JPH11241750A - Sliding type elastic support device for structure and high supporting pressure load supporting member - Google Patents

Sliding type elastic support device for structure and high supporting pressure load supporting member

Info

Publication number
JPH11241750A
JPH11241750A JP10333361A JP33336198A JPH11241750A JP H11241750 A JPH11241750 A JP H11241750A JP 10333361 A JP10333361 A JP 10333361A JP 33336198 A JP33336198 A JP 33336198A JP H11241750 A JPH11241750 A JP H11241750A
Authority
JP
Japan
Prior art keywords
steel plate
rubber layer
support member
elastic
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10333361A
Other languages
Japanese (ja)
Other versions
JP3018291B2 (en
Inventor
Hideaki Haino
英朗 配野
Yuichi Aida
裕一 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaimon KK
Original Assignee
Kaimon KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaimon KK filed Critical Kaimon KK
Priority to JP10333361A priority Critical patent/JP3018291B2/en
Publication of JPH11241750A publication Critical patent/JPH11241750A/en
Application granted granted Critical
Publication of JP3018291B2 publication Critical patent/JP3018291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent shearing of a rubber layer even by a high load from an upper part without activating unreasonable shearing stress of a horizontal direction at the time of the earthquake on a load supporting member by slidably supporting an upper structure by the load supporting member and the like for high supporting pressure. SOLUTION: In an elastic support device for a structure arranged between an upper structure 1 and a lower structure 2, either one of steel plate 9 in steel plates 9, 10 in an elastic support body 5 provided with the steel plates 9, 10 vertically is nonmoveably locked with either one of structures in the upper structure 1 or the lower structure 2 directly or indirectly, the other steel plate 10 in the elastic support body 5 is directly or indirectly locked with the locked structure side movably in a vertical direction and nonmovably in a lateral direction, the outer side of the other steel plate 10 is formed as a surface for supporting the upper structure 1 or the lower structure 2 of a non-locking condition freely to slide at all times. An interface sucked with an elastic layer 6 in each steel plate 9, 10 of the elastic support body 5 is formed as a rough surface so as to enlarge a sticking surface, and increase shearing resistance force of the rubber layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、橋梁,建築物等の
各種構造物用スライド式弾性支承装置と、これに用いる
高支圧荷重支持部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding elastic bearing device for various structures such as bridges and buildings, and a high bearing load supporting member used for the device.

【0002】[0002]

【従来の技術】橋梁,建築物等の各種構造物は、ゴム支
承(反力分散支承,免震支承等)によって支持されてい
るが、このゴム支承には、前述のように分散,免震等の
機能をも要求されているため、支承装置の平面寸法及び
ゴム厚等が大きくなり、従来のゴム支承では設計,製
造,耐久性,施工性,経済性に問題が発生してきた。ま
た、全体構造的にも振動の増加や鋼橋の疲労促進等予測
される問題点も指摘され始めている。従来、ゴムのよう
な弾性支承体を使用した弾性支承装置としては、弾性支
承装置における上部側または下部側のいずれか一方(例
えば上部側)を上部構造物に取り付け、かつ他方(例え
ば弾性支承装置の下部側)を下部構造物に取り付けて、
つぎの(1)〜(3)の作用効果を期待した弾性支承装
置が知られている。(1)ゴムのような弾性体による上
部構造物の荷重を弾性的に支承する作用と共に下部構造
物に緩衝しながら荷重を伝達する作用(以下単に荷重支
承作用と言う)。(2)上部構造物の撓み(即ち支点と
なる支承の側から見ると上部構造物の回転)に対する弾
性支承体による構造物の回転を許容しながら支承する作
用(以下単に回転支承作用と言う)。(3)上部構造物
および下部構造物の水平方向の相対的な変位をゴムの水
平方向のせん断変形により許容しながら支承する作用
(以下単にせん断支承作用と言う)。特に上部構造物お
よび下部構造物が水平方向に相対的に変位した時に、ゴ
ムのような弾性体のせん断変形により緩衝しながら支承
するという技術思想のものが多数知られている。しかし
ながら前記従来の支承装置の場合は、上部構造物を支承
しながら弾性体をせん断変形した状態でも、前記(1)
及び(2)の作用を満足させる必要があり、弾性体に前
記(1)〜(3)のすべての負荷が作用することを考慮
して設計する必要があるので、必然的に弾性支承体が大
型になるという問題があると共に、比較的弾性体に高い
支圧応力を負担させることができないという問題があ
る。また桁等の伸縮あるいは地震時の横方向の変位に対
して、ゴムのような弾性体にせん断変形を繰り返し作用
させる構造であるので、弾性層の疲労を設計に十分反映
させる必要がある。また、弾性支承体を予備せん断変形
あるいは、ポストせん断変形させる場合に、一時的にス
ライドさせる形式の場合も知られているが、いずれの場
合も基本的に据え付け後は、弾性体の大きなせん断変形
を常時許容させる構造形式であるので、本発明の場合の
せん断変形を常時許容させない場合とは、基本的に構造
形式が異なる。また、弾性支承体を予備せん断変形ある
いは、ポストせん断変形させる場合には、その据え付け
作業が煩雑になるとともに、装置も複雑になり、高度の
熟練を要するという問題がある。
2. Description of the Related Art Various structures such as bridges and buildings are supported by rubber bearings (reaction-bearing bearings, seismic isolation bearings, etc.). Since such functions are also required, the planar dimensions and rubber thickness of the bearing device are increased, and the conventional rubber bearing has caused problems in design, manufacturing, durability, workability, and economy. Also, in terms of the overall structure, problems such as an increase in vibration and acceleration of fatigue of the steel bridge have been pointed out. Conventionally, as an elastic bearing device using an elastic bearing body such as rubber, one of an upper side and a lower side (for example, an upper side) of an elastic bearing device is attached to an upper structure, and the other (for example, an elastic bearing device). To the lower structure,
There is known an elastic bearing device which is expected to have the following effects (1) to (3). (1) The function of elastically supporting the load of the upper structure by an elastic body such as rubber, and the function of transmitting the load while buffering the lower structure (hereinafter, simply referred to as load support function). (2) An operation of supporting the structure while allowing the elastic support to rotate against the deflection of the upper structure (that is, the rotation of the upper structure when viewed from the side of the support serving as a fulcrum) (hereinafter simply referred to as a rotation support operation). . (3) An operation of supporting while allowing relative displacement in the horizontal direction of the upper structure and the lower structure by horizontal shear deformation of the rubber (hereinafter simply referred to as a shear bearing operation). In particular, there are known many technical ideas of supporting the upper structure and the lower structure while they are relatively displaced in the horizontal direction while buffering them by shearing deformation of an elastic body such as rubber. However, in the case of the conventional bearing device, even if the elastic body is subjected to shear deformation while supporting the upper structure, the above-mentioned (1)
It is necessary to satisfy the effects of (2) and (2), and it is necessary to design in consideration of all the loads (1) to (3) acting on the elastic body. In addition to the problem that the size becomes large, there is a problem that a relatively high bearing stress cannot be applied to the relatively elastic body. In addition, it is necessary to sufficiently reflect the fatigue of the elastic layer in the design because the structure is such that the elastic body such as rubber is subjected to repeated shear deformation in response to the expansion and contraction of a girder or the lateral displacement during an earthquake. It is also known to temporarily slide the elastic bearing when pre-shearing deformation or post-shearing deformation is performed, but in any case, after the installation, the large shear deformation of the elastic body is basically required. Is always allowed, so that the structure type is basically different from the case where the shear deformation is not always allowed in the case of the present invention. Further, when the elastic bearing body is subjected to preliminary shear deformation or post-shear deformation, there is a problem that the installation work becomes complicated, the device becomes complicated, and a high degree of skill is required.

【0003】また、鋼製支承装置の場合には、前記
(1)〜(3)の支承作用のうち(2)の、回転支承作
用を持たせるためには、上部に半球状支承面を有する鋼
製下部支持部材と、下部に半球状凸部を有すると共に上
部に上部構造物支承部を有する上部支持部材とを嵌合す
る構造にする必要があり、支承高さが高く(厚く)なる
と共に構造が複雑化するという問題がある。
[0003] In the case of a steel bearing device, a hemispherical bearing surface is provided on the upper portion in order to provide the rotary bearing function of (2) among the bearing functions (1) to (3). It is necessary to adopt a structure in which a lower supporting member made of steel and an upper supporting member having a hemispherical convex portion at the lower portion and an upper structure supporting portion at the upper portion are fitted to each other, so that the supporting height is increased (thickened). There is a problem that the structure is complicated.

【0004】[0004]

【発明が解決しようとする課題】この発明は、前記の問
題点を改良する目的で開発され、弾性支承体に対して、
前記(1)〜(3)の支承作用のうち(3)の機能すな
わち、せん断変形支承作用を常時機能させないようにす
ると共に常時弾性支承装置により支承される上部構造物
または下部構造物を、これらの築造中および築造後にお
いても常時スライド可能に比較的恒久的に、しかも弾性
支承体に比較的高い支圧応力を負担させることができる
弾性支承装置と、これに用いる高支圧用の荷重支持部材
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been developed for the purpose of improving the above-mentioned problems.
The function (3) of the above-mentioned bearing operations (1) to (3), that is, the upper structure or the lower structure, which is made to always stop the shear deformation bearing operation and to be always supported by the elastic bearing device, An elastic bearing device which is relatively permanent and slidable at all times during and after construction, and which can bear a relatively high bearing stress on the elastic bearing body, and a load bearing member for high bearing force used in the elastic bearing device. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る構造物用スライド式弾性支承装置にお
いては、上部構造物と下部構造物との間に配置される構
造物用弾性支承装置において、上下に鋼板を有する弾性
支承体における前記鋼板のいずれか一方の鋼板を、上部
構造物または下部構造物のいずれか一方の構造物に直接
または間接的に移動不能に係止し、かつその係止した構
造物側に、前記弾性支承体における他方の鋼板を上下方
向に移動可能にかつ横方向に移動不能に直接または間接
的に係止し、その他方鋼板の外側が非係止状態の前記上
部構造物または下部構造物を常時スライド自在に支承す
る面とされ、かつ前記弾性支承体の各鋼板における弾性
層との接着界面を粗面にすることで接着面の拡大とゴム
層のせん断抵抗力を増大したことを特徴とする。また本
発明に係る構造物用スライド式弾性支承装置において
は、上部構造物と下部構造物との間に配置される構造物
用弾性支承装置において、弾性層を介して上部鋼板およ
び下部鋼板を一体に有する弾性支承体における前記下部
鋼板が、下部構造物に固定された下部支持部材の上面に
横移動不能に係止され、かつ前記下部支持部材側に前記
他方の上部鋼板が下部支持部材に対し相対的に上下方向
に移動可能にかつ横方向に移動不能に係止され、その上
部鋼板の上部に設けたすべり面を有するすべり支承材を
介して上部構造物が横方向に常時スライド自在に支承さ
れ、かつ前記弾性支承体の各鋼板における弾性層との接
着界面を粗面にすることで接着面の拡大とゴム層のせん
断抵抗力を増大し高支圧応力度下で使用することを特徴
とする。
In order to achieve the above-mentioned object, in a sliding elastic support device for a structure according to the present invention, an elastic structure for a structure disposed between an upper structure and a lower structure is provided. In the bearing device, any one of the steel plates in the elastic bearing body having a steel plate at the top and bottom is immovably locked directly or indirectly to any one of the upper structure and the lower structure, The other steel plate of the elastic bearing body is directly or indirectly locked on the locked structure side so as to be movable in the vertical direction and immovable in the lateral direction, and the outside of the other steel plate is not locked. The upper structure or the lower structure in the state is always slidably supported, and the bonding interface between the elastic supporting body and the elastic layer of each steel plate is roughened to enlarge the bonding surface and the rubber layer. Shear resistance Wherein the increased. Further, in the sliding elastic bearing device for a structure according to the present invention, in the elastic bearing device for a structure disposed between the upper structure and the lower structure, the upper steel plate and the lower steel plate are integrated via an elastic layer. The lower steel plate in the elastic bearing body having is fixed to the upper surface of the lower support member fixed to the lower structure so as not to be laterally movable, and the other upper steel plate is provided on the lower support member side with respect to the lower support member. The upper structure is supported so as to be slidable in the horizontal direction at all times via a sliding support having a sliding surface provided on an upper part of the upper steel plate so as to be movable relatively vertically and immovably in the horizontal direction. The elastic bearing body is characterized in that the bonding interface with the elastic layer in each steel plate of each steel plate is roughened, so that the bonding surface is enlarged and the shear resistance of the rubber layer is increased, so that the bearing is used under a high bearing stress. And

【0006】また本発明に係る構造物用スライド式弾性
支承装置においては、下部構造物に設置のベースプレー
トから起立するせん断拘束壁により、ベースプレートに
載置した高支圧荷重支持部材の横移動及びせん断変形を
拘束し、この高支圧荷重支持部材のゴム層の上部に装着
した上部嵌着支持部材の上面を、前記せん断拘束壁の頂
部から突出して設け、この上部嵌着支持部材の上面で、
上部構造物に取付けたソールプレートをスライド自在に
支持し、前記高支圧荷重支持部材のゴム層の上部および
下部に装着した上部嵌着支持部材および下部嵌着支持部
材におけるゴム層との接着界面を粗面にすることで接着
面の拡大とゴム層のせん断抵抗力を増大し高支圧応力度
下で使用することを特徴とする。
In the slide type elastic bearing device for a structure according to the present invention, the lateral movement and shearing of the high bearing load supporting member mounted on the base plate are performed by the shear restraint wall rising from the base plate installed on the lower structure. Deformation is constrained, and the upper surface of the upper fitting support member mounted on the rubber layer of the high bearing load supporting member is provided so as to protrude from the top of the shear restraint wall. On the upper surface of the upper fitting support member,
An adhesive interface between a rubber layer of an upper fitting support member and a lower fitting support member which slidably supports a sole plate attached to an upper structure and which is mounted above and below a rubber layer of the high bearing load support member. By making the surface rough, the adhesive surface is enlarged and the shear resistance of the rubber layer is increased, so that it is used under a high bearing stress.

【0007】また本発明に係る高支圧荷重支持部材にお
いては、ゴム層の外周面に環状凹み部を形成すると共
に、前記ゴム層の上下部に装着する上部嵌着支持部材と
下部嵌着支持部材に、前記ゴム層の高支圧応力度による
水平方向のせん断力を拘束する反力壁を設け、前記ゴム
層に埋設する補強鋼板等の硬質板の前記ゴム層との接着
界面を粗面にすることで接着面の拡大とゴム層のせん断
抵抗力を増大し高支圧応力度下で使用することを特徴と
する。また本発明に係る高支圧荷重支持部材において
は、ゴム層の外周面にR加工による環状凹み部を形成す
ると共に、前記ゴム層の上下部に装着する上部嵌着支持
部材と下部嵌着支持部材に、前記ゴム層の高支圧応力度
による水平方向のせん断力を拘束する反力壁を設け、前
記ゴム層に埋設する補強鋼板の肉厚を厚くすると共に、
前記ゴム層との接着界面を粗面にすることで接着面の拡
大とゴム層のせん断抵抗力を増大したことを特徴とす
る。また本発明に係る高支圧荷重支持部材においては、
ゴム層の外周面に応力集中を緩和させるためにR加工に
よる環状凹み部を形成すると共に、高支圧応力度による
前記ゴム層の内部応力を広く分布させ、過度な局部ひず
みを抑制するために前記ゴム層に少なくとも一枚以上の
表裏両面に粗面を有する補強鋼板等の硬質板を埋設する
と共に、前記ゴム層の上下部に装着する上部嵌着支持部
材と下部嵌着支持部材に、機械的に接着面に作用するせ
ん断力を拘束するための反力壁を設けたことを特徴とす
る。
In the high bearing load supporting member according to the present invention, an annular concave portion is formed on the outer peripheral surface of the rubber layer, and an upper fitting supporting member and a lower fitting supporting member mounted on the upper and lower portions of the rubber layer. The member is provided with a reaction wall for restraining a horizontal shear force due to a high bearing stress of the rubber layer, and a bonding surface of a hard plate such as a reinforcing steel plate embedded in the rubber layer with the rubber layer is roughened. In this case, the adhesive surface is enlarged and the shear resistance of the rubber layer is increased, so that the rubber layer is used under a high bearing stress. Further, in the high bearing load supporting member according to the present invention, an annular concave portion is formed on the outer peripheral surface of the rubber layer by R processing, and an upper fitting supporting member and a lower fitting supporting member mounted on the upper and lower portions of the rubber layer. The member is provided with a reaction wall that restrains the horizontal shear force due to the high bearing stress of the rubber layer, and the thickness of the reinforcing steel sheet embedded in the rubber layer is increased,
The method is characterized in that the bonding interface with the rubber layer is roughened to enlarge the bonding surface and increase the shear resistance of the rubber layer. In the high bearing load supporting member according to the present invention,
In order to relieve stress concentration on the outer peripheral surface of the rubber layer, an annular recess is formed by R processing, and the internal stress of the rubber layer due to a high bearing stress is widely distributed to suppress excessive local distortion. At least one or more hard plates such as reinforced steel plates having rough surfaces on both front and back surfaces are embedded in the rubber layer, and an upper fitting support member and a lower fitting support member attached to the upper and lower portions of the rubber layer are provided with a machine. A reaction wall for restraining a shear force acting on the adhesive surface is provided.

【0008】また本発明に係る構造物用スライド式弾性
支承装置においては、上部構造物と下部構造物との間に
配置される構造物用弾性支承装置において、弾性層を介
して上部鋼板および下部鋼板を一体に有する弾性体にお
ける前記下部鋼板が下部構造物に固定され、かつその下
部鋼板に設けられたせん断拘束壁により、前記他方の上
部鋼板が下部鋼板に対し相対的に上下方向に移動可能に
かつ横方向に移動不能に係止され、その上部鋼板の上部
に設けたすべり面を有するすべり支承材を介して上部構
造物が横方向に常時スライド自在に支承され、前記上部
鋼板および下部鋼板におけるゴム層との接着界面を粗面
にすることで接着面の拡大とゴム層のせん断抵抗力を増
大したことを特徴とする。また本発明に係る構造物用ス
ライド式弾性支承装置においては、前記下部鋼板の中央
部に設けられた柱状部材からなるせん断拘束壁により、
前記他方の上部鋼板が下部鋼板に対し相対的に上下方向
に移動可能にかつ横方向に移動不能に係止されているこ
とを特徴とする。
Further, according to the sliding elastic bearing device for a structure according to the present invention, in the elastic bearing device for a structure disposed between the upper structure and the lower structure, the upper steel plate and the lower plate are provided via an elastic layer. The lower steel plate in the elastic body integrally including the steel plate is fixed to the lower structure, and the other upper steel plate can be vertically moved relative to the lower steel plate by the shear constraint wall provided on the lower steel plate. The upper structure is supported so as to be always slidable in the lateral direction via a slide bearing material having a sliding surface provided on the upper steel plate, and the upper steel plate and the lower steel plate The method is characterized in that the bonding interface with the rubber layer is roughened to enlarge the bonding surface and increase the shear resistance of the rubber layer. Further, in the sliding elastic bearing device for a structure according to the present invention, by the shear restraint wall composed of a columnar member provided in the center of the lower steel plate,
The other upper steel plate is engaged with the lower steel plate so as to be movable in the vertical direction and immovable in the horizontal direction.

【0009】本発明によると、弾性体にせん断支承作用
を常時機能させないので、弾性体の横方向の変位によっ
ておこる比較的大きなせん断変形の繰り返しによる疲労
が生じない。また荷重支承作用及び回転支承作用を機能
させながら、しかも上部構造物を常時スライド自在に支
承できるので、上部構造物の築造後はもちろんのこと築
造中に地震力が作用しても、弾性支承装置に過大な横方
向の支持力を発揮させることなく上部構造物を支承で
き、しかもせん断変形をしないので、高支圧応力度下で
使用できるので、弾性体を小型にすることができ、ま
た、荷重支承部材における弾性層は、鋼製等の硬質部材
を介して間接的にせん断拘束壁により横移動とせん断変
形を拘束されているので、弾性層に直接無理な横方向の
外力が作用させることなく、弾性層のせん断変形を確実
に拘束することができる。また、高支圧荷重支持部材
は、ベースプレートから起立するせん断拘束壁により横
移動とせん断変形が拘束されているので、ゴム層にせん
断変形が生じない。しかも、上部構造物は、この支承部
材の上面にスライド自在に支承されていることで、非せ
ん断変形性は確実である。また、本発明によると、高支
圧荷重支持部材が高荷重を受けて圧縮変形するとき、ゴ
ム層の上下部には、これをせん断させる力が作用する
が、その応力は、当該ゴム層の上下に嵌着した上下嵌着
支持部材のそれぞれの反力壁で機械的に接着面のせん断
力を拘束するように受けられるので、ゴム層の上下部お
よびゴム層の接着面はせん断破壊しないと共に、ゴム層
の接着界面外周縁部等の一部に応力集中するのが緩和さ
れる。また、ゴム層の外周面にR加工等による環状凹部
が形成されていることで、さらにゴム層の外周縁部等に
応力集中するのが緩和され、したがって、このゴム層
は、上方から高荷重を受けて圧縮変形するとき、全体と
してゴム層の外面は略同一面となり、これによって上下
の嵌着支持部材との接着面に剥離作用を及ぼすことが少
なく、円滑に圧縮変形でき、桁の回転および振動を吸収
できる。またゴム層に少なくとも一枚以上の補強鋼板が
埋設されていることにより、高支圧になっても、前記ゴ
ム層の内部応力を広く分布させて、ゴム層の過度な局部
歪みを抑えることができる。そして、この発明において
は、ゴム層に接する鋼板または補強鋼板あるいは上部嵌
着支持部材並びに下部嵌着支持部材におけるゴム層との
接着界面を粗面にすることで接着面の拡大とゴム層のせ
ん断抵抗力の増大を図っているので、一体結合強度を向
上させて、高支圧に対して、剪断抵抗力および剥離抵抗
力を高めている。
According to the present invention, since the elastic body does not always function as a shear bearing, fatigue due to repeated relatively large shear deformation caused by the lateral displacement of the elastic body does not occur. In addition, since the upper structure can always be slidably supported while the load bearing function and the rotating bearing function are functioning, the elastic bearing device can be used even if seismic force acts during construction as well as after construction of the upper structure. The superstructure can be supported without exerting excessive lateral support force, and it does not undergo shear deformation, so it can be used under high bearing stress, so that the elastic body can be downsized. The elastic layer of the load-bearing member is indirectly restrained from lateral movement and shear deformation by the shear restraint wall via a hard member such as steel, so that an unreasonable lateral external force acts directly on the elastic layer. Therefore, the shear deformation of the elastic layer can be reliably restrained. Further, since the high bearing load support member is restrained from lateral movement and shear deformation by the shear restraint wall rising from the base plate, no shear deformation occurs in the rubber layer. In addition, since the upper structure is slidably supported on the upper surface of the support member, non-shear deformation is assured. Further, according to the present invention, when the high bearing load supporting member is compressed and deformed by receiving a high load, a force for shearing the upper and lower portions of the rubber layer acts, but the stress is applied to the rubber layer. Since the shear force of the adhesive surface is mechanically restrained by the reaction walls of the upper and lower fitting support members fitted vertically, the upper and lower portions of the rubber layer and the adhesive surface of the rubber layer are not sheared and destroyed. In addition, stress concentration on a part of the outer peripheral edge portion of the bonding interface of the rubber layer is reduced. Further, by forming an annular concave portion on the outer peripheral surface of the rubber layer by R processing or the like, concentration of stress on the outer peripheral edge of the rubber layer and the like is further alleviated. As a result, the outer surface of the rubber layer as a whole becomes substantially the same surface, and thus the peeling action is less exerted on the adhesive surfaces with the upper and lower fitting support members. And can absorb vibration. Further, since at least one or more reinforcing steel plates are embedded in the rubber layer, even when a high bearing pressure is applied, the internal stress of the rubber layer is widely distributed, and excessive local distortion of the rubber layer can be suppressed. it can. In the present invention, the steel plate or the reinforcing steel plate in contact with the rubber layer or the upper fitting support member and the lower fitting support member are roughened at the bonding interface with the rubber layer to enlarge the bonding surface and shear the rubber layer. Since the resistance is increased, the integral bonding strength is improved, and the shear resistance and the peel resistance against a high bearing pressure are increased.

【0010】[0010]

【発明の実施の形態】図1および図2は、本発明の第1
実施形態に係る支承装置30を示し、この支承装置30
において、下部構造物1の上部に取り付けられる下部支
持部材2におけるベースプレート32の上面のほぼ中央
部に、位置決め係止用凹部3が設けられ、前記下部支持
部材2の上面に縦向きに鋼製短筒状部材4aの下部が溶
接等により固定されて、せん断拘束壁4が構成され、そ
のせん断拘束壁4により、弾性支承体5における下部鋼
板9と上部鋼板10の相対的な横移動を間接的にあるい
は直接的に拘束して、ゴムのような弾性支承体5におけ
る弾性体(層)6の上下両端部分の相対的な横方向の変
位によるせん断変形を間接的に拘束している。前記弾性
支承体5における下部鋼板9の上面および上部鋼板10
の下面の円形面全体に、環状波形ロールまたはローレッ
ト加工などによる凹凸状接着面40が形成され、したが
って、各鋼板9,10と弾性層6との接着界面が、環状
波形又はローレット加工などによる凹凸状接着面40と
されていることで、フラットな接着面に比べて、弾性層
6が圧縮変形される際の弾性層6と、各鋼板9,10と
の接着面に加わるせん断力による剥離をより有効に阻止
できる。前記せん断拘束壁4の内側空間部の平面形状
は、後述の上部支持部材12の外側の平面形状とほぼ同
形かあるいは相似形になるように設定されて、矩形また
は円形等の形状に製作される。前記せん断拘束壁4の内
側下部には、前記鋼製短筒状体4aに嵌合された鋼製環
状等の位置決め用のスペーサ8が前記下部支持部材2の
上面に載置されて溶接等により固定され、前記位置決め
係止用凹部3にゴム等の弾性支承体5における下部鋼板
9の凹部に嵌合固定された係止用ストッパ11a(1
1)の下部が嵌合係止され、かつ弾性支承体5におけ上
部鋼板10の凹部に嵌合固定された係止用ストッパ11
b(11)の上部が構造物支持用上部支持部材12の下
面側の凹部12aに嵌合係止されている。
1 and 2 show a first embodiment of the present invention.
1 shows a bearing device 30 according to an embodiment;
In the lower support member 2 attached to the upper part of the lower structure 1, a positioning locking recess 3 is provided substantially at the center of the upper surface of the base plate 32. The lower part of the cylindrical member 4a is fixed by welding or the like to form a shear restraint wall 4, and the shear restraint wall 4 indirectly controls the relative lateral movement of the lower steel plate 9 and the upper steel plate 10 in the elastic bearing member 5. Or indirectly restrains the shear deformation due to the relative lateral displacement of the upper and lower ends of the elastic body (layer) 6 in the elastic bearing body 5 such as rubber. Upper surface of lower steel plate 9 and upper steel plate 10 in elastic bearing 5
An uneven adhesive surface 40 formed by an annular corrugated roll or knurling is formed on the entire circular surface on the lower surface of the steel sheet. Due to the shape of the bonding surface 40, the elastic layer 6 is more likely to be separated from the flat bonding surface by the shear force applied to the bonding surface between the elastic layer 6 and the steel plates 9 and 10 than the flat bonding surface. It can be more effectively blocked. The planar shape of the inner space portion of the shear restraint wall 4 is set to be substantially the same as or similar to the planar shape of the outer side of the upper support member 12 described later, and is manufactured in a rectangular or circular shape. . A positioning spacer 8 such as a steel ring fitted to the steel short cylindrical body 4a is mounted on the upper surface of the lower support member 2 at the lower portion inside the shear restraint wall 4 by welding or the like. The locking stopper 11a (1) is fixed and fitted and fixed to the concave portion of the lower steel plate 9 of the elastic bearing member 5 made of rubber or the like in the positioning locking concave portion 3.
The locking stopper 11 whose lower part is fitted and locked in 1) and which is fitted and fixed in the concave portion of the upper steel plate 10 in the elastic bearing member 5.
The upper portion of b (11) is fitted and locked in the concave portion 12a on the lower surface side of the upper support member 12 for supporting a structure.

【0011】前記上部支持部材12の上面には、四フッ
化エチレン板、あるいは四フッ化エチレン層等のすべり
支承部材13が接着剤等により固定されるか、前記上部
支持部材12の上面にステンレス鋼板等のすべり支承部
材13がビス等により固定されている。また、前記鋼製
短筒状せん断拘束壁4の外周面および下部支持部材2の
上面には、補強用鋼製縦リブ14が等角度間隔で配置さ
れて溶接により固定され、前記鋼製短筒状のせん断拘束
壁4の内側上部には、前記上部支持部材12の外側面が
近接または当接されるように配置され、前記鋼製短筒状
せん断拘束壁4の上面レベルは、上部支持部材12の板
厚の中間部(図示の場合は、ほぼ板厚の中央部のレベ
ル)に位置するように設定されている。また前記下部支
持部材2は、その透孔18に挿通され、コンクリート製
等の下部構造物1に埋め込み固定されたアンカーボルト
等のボルト15およびこれに螺合されるナット16によ
り固定される。
A sliding support member 13 such as an ethylene tetrafluoride plate or a tetrafluoroethylene layer is fixed on the upper surface of the upper support member 12 with an adhesive or the like. A slide bearing member 13 such as a steel plate is fixed with screws or the like. Further, on the outer peripheral surface of the steel short cylindrical shear restraint wall 4 and the upper surface of the lower support member 2, reinforcing steel vertical ribs 14 are arranged at equal angular intervals and fixed by welding. The outer side surface of the upper support member 12 is disposed on the inner upper side of the cylindrical shear restraint wall 4 so as to be close to or in contact with the upper support member 12. Twelve sheet thicknesses are set so as to be located at the middle part (in the case of the drawing, almost at the center part of the sheet thickness). The lower support member 2 is inserted through the through hole 18 and is fixed by a bolt 15 such as an anchor bolt embedded in the lower structure 1 made of concrete or the like and a nut 16 screwed thereto.

【0012】前記鋼製短筒状のせん断拘束壁4の内周面
には、上部支持部材12の上下動を円滑に行わせるため
に、テフロン層39が設けられている。また上部支持部
材12の外周面にもテフロン層を設けるようにするとよ
い。前記鋼製短筒状のせん断拘束壁4の内面と上部支持
部材12の外周面との摺動面は低摩擦係数のすべり面に
しておくとよい。またこのような非金属製のテフロン層
39を設けておくと、前記せん断拘束壁4の内周面と上
部支持部材12の外周面に間隙を設けなくても、上部構
造物の撓みにより上部支持部材12が多少傾動(回転)
してもこれを吸収しながら支承することができる。
A Teflon layer 39 is provided on the inner peripheral surface of the steel short cylindrical shear restraint wall 4 to smoothly move the upper support member 12 up and down. It is preferable to provide a Teflon layer also on the outer peripheral surface of the upper support member 12. The sliding surface between the inner surface of the steel short cylindrical shear restraint wall 4 and the outer peripheral surface of the upper support member 12 is preferably a slip surface having a low coefficient of friction. Further, if such a non-metallic Teflon layer 39 is provided, the upper support can be bent by bending of the upper structure without providing a gap between the inner peripheral surface of the shear restraint wall 4 and the outer peripheral surface of the upper support member 12. The member 12 is slightly tilted (rotated)
Even so, it can be supported while absorbing this.

【0013】前記上部支持部材12の板厚は、上部構造
物の荷重を支承した状態で、前記鋼製短筒状のせん断拘
束壁4の上面が、上部支持部材12の板厚のほぼ中央部
のレベルに位置するように設定するとよい。前記上部支
持部材12の周縁部を図1に示すように、上部構造物
(桁)22の撓みによる回転を考慮したアール部すなわ
ち円弧状外面部Rにしておくと上部構造物(桁)22の
撓みによる回転に対しても円滑に追従することができ
る。
The thickness of the upper support member 12 is such that the upper surface of the steel short cylindrical shear restraint wall 4 is substantially at the center of the plate thickness of the upper support member 12 in a state where the load of the upper structure is supported. Should be set at the level of As shown in FIG. 1, as shown in FIG. 1, the peripheral portion of the upper support member 12 is formed into a round portion in consideration of the rotation due to the bending of the upper structure (spar) 22, that is, an arc-shaped outer surface portion R. It is possible to smoothly follow the rotation due to the bending.

【0014】前記実施形態の場合は、弾性支承体5が下
部構造物1に下部支持部材2を介して間接的に係止され
ると共に鋼製短筒状のせん断拘束壁4に間接的に水平方
向に移動不能に係止されることにより、弾性支承体5に
おける弾性体(層)6がせん断変形不能に係止され、か
つ上部構造物22は上部支持部材12を介して弾性支承
体5に支承されている。また、上部構造物22側のソー
ルプレート38の下面には、四フッ化エチレン板、ある
いは四フッ化エチレン層またはステンレス鋼板等のすべ
り支承部材67が固定されている。この実施形態の場合
は、弾性支承体5と上部支持部材12とにより支圧荷重
支持部材31が構成されている。
In the case of the above embodiment, the elastic bearing 5 is indirectly locked to the lower structure 1 via the lower support member 2 and indirectly horizontal to the steel short cylindrical shear restraint wall 4. The elastic body (layer) 6 in the elastic support 5 is locked so as not to be deformed by shearing, and the upper structure 22 is connected to the elastic support 5 via the upper support member 12 by being locked immovably in the direction. It is supported. A sliding support member 67 such as an ethylene tetrafluoride plate or an ethylene tetrafluoride layer or a stainless steel plate is fixed to the lower surface of the sole plate 38 on the upper structure 22 side. In the case of this embodiment, a bearing load support member 31 is constituted by the elastic support member 5 and the upper support member 12.

【0015】図5および図6と、図7とは、それぞれ本
発明の第2実施形態および第3実施形態に係る支承装置
30を示し、この支承装置30において、高支圧荷重支
持部材31が、ベースプレート32を備えた下部支持部
材2に横移動及びせん断変形拘束的に支持され、かつこ
の荷重支持部材31の上面に単にスライド自在に上部構
造物を支持する強制スライド型として設置される。すな
わち、高支圧荷重支持部材31は、下部構造物に設置の
ベースプレート32上面に設置され、かつベースプレー
ト32から起立する平面が円形又は矩形枠状のせん断拘
束壁4の内側に配置されてその横移動が拘束される。
FIGS. 5 and 6 and FIG. 7 show a bearing device 30 according to a second embodiment and a third embodiment of the present invention, in which a high bearing load supporting member 31 is provided. The load supporting member 31 is supported by the lower supporting member 2 having a base plate 32 in a laterally moving and shear deformation manner, and is installed on the upper surface of the load supporting member 31 as a forced sliding type for simply supporting the upper structure. That is, the high bearing load support member 31 is installed on the upper surface of the base plate 32 installed on the lower structure, and a plane rising from the base plate 32 is arranged inside the circular or rectangular frame-shaped shear restraint wall 4 and is positioned beside it. Movement is restricted.

【0016】前記高支圧荷重支持部材31は、単層で、
しかも薄型のゴムのような弾性層6の外周面にR加工等
によるほぼ半円状等の環状凹部33が形成されている。
この弾性層6には補強鋼板等の硬質板34が埋設されて
いる。前記弾性層6の上部と下部にはそれぞれ環状反力
壁35aと36aを有するカップ状断面の上部嵌着支持
部材35と下部嵌着支持部材36とが嵌着されている。
上下部の各嵌着支持部材35,36の面板35b,36
bの内面と、弾性層6の上下面との当接部が接着面37
とされており、かつ弾性層6の上下部が反力壁35a,
36aの内側(ポット部)に被嵌されている。前記高支
圧荷重支持部材31における上部嵌着支持部材35の下
面および下部嵌着支持部材36の上面の円形面全体およ
び硬質板34の表裏両面に、環状波形ロールまたはロー
レット加工などによる凹凸状接着面40が形成され、し
たがって、各上部嵌着支持部材35および下部嵌着支持
部材36および硬質板34における弾性層6との接着界
面が、環状波形又はローレット加工などによる凹凸状接
着面40とされていることで、フラットな接着面に比べ
て、弾性層6が圧縮変形される際の弾性層6と、各鋼板
9,10との接着面に加わるせん断力による剥離をより
有効に阻止できる。なお、図5に示す第2の実施形態に
おいては、補強鋼板からなる硬質板34の中央部に透孔
が設けられて硬質板34の上下のゴム層の一体化がはか
られている。
The high bearing load supporting member 31 is a single layer,
In addition, an annular concave portion 33 having a substantially semicircular shape is formed on the outer peripheral surface of the elastic layer 6 such as a thin rubber by R processing or the like.
A hard plate 34 such as a reinforcing steel plate is embedded in the elastic layer 6. An upper fitting support member 35 and a lower fitting support member 36 having a cup-shaped cross section having annular reaction force walls 35a and 36a are fitted on the upper and lower portions of the elastic layer 6, respectively.
Face plates 35b, 36 of the upper and lower fitting support members 35, 36
The contact portion between the inner surface of the elastic layer 6 and the upper and lower surfaces of the elastic layer 6 is an adhesive surface 37.
And the upper and lower portions of the elastic layer 6 are reaction walls 35a,
36a is fitted inside (a pot portion). An uneven corrugated roll or knurling process is applied to the entire circular surface of the lower surface of the upper fitting support member 35 and the upper surface of the lower fitting support member 36 of the high bearing load support member 31 and the front and back surfaces of the hard plate 34. The surface 40 is formed, so that the bonding interface between the upper fitting support member 35, the lower fitting support member 36, and the hard plate 34 with the elastic layer 6 is an uneven bonding surface 40 formed by annular corrugation or knurling. As a result, the peeling due to the shear force applied to the bonding surface between the elastic layer 6 and the steel plates 9 and 10 when the elastic layer 6 is compressed and deformed can be more effectively prevented as compared with the flat bonding surface. In the second embodiment shown in FIG. 5, a through hole is provided in the center of a hard plate 34 made of a reinforcing steel plate, and the upper and lower rubber layers of the hard plate 34 are integrated.

【0017】前記の高支圧荷重支持部材31において、
上方から矢印P(図8に示す)の例えば200kg/cm2
ないし250kg/cm2 というような高荷重が作用すると
き、弾性層6には、矢印P1 方向のせん断力が作用し、
このせん断力が弾性層6と上下嵌着支持部材35,36
の面板35b,36bとの接着面37に剥離力として作
用するが、前記反力壁35a,36aによって、機械的
に弾性層6における接着面37に作用するせん断力を拘
束し、弾性層6の上下部にせん断力を作用させず、かつ
弾性層の一部に応力が集中するのを緩和する構成とされ
ており、また上部嵌着支持部材35および下部嵌着支持
部材36および硬質板34における弾性層6との接着界
面が、環状波形又はローレット加工などによる凹凸状接
着面40とされているので、それ故に弾性層6が薄い層
でも高支圧に十分耐える構造とされている。
In the above-mentioned high bearing load supporting member 31,
From above, for example, 200 kg / cm 2 of an arrow P (shown in FIG. 8)
When working with high loads such as 250 kg / cm 2 to not, the elastic layer 6, the shear force of the arrow P 1 direction acts,
This shear force is applied to the elastic layer 6 and the upper and lower fitting support members 35 and 36.
Acts as a peeling force on the adhesive surface 37 of the elastic layer 6 with the face plates 35b, 36b, but the reaction force walls 35a, 36a mechanically restrain the shearing force acting on the adhesive surface 37 of the elastic layer 6, and It is configured not to apply a shear force to the upper and lower portions and to alleviate concentration of stress on a part of the elastic layer. In addition, the upper fitting support member 35, the lower fitting support member 36, and the hard plate 34 Since the adhesive interface with the elastic layer 6 is an irregular adhesive surface 40 formed by an annular corrugation or knurling, the structure is such that even a thin elastic layer 6 can sufficiently withstand a high bearing pressure.

【0018】さらに、上下部嵌着支持部材35,36の
反力壁35a,36aに加えて、弾性層6のR加工等に
よる環状凹部33の存在により、鉛直高支圧に際し、弾
性層6は環状凹部33が解消されるか、又は弾性層6の
支承作用にほとんど影響しない程度外方に若干膨出する
程度に圧縮変形することで対応するので、ゴム層の一部
に応力が集中するのを緩和させることができ、弾性層6
の上下部と、上下嵌着支持部材35,36との接着面3
7を剥離するように作用する力は、環状凹部33が存在
しない場合に比べて非常に小さく、それ故に、この支持
部材31は高支圧に円滑に対応できる構造とされてい
る。
Further, in addition to the reaction walls 35a and 36a of the upper and lower fitting support members 35 and 36, the presence of the annular recess 33 formed by the R processing of the elastic layer 6 allows the elastic layer 6 to have a high vertical supporting pressure. Since the annular concave portion 33 is eliminated, or is compressed and deformed so as to slightly expand outward so as not to substantially affect the bearing action of the elastic layer 6, stress is concentrated on a part of the rubber layer. Can be reduced, and the elastic layer 6
Bonding surface 3 between the upper and lower parts and upper and lower fitting support members 35 and 36
The force acting to peel off 7 is very small as compared with the case where there is no annular concave portion 33. Therefore, the support member 31 is structured to smoothly cope with a high bearing pressure.

【0019】前記第2,3実施形態においては、図30
に示す比較例としてあげる構造の支圧荷重支持部材1の
不具合が解消されている。つまり、図30に示す比較例
としてあげる構造の支圧荷重支持部材68では、上方か
ら矢印Pの荷重が作用するとき、補強鋼板7を介してな
る複数の弾性層6は圧縮変形し、このとき、弾性層6の
周囲はR状膨出部62となって膨出すると共に、この弾
性層6の上下部には矢印P1 方向の応力が働いて横方向
に伸長し、そのため、弾性層6と上,下部支持板63,
64との接着面65にせん断力が働き、接着面を剥離さ
せるように作用するので、したがって、前記構造の単一
弾性層6からなる支承部材66では、その厚みが薄いと
いう利点がある反面、平坦な接着境界面の場合には、支
圧応力は120Kg/cm2程度が限度であって、例えば、支
圧応力は200Kg/cm2ないし250Kg/cm2という高荷重
を支圧することはできないが、前述のとおり、前記第2
および第3の各実施形態における発明ではこのような不
具合がない。
In the second and third embodiments, FIG.
The problem of the bearing load supporting member 1 having the structure shown as a comparative example shown in FIG. That is, in the bearing load supporting member 68 having the structure shown as a comparative example shown in FIG. 30, when the load indicated by the arrow P is applied from above, the plurality of elastic layers 6 via the reinforcing steel plate 7 are compressed and deformed. , together with the periphery of the elastic layer 6 bulges a R-shaped bulging portion 62, this is the upper and lower portions of the elastic layer 6 extends laterally worked arrow P 1 direction stress, therefore, the elastic layer 6 And the upper and lower support plates 63,
Since a shearing force acts on the adhesive surface 65 with the adhesive layer 64 and acts to separate the adhesive surface, the bearing member 66 composed of the single elastic layer 6 having the above structure has an advantage that its thickness is small, in the case of a flat adhesive interface is Bearing stress is a limit of about 120 kg / cm 2, for example, although Bearing stresses can not be Bearing a high load of 200 Kg / cm 2 to 250 Kg / cm 2 , As described above, the second
The invention in each of the third and third embodiments does not have such a problem.

【0020】さらに説明すると、図5および図7に示す
ように高支圧荷重支持部材31を主要素の1つとする支
承装置30において、当該高支圧荷重支持部材31の上
下嵌着支持部材35,36は、せん断拘束壁4と隣り合
っており、しかも高支圧荷重支持部材31の弾性層6の
上部に嵌着した上部嵌着支持部材35の上面35cの高
さH1 よりもせん断拘束壁4の頂面4bの高さHが下の
位置に設けられている。
More specifically, as shown in FIGS. 5 and 7, in the bearing device 30 having the high bearing load supporting member 31 as one of the main elements, the upper / lower fitting support member 35 of the high bearing load supporting member 31 is used. , 36 are adjacent to the shear restraint wall 4, and the shear restraint is higher than the height H 1 of the upper surface 35 c of the upper fitting support member 35 fitted on the elastic layer 6 of the high bearing load support member 31. The height H of the top surface 4b of the wall 4 is provided at a lower position.

【0021】したがって、上部構造物の下面に取付けた
ソールプレート38を前記せん断拘束壁4の頂面4bよ
り高い位置にある高支圧荷重支持部材31の上部嵌着支
持部材35の上面35cでスライド自在にかつ弾性的に
支持することができる。
Therefore, the sole plate 38 attached to the lower surface of the upper structure is slid on the upper surface 35c of the upper fitting support member 35 of the high bearing load supporting member 31 located higher than the top surface 4b of the shear restraint wall 4. It can be freely and elastically supported.

【0022】しかも、前記のように上部嵌着支持部材3
5の下部は、せん断拘束壁4の頂面4bよりも下位にあ
ることにより、高支圧荷重支持部材31の弾性層6と上
部嵌着支持部材35はせん断拘束壁4によりせん断変形
拘束的に支持される。さらに、上部構造物に取付けたソ
ールプレート38は、前述のとおり、高支圧荷重支持部
材31の上部嵌着支持部材35の上面35cにスライド
自在に支持されているので、高支圧荷重支持部材31の
弾性層6はせん断変形されず、いわゆる強制スライド型
支持とされている。かつ高支圧荷重支持部材31では、
補強鋼板等の硬質板34と弾性層6との接着界面および
上下嵌着支持部材35,36と弾性層6との接着界面
が、上部嵌着支持部材35の内側下面全面および下部嵌
着支持部材36の内側上面全面ならびに補強鋼板等の硬
質板34の表裏両面の全面に環状波形又はローレット加
工などによる凹凸状部が形成されることで、凹凸状接着
面40とされている。この凹凸状接着面40とすること
で、フラットな接着面に比べて、弾性層6が圧縮変形さ
れる際の弾性層6と、補強鋼板40との接着面に加わる
せん断力による剥離をより有効に阻止できる。
In addition, as described above, the upper fitting support member 3
Since the lower part of 5 is lower than the top surface 4 b of the shear restraint wall 4, the elastic layer 6 of the high bearing load support member 31 and the upper fitting support member 35 are restrained by the shear restraint wall 4 from being subjected to shear deformation. Supported. Further, since the sole plate 38 attached to the upper structure is slidably supported on the upper surface 35c of the upper fitting support member 35 of the high bearing load supporting member 31, as described above, the high bearing load supporting member is provided. The elastic layer 31 is not sheared and deformed, and is a so-called forced slide type support. And in the high bearing load support member 31,
The adhesive interface between the hard plate 34 such as a reinforcing steel plate and the elastic layer 6 and the adhesive interface between the upper and lower fitting support members 35 and 36 and the elastic layer 6 are formed on the entire inner lower surface of the upper fitting support member 35 and the lower fitting support member. An uneven adhesive surface 40 is formed by forming an uneven portion by annular corrugation or knurling on the entire inner upper surface of the hard disk 36 and the entire front and back surfaces of the hard plate 34 such as a reinforcing steel plate. By making the uneven adhesive surface 40, the peeling by the shear force applied to the elastic layer 6 and the reinforcing steel plate 40 when the elastic layer 6 is compressed and deformed is more effective than the flat adhesive surface. Can be stopped.

【0023】また、前記支持部材31が高荷重を支圧す
る際の上部嵌着支持部材35の下動を円滑に行なわせる
ために、せん断拘束壁4の内周面と上部嵌着部材35と
の摺動面にはテフロン層39を設けておくとよい。ま
た、上部構造物に取付けたソールプレート38をスライ
ド自在に支持する上部嵌着支持部材35の上面35cに
もテフロン層35dを設けるとよい。
Further, in order to smoothly move down the upper fitting support member 35 when the supporting member 31 bears a high load, the inner peripheral surface of the shear restraint wall 4 and the upper fitting member 35 are connected. It is preferable to provide a Teflon layer 39 on the sliding surface. It is also preferable to provide a Teflon layer 35d on the upper surface 35c of the upper fitting support member 35 that slidably supports the sole plate 38 attached to the upper structure.

【0024】図9には、本発明の第4実施形態に係る高
支圧荷重支持部材31aが断面で示されている。この荷
重支持部材31aでは、前記第3実施形態と同様に補強
鋼板等の硬質板34と弾性層6との接着界面が、補強鋼
板等の硬質板34の表裏両面の全面に環状波形又はロー
レット加工などによる凹凸状部が形成されることで、凹
凸状接着面40とされている。この凹凸状接着面40と
することで、フラットな接着面に比べて、弾性層6が圧
縮変形される際の弾性層6と、補強鋼板40との接着面
に加わるせん断力による剥離をより有効に阻止できる。
FIG. 9 is a sectional view showing a high bearing load supporting member 31a according to a fourth embodiment of the present invention. In this load supporting member 31a, the adhesive interface between the hard plate 34 such as a reinforced steel plate and the elastic layer 6 is formed on the entire front and back surfaces of the hard plate 34 such as a reinforced steel plate in the same manner as in the third embodiment. By forming an uneven portion by such as, the uneven adhesive surface 40 is formed. By making the uneven adhesive surface 40, the peeling by the shear force applied to the elastic layer 6 and the reinforcing steel plate 40 when the elastic layer 6 is compressed and deformed is more effective than the flat adhesive surface. Can be stopped.

【0025】図10には、本発明の第5実施形態に係る
高支圧荷重支持部材31bが断面で示されている。この
荷重支持部材31bでは、前記第3実施形態と同様に上
下嵌着支持部材35,36と弾性層6との接着面が、環
状波形又はローレット加工などによる凹凸状接着面40
とされている。この凹凸状接着面40とすることで、フ
ラットな接着面に比べて、弾性層6が圧縮変形される際
の弾性層6の上下部と、上下の嵌着支持部材35,36
との接着面に加わるせん断力による剥離をより有効に阻
止できる。
FIG. 10 is a sectional view showing a high bearing load supporting member 31b according to a fifth embodiment of the present invention. In the load supporting member 31b, the bonding surface between the upper and lower fitting supporting members 35 and 36 and the elastic layer 6 is formed into an uneven bonding surface 40 by annular corrugation or knurling, as in the third embodiment.
It has been. By forming the uneven adhesive surface 40, the upper and lower portions of the elastic layer 6 when the elastic layer 6 is compressed and deformed, and the upper and lower fitting support members 35 and 36 as compared with the flat adhesive surface.
Peeling due to the shearing force applied to the adhesive surface with the adhesive can be more effectively prevented.

【0026】図11には、本発明の第6実施形態に係る
特殊対応型の高支圧荷重支持部材31cを用いた支承装
置30が断面で示されている。この支持部材31cで
は、上下嵌着支持部材35,36で挾持される弾性層が
積層構造とされていて、それぞれR加工の環状凹部33
を有する上部弾性層6aと下部弾性層6bとからなる積
層弾性層が構成されていて、上下の積層弾性層6a,6
bの間に中間支持部材41が配設されていて、中間支持
部材41の端縁に上下方向に突出する反力壁42が設け
られており、この反力壁42により形成されるポット部
において上部積層弾性層6aの下部と下部積層弾性層6
bの上部とを被嵌している。この実施形態における前記
中間支持部材41の内側上面及び内側下面の円形面全面
に環状波形又はローレット加工などによる凹凸状部が形
成されることで、凹凸状接着面40とされている。この
支承装置30における他の構成は、図5または図7に示
す支承装置30の構成と同様である。
FIG. 11 is a sectional view of a bearing device 30 using a specially adapted high bearing load supporting member 31c according to a sixth embodiment of the present invention. In this support member 31c, an elastic layer sandwiched between upper and lower fitting support members 35 and 36 has a laminated structure, and each has an annular concave portion 33 formed by R processing.
And a lower elastic layer 6b having an upper elastic layer 6a and a lower elastic layer 6b.
b, an intermediate support member 41 is provided, and a reaction wall 42 protruding in the vertical direction is provided at an end edge of the intermediate support member 41. In a pot portion formed by the reaction wall 42, Lower part of upper laminated elastic layer 6a and lower laminated elastic layer 6
b. In the present embodiment, the uneven support portion 40 is formed by forming an uneven portion by an annular corrugation or knurling on the entire inner surface and the inner lower surface of the intermediate support member 41 in the present embodiment. Other configurations of the bearing device 30 are the same as those of the bearing device 30 shown in FIG. 5 or FIG.

【0027】図11に示す高支圧荷重支持部材31cは
特殊対応型の荷重支持部材として、例えば、上下方向に
スペースがある場合で、かつ柔らかい圧縮バネで上部構
造物を支承する場合などに使用できる。
The high bearing load supporting member 31c shown in FIG. 11 is used as a specially adapted load supporting member, for example, when there is a space in the vertical direction and when the upper structure is supported by a soft compression spring. it can.

【0028】図12には本発明の第7実施形態に係る高
支圧荷重支持部材31dが示されている。この高支圧荷
重支持部材31dでは、弾性層6の内部に板厚の厚い補
強鋼板等の硬質板34が埋設され、弾性層6の上下に外
周部に反力壁35a,36aを有する上下嵌着支持部材
35,36が装着され、さらに上部嵌着支持部材35に
はテフロン板からなる低摩擦摺動板43の嵌合用凹部4
4が設けられ、この嵌合用凹部44を含む上下の嵌着支
持部材35,36の表面と、その中間に位置する弾性層
6の外部に露出している表面を包む全表面が薄いゴム被
覆層45で被覆されている。
FIG. 12 shows a high bearing load supporting member 31d according to a seventh embodiment of the present invention. In the high bearing load supporting member 31d, a hard plate 34 such as a thick reinforcing steel plate is buried inside the elastic layer 6, and upper and lower fittings having reaction walls 35a, 36a on the upper and lower sides of the elastic layer 6 at the outer periphery. Attachment support members 35 and 36 are mounted. Further, the upper engagement support member 35 has a fitting recess 4 of a low friction sliding plate 43 made of a Teflon plate.
A rubber coating layer having a thin surface covering the surfaces of the upper and lower fitting support members 35 and 36 including the fitting concave portion 44 and the surface exposed to the outside of the elastic layer 6 located therebetween. 45.

【0029】前記第7実施形態に係る高支圧荷重支持部
材31dでは、鋼製の上下の嵌着支持部材35,36は
ゴム被覆層45で完全被覆されているので、サビ等によ
る劣化が防止され耐久性が向上する。また、テフロン板
からなる低摩擦摺動板43は、上部嵌着支持部材35の
嵌合用凹部44に嵌着され、かつ接着剤により接着され
るもので、それにより両部材の一体化は確実となる。
In the high bearing load supporting member 31d according to the seventh embodiment, since the upper and lower fitting supporting members 35 and 36 made of steel are completely covered with the rubber coating layer 45, deterioration due to rust or the like is prevented. The durability is improved. The low-friction sliding plate 43 made of a Teflon plate is fitted into the fitting concave portion 44 of the upper fitting support member 35 and is adhered by an adhesive, so that the integration of the two members is ensured. Become.

【0030】しかも、図示のように、上下嵌着支持部材
35,36の弾性層6から側方に突出している部分、つ
まり反力壁35a,36aの部分は上方からの荷重を支
持しないが、上方からの荷重を受ける低摩擦摺動板43
は弾性層6とほぼ重なる部位にある嵌合用凹部44に嵌
合固定されることで、反力壁35a,36aの部位には
設けられず、したがって、テフロン板からなる低摩擦摺
動板43の材料を必要最小限に抑えることができて経済
的である。その他の構成については、第2実施形態に示
す高支圧荷重支持部材31の場合と同様である。また、
前記高支圧荷重支持部材31,31a,31b,31
c,31dの平面形状は円形又は矩形のいずれでもよ
い。
Further, as shown in the figure, the portions of the upper and lower fitting support members 35, 36 projecting laterally from the elastic layer 6, that is, the reaction force walls 35a, 36a do not support the load from above. Low friction sliding plate 43 receiving a load from above
Is fitted and fixed in the fitting concave portion 44 substantially overlapping the elastic layer 6 and is not provided in the reaction force walls 35a and 36a. Therefore, the low friction sliding plate 43 made of a Teflon plate is provided. It is economical because materials can be kept to a minimum. Other configurations are the same as those of the high bearing load support member 31 shown in the second embodiment. Also,
The high bearing load support members 31, 31a, 31b, 31
The planar shapes of c and 31d may be either circular or rectangular.

【0031】図13および図14には、ゴムと鋼板との
接着面積を増加させた形態の接着界面増加型の高支圧荷
重支持部材31が示されている。またその高支圧荷重支
持部材31を使用した支承装置30が図15(a)に示
され、前記高支圧荷重支持部材31は円形の場合には、
鋼製上面板および下面板に多数の環状溝71が同心的に
配置されるように形成され、また矩形の場合には、前述
のような同心状の環状溝71または格子状の溝あるいは
これらの適宜の組み合わせからなる溝が形成されること
により、ゴムのような弾性層と鋼製面板との一体結合強
度を向上させるように形成されて、剪断抵抗力ならびに
剥離抵抗力を向上させるように構成されている。この実
施形態においても、前記第1実施形態と同様に、弾性支
承体5における下部鋼板9の上面および上部鋼板10の
下面の円形面全体に、環状波形ロールまたはローレット
加工などによる凹凸状接着面40を形成してもよい。
FIG. 13 and FIG. 14 show a high bearing load supporting member 31 of an increased bonding interface type in which the bonding area between rubber and steel plate is increased. FIG. 15 (a) shows a bearing device 30 using the high bearing load supporting member 31. When the high bearing load supporting member 31 is circular,
A large number of annular grooves 71 are formed concentrically on the steel upper and lower plates, and in the case of a rectangular shape, the above-described concentric annular grooves 71 or lattice-like grooves or a lattice-like groove as described above. By forming a groove made of an appropriate combination, it is formed so as to improve the integral bonding strength between the elastic layer such as rubber and the steel face plate, and is configured to improve the shear resistance and the peel resistance. Have been. In this embodiment, as in the case of the first embodiment, the entire surface of the lower steel plate 9 and the lower surface of the upper steel plate 10 in the elastic bearing 5 is provided with an uneven adhesive surface 40 formed by an annular corrugated roll or knurling. May be formed.

【0032】図15(a)には、図13および図14に
示した高支圧荷重支持部材31を使用した本発明の第8
実施形態に係る弾性支承装置が示されている。この支承
装置30において、高支圧荷重支持部材31が、ベース
プレート32を備えた下部支持部材2に横移動及びせん
断変形拘束的に支持され、かつこの荷重支持部材31の
上面に単にスライド自在に上部構造物を支持する強制ス
ライド型として設置される。すなわち、高支圧荷重支持
部材31は、下部構造物に設置のベースプレート32の
上面に設置され、かつベースプレート32から起立する
平面が円形又は矩形枠状のせん断拘束壁4の内側に配置
されてその横移動が拘束される。
FIG. 15A shows an eighth embodiment of the present invention using the high bearing load supporting member 31 shown in FIGS.
1 shows an elastic bearing device according to an embodiment. In this bearing device 30, a high bearing load supporting member 31 is laterally moved and sheared and restrained by a lower supporting member 2 provided with a base plate 32, and is simply slidably mounted on an upper surface of the load supporting member 31. It is installed as a forced slide type that supports the structure. That is, the high bearing load support member 31 is installed on the upper surface of the base plate 32 installed on the lower structure, and the plane rising from the base plate 32 is arranged inside the circular or rectangular frame-shaped shear restraint wall 4 and the Lateral movement is restricted.

【0033】また前記実施形態の変形例として、図15
(b)に示すように、上部鋼板10を横方向に張り出さ
せ、すなわち上部支持部材12を兼ねる厚板鋼板からな
る張り出しフランジ付き鋼板10とすると共に、下部支
持部材2における上面側の凹部に前記弾性体5における
下部鋼板9が嵌合係止されている。このような形態にす
ると、厚板鋼板であるので、張り出しフランジ付き鋼板
10の上下方向の摺動距離を比較的大きく許容すること
ができる。
As a modification of the above embodiment, FIG.
As shown in (b), the upper steel plate 10 is laterally extended, that is, a steel plate 10 with an extended flange made of a thick steel plate serving also as the upper support member 12 is formed. The lower steel plate 9 of the elastic body 5 is fitted and locked. In such a configuration, since the steel plate 10 is a thick steel plate, a relatively large vertical sliding distance of the steel plate 10 with the overhang flange can be allowed.

【0034】図16および図17は、この発明において
使用することができるせん断変形拘束壁を形成する場合
の一例を示す説明図であって、下部支持部材2または下
部鋼板9のいずれの場合にも形成することができるもの
であり、すなわち、下部支持部材2または下部鋼板9の
上面に、鋼製短筒状体4aが配置され、その鋼製短筒状
体4aの基端部が溶接等により固定されるか一体に連設
されて、下部支持部材2または下部鋼板9にせん断拘束
壁4が形成されている。この形態の場合は、平面的に閉
塞した形態であり、水平方向等の横方向における360
°全方向に一定した強度を発揮させることができる。な
お、図16ないし図19において、補強用鋼製縦リブ1
4は適宜設けられる。
FIGS. 16 and 17 are explanatory views showing an example of forming a shear deformation restraining wall which can be used in the present invention. In both cases of the lower support member 2 and the lower steel plate 9, FIGS. That is, the steel short tubular body 4a is disposed on the upper surface of the lower support member 2 or the lower steel plate 9, and the base end of the steel short tubular body 4a is welded or the like. The shear restraint wall 4 is formed on the lower support member 2 or the lower steel plate 9 to be fixed or integrally connected. In the case of this form, it is a form that is closed in a plane, and 360 in a horizontal direction such as a horizontal direction.
° A constant strength can be exhibited in all directions. In addition, in FIG. 16 thru | or FIG.
4 is appropriately provided.

【0035】また図18および図19は、前記と同様、
下部支持部材2または下部鋼板9ののいずれにも形成し
て使用することができるせん断変形拘束壁を形成する場
合の他の例を示す説明図であって、下部支持部材2また
は下部鋼板9の上面に、等角度間隔をおいて平面円弧状
の鋼製支承壁ユニット4cが複数(図示の場合は4つ)
円形軌跡上に配設固定されてせん断拘束壁4が形成され
ている。前述のように、せん断拘束壁4を下部支持部材
2に形成することもでき、また下部鋼板9に形成するよ
うにしてもよい。
FIGS. 18 and 19 show the same as above.
It is explanatory drawing which shows the other example at the time of forming the shear deformation constraining wall which can be formed and used in either of the lower support member 2 or the lower steel plate 9, and shows the lower support member 2 or the lower steel plate 9. On the upper surface, a plurality (four in the case shown) of flat circular arc-shaped steel bearing wall units 4c are arranged at equal angular intervals.
A shear restraint wall 4 is formed and fixed on the circular locus. As described above, the shear restraint wall 4 may be formed on the lower support member 2 or may be formed on the lower steel plate 9.

【0036】図20には、本発明に係る前記各実施形態
の支承装置の代表的な使用形態として図7に示す形態に
かかる使用例が示されている。つまり、図20は橋台又
は橋脚等の下部構造物1の上面に設置された橋梁用の支
承装置30を示す縦断面図で、前記支承装置30におい
て、高支圧荷重支持部材31と緩衝手段46は分離配置
される。前記支持部材31によって、道路橋等の橋梁を
構成する上部構造物22としてのH型鋼からなる鋼桁4
7が平行に支持され、この鋼桁47によって床版48が
支持されている。また、前記緩衝手段46によって、上
部構造物の水平力、上揚力、回転力の全方向の揺れが緩
衝される。さらに、左右の鋼桁47の間は、連結梁(図
示せず)で連結し補強されている。
FIG. 20 shows a usage example according to the form shown in FIG. 7 as a typical usage form of the bearing device of each of the embodiments according to the present invention. That is, FIG. 20 is a longitudinal sectional view showing a bridge support device 30 installed on the upper surface of the substructure 1 such as an abutment or a pier. In the support device 30, the high bearing load support member 31 and the buffer means 46 are provided. Are arranged separately. By the support member 31, a steel girder 4 made of H-shaped steel as an upper structure 22 constituting a bridge such as a road bridge.
7 are supported in parallel, and a floor slab 48 is supported by the steel girder 47. In addition, the above-mentioned buffering means 46 buffers the omnidirectional swing of the horizontal force, the upward lift, and the rotational force of the upper structure. Further, the left and right steel girders 47 are connected and reinforced by connecting beams (not shown).

【0037】緩衝手段46において、連結用横桁49の
下部には、ボルト50等で固着した取付けプレート51
と、取付けプレート51と一体に、かつ略櫛歯状に間隔
をあけて複数設けた垂下支持部材52とからなる上部支
持フレーム53が設けられている。下部構造物1の上部
には、この上部にアンカーボルト61等で固着した取付
けプレート54と一体に、かつ略櫛歯状に間隔をあけて
複数設けられた起立支持部材55とからなる下部支持フ
レーム56が設けられている。そして、垂下支持部材5
2と起立支持部材55とを上下方向から相互に噛み合わ
せ、かつ水平方向に一定の間隙が複数形成され、また上
下方向に一定の間隙が形成されるように設けてある。さ
らに、水平方向の間隙に充填するように弾性体の具体例
としてブロック状のゴムダンパー57が配設され、この
ゴムダンパー57の一側が前記垂下支持部材52に固着
され、他側が前記起立支持部材55に固着されている。
In the buffer means 46, a mounting plate 51 fixed with bolts 50 or the like is provided below the connecting beam 49.
An upper support frame 53 comprising a plurality of hanging support members 52 integrally provided with the mounting plate 51 and spaced apart in a substantially comb-tooth shape is provided. A lower support frame comprising an upper portion of the lower structure 1 and a plurality of upright support members 55 provided integrally with a mounting plate 54 fixed to the upper portion with an anchor bolt 61 or the like and spaced apart in a substantially comb-tooth shape. 56 are provided. And the hanging support member 5
2 and the upright support member 55 are engaged with each other from above and below, and a plurality of constant gaps are formed in the horizontal direction, and a certain gap is formed in the vertical direction. Further, a block-shaped rubber damper 57 is provided as a specific example of the elastic body so as to fill the gap in the horizontal direction. One side of the rubber damper 57 is fixed to the hanging support member 52, and the other side is the upright supporting member. 55.

【0038】前記の分離型橋梁用支承装置30は次のよ
うに作用する。鋼桁47で支持される道路橋などの橋梁
等の上部構造物の荷重は、前記高支圧荷重支持部材31
の弾性層6で受けられ、緩衝手段46に対して無負荷で
ある。大地震が発生した際、鋼桁47に働く下向きの力
に対しては、弾性層6が変形許容空間58を介してせん
断拘束壁4内で圧縮変形することで分散し、免震でき
る。鋼桁47に働く上揚力に対しては、ゴムダンパー5
7と、上部フレーム53と、下部フレーム56とを有す
る緩衝手段46を介して鋼桁47と、下部構造物1とが
結合されていることにより、前記ゴムダンパー57の伸
縮変形でその上揚力が円滑に制御される。
The above-described separation type bridge bearing device 30 operates as follows. The load of an upper structure such as a bridge such as a road bridge supported by a steel girder 47 is the high bearing load supporting member 31.
The elastic layer 6 has no load on the buffer means 46. When a large earthquake occurs, a downward force acting on the steel girder 47 can be dispersed and compressed by the elastic layer 6 being compressed and deformed in the shear restraint wall 4 via the deformation allowable space 58. With respect to the upward lift acting on the steel girder 47, the rubber damper 5
7, the steel girder 47 and the lower structure 1 are connected to each other via the buffer means 46 having the upper frame 53 and the lower frame 56. Controlled smoothly.

【0039】また、地震により鋼桁47に働く水平方向
の力、つまり橋軸方向と、横軸直角方向の力に対して
は、鋼桁47の下フランジ69の下面に取り付けられた
ソールプレート38がステンレス鋼板等の薄鋼板59を
介して支持部材31の上部嵌着支持部材35の上面テフ
ロン層35dと圧接して、その圧接支持部60がスライ
ド自在に接合していることにより、相互間の摺動摩擦に
よりその水平力が減衰される。これに加えて、同時に橋
軸方向に対しては緩衝手段46のゴムダンパー57がせ
ん断変形することで減衰され、また、橋軸直角方向に対
しては、前記ゴムダンパー57が圧縮変形することで減
衰される。
The sole plate 38 attached to the lower surface of the lower flange 69 of the steel girder 47 with respect to the horizontal force acting on the steel girder 47 due to the earthquake, that is, the force in the direction of the bridge axis and the direction perpendicular to the horizontal axis. Is in pressure contact with the upper surface Teflon layer 35d of the upper fitting support member 35 of the support member 31 via the thin steel plate 59 such as a stainless steel plate, and the press-contact support portion 60 is slidably joined to each other. The horizontal force is attenuated by the sliding friction. In addition to this, at the same time, the rubber damper 57 of the buffer means 46 is attenuated by shear deformation in the bridge axis direction, and is compressed and deformed in the direction perpendicular to the bridge axis. Attenuated.

【0040】さらに、地震により鋼桁47に働く回転力
に対しては、高支圧荷重支持部材31の弾性層6の圧縮
変形と、緩衝手段46のゴムダンパー57aのせん断変
形と相互作用で有効に減衰することができる。
Further, against the rotational force acting on the steel girder 47 due to the earthquake, the compression deformation of the elastic layer 6 of the high bearing load supporting member 31 and the shear deformation of the rubber damper 57a of the buffering means 46 interact effectively. Can be attenuated.

【0041】前記実施の形態の場合には、下部支持部材
2と弾性支承体5とを組み合わせて複合させる形態の支
承装置について説明してきたが、次に比較的小型化する
ことができる実施の形態について図を参照して説明す
る。
In the case of the above embodiment, a description has been given of a bearing device in which the lower support member 2 and the elastic bearing member 5 are combined and combined, but an embodiment in which the size can be relatively reduced is described next. Will be described with reference to the drawings.

【0042】図21および図22は、この発明の第9実
施形態を示すものであって、弾性支承体5における平面
矩形の下部鋼板9が円形の上部鋼板10よりも広巾にか
つ厚板により構成され、前記下部鋼板9の上面には、雌
ねじ孔20が円形の軌跡上にほぼ等角度間隔で設けられ
ている。前記下部鋼板9の上面外周側に、鋼製のフラン
ジ17を一体に連設したフランジ付き鋼製短筒状体4b
が載置され、そのフランジ17に等角度間隔をおい透孔
18が設けられ、その透孔18に挿通された固定用ボル
ト19が前記下部鋼板9に設けられた雌ねじ孔20に螺
合固定されてせん断拘束壁4が形成されている。この形
態の場合には、弾性体6に前記上部鋼板10と下部鋼板
9とが、一体成形か焼き付けあるいは接着剤により分離
不能に一体に固着されている。また、前記筒状せん断拘
束壁4の内側上部が前記上部鋼板10の外側面に近接ま
たは接触するように配設されている。なお、せん断拘束
壁4の内周面にテフロン層39bをもうけてもよく、ま
た上部鋼板10の外周面を第一実施形態と同様に円弧状
外面部Rにしてもよい。この実施形態においては、前記
弾性支承体5における下部鋼板9の上面および上部鋼板
10の下面の周縁部を除くゴム層との接着面となる円形
面に、環状波形ロールまたはローレット加工などによる
凹凸状接着面40が形成され、したがって、各鋼板9,
10と弾性層6との接着界面が、環状波形又はローレッ
ト加工などによる凹凸状接着面40とされていること
で、フラットな接着面に比べて、弾性層6が圧縮変形さ
れる際の弾性層6と、各鋼板9,10との接着面に加わ
るせん断力による剥離をより有効に阻止できる。
FIGS. 21 and 22 show a ninth embodiment of the present invention, in which the lower rectangular plate 9 of the elastic bearing 5 is wider and thicker than the circular upper plate 10. On the upper surface of the lower steel plate 9, female screw holes 20 are provided at substantially equal angular intervals on a circular locus. A steel short cylindrical body 4b with a flange, in which a steel flange 17 is integrally connected to the outer peripheral side of the upper surface of the lower steel plate 9.
A through hole 18 is provided on the flange 17 at equal angular intervals, and a fixing bolt 19 inserted through the through hole 18 is screwed and fixed to a female screw hole 20 provided in the lower steel plate 9. Thus, a shear restraint wall 4 is formed. In this case, the upper steel plate 10 and the lower steel plate 9 are integrally fixed to the elastic body 6 so as to be inseparable by integral molding, baking, or an adhesive. The upper part of the cylindrical shear restraint wall 4 is disposed so as to approach or contact the outer surface of the upper steel plate 10. The Teflon layer 39b may be provided on the inner peripheral surface of the shear restraint wall 4, and the outer peripheral surface of the upper steel plate 10 may be an arc-shaped outer surface portion R as in the first embodiment. In this embodiment, a circular surface serving as an adhesive surface with the rubber layer excluding the peripheral portion of the upper surface of the lower steel plate 9 and the lower surface of the upper steel plate 10 in the elastic bearing body 5 has an uneven surface formed by an annular corrugated roll or knurling. An adhesive surface 40 is formed, and thus each steel plate 9,
The adhesive interface between the elastic layer 10 and the elastic layer 6 is formed as an uneven adhesive surface 40 formed by an annular corrugation or a knurling process. 6 and the steel plates 9 and 10 can be more effectively prevented from peeling due to shearing force applied to the bonding surface.

【0043】この実施形態の場合は、上部鋼板10の上
面に四フッ化エチレン板、あるいは四フッ化エチレン層
またはステンレス鋼板等のすべり支承部材13が設けら
れ、下部構造物1に弾性支承体5における下部構造物鋼
板9が直接下部構造物1にアンカーボルト15およびこ
れに螺合されるナット16により固定され、また上部構
造物22を上部支持部材12を介さないで上部鋼板10
により支承するように構成されているが、その他の構成
については、前記実施形態の場合と同様である。この実
施形態の場合には、上部鋼板と下部鋼板とが、これらに
固定された弾性体6により分離不能に一体化されて構成
されているので、支承装置を搬送する場合に煩雑になる
ことなく比較的容易に搬送することができる。なお、前
記筒状せん断拘束壁4を制作する場合、半筒状支承壁ユ
ニットを2つ組み合わせて構成するようにしてもよく、
あるいは3つ以上の分割筒状支承壁ユニットを組み合わ
せるように構成してもよい。
In the case of this embodiment, a slide support member 13 such as an ethylene tetrafluoride plate or an ethylene tetrafluoride layer or a stainless steel plate is provided on the upper surface of the upper steel plate 10, and the elastic support body 5 is provided on the lower structure 1. The lower structure steel plate 9 is directly fixed to the lower structure 1 by the anchor bolts 15 and the nuts 16 screwed thereto, and the upper structure steel plate 9 is connected to the upper structure steel plate 10 without the upper support member 12 interposed therebetween.
However, other configurations are the same as those in the above-described embodiment. In the case of this embodiment, the upper steel plate and the lower steel plate are integrally formed so as to be inseparable by the elastic body 6 fixed to them, so that the transfer of the bearing device does not become complicated. It can be transported relatively easily. When the cylindrical shear restraint wall 4 is manufactured, two half-cylindrical bearing wall units may be combined and configured.
Or you may comprise so that three or more division | segmentation cylindrical support wall units may be combined.

【0044】図23および図24は、この発明の第10
実施形態を示すものであって、矩形の下部鋼板9の中央
上部に円柱状のせん断拘束壁4が一体に設けられ、前記
せん断拘束壁4に、中央部に円形孔68を有する上部鋼
板10が嵌設されている。前記下部鋼板9の上面に、ゴ
ムのような環状の弾性層およびこれに環状の鋼板を埋め
込むように交互に積層して構成した環状の弾性体6の下
部が一体成形または焼き付け等により一体に固着され、
前記上部鋼板10の中央部の円形孔68の内周面24は
前記円柱状のせん断拘束壁4の外周面に接触または近接
するように配置され、かつ前記せん断拘束壁4の上面レ
ベルは、前記上部鋼板10の板厚の中間部に位置するよ
うに配置されている。この実施形態の場合には、防錆等
の耐候性を向上させるために、弾性支承体5の側部外周
面にゴム被覆72が設けられていると共にこれに一体に
連続するように、上部鋼板10の上面にゴム被覆73が
設けられている。この実施形態においては、前記弾性支
承体5における下部鋼板9の上面および環状の上部鋼板
10の下面のゴム層との接着面となる環状面に、環状波
形ロールまたはローレット加工などによる凹凸状接着面
40が形成され、したがって、各鋼板9,10と弾性層
6との接着界面が、環状波形又はローレット加工などに
よる凹凸状接着面40とされていることで、フラットな
接着面に比べて、弾性層6が圧縮変形される際の弾性層
6と、各鋼板9,10との接着面に加わるせん断力によ
る剥離をより有効に阻止できる。
FIGS. 23 and 24 show a tenth embodiment of the present invention.
In the embodiment, a columnar shear restraint wall 4 is integrally provided at a central upper portion of a rectangular lower steel plate 9, and an upper steel plate 10 having a circular hole 68 at a central portion is provided on the shear restraint wall 4. It is fitted. On the upper surface of the lower steel plate 9, an annular elastic layer made of rubber and a lower portion of an annular elastic body 6 formed by alternately stacking annular steel plates so as to be embedded therein are integrally fixed by integral molding or baking. And
The inner peripheral surface 24 of the circular hole 68 at the center of the upper steel plate 10 is disposed so as to be in contact with or close to the outer peripheral surface of the cylindrical shear restraint wall 4, and the upper surface level of the shear restraint wall 4 is The upper steel plate 10 is disposed so as to be located at an intermediate portion of the plate thickness. In the case of this embodiment, in order to improve weather resistance such as rust prevention, a rubber coating 72 is provided on a side outer peripheral surface of the elastic bearing member 5 and is connected to the rubber coating 72 so as to be integrally connected thereto. A rubber coating 73 is provided on the upper surface of the device 10. In this embodiment, an annular adhesive surface formed by an annular corrugated roll or knurling process is provided on the upper surface of the lower steel plate 9 and the lower surface of the annular upper steel plate 10 to be bonded to the rubber layer. Thus, the adhesive interface between each of the steel plates 9 and 10 and the elastic layer 6 is formed as an uneven adhesive surface 40 formed by an annular corrugation or a knurling process. It is possible to more effectively prevent peeling due to shear force applied to the bonding surface between the elastic layer 6 and each of the steel plates 9 and 10 when the layer 6 is compressed and deformed.

【0045】前記弾性体6の内周面24と前記円柱状の
せん断拘束壁4の外周面との間には、環状の間隙26が
介在され、弾性体6が圧縮力を受けた時の変形許容空間
が形成されている。
An annular gap 26 is interposed between the inner peripheral surface 24 of the elastic member 6 and the outer peripheral surface of the columnar shear restraint wall 4 to deform the elastic member 6 when it receives a compressive force. An allowable space is formed.

【0046】前記実施形態の場合は、下部構造物1に弾
性支承体5における下部鋼板9が直接下部構造物にアン
カーボルト15およびこれに螺合されるナット16によ
り固定され、また上部構造物22を上部支持部材2を介
さないで直接上部鋼板10により支承するように構成さ
れている。
In the case of the above embodiment, the lower steel plate 9 of the elastic bearing 5 is directly fixed to the lower structure 1 by the anchor bolt 15 and the nut 16 screwed to the lower structure. Are directly supported by the upper steel plate 10 without the intervention of the upper support member 2.

【0047】図25および図26は、この発明における
第11実施形態を示すものであって、上部に、円形また
は矩形の上部鋼板10と同様な平面の輪郭形状を備えた
上部突出部27とその支承突出部27に接続する支承フ
ランジ28を備えた段付き下部鋼板9における段部29
の低レベル側の支承フランジ28の上面に、鋼製筒状体
からなるせん断拘束壁4が前記上部突出部に着脱自在に
嵌合載置され、かつ前記段部29における上部突出部2
7の縦外周面に前記せん断拘束壁4が横方向に移動不能
に拘束され、前記筒状のせん断拘束壁4の上面レベルが
上部鋼板10の板厚の中間部(図示の場合は、ほぼ中央
部)に位置するように配置されている。この実施形態に
おいては、上部突出部27と段部29と支承フランジ2
8とを備えた下部鋼板9に構成されている。なお、この
実施形態を後述するように反転配置して使用する場合に
は、前記せん断拘束壁4を適宜溶接等の適宜の固定手段
により下部鋼板9に固定するようにすればよい。その他
の構成については、図21に示す実施形態の場合と同様
である。
FIG. 25 and FIG. 26 show an eleventh embodiment of the present invention, in which an upper protruding portion 27 having a plane contour similar to that of a circular or rectangular upper steel plate 10 and an upper protruding portion 27 are shown. Step 29 in stepped lower steel plate 9 with bearing flange 28 connected to bearing projection 27
A shear restraint wall 4 made of a steel tubular body is removably fitted and mounted on the upper protruding portion on the upper surface of the low-level support flange 28, and the upper protruding portion 2 of the step portion 29 is provided.
7, the shear restraint wall 4 is restrained so as not to be able to move in the horizontal direction, and the upper surface level of the cylindrical shear restraint wall 4 is an intermediate portion of the thickness of the upper steel plate 10 (in the illustrated case, substantially the center portion). Section). In this embodiment, the upper protrusion 27, the step 29, and the bearing flange 2
And a lower steel plate 9 provided with the above. When this embodiment is used in an inverted arrangement as described later, the shear restraint wall 4 may be fixed to the lower steel plate 9 by an appropriate fixing means such as welding. Other configurations are the same as those in the embodiment shown in FIG.

【0048】図27は、本発明にかかる図21以降の実
施形態の支承装置の代表的な使用形態として図21に示
す形態にかかる使用例が示されている。弾性支承装置以
外の構造については、同様であるので、同一部分につい
ては、同一符号を付して、その説明を省略する。
FIG. 27 shows an example of use of the bearing device shown in FIG. 21 as a typical use mode of the bearing device of the embodiment after FIG. 21 according to the present invention. Since the structure other than the elastic bearing device is the same, the same portions are denoted by the same reference numerals and description thereof will be omitted.

【0049】図28および図29は、この発明の第12
及び第13実施形態を示すものであって、これらの実施
形態の場合は、前記第1ないしび第11実施形態に示し
た装置をいずれも反転配置して使用することができるこ
とを説明するための形態であって、図28の場合は、代
表例として図5に示す形態を反転配置した状態であり、
下部支持部材2が鋼板等の上面に四フッ化エチレン板等
のすべり支承材13が固着されて形成され、上部支持部
材12にせん断拘束壁4が下向きに形成され、そのせん
断拘束壁4に支圧荷重支持部材31が配置されるように
構成され、下部嵌着支持部材36の下面に四フッ化エチ
レン板または層あるいはステンレス鋼板等のすべり支承
層35dが設けられている。
FIGS. 28 and 29 show a twelfth embodiment of the present invention.
And a thirteenth embodiment. In these embodiments, it is noted that any of the devices shown in the first to eleventh embodiments can be used in an inverted arrangement. FIG. 28 shows a state in which the form shown in FIG.
The lower support member 2 is formed by fixing a slip bearing member 13 such as a tetrafluoroethylene plate on the upper surface of a steel plate or the like, and the shear restraint wall 4 is formed downward on the upper support member 12 and supported by the shear restraint wall 4. The pressure load support member 31 is arranged, and a slide support layer 35 d such as a tetrafluoroethylene plate or layer or a stainless steel plate is provided on the lower surface of the lower fitting support member 36.

【0050】また、図29の場合は、代表例として図2
1に示す形態を反転配置した形態であり、上部鋼板10
にせん断拘束壁4が形成され、下部鋼板9の下面に前述
と同様なすべり支承層35dが設けられ、そのすべり支
承層35dは、鋼板等の上面に固着形成された四フッ化
エチレン板または層等のすべり支承材13にスライド自
在に載置されている。
In the case of FIG. 29, FIG.
1 is a configuration in which the configuration shown in FIG.
The lower surface of the lower steel plate 9 is provided with a shear-restraining wall 4, and the lower surface of the lower steel plate 9 is provided with a slide bearing layer 35d similar to that described above. Are slidably mounted on a sliding bearing member 13 such as

【0051】図28および図29に示す実施形態の場合
は、下部支持部材2の下面に2点鎖線で示すように、下
部構造物1に埋め込み固定されたアンカーボルト15の
上端部が溶接等により固定されている。また上部構造物
22がコンクリート構造物(桁)22である場合の実施
形態例として図示されている。すなわち上部支持部材1
2がアンカーボルト69およびこれに螺合されたナット
70により上部構造物22に固定されている。なお、上
部支持部材12および下部支持部材2の取付形態は、前
述の第1ないし第11実施形態の場合と同様に上部構造
物22が鋼製である場合には、適宜ボルト接合あるいは
溶接等により取り付けられ、また上部構造物22がコン
クリート構造物である場合には、アンカーボルト等によ
り取り付けるようにすればよい。
In the case of the embodiment shown in FIGS. 28 and 29, the upper end of the anchor bolt 15 embedded and fixed in the lower structure 1 is welded to the lower surface of the lower support member 2 as shown by a two-dot chain line. Fixed. Also, the embodiment in which the upper structure 22 is a concrete structure (girder) 22 is illustrated. That is, the upper support member 1
2 is fixed to the upper structure 22 by an anchor bolt 69 and a nut 70 screwed thereto. When the upper structure 22 is made of steel, the upper support member 12 and the lower support member 2 are appropriately attached by bolting or welding, as in the first to eleventh embodiments. If the upper structure 22 is a concrete structure, it may be mounted with anchor bolts or the like.

【0052】図1ないし図20に示す形態の場合は、弾
性支承体5と上部支持部材12と下部支持部材2との複
合構造に構成されているのに対し、図21以降に示す形
態の場合は、弾性支承体5に下部支持部材または上部支
持部材(反転配置した場合)と同様な働きをする部分を
一体にまたは固着形成した内蔵型あるいは一体型の構造
と言うことが出来る。
The embodiment shown in FIGS. 1 to 20 has a composite structure of the elastic bearing member 5, the upper support member 12, and the lower support member 2, whereas the embodiment shown in FIGS. Can be said to be a built-in type or an integrated type structure in which a portion that functions similarly to the lower support member or the upper support member (when inverted) is integrally or fixedly formed on the elastic support 5.

【0053】本発明における前記実施形態を実施する場
合、ゴム層が薄い場合には、硬質板を埋設しなくてもよ
いが、ゴム層(または弾性層)6に埋設する補強鋼板等
の硬質板としては、板厚1mm以上の鋼板等を少なくと
も一枚以上埋設し、必要に応じ複数枚埋設するようにし
ても良い。また高支圧用に使用する場合には、ゴム層
(または弾性層)6に埋設する補強鋼板等の硬質板の板
厚を例えば1〜100mm等適宜選択し、必要に応じ複
数枚埋設して使用するようにすればよい。補強鋼板等の
硬質板の表裏両面に環状波形又はローレット加工などに
よる凹凸状接着面40をもうけるようにすれば、接着面
積を増加させた分さらに一体結合化を高めて、剥離抵抗
力およびせん断変形抵抗力を高めることができる。なお
前記各実施形態における下部鋼板9,上部鋼板10,中
間支持部材41,上部嵌着支持部材および下部嵌着支持
部材のゴム層との接着界面を粗面あるいは凹凸係合にす
れば、平坦な接着界面に比べて、凹凸係合または粗面に
よる接着面積を増加させた分さらに一体結合化を高め
て、剥離抵抗力およびせん断変形抵抗力を高めることが
でき、したがって高支圧応力度でも使用することができ
る。
In the embodiment of the present invention, when the rubber layer is thin, a hard plate may not be embedded, but a hard plate such as a reinforcing steel plate embedded in the rubber layer (or elastic layer) 6 may be used. For example, at least one or more steel sheets having a thickness of 1 mm or more may be embedded, and a plurality of steel sheets may be embedded as needed. When used for high bearing pressure, the thickness of a hard plate such as a reinforcing steel plate embedded in the rubber layer (or elastic layer) 6 is appropriately selected, for example, from 1 to 100 mm, and a plurality of hard plates are embedded as needed. What should I do? If an irregular adhesive surface 40 is formed on both the front and back surfaces of a hard plate such as a reinforced steel plate by annular corrugation or knurling, the integrated area is further increased by the increase in the adhesive area, and the peeling resistance and shear deformation are increased. Resistance can be increased. If the bonding interface between the lower steel plate 9, the upper steel plate 10, the intermediate support member 41, the upper fitting support member, and the rubber layer of the lower fitting support member in each of the above embodiments is roughened or unevenly engaged, a flat surface is obtained. Compared to the bonding interface, the increased bonding area due to the uneven engagement or the roughened surface further increases the integral bonding, so that the peeling resistance and the shear deformation resistance can be increased, so that it can be used even at a high bearing stress. can do.

【0054】本発明におけるスライド式弾性支承装置を
使用する場合、図20および図27に示すような横移動
(橋軸直角方向の移動)制限型の緩衝手段46と共に使
用するようにしてもよく、あるいは前記緩衝手段46に
代えて、ゴム層と鋼板等の硬質板を上下方向に交互に積
層して構成した公知の免震装置を上部構造物22と下部
構造物1との間に配設するようにしてもよい。
When the slide type elastic bearing device according to the present invention is used, it may be used together with a lateral movement (movement in the direction perpendicular to the bridge axis) damping means 46 as shown in FIGS. Alternatively, instead of the buffer means 46, a known seismic isolation device configured by alternately stacking a rubber layer and a hard plate such as a steel plate in the vertical direction is disposed between the upper structure 22 and the lower structure 1. You may do so.

【0055】[0055]

【発明の効果】以上説明したように本発明に係る支承装
置によると、弾性体にせん断支承作用を常時機能させな
い形式であるので、弾性体の横方向の変位によっておこ
る比較的大きなせん断変形の繰り返しによる疲労が起こ
らないので、弾性体の耐久性を高めることができ、かつ
弾性支承装置における荷重支承作用及び回転支承作用を
機能させながら、しかも上部構造物を常時スライド自在
に支承できるので、上部構造物の築造後はもちろんのこ
と築造中に地震力が作用しても、弾性支承装置に過大な
横方向の支持力を発揮させることなく上部構造物を支承
することができる。しかもせん断変形をさせない形式で
あるので、せん断変形をさせる従来の支承装置に比べ
て、弾性体を小さくでき、そのため弾性支承装置を小型
にすることができる共に、構造も簡単であるので、製作
も容易であり、装置の運搬並びに据付作業も比較的容易
に行うことができる。かつ前記弾性支承体の上下両端部
の各鋼板における弾性層との接着界面を粗面にすること
で接着面の拡大とゴム層のせん断抵抗力を増大している
ので、比較的高支圧応力に対しても簡単な構成により対
応することができる。また、荷重支承部材における弾性
層は、鋼製等の硬質部材を介して間接的にせん断拘束壁
により横移動とせん断変形を拘束されているので、弾性
層に直接無理な横方向の外力が作用させることなく、弾
性層のせん断変形を確実に拘束することができる。ま
た、高支圧荷重支持部材は、ベースプレートから起立す
るせん断拘束壁により横移動とせん断変形を拘束されて
いるので、弾性層にせん断変形が生じず、しかも、上部
構造物は、この支承部材の上面にスライド自在に支承さ
れていることで、前記の非せん断変形性は一層確実であ
る。さらに、本発明によると、高支圧荷重支持部材が高
荷重を受けて圧縮変形するとき、弾性層の上下部にせん
断力が作用するが、その応力は、当該弾性層の上下に嵌
着した上下嵌着支持部材のそれぞれの反力壁で機械的に
接着面のせん断を拘束するように受けられるので、弾性
層は剥離およびせん断破壊せず、かつ弾性層の一部への
応力集中も緩和され、かつ高支圧荷重支持部材のゴム層
の上部および下部に装着した上部嵌着支持部材および下
部嵌着支持部材におけるゴム層との接着界面を粗面にし
たり、またゴム層に埋設する補強鋼板等の硬質板の前記
ゴム層との接着界面を粗面にしたりして、接着面の拡大
とゴム層のせん断抵抗力の増大を簡単な手段によって図
っているので、ゴム層との一体結合強度を向上させて、
高支圧に対して、剪断抵抗力および剥離抵抗力を高める
ことができる。また、弾性層の外周面にR加工等による
環状凹部が形成されていることで、前記環状凹部がない
場合に比べて、弾性層の一部への応力集中を緩和させる
ことができ、またこの弾性層は、上方から高荷重を受け
て圧縮変形するとき、全体として弾性層の外周面は略同
一面となるように円滑に圧縮変形できるので、上下の嵌
着支持部材との接着面に剥離作用を及ぼすことが少なく
桁の振動を吸収でