱可塑性樹脂混練物はその用途を
限定されない。本発明の熱可塑性樹脂混練物は電気・電
子分野、自動車分野、その他の各種工業材料分野、食品
・包装分野において良好な色調を要求される用途として
好ましく適用できる。本発明の熱可塑性樹脂混練物は、
炭酸ガス(B)の樹脂可塑化効果により、溶融混練時に
変色、炭化などの問題が起こらず、色調・外観が良好で
ある。さらに、加工後の熱可塑性樹脂混練物中に炭酸ガ
ス(B)が残留しないため、熱可塑性樹脂混練物の耐熱
性、機械物性は、その原料である熱可塑性樹脂(A)が
本来示す耐熱性、機械物性と同等になる。 即ち、本発
明の熱塑性樹脂組成物は溶融混練時に炭酸ガスによる樹
脂可塑化効果により樹脂の粘度が低下し、せん断発熱を
効果的に抑制できるため熱劣化がなく、変色・炭化が起
こらず優れた色調・外観を持つものである。
The use of the kneaded thermoplastic resin of the present invention is not limited. The thermoplastic resin kneaded product of the present invention can be preferably applied in applications requiring a good color tone in the fields of electric / electronics, automobiles, various other industrial materials, and food / packaging. The thermoplastic resin kneaded product of the present invention,
Due to the resin plasticizing effect of carbon dioxide gas (B), problems such as discoloration and carbonization do not occur during melt-kneading, and the color tone and appearance are good. Further, since the carbon dioxide gas (B) does not remain in the thermoplastic resin kneaded material after processing, the heat resistance and mechanical properties of the thermoplastic resin kneaded material are the same as those of the thermoplastic resin (A) as the raw material. , Equivalent to mechanical properties. That is, the thermoplastic resin composition of the present invention is excellent in that the viscosity of the resin is reduced due to the plasticizing effect of the carbon dioxide gas during melt-kneading, and that the shear heat generation can be effectively suppressed, so that there is no thermal deterioration, and no discoloration or carbonization occurs. It has color tone and appearance.

【0035】更に、本発明の熱可塑性樹脂混練物には炭
酸ガスが残留していないため、熱可塑性樹脂の本来の耐
熱性と機械物性を示す。従って、本発明の熱可塑性樹脂
混練物を各種成形方法で加工すると、色調・外観と耐熱
性・機械物性の全てが良好な成形体が得られ、産業界の
要求に十分応える各種工業分野の製品・部品を提供する
ことが可能になる。
Further, since no carbon dioxide gas remains in the thermoplastic resin kneaded product of the present invention, the thermoplastic resin exhibits the inherent heat resistance and mechanical properties. Therefore, when the thermoplastic resin kneaded product of the present invention is processed by various molding methods, a molded product having good color tone, appearance, heat resistance, and mechanical properties can be obtained, and is a product in various industrial fields which sufficiently meets the demands of the industrial world.・ Parts can be provided.

【0036】[0036]

【発明の実施の形態】以下、実施例により、本発明をさ
らに詳細に説明する。本発明はその主旨を越えない限
り、以下の実施例に限定されるものではない。実施例及
び比較例では、次の熱可塑性樹脂(A)を用いる。 A−1:2,6−ジメチルフェノールを酸化重合して得
た還元粘度0.54のポリ(2,6−ジメチル−1,4
−フェニレンエーテル) A−2:2,6−ジメチルフェノールを酸化重合して得
た還元粘度0.31のポリ(2,6−ジメチル−1,4
−フェニレンエーテル) A−3:ポリアミド樹脂(旭化成工業(株)社製レオナ
1300S) A−4:変成ポリフェニレンエーテル樹脂(旭化成工業
(株)社製ザイロン500H) A−5:ポリエーテルイミド(GE社製Ultem10
00) A−6:ポリエーテルスルホン(ICI社製Victr
ex200p) A−7:ABS樹脂(旭化成工業(株)社製スタイラッ
クIM15) A−8:ポリスチレン(旭化成工業(株)社製スタイロ
ンG9305) A−9:ポリアセタール(旭化成工業(株)社製テナッ
ク3010) A−10:PMMA樹脂(旭化成工業(株)社製デルペ
ット80N)
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples as long as the gist is not exceeded. In the examples and comparative examples, the following thermoplastic resin (A) is used. A-1: Poly (2,6-dimethyl-1,4 having a reduced viscosity of 0.54 obtained by oxidative polymerization of 2,6-dimethylphenol.
-Phenylene ether) A-2: Poly (2,6-dimethyl-1,4, having a reduced viscosity of 0.31 obtained by oxidative polymerization of 2,6-dimethylphenol.
-Phenylene ether) A-3: Polyamide resin (Leona 1300S manufactured by Asahi Chemical Industry Co., Ltd.) A-4: Modified polyphenylene ether resin (Zylon 500H manufactured by Asahi Chemical Industry Co., Ltd.) A-5: Polyetherimide (GE Co., Ltd.) ULTEM10
00) A-6: Polyether sulfone (Victr manufactured by ICI)
ex-7p) A-7: ABS resin (Stylac IM15 manufactured by Asahi Kasei Kogyo Co., Ltd.) A-8: Polystyrene (Stylon G9305 manufactured by Asahi Kasei Kogyo Co., Ltd.) A-9: Polyacetal (Tenac manufactured by Asahi Kasei Kogyo Co., Ltd.) 3010) A-10: PMMA resin (Delpet 80N manufactured by Asahi Kasei Corporation)

【0037】実施例及び比較例では、次の炭酸ガス
(B)を用いる。 B−1:ドライアイス B−2:温度35℃において圧力が0.07MPaの炭
酸ガス B−3:温度35℃において圧力が0.15MPaの炭
酸ガス B−4:温度35℃において圧力が0.3MPaの炭酸
ガス B−5:温度35℃において圧力が0.5MPaの炭酸
ガス B−6:温度35℃において圧力が0.8MPaの炭酸
ガス B−7:温度35℃において圧力が1.2MPaの炭酸
ガス B−8:温度35℃において圧力が4MPaの炭酸ガス B−9:温度35℃において圧力が6MPaの炭酸ガス B−10:温度35℃において圧力が8MPaの炭酸ガ
ス B−12:温度35℃において圧力が12MPaの炭酸
ガス B−13:温度35℃において圧力が15MPaの炭酸
ガス
In the examples and comparative examples, the following carbon dioxide gas (B) is used. B-1: Dry ice B-2: Carbon dioxide gas having a pressure of 0.07 MPa at a temperature of 35 ° C. B-3: Carbon dioxide gas having a pressure of 0.15 MPa at a temperature of 35 ° C. B-4: A pressure of 0.15 MPa at a temperature of 35 ° C. 3 MPa carbon dioxide gas B-5: carbon dioxide gas having a pressure of 0.5 MPa at a temperature of 35 ° C. B-6: carbon dioxide gas having a pressure of 0.8 MPa at a temperature of 35 ° C. B-7: a pressure of 1.2 MPa at a temperature of 35 ° C. Carbon dioxide gas B-8: Carbon dioxide gas having a pressure of 4 MPa at a temperature of 35 ° C. B-9: Carbon dioxide gas having a pressure of 6 MPa at a temperature of 35 ° C. B-10: Carbon dioxide gas having a pressure of 8 MPa at a temperature of 35 ° C. B-12: Temperature of 35 B-13: Carbon dioxide gas at a pressure of 15 MPa at a temperature of 35 ° C.

【0038】実施例及び比較例では、次の方法でガラス
転移温度及び融点を評価する。熱可塑性樹脂(A)に対
し、示差熱走査型熱量計(DSC)の測定を行い、20
℃/分で昇温するときに得られる温度−熱流量グラフの
オンセット温度をガラス転移温度とする。また、同様に
示差熱走査型熱量計(DSC)の測定を行い、20℃/
分で昇温するときに得られる温度−熱流量グラフのピー
クトップ温度を融点とする。
In Examples and Comparative Examples, the glass transition temperature and the melting point are evaluated by the following methods. The differential scanning calorimeter (DSC) was measured for the thermoplastic resin (A),
The onset temperature of the temperature-heat flow graph obtained when the temperature is raised at ° C./min is defined as the glass transition temperature. In addition, similarly, measurement with a differential scanning calorimeter (DSC) was performed, and the measurement was performed at 20 ° C. /
The peak top temperature of the temperature-heat flow graph obtained when the temperature is raised in minutes is defined as the melting point.

【0039】実施例及び比較例では、次の方法で成形体
の色調・外観を評価する。射出成形機を用いて、本発明
の熱可塑性樹脂混練物より50*80*3mmの平板状
成形体を成形し、この平板状成形体の色と異物の数を観
察して成形体の色調・外観を評価する。実施例及び比較
例では、次の方法で成形体の耐熱性・機械物性を評価す
る。射出成形機を用いて、本発明の熱可塑性樹脂混練物
よりASTM規格試験片を射出成形により、ASTM規
格に従って、熱変形温度(ASTM D−648:1
8.6kg荷重)、引張強度(ASTM D−638:
23℃)、曲げ弾性率(ASTM D−790:23
℃)、アイゾット(ノッチ付き)衝撃強度(ASTM
D−256:23℃)を測定して成形体の耐熱性・機械
物性を評価する。
In Examples and Comparative Examples, the color tone and appearance of the molded article are evaluated by the following methods. Using an injection molding machine, a 50 * 80 * 3 mm flat molded product is molded from the thermoplastic resin kneaded product of the present invention, and the color of the flat molded product and the number of foreign substances are observed, and the color tone of the molded product is determined. Evaluate appearance. In Examples and Comparative Examples, the heat resistance and mechanical properties of the molded body are evaluated by the following methods. Using an injection molding machine, an ASTM standard test piece is injection-molded from the thermoplastic resin kneaded product of the present invention, and the heat distortion temperature (ASTM D-648: 1) is determined according to the ASTM standard.
8.6 kg load), tensile strength (ASTM D-638:
23 ° C.), flexural modulus (ASTM D-790: 23)
℃), Izod (with notch) impact strength (ASTM
D-256: 23 ° C.) to evaluate the heat resistance and mechanical properties of the molded article.

【0040】[0040]

【実施例1】熱可塑性樹脂(A−1)100重量部をガ
ス注入口がついたオートクレーブ中に入れ密封した後
に、ガス注入口を通して(B−7)を供給し、オートク
レーブ内の圧力が(B−7)と等しくなった後に2時間
静置し、炭酸ガスを2.8重量部収着し含有した混合物
(C−1−7)を得る。熱可塑性樹脂(A−1)のガラ
ス転移温度は215℃である。280℃にシリンダー温
度を設定した独国ウェルナー社製相互咬み合い型2軸押
出機「ZSK−25押出機」を用い、供給量12kg/
時で(C−1−7)の溶融混練を行う。この時、押出機
フィード口、押出機サイドベント口それぞれより炭酸ガ
スの放散が観測される。押出機より吐出するストランド
状の溶融樹脂を水で冷却した後にストランドカッターを
用いペレット状で炭酸ガスによる発泡のない熱可塑性樹
脂混練物(D−1−7)を得る。
Example 1 100 parts by weight of a thermoplastic resin (A-1) was placed in an autoclave provided with a gas inlet and sealed, and then (B-7) was supplied through the gas inlet, and the pressure in the autoclave was changed to ( After being equal to B-7), the mixture was allowed to stand for 2 hours to obtain a mixture (C-1-7) containing 2.8 parts by weight of carbon dioxide gas. The glass transition temperature of the thermoplastic resin (A-1) is 215 ° C. Using an intermeshing type twin-screw extruder “ZSK-25 extruder” manufactured by Welner, Germany with the cylinder temperature set to 280 ° C., the supply amount was 12 kg /
At time, the melt-kneading of (C-1-7) is performed. At this time, emission of carbon dioxide gas is observed from each of the extruder feed port and the extruder side vent port. After cooling the strand-shaped molten resin discharged from the extruder with water, a pellet-shaped thermoplastic resin kneaded product (D-1-7) without foaming by carbon dioxide gas is obtained using a strand cutter.

【0041】(D−1−7)を成形して得た平板は淡い
黄色の色調であり、異物は観測されない。(D−1−
7)の成形品の物性は、熱変形温度が188℃、引張強
度が760kg/cm2、曲げ弾性率が26,000k
g/cm2、アイゾッド強度が5.5kg・cm/cm
である。
The flat plate obtained by molding (D-1-7) has a pale yellow color tone, and no foreign matter is observed. (D-1-
The physical properties of the molded article 7) are as follows: heat deformation temperature: 188 ° C., tensile strength: 760 kg / cm 2 , flexural modulus: 26,000 k
g / cm 2 , Izod strength 5.5 kg · cm / cm
It is.

【0042】[0042]

【比較例1】280℃にシリンダー温度を設定した独国
ウェルナー社製相互咬み合い型2軸押出機「ZSK−2
5押出機」を用い、供給量12kg/時で熱可塑性樹脂
(A−1)の溶融混練を行い熱可塑性樹脂混練物(E−
1)を得る。(E−1)を成形して得た平板は茶褐色で
あり、多数の異物が観測される。(E−1)の成形品の
物性は、熱変形温度が186℃、引張強度が730kg
/cm2、曲げ弾性率が25,000kg/cm2、アイ
ゾッド強度が4kg・cm/cmである。
[Comparative Example 1] An intermeshing type twin screw extruder “ZSK-2” manufactured by Werner Co., Ltd., in which the cylinder temperature was set to 280 ° C.
5 extruder ", melt-kneading the thermoplastic resin (A-1) at a supply rate of 12 kg / hour, and kneading the thermoplastic resin (E-
Obtain 1). The flat plate obtained by molding (E-1) is brownish and many foreign substances are observed. The physical properties of the molded product (E-1) are as follows: heat deformation temperature: 186 ° C., tensile strength: 730 kg
/ Cm 2 , the flexural modulus is 25,000 kg / cm 2 , and the Izod strength is 4 kg · cm / cm.

【0043】[0043]

【実施例2】熱可塑性樹脂(A−2)のガラス転移温度
は212℃である。押出機の溶融ゾーン直後のサイドベ
ント1にノズル付の栓を付し、ダイ前のサイドベント2
を開口し、280℃にシリンダー温度を設定した独国ウ
ェルナー社製相互咬み合い型2軸押出機「ZSK−25
押出機」を用い(A−2)の溶融混練を行う。(A−
2)を押出機フィード口より供給量12kg/時で供給
し、(B−9)をサイドベント1のノズルから0.60
kg/時で圧入する。(A−2)100重量部に対す
る、炭酸ガスの含有率は5.0重量部である。
Example 2 The glass transition temperature of the thermoplastic resin (A-2) is 212 ° C. A stopper with a nozzle is attached to the side vent 1 immediately after the melting zone of the extruder, and the side vent 2 in front of the die is attached.
And an interlocking twin-screw extruder “ZSK-25” manufactured by Werner Co., Germany with the cylinder temperature set to 280 ° C.
The extruder is used to carry out the melt kneading of (A-2). (A-
2) was supplied from the feed port of the extruder at a supply rate of 12 kg / hour, and (B-9) was supplied from the nozzle of the side vent 1 to 0.60.
Press in at kg / hr. (A-2) The content of carbon dioxide is 5.0 parts by weight based on 100 parts by weight.

【0044】大気圧のサイドベント2より炭酸ガスの放
散が観測され、放散されるガスを冷却器に導き、室温で
計測される放散炭酸ガス量は0.58kg/時である。
押出機より吐出する発泡のないストランド状の溶融樹脂
を水で冷却した後にストランドカッターを用い熱可塑性
樹脂混練物(D−2−9)を得る。(D−2−9)を成
形して得た平板は淡い黄色の色調であり、平板に異物は
観測されない。(D−2−9)の成形品の物性は、熱変
形温度が187℃、引張強度が750kg/cm2、曲
げ弾性率が25,500kg/cm2、アイゾッド強度
が5kg・cm/cmである。
The emission of carbon dioxide gas is observed from the side vent 2 at atmospheric pressure. The gas to be released is led to a cooler, and the amount of carbon dioxide gas measured at room temperature is 0.58 kg / hour.
After cooling the strand-like molten resin discharged from the extruder without foaming with water, a kneaded thermoplastic resin (D-2-9) is obtained using a strand cutter. The flat plate obtained by molding (D-2-9) has a pale yellow color tone, and no foreign matter is observed on the flat plate. Physical properties of molded article (D-2-9), the thermal deformation temperature of 187 ° C., a tensile strength of 750 kg / cm 2, a flexural modulus of 25,500kg / cm 2, the Izod strength is 5 kg · cm / cm .

【0045】[0045]

【比較例2】(B−9)の圧入を停止する以外は、実施
例2と同様の条件で(A−2)の溶融混練を行い、熱可
塑性樹脂混練物(E−2)を得る。(E−2)を成形し
て得た平板は茶褐色であり、異物が観測される。(E−
2)の成形品の物性は、熱変形温度が184℃、引張強
度が730kg/cm2、曲げ弾性率が24,800k
g/cm2、アイゾッド強度が3.8kg・cm/cm
である。
Comparative Example 2 Melting and kneading of (A-2) were carried out under the same conditions as in Example 2 except that the press-in of (B-9) was stopped to obtain a thermoplastic resin kneaded product (E-2). The flat plate obtained by molding (E-2) is brownish and foreign matter is observed. (E-
The physical properties of the molded article 2) are as follows: heat deformation temperature: 184 ° C., tensile strength: 730 kg / cm 2 , flexural modulus: 24,800 k
g / cm 2 , Izod strength is 3.8 kg · cm / cm
It is.

【0046】[0046]

【実施例3】熱可塑性樹脂(A−3)の融点は、256
℃である。押出機の溶融ゾーン直後のサイドベント1に
ノズル付の栓を付し、ダイ前のサイドベント2を開口
し、280℃にシリンダー温度を設定した独国ウェルナ
ー社製相互咬み合い型2軸押出機「ZSK−25押出
機」を用い(A−3)の溶融混練を行う。(A−3)を
押出機フィード口より供給量12kg/時で供給し、
(B−9)をサイドベント1のノズルから0.6kg/
時で圧入する。(A−3)100重量部に対する、炭酸
ガスの含有率は5.0重量部である。
Example 3 The melting point of the thermoplastic resin (A-3) was 256.
° C. A side vent 1 immediately after the melting zone of the extruder was equipped with a stopper with a nozzle, a side vent 2 was opened in front of the die, and an intermeshing type twin-screw extruder manufactured by Werner Co. of Germany was set at a cylinder temperature of 280 ° C. The melt kneading of (A-3) is performed using a "ZSK-25 extruder". (A-3) is supplied from the feed port of the extruder at a supply rate of 12 kg / hour,
(B-9) from the nozzle of side vent 1 at 0.6 kg /
Press in at time. (A-3) The content of carbon dioxide is 5.0 parts by weight based on 100 parts by weight.

【0047】サイドベント2より炭酸ガスの放散が観測
される。押出機より吐出する発泡のないストランド状の
溶融樹脂を水で冷却した後にストランドカッターを用い
熱可塑性樹脂混練物(D−3−9)を得る。(D−3−
9)を成形して得た平板は白色であり、平板に異物は観
測されない。(D−3−9)の成形品の物性は、熱変形
温度が72℃、引張強度が830kg/cm2、曲げ弾
性率が29,500kg/cm2、アイゾッド強度が
4.8kg・cm/cmである。
The emission of carbon dioxide from the side vent 2 is observed. After cooling the strand-like molten resin discharged from the extruder without foaming with water, a thermoplastic resin kneaded product (D-3-9) is obtained using a strand cutter. (D-3-
The flat plate obtained by molding 9) is white, and no foreign matter is observed on the flat plate. Physical properties of molded article (D-3-9), the thermal deformation temperature of 72 ° C., a tensile strength of 830 kg / cm 2, a flexural modulus of 29,500kg / cm 2, the Izod strength 4.8 kg · cm / cm It is.

【0048】[0048]

【比較例3】(B−9)の圧入を停止する以外は、実施
例3と同様の条件で(A−3)の溶融混練を行い、熱可
塑性樹脂混練物(E−3)を得る。(E−3)を成形し
て得た平板は淡黄色であり、少量の異物が観測される。
(E−3)の成形品の物性は、熱変形温度が70℃、引
張強度が830kg/cm2、曲げ弾性率が29,00
0kg/cm2、アイゾッド強度が4.0kg・cm/
cmである。
Comparative Example 3 Melting and kneading of (A-3) were carried out under the same conditions as in Example 3 except that the press-in of (B-9) was stopped to obtain a thermoplastic resin kneaded product (E-3). The flat plate obtained by molding (E-3) is pale yellow, and a small amount of foreign matter is observed.
The physical properties of the molded product (E-3) were as follows: heat deformation temperature: 70 ° C., tensile strength: 830 kg / cm 2 , flexural modulus: 29,00
0 kg / cm 2 , Izod strength is 4.0 kg · cm /
cm.

【0049】[0049]

【実施例4】押出機の溶融ゾーン直後のサイドベント1
にノズル付の栓を付し、ダイ前のサイドベント2を開口
し、280℃にシリンダー温度を設定した独国ウェルナ
ー社製相互咬み合い型2軸押出機「ZSK−25押出
機」を用い(A−4)の溶融混練を行う。熱可塑性樹脂
(A−4)のガラス転移温度は153℃である。(A−
4)を押出機フィード口より供給量12kg/時で供給
し、(B−9)をサイドベント1のノズルから0.6k
g/時で圧入する。(A−4)100重量部に対する、
炭酸ガスの含有率は5.0重量部である。
Example 4 Side vent 1 immediately after the melting zone of the extruder
Was attached with a stopper with a nozzle, a side vent 2 in front of the die was opened, and an interlocking twin-screw extruder “ZSK-25 extruder” manufactured by Werner Co., Germany, in which the cylinder temperature was set to 280 ° C. ( The melt-kneading of A-4) is performed. The glass transition temperature of the thermoplastic resin (A-4) is 153 ° C. (A-
4) was supplied from the feed port of the extruder at a supply rate of 12 kg / hour, and (B-9) was supplied from the nozzle of the side vent 1 to 0.6 k.
g / h. (A-4) With respect to 100 parts by weight,
The content of carbon dioxide is 5.0 parts by weight.

【0050】サイドベント2より炭酸ガスの放散が観測
される。押出機より吐出する発泡のないストランド状の
溶融樹脂を水で冷却した後にストランドカッターを用い
熱可塑性樹脂混練物(D−4−9)を得る。(D−4−
9)を成形して得た平板は淡黄色であり、平板に異物は
観測されない。(D−4−9)の成形品の物性は、熱変
形温度が125℃、引張強度が520kg/cm2、曲
げ弾性率が24,500kg/cm2、アイゾッド強度
が15.5kg・cm/cmである。
The emission of carbon dioxide gas is observed from the side vent 2. After cooling the strand-shaped molten resin discharged from the extruder without foaming with water, a thermoplastic resin kneaded product (D-4-9) is obtained using a strand cutter. (D-4-
The flat plate obtained by molding 9) is pale yellow, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-4-9) are as follows: heat deformation temperature: 125 ° C., tensile strength: 520 kg / cm 2 , flexural modulus: 24,500 kg / cm 2 , Izod strength: 15.5 kg · cm / cm It is.

【0051】[0051]

【比較例4】(B−9)の圧入を停止する以外は、実施
例4と同様の条件で(A−4)の溶融混練を行い、熱可
塑性樹脂混練物(E−4)を得る。(E−4)を成形し
て得た平板は淡黄色であり、少量の異物が観測される。
(E−4)の成形品の物性は、熱変形温度が120℃、
引張強度が500kg/cm2、曲げ弾性率が24,3
00kg/cm2、アイゾッド強度が14.4kg・c
m/cmである。
Comparative Example 4 Melting and kneading of (A-4) were carried out under the same conditions as in Example 4 except that the press-in of (B-9) was stopped to obtain a thermoplastic resin kneaded product (E-4). The flat plate obtained by molding (E-4) is pale yellow, and a small amount of foreign matter is observed.
The physical properties of the molded product (E-4) are as follows.
Tensile strength 500 kg / cm 2 , flexural modulus 24.3
00kg / cm 2 , Izod strength 14.4kg ・ c
m / cm.

【0052】[0052]

【実施例5】押出機の溶融ゾーン直後のサイドベント1
にノズル付の栓を付し、ダイ前のサイドベント2を開口
し、300℃にシリンダー温度を設定した独国ウェルナ
ー社製相互咬み合い型2軸押出機「ZSK−25押出
機」を用い(A−5)の溶融混練を行う。熱可塑性樹脂
(A−5)のガラス転移温度は225℃である。(A−
5)を押出機フィード口より供給量12kg/時で供給
し、(B−9)をサイドベント1のノズルから0.6k
g/時で圧入する。(A−5)100重量部に対する、
炭酸ガスの含有率は5.0重量部である。
Example 5: Side vent 1 immediately after the melting zone of the extruder
, A side vent 2 in front of the die was opened, and an interlocking twin-screw extruder “ZSK-25 extruder” manufactured by Werner Co., Germany, in which the cylinder temperature was set to 300 ° C. ( The melt-kneading of A-5) is performed. The glass transition temperature of the thermoplastic resin (A-5) is 225 ° C. (A-
5) was supplied from the feed port of the extruder at a supply rate of 12 kg / hour, and (B-9) was supplied from the nozzle of the side vent 1 to 0.6 k / h.
g / h. (A-5) With respect to 100 parts by weight,
The content of carbon dioxide is 5.0 parts by weight.

【0053】サイドベント2より炭酸ガスの放散が観測
される。押出機より吐出する発泡のないストランド状の
溶融樹脂を水で冷却した後にストランドカッターを用い
熱可塑性樹脂混練物(D−5−9)を得る。(D−5−
9)を成形して得た平板は黄褐色であり、平板に異物は
観測されない。(D−5−9)の成形品の物性は、熱変
形温度が202℃、引張強度が1070kg/cm2
曲げ弾性率が33,500kg/cm2、アイゾッド強
度が5.5kg・cm/cmである。
The emission of carbon dioxide gas is observed from the side vent 2. After cooling the strand-shaped molten resin discharged from the extruder without foaming with water, a kneaded thermoplastic resin (D-5-9) is obtained using a strand cutter. (D-5
The flat plate obtained by molding 9) is yellow-brown, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-5-9) were such that the heat distortion temperature was 202 ° C, the tensile strength was 1070 kg / cm 2 ,
The flexural modulus is 33,500 kg / cm 2 and the Izod strength is 5.5 kg · cm / cm.

【0054】[0054]

【比較例5】(B−9)の圧入を停止する以外は、実施
例5と同様の条件で(A−5)の溶融混練を行い、熱可
塑性樹脂混練物(E−5)を得る。(E−5)を成形し
て得た平板は褐色であり、多量の異物が観測される。
(E−5)の成形品の物性は、熱変形温度が202℃、
引張強度が1040kg/cm2、曲げ弾性率が33,
000kg/cm2、アイゾッド強度が4.5kg・c
m/cmである。
Comparative Example 5 Melting and kneading of (A-5) were carried out under the same conditions as in Example 5 except that the press-in of (B-9) was stopped to obtain a thermoplastic resin kneaded product (E-5). The flat plate obtained by molding (E-5) is brown, and a large amount of foreign matter is observed.
The physical properties of the molded product (E-5) are as follows:
Tensile strength is 1040 kg / cm 2 , flexural modulus is 33,
000kg / cm 2 , Izod strength 4.5kg ・ c
m / cm.

【0055】[0055]

【実施例6】押出機の溶融ゾーン直後のサイドベント1
にノズル付の栓を付し、ダイ前のサイドベント2を開口
し、320℃にシリンダー温度を設定した独国ウェルナ
ー社製相互咬み合い型2軸押出機「ZSK−25押出
機」を用い(A−6)の溶融混練を行う。熱可塑性樹脂
(A−6)のガラス転移温度は225℃である。(A−
6)を押出機フィード口より供給量12kg/時で供給
し、(B−9)をサイドベント1のノズルから0.6k
g/時で圧入する。(A−6)100重量部に対する、
炭酸ガスの含有率は5.0重量部である。
Embodiment 6 Side vent 1 immediately after the melting zone of the extruder
, A side vent 2 in front of the die was opened, and an interlocking twin-screw extruder “ZSK-25 extruder” manufactured by Werner Co. of Germany, in which the cylinder temperature was set to 320 ° C. ( The melt kneading of A-6) is performed. The glass transition temperature of the thermoplastic resin (A-6) is 225 ° C. (A-
6) was supplied from the feed port of the extruder at a supply rate of 12 kg / hour, and (B-9) was supplied from the nozzle of the side vent 1 to 0.6 k / h.
g / h. (A-6) With respect to 100 parts by weight,
The content of carbon dioxide is 5.0 parts by weight.

【0056】サイドベント2より炭酸ガスの放散が観測
される。押出機より吐出する発泡のないストランド状の
溶融樹脂を水で冷却した後にストランドカッターを用い
熱可塑性樹脂混練物(D−6−9)を得る。(D−6−
9)を成形して得た平板は淡黄色であり、平板に異物は
観測されない。(D−6−9)の成形品の物性は、熱変
形温度が205℃、引張強度が900kg/cm2、曲
げ弾性率が27,500kg/cm2、アイゾッド強度
が9.5kg・cm/cmである。
The emission of carbon dioxide from the side vent 2 is observed. After cooling the strand-shaped molten resin discharged from the extruder without water with water, a kneaded thermoplastic resin (D-6-9) is obtained using a strand cutter. (D-6
The flat plate obtained by molding 9) is pale yellow, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-6-9) are as follows: heat deformation temperature: 205 ° C., tensile strength: 900 kg / cm 2 , flexural modulus: 27,500 kg / cm 2 , Izod strength: 9.5 kg · cm / cm It is.

【0057】[0057]

【比較例6】(B−9)の圧入を停止する以外は、実施
例6と同様の条件で(A−6)の溶融混練を行い、熱可
塑性樹脂混練物(E−6)を得る。(E−6)を成形し
て得た平板は淡黄色であり、少量の異物が観測される。
(E−6)の成形品の物性は、熱変形温度が201℃、
引張強度が850kg/cm2、曲げ弾性率が26,3
00kg/cm2、アイゾッド強度が8.6kg・cm
/cmである。
Comparative Example 6 Melting and kneading of (A-6) were carried out under the same conditions as in Example 6 except that the press-in of (B-9) was stopped to obtain a thermoplastic resin kneaded product (E-6). The flat plate obtained by molding (E-6) is pale yellow, and a small amount of foreign matter is observed.
The physical properties of the molded product (E-6) are as follows:
Tensile strength 850 kg / cm 2 , flexural modulus 26.3
00 kg / cm 2 , Izod strength is 8.6 kg · cm
/ Cm.

【0058】[0058]

【実施例7】押出機の溶融ゾーン直後のサイドベント1
にノズル付の栓を付し、ダイ前のサイドベント2を開口
し、240℃にシリンダー温度を設定した独国ウェルナ
ー社製相互咬み合い型2軸押出機「ZSK−25押出
機」を用い(A−7)の溶融混練を行う。熱可塑性樹脂
(A−7)のガラス転移温度は115℃である。(A−
7)を押出機フィード口より供給量12kg/時で供給
し、(B−9)をサイドベント1のノズルから0.6k
g/時で圧入する。(A−7)100重量部に対する、
炭酸ガスの含有率は5.0重量部である。
Example 7: Side vent 1 immediately after the melting zone of the extruder
, A side vent 2 in front of the die was opened, and an interlocking twin-screw extruder “ZSK-25 extruder” manufactured by Werner Co. of Germany, in which the cylinder temperature was set to 240 ° C. ( The melt-kneading of A-7) is performed. The glass transition temperature of the thermoplastic resin (A-7) is 115 ° C. (A-
7) was supplied from the feed port of the extruder at a supply rate of 12 kg / hour, and (B-9) was supplied from the nozzle of the side vent 1 to 0.6 k / h.
g / h. (A-7) With respect to 100 parts by weight,
The content of carbon dioxide is 5.0 parts by weight.

【0059】サイドベント2より炭酸ガスの放散が観測
される。押出機より吐出する発泡のないストランド状の
溶融樹脂を水で冷却した後にストランドカッターを用い
熱可塑性樹脂混練物(D−7−9)を得る。(D−7−
9)を成形して得た平板は白色であり、平板に異物は観
測されない。(D−7−9)の成形品の物性は、熱変形
温度が93℃、引張強度が460kg/cm2、曲げ弾
性率が27,500kg/cm2、アイゾッド強度が3
2kg・cm/cmである。
The emission of carbon dioxide from the side vent 2 is observed. After cooling the strand-shaped molten resin discharged from the extruder without foaming with water, a kneaded thermoplastic resin (D-7-9) is obtained using a strand cutter. (D-7-
The flat plate obtained by molding 9) is white, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-7-9) were as follows: heat deformation temperature: 93 ° C., tensile strength: 460 kg / cm 2 , flexural modulus: 27,500 kg / cm 2 , Izod strength: 3
It is 2 kg · cm / cm.

【0060】[0060]

【比較例7】(B−9)の圧入を停止する以外は、実施
例7と同様の条件で(A−7)の溶融混練を行い、熱可
塑性樹脂混練物(E−7)を得る。(E−7)を成形し
て得た平板は白色であり、少量の異物が観測される。
(E−7)の成形品の物性は、熱変形温度が90℃、引
張強度が450kg/cm2、曲げ弾性率が27,00
0kg/cm2、アイゾッド強度が27kg・cm/c
mである。
Comparative Example 7 Melting and kneading of (A-7) were carried out under the same conditions as in Example 7 except that the press-in of (B-9) was stopped to obtain a kneaded thermoplastic resin (E-7). The flat plate obtained by molding (E-7) is white, and a small amount of foreign matter is observed.
The physical properties of the molded product (E-7) were as follows: heat deformation temperature: 90 ° C., tensile strength: 450 kg / cm 2 , flexural modulus: 2700
0 kg / cm 2 , Izod strength 27 kg · cm / c
m.

【0061】[0061]

【実施例8】押出機の溶融ゾーン直後のサイドベント1
にノズル付の栓を付し、ダイ前のサイドベント2を開口
し、220℃にシリンダー温度を設定した独国ウェルナ
ー社製相互咬み合い型2軸押出機「ZSK−25押出
機」を用い(A−8)の溶融混練を行う。熱可塑性樹脂
(A−8)のガラス転移温度は108℃である。(A−
8)を押出機フィード口より供給量12kg/時で供給
し、(B−9)をサイドベント1のノズルから0.6k
g/時で圧入する。(A−8)100重量部に対する、
炭酸ガスの含有率は5.0重量部である。
Example 8: Side vent 1 immediately after the melting zone of the extruder
Was fitted with a nozzle, a side vent 2 was opened in front of the die, and an interlocking twin-screw extruder “ZSK-25 extruder” manufactured by Werner Co., Germany, in which the cylinder temperature was set to 220 ° C. ( The melt kneading of A-8) is performed. The glass transition temperature of the thermoplastic resin (A-8) is 108 ° C. (A-
8) was supplied from the feed port of the extruder at a supply rate of 12 kg / hour, and (B-9) was supplied from the nozzle of the side vent 1 to 0.6 k / h.
g / h. (A-8) For 100 parts by weight,
The content of carbon dioxide is 5.0 parts by weight.

【0062】サイドベント2より炭酸ガスの放散が観測
される。押出機より吐出する発泡のないストランド状の
溶融樹脂を水で冷却した後にストランドカッターを用い
熱可塑性樹脂混練物(D−8−9)を得る。(D−8−
9)を成形して得た平板は無色透明であり、平板に異物
は観測されない。(D−8−9)の成形品の物性は、熱
変形温度が89℃、引張強度が550kg/cm2、曲
げ弾性率が34,500kg/cm2、 アイゾッド強度
が1.8kg・cm/cmである。
The emission of carbon dioxide from the side vent 2 is observed. After cooling the strand-shaped molten resin discharged from the extruder without water with water, a kneaded thermoplastic resin (D-8-9) is obtained using a strand cutter. (D-8-
The flat plate obtained by molding 9) is colorless and transparent, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-8-9) were as follows: heat deformation temperature: 89 ° C., tensile strength: 550 kg / cm 2 , flexural modulus: 34,500 kg / cm 2 , Izod strength: 1.8 kg · cm / cm It is.

【0063】[0063]

【比較例8】(B−9)の圧入を停止する以外は、実施
例8と同様の条件で(A−8)の溶融混練を行い、熱可
塑性樹脂混練物(E−8)を得る。(E−8)を成形し
て得た平板はわずかに黄身を帯びた透明であり、少量の
異物が観測される。(E−8)の成形品の物性は、熱変
形温度が87℃、引張強度が530kg/cm2、 曲げ
弾性率が33,300kg/cm2、 アイゾッド強度が
1.6kg・cm/cmである。
Comparative Example 8 Melting and kneading of (A-8) were carried out under the same conditions as in Example 8 except that the press-in of (B-9) was stopped to obtain a thermoplastic resin kneaded product (E-8). The plate obtained by molding (E-8) is transparent with a slight yolk, and a small amount of foreign matter is observed. The physical properties of the molded product (E-8) are as follows: heat deformation temperature: 87 ° C., tensile strength: 530 kg / cm 2 , flexural modulus: 33,300 kg / cm 2 , Izod strength: 1.6 kg · cm / cm .

【0064】[0064]

【実施例9】押出機の溶融ゾーン直後のサイドベント1
にノズル付の栓を付し、ダイ前のサイドベント2を開口
し、220℃にシリンダー温度を設定した独国ウェルナ
ー社製相互咬み合い型2軸押出機「ZSK−25押出
機」を用い(A−9)の溶融混練を行う。熱可塑性樹脂
(A−9)の融点は178℃である。(A−9)を押出
機フィード口より供給量12kg/時で供給し、(B−
9)をサイドベント1のノズルから0.6kg/時で圧
入する。(A−9)100重量部に対する、炭酸ガスの
含有率は5.0重量部である。
Example 9 Side vent 1 immediately after the melting zone of the extruder
Was fitted with a nozzle, a side vent 2 was opened in front of the die, and an interlocking twin-screw extruder “ZSK-25 extruder” manufactured by Werner Co., Germany, in which the cylinder temperature was set to 220 ° C. ( The melt-kneading of A-9) is performed. The melting point of the thermoplastic resin (A-9) is 178 ° C. (A-9) was fed from the feed port of the extruder at a feed rate of 12 kg / hour, and (B-
9) from the nozzle of the side vent 1 at a pressure of 0.6 kg / hour. (A-9) The content of carbon dioxide is 5.0 parts by weight based on 100 parts by weight.

【0065】サイドベント2より炭酸ガスの放散が観測
される。押出機より吐出する発泡のないストランド状の
溶融樹脂を水で冷却した後にストランドカッターを用い
熱可塑性樹脂混練物(D−9−9)を得る。(D−9−
9)を成形して得た平板は白色であり、平板に異物は観
測されない。(D−9−9)の成形品の物性は、熱変形
温度が127℃、引張強度が710kg/cm2、 曲げ
弾性率が28,500kg/cm2、 アイゾッド強度が
11.5kg・cm/cmである。
The emission of carbon dioxide from the side vent 2 is observed. After cooling the strand-like molten resin discharged from the extruder without foaming with water, a kneaded thermoplastic resin (D-9-9) is obtained using a strand cutter. (D-9-
The flat plate obtained by molding 9) is white, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-9-9) are as follows: heat deformation temperature: 127 ° C., tensile strength: 710 kg / cm 2 , flexural modulus: 28,500 kg / cm 2 , Izod strength: 11.5 kg · cm / cm It is.

【0066】[0066]

【比較例9】(B−9)の圧入を停止する以外は、実施
例9と同様の条件で(A−9)の溶融混練を行い、熱可
塑性樹脂混練物(E−9)を得る。(E−9)を成形し
て得た平板は乳白色であり、少量の異物が観測される。
(E−9)の成形品の物性は、熱変形温度が125℃、
引張強度が680kg/cm2、曲げ弾性率が27,3
00kg/cm2、アイゾッド強度が10.4kg・c
m/cmである。
Comparative Example 9 Melting and kneading of (A-9) were carried out under the same conditions as in Example 9 except that the press-in of (B-9) was stopped to obtain a thermoplastic resin kneaded product (E-9). The plate obtained by molding (E-9) is milky white, and a small amount of foreign matter is observed.
The physical properties of the molded product (E-9) are as follows:
Tensile strength is 680 kg / cm 2 , flexural modulus is 27.3
00kg / cm 2 , Izod strength 10.4kg ・ c
m / cm.

【0067】[0067]

【実施例10】押出機の溶融ゾーン直後のサイドベント
1にノズル付の栓を付し、ダイ前のサイドベント2を開
口し、240℃にシリンダー温度を設定した独国ウェル
ナー社製相互咬み合い型2軸押出機「ZSK−25押出
機」を用い(A−10)の溶融混練を行う。熱可塑性樹
脂(A−10)のガラス転移温度は120℃である。
(A−10)を押出機フィード口より供給量12kg/
時で供給し、(B−9)をサイドベント1のノズルから
0.6kg/時で圧入する。(A−10)100重量部
に対する、炭酸ガスの含有率は5.0重量部である。
Example 10 A side vent 1 immediately after a melting zone of an extruder was fitted with a stopper with a nozzle, a side vent 2 in front of a die was opened, and a mutual bite made by German Werner Co., Ltd. was set at a cylinder temperature of 240 ° C. The melt-kneading of (A-10) is performed using a mold twin-screw extruder “ZSK-25 extruder”. The glass transition temperature of the thermoplastic resin (A-10) is 120 ° C.
(A-10) was supplied at a feed rate of 12 kg /
(B-9) is injected from the nozzle of the side vent 1 at a pressure of 0.6 kg / hour. (A-10) The content of carbon dioxide is 5.0 parts by weight based on 100 parts by weight.

【0068】サイドベント2より炭酸ガスの放散が観測
される。押出機より吐出する発泡のないストランド状の
溶融樹脂を水で冷却した後にストランドカッターを用い
熱可塑性樹脂混練物(D−10−9)を得る。(D−1
0−9)を成形して得た平板は無色透明であり、平板に
異物は観測されない。(D−10−9)の成形品の物性
は、熱変形温度が103℃、引張強度が760kg/c
2、曲げ弾性率が34,500kg/cm2、アイゾッ
ド強度が1.7kg・cm/cmである。
The emission of carbon dioxide from the side vent 2 is observed. After cooling the strand-like molten resin discharged from the extruder without foaming with water, a kneaded thermoplastic resin (D-10-9) is obtained using a strand cutter. (D-1
The flat plate obtained by molding 0-9) is colorless and transparent, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-10-9) were such that the heat distortion temperature was 103 ° C and the tensile strength was 760 kg / c.
m 2 , flexural modulus is 34,500 kg / cm 2 , and Izod strength is 1.7 kg · cm / cm.

【0069】[0069]

【比較例10】(B−9)の圧入を停止する以外は、実
施例10と同様の条件で(A−10)の溶融混練を行
い、熱可塑性樹脂混練物(E−10)を得る。(E−1
0)を成形して得た平板は無色透明であり、少量の異物
が観測される。(E−10)の成形品の物性は、熱変形
温度が99℃、引張強度が740kg/cm2、曲げ弾
性率が33,500kg/cm2、アイゾッド強度が
1.6kg・cm/cmである。
Comparative Example 10 Melting and kneading of (A-10) were conducted under the same conditions as in Example 10 except that the press-in of (B-9) was stopped to obtain a thermoplastic resin kneaded product (E-10). (E-1
The flat plate obtained by molding 0) is colorless and transparent, and a small amount of foreign matter is observed. Physical properties of the molded product (E-10) are as follows: heat deformation temperature: 99 ° C., tensile strength: 740 kg / cm 2 , flexural modulus: 33,500 kg / cm 2 , and Izod strength: 1.6 kg · cm / cm. .

【0070】[0070]

【実施例11】(B−7)の代わりに(B−12)を使
用する以外は実施例1と同様の方法で炭酸ガスを15.
8重量部収着し含有した混合物(C−1−12)を得
る。押出機フィード口及び付近のシリンダー温度を53
℃に設定し、その他のシリンダー温度を270℃に設定
する以外は実施例1と同様の方法で(C−1−12)の
溶融混練を行い、熱可塑性樹脂混練物(D−1−12)
を得る。この時、押出機フィード口、押出機サイドベン
ト口それぞれより炭酸ガスの放散が観測され、溶融混練
は不安定になる。(D−1−12)を成形して得た平板
は淡い黄色の色調であり、異物は観測されない。 (D
−1−12)の成形品の物性は、熱変形温度が189
℃、引張強度が780kg/cm2、曲げ弾性率が2
6,200kg/cm2、アイゾッド強度が5.2kg
・cm/cmである。
Embodiment 11 Carbon dioxide was added in the same manner as in Embodiment 1 except that (B-12) was used instead of (B-7).
A mixture (C-1-12) containing 8 parts by weight of sorbed product is obtained. The cylinder temperature at the extruder feed port and in the vicinity was 53
° C and the other cylinder temperature was set to 270 ° C, and the melt kneading of (C-1-12) was performed in the same manner as in Example 1 to obtain a thermoplastic resin kneaded product (D-1-12).
Get. At this time, emission of carbon dioxide gas is observed from each of the extruder feed port and the extruder side vent port, and the melt-kneading becomes unstable. The flat plate obtained by molding (D-1-12) has a pale yellow color tone, and no foreign matter is observed. (D
The physical properties of the molded product of (1-1-12) are such that the heat distortion temperature is 189.
° C, tensile strength 780 kg / cm 2 , flexural modulus 2
6,200kg / cm 2 , Izod strength 5.2kg
Cm / cm.

【0071】[0071]

【比較例11】(B−7)の代わりに(B−13)を使
用する以外は実施例1と同様の方法で炭酸ガスを21.
5重量部収着し含有した混合物(C−1−13)を得
る。押出機フィード口及び付近のシリンダー温度を53
℃に設定し、その他のシリンダー温度を270℃に設定
する以外は実施例1と同様の方法で(C−1−13)の
溶融混練を試みるが、押出機フィード口より炭酸ガスが
激しく放散され溶融混練が困難である。
Comparative Example 11 Carbon dioxide was added in the same manner as in Example 1 except that (B-13) was used instead of (B-7).
A mixture (C-1-13) containing 5 parts by weight of sorbed product is obtained. The cylinder temperature at the extruder feed port and in the vicinity was 53
° C and the other cylinder temperature was set to 270 ° C, but the melt kneading of (C-1-13) was attempted in the same manner as in Example 1, but carbon dioxide gas was violently diffused from the feed port of the extruder. Melt kneading is difficult.

【0072】[0072]

【実施例12】(B−7)の代わりに(B−3)を使用
する以外は実施例1と同様の方法で炭酸ガスを0.7重
量部収着し含有した混合物(C−1−3)及び、熱可塑
性樹脂混練物(D−1−3)を得る。(D−1−3)を
成形して得た平板は茶褐色であり、異物は観測されな
い。(D−1−3)の成形品の物性は、熱変形温度が1
87℃、引張強度が740kg/cm2、曲げ弾性率が
25,200kg/cm2、アイゾッド強度が5.1k
g・cm/cmである。
Example 12 A mixture (C-1-) containing 0.7 parts by weight of carbon dioxide in the same manner as in Example 1 except that (B-3) was used instead of (B-7) 3) and a thermoplastic resin kneaded product (D-1-3) is obtained. The flat plate obtained by molding (D-1-3) was brown, and no foreign matter was observed. The physical properties of the molded article (D-1-3) are as follows.
87 ° C., tensile strength 740 kg / cm 2 , flexural modulus 25,200 kg / cm 2 , Izod strength 5.1 k
g · cm / cm.

【0073】[0073]

【比較例12】(B−7)の代わりに(B−2)を使用
する以外は実施例1と同様の方法で炭酸ガスを0.3重
量部収着し含有した混合物(C−1−2)及び、熱可塑
性樹脂混練物(D−1−2)を得る。(D−1−2)を
成形して得た平板は茶褐色であり、異物が観測される。
(D−1−2)の成形品の物性は、熱変形温度が187
℃、引張強度が730kg/cm2、曲げ弾性率が2
5,200kg/cm2、アイゾッド強度が4.2kg
・cm/cmである。
Comparative Example 12 In the same manner as in Example 1 except that (B-2) was used instead of (B-7), a mixture (C-1-) containing 0.3 parts by weight of carbon dioxide and sorbed therein was contained. 2) and a thermoplastic resin kneaded product (D-1-2) is obtained. The plate obtained by molding (D-1-2) is brownish, and foreign matter is observed.
The physical properties of the molded product of (D-1-2) are as follows.
° C, tensile strength 730 kg / cm 2 , flexural modulus 2
5,200kg / cm 2 , Izod strength 4.2kg
Cm / cm.

【0074】[0074]

【実施例13】(B−9)の代わりに(B−4)を使用
し、0.12kg/時で圧入する以外は実施例2と同様
の操作で(A−2)100重量部に対する、炭酸ガスの
含有率が1.0重量部の混合物の押出を行い、熱可塑性
樹脂混練物(D−2−4)を得る。(D−1−3)を成
形して得た平板は茶褐色であり、異物は観測されない。
(D−1−3)の成形品の物性は、熱変形温度が187
℃、引張強度が745kg/cm2、曲げ弾性率が2
5,000kg/cm2、アイゾッド強度が5kg・c
m/cmである。
Example 13 The procedure of Example 2 was repeated, except that (B-4) was used in place of (B-9) and press-fitting was performed at 0.12 kg / hour. A mixture having a carbon dioxide content of 1.0 part by weight is extruded to obtain a thermoplastic resin kneaded product (D-2-4). The flat plate obtained by molding (D-1-3) was brown, and no foreign matter was observed.
The physical properties of the molded product of (D-1-3) are as follows.
° C, tensile strength 745 kg / cm 2 , flexural modulus 2
5,000kg / cm 2 , Izod strength 5kg ・ c
m / cm.

【0075】[0075]

【比較例13】(B−9)の代わりに(B−2)を使用
する以外は実施例13と同様の操作で(A−2)の押出
を行う。押出機に炭酸ガスが導入されず、サイドベント
からの炭酸ガスの放散は観測されない。得られる熱可塑
性樹脂混練物を成形して得た平板は茶褐色であり、多数
の異物が観測される。
Comparative Example 13 Extrusion of (A-2) was carried out in the same manner as in Example 13 except that (B-2) was used instead of (B-9). No carbon dioxide is introduced into the extruder, and no emission of carbon dioxide from the side vent is observed. The flat plate obtained by molding the obtained thermoplastic resin kneaded material is brownish and many foreign substances are observed.

【0076】[0076]

【実施例14】熱可塑性樹脂(A−3)100重量部と
(B−1)5重量部をオートクレーブ内に密封し24時
間静置し、炭酸ガスを2.4重量部収着し含有した混合
物(C−3−1)を得る。280℃にシリンダー温度を
設定した独国ウェルナー社製相互咬み合い型2軸押出機
「ZSK−25押出機」を用い(C−3−1)の溶融混
練を行う。フィード口及びサイドベント2より炭酸ガス
の放散が観測される。押出機より吐出する発泡のないス
トランド状の溶融樹脂を水で冷却した後にストランドカ
ッターを用い熱可塑性樹脂混練物(C−3−1)を得
る。(C−3−1)を成形して得た平板は白色であり、
平板に異物は観測されない。(D−3−1)の成形品の
物性は、熱変形温度が71℃、引張強度が830kg/
cm2、曲げ弾性率が29,200kg/cm2、アイゾ
ッド強度が4.6kg・cm/cmである。
Example 14 100 parts by weight of the thermoplastic resin (A-3) and 5 parts by weight of (B-1) were sealed in an autoclave and allowed to stand for 24 hours, and 2.4 parts by weight of carbon dioxide was absorbed and contained. A mixture (C-3-1) is obtained. The melt-kneading of (C-3-1) is performed using an interlocking twin-screw extruder “ZSK-25 extruder” manufactured by Welner, Germany with the cylinder temperature set to 280 ° C. Emission of carbon dioxide gas is observed from the feed port and the side vent 2. After cooling the strand-shaped molten resin having no foam discharged from the extruder with water, a kneaded thermoplastic resin (C-3-1) is obtained using a strand cutter. The flat plate obtained by molding (C-3-1) is white,
No foreign matter is observed on the flat plate. The physical properties of the molded product of (D-3-1) were such that the heat distortion temperature was 71 ° C and the tensile strength was 830 kg /.
cm 2 , the flexural modulus is 29,200 kg / cm 2 , and the Izod strength is 4.6 kg · cm / cm.

【0077】[0077]

【実施例15】熱可塑性樹脂(A−4)100重量部を
オートクレーブ内に密封し、実施例1と同様に(B−
5)を供給後、4時間静置し、炭酸ガスを1.4重量部
収着し含有した混合物(C−4−5)及び、熱可塑性樹
脂混練物(D−4−5)を得る。(D−4−5)を成形
して得た平板は淡黄色であり、平板に異物は観測されな
い。(D−4−5)の成形品の物性は、熱変形温度が1
23℃、引張強度が515kg/cm2、曲げ弾性率が
24,400kg/cm2、アイゾッド強度が15.6
kg・cm/cmである。
Example 15 100 parts by weight of a thermoplastic resin (A-4) was sealed in an autoclave, and (B-
After supplying 5), the mixture is allowed to stand for 4 hours to obtain a mixture (C-4-5) containing 1.4 parts by weight of carbon dioxide gas and a thermoplastic resin kneaded product (D-4-5). The flat plate obtained by molding (D-4-5) is pale yellow, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-4-5) are as follows.
23 ° C., tensile strength 515 kg / cm 2 , flexural modulus 24,400 kg / cm 2 , Izod strength 15.6
kg · cm / cm.

【0078】[0078]

【実施例16】熱可塑性樹脂(A−5)100重量部を
オートクレーブ内に密封し、実施例1と同様に(B−
6)を供給後、4時間静置し、炭酸ガスを1.2重量部
収着し含有した混合物(C−5−6)及び、熱可塑性樹
脂混練物(D−5−6)を得る。(D−5−6)を成形
して得た平板は黄色であり、平板に異物は観測されな
い。(D−5−6)の成形品の物性は、熱変形温度が2
03℃、引張強度が1060kg/cm2、曲げ弾性率
が33,200kg/cm2、アイゾッド強度が5.1
kg・cm/cmである。
Example 16 100 parts by weight of a thermoplastic resin (A-5) were sealed in an autoclave, and (B-
After supplying 6), the mixture is allowed to stand for 4 hours to obtain a mixture (C-5-6) containing 1.2 parts by weight of carbon dioxide and containing a kneaded thermoplastic resin (D-5-6). The flat plate obtained by molding (D-5-6) is yellow, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-5-6) are as follows.
03 ° C., tensile strength 1060 kg / cm 2 , flexural modulus 33,200 kg / cm 2 , Izod strength 5.1
kg · cm / cm.

【0079】[0079]

【実施例17】(B−7)の代わりに(B−8)を使用
する以外は実施例1と同様の方法で炭酸ガスを6.8重
量部収着し含有した混合物(C−1−8)を得る。押出
機フィード口及び付近のシリンダー温度を53℃に設定
し、その他のシリンダー温度を270℃に設定する以外
は実施例1と同様の方法で(C−1−8)の溶融混練を
行い、熱可塑性樹脂混練物(D−1−8)を得る。この
時、押出機フィード口、押出機サイドベント口それぞれ
より炭酸ガスの放散が観測される。(D−1−8)を成
形して得た平板は淡い黄色の色調であり、異物は観測さ
れない。(D−1−8)の成形品の物性は、熱変形温度
が189℃、引張強度が770kg/cm2、曲げ弾性
率が25,400kg/cm2、アイゾッド強度が5.
5kg・cm/cmである。
Example 17 A mixture (C-1-) containing 6.8 parts by weight of carbon dioxide in the same manner as in Example 1 except that (B-8) was used instead of (B-7) 8) is obtained. Melt kneading of (C-1-8) was performed in the same manner as in Example 1 except that the temperature of the cylinder at the feed port of the extruder and the vicinity thereof was set to 53 ° C., and the other cylinder temperatures were set to 270 ° C. A kneaded plastic resin (D-1-8) is obtained. At this time, emission of carbon dioxide gas is observed from each of the extruder feed port and the extruder side vent port. The flat plate obtained by molding (D-1-8) has a pale yellow color tone, and no foreign matter is observed. The physical properties of the molded product (D-1-8) are as follows: heat deformation temperature: 189 ° C., tensile strength: 770 kg / cm 2 , flexural modulus: 25,400 kg / cm 2 , Izod strength: 5.
It is 5 kg · cm / cm.

【0080】[0080]

【実施例18】サイドベント1のノズルから圧入する
(B−9)を(B−10)に変更する以外は実施例5と
同様の操作で熱可塑性樹脂混練物(D−5−9)を得
る。(D−5−9)を成形して得た平板は黄褐色であ
り、平板に異物は観測されない。(D−5−9)の成形
品の物性は、熱変形温度が203℃、引張強度が107
0kg/cm2、曲げ弾性率が33,300kg/c
2、アイゾッド強度が5.3kg・cm/cmであ
る。
Example 18 A thermoplastic resin kneaded product (D-5-9) was prepared in the same manner as in Example 5 except that (B-9), which was press-fit from the nozzle of the side vent 1, was changed to (B-10). obtain. The flat plate obtained by molding (D-5-9) is yellow-brown, and no foreign matter is observed on the flat plate. The physical properties of the molded product (D-5-9) were such that the heat distortion temperature was 203 ° C and the tensile strength was 107.
0 kg / cm 2 , flexural modulus 33,300 kg / c
m 2 , and Izod strength is 5.3 kg · cm / cm.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂の溶融混練加工において、
熱可塑性樹脂(A)100重量部に対し、0.3〜2
0.0重量部の炭酸ガス(B)を含有した混合物を溶融
混練し、溶融混練中に炭酸ガス(B)を放散し、発泡の
ない熱可塑性樹脂混練物を得ることを特徴とする熱可塑
性樹脂混練物の製造方法。
In a melt kneading process of a thermoplastic resin,
0.3 to 2 with respect to 100 parts by weight of the thermoplastic resin (A)
A thermoplastic resin characterized in that a mixture containing 0.0 parts by weight of carbon dioxide (B) is melt-kneaded, and carbon dioxide (B) is diffused during the melt-kneading to obtain a thermoplastic resin kneaded product without foaming. A method for producing a resin kneaded material.
【請求項2】 熱可塑性樹脂(A)が非晶性熱可塑性樹
脂であり、溶融混練の加工温度が熱可塑性樹脂(A)の
ガラス転移温度+150℃以下の温度であることを特徴
とする請求項1記載の熱可塑性樹脂混練物の製造方法。
2. The thermoplastic resin (A) is an amorphous thermoplastic resin, and the processing temperature for melt-kneading is a temperature not higher than the glass transition temperature of the thermoplastic resin (A) + 150 ° C. Item 4. The method for producing a thermoplastic resin kneaded product according to Item 1.
【請求項3】 熱可塑性樹脂(A)が結晶性熱可塑性樹
脂であり、溶融混練の加工温度が熱可塑性樹脂(A)の
融点+100℃以下の温度であることを特徴とする請求
項1記載の熱可塑性樹脂混練物の製造方法。
3. The thermoplastic resin (A) is a crystalline thermoplastic resin, and the processing temperature for melt-kneading is a temperature equal to or lower than the melting point of the thermoplastic resin (A) + 100 ° C. Production method of kneaded thermoplastic resin.
【請求項4】 熱可塑性樹脂(A)のガラス転移温度が
110℃〜250℃であることを特徴とする請求項2記
載の方法で製造された熱可塑性樹脂混練物及び、この混
練物を用いて成形される熱可塑性樹脂成形体。
4. A thermoplastic resin kneaded product produced by the method according to claim 2, wherein the glass transition temperature of the thermoplastic resin (A) is 110 ° C. to 250 ° C. Molded thermoplastic resin.
【請求項5】 熱可塑性樹脂(A)が変性ポリフェニレ
ンエーテル樹脂であることを特徴とする請求項2記載の
方法で製造された熱可塑性樹脂混練物及び、この混練物
を用いて成形される熱可塑性樹脂成形体。
5. The thermoplastic resin kneaded product produced by the method according to claim 2, wherein the thermoplastic resin (A) is a modified polyphenylene ether resin, and the heat molded using the kneaded product. Plastic molded article.
JP10433698A 1998-04-15 1998-04-15 Method for producing thermoplastic resin kneaded material Expired - Fee Related JP4602490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10433698A JP4602490B2 (en) 1998-04-15 1998-04-15 Method for producing thermoplastic resin kneaded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10433698A JP4602490B2 (en) 1998-04-15 1998-04-15 Method for producing thermoplastic resin kneaded material

Publications (2)

Publication Number Publication Date
JPH11292981A true JPH11292981A (en) 1999-10-26
JP4602490B2 JP4602490B2 (en) 2010-12-22

Family

ID=14378099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10433698A Expired - Fee Related JP4602490B2 (en) 1998-04-15 1998-04-15 Method for producing thermoplastic resin kneaded material

Country Status (1)

Country Link
JP (1) JP4602490B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144400A (en) * 2000-11-10 2002-05-21 Toshiba Mach Co Ltd Method for extrusion for biaxial extruder
WO2002068480A1 (en) * 2001-02-28 2002-09-06 Mitsui Chemicals, Inc. Process for production of modified thermoplastic resins and modified thermoplastic resins
JP2002309006A (en) * 2001-04-16 2002-10-23 Asahi Kasei Corp Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product
JP2005171001A (en) * 2003-12-09 2005-06-30 Dainichiseika Color & Chem Mfg Co Ltd Master batch and method for producing the same
JP2005200436A (en) * 2002-12-26 2005-07-28 Research Laboratory Of Plastics Technology Co Ltd Method for producing carbon nanofilamentous material-dispersed resin composition
JP2009235282A (en) * 2008-03-27 2009-10-15 Toray Ind Inc Thermoplastic resin composition and its preparing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144400A (en) * 2000-11-10 2002-05-21 Toshiba Mach Co Ltd Method for extrusion for biaxial extruder
WO2002068480A1 (en) * 2001-02-28 2002-09-06 Mitsui Chemicals, Inc. Process for production of modified thermoplastic resins and modified thermoplastic resins
US6870003B2 (en) 2001-02-28 2005-03-22 Mitsui Chemical, Inc. Process for production of modified thermoplastic resin and modified thermoplastic resins
JP2002309006A (en) * 2001-04-16 2002-10-23 Asahi Kasei Corp Carbon-fiber reinforced rubber-reinforced styrene resin injection molded product
JP2005200436A (en) * 2002-12-26 2005-07-28 Research Laboratory Of Plastics Technology Co Ltd Method for producing carbon nanofilamentous material-dispersed resin composition
JP2005171001A (en) * 2003-12-09 2005-06-30 Dainichiseika Color & Chem Mfg Co Ltd Master batch and method for producing the same
JP2009235282A (en) * 2008-03-27 2009-10-15 Toray Ind Inc Thermoplastic resin composition and its preparing method

Also Published As

Publication number Publication date
JP4602490B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
EP0435023B1 (en) Method for removing volatile substances from polyphenylene ether resin blends
EP0698058B1 (en) Impact modified syndiotactic vinylaromatic polymers
EP1242537B1 (en) Poly(phenylene ether)-polyamide resin blends, method of manufacture
US20070235699A1 (en) Conductive thermoplastic composition
JPH0573131B2 (en)
EP0129825A2 (en) Modified blends of polyphenylene ether resin and a polyamide
KR20040014519A (en) Flame retardant expandable poly(arylene ether)/polystyrene compositions and preparation thereof
JPH05262933A (en) Polyphenylene ether resin-based composition containing high molecular weight polyethylene resin
KR100728447B1 (en) Method for enhancing the surface appearance of compatibilized polyphenylene ether-polyamide resin blends
JPH11292981A (en) Kneaded material of thermoplastic resin and its production
US4535106A (en) Thermoplastic compositions of polyphenylene ether resin and pre-compounded blend of organopolysiloxane and poly(arylolefin-olefin)
AU2003298788B2 (en) Polyphenylene ether compositions with improved die lip buildup performance
JP3083883B2 (en) Flame retardant polyolefin resin molding
KR20220099110A (en) Non-halogenated flame retardant and reinforced poly(alkylene terephthalate) poly(phenylene ether) compositions, methods for their preparation and uses thereof
US4681906A (en) Polyphenylene compositions containing sulfonate having improved melt behavior
JP3297523B2 (en) Pellet for producing flame-retardant resin material and method for producing flame-retardant resin material
JP2008214410A (en) Manufacturing method for flame-retardant colored resin composition
US7253227B2 (en) Poly(arylene ether) composition useful in blow molding
JPH0616924A (en) Resin composition improved in weld characteristic
JP7142636B2 (en) Resin composition, molded product and electric wire
EP0630938B2 (en) A flame resistant resin composition
JP3558381B2 (en) Method for producing flame-retardant resin composition
JP2005281327A (en) Method for molding polystyrene resin using flame retardant masterbatch resin composition and molding obtained thereby
JP4788149B2 (en) Method for producing polyamide resin composition
JP2008024889A (en) Resin composition for ignition coil component and ignition coil component comprising the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

A621 Written request for application examination

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Effective date: 20070213

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070409

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

RD02 Notification of acceptance of power of attorney

Effective date: 20070409

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A521 Written amendment

Effective date: 20100802

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100930

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees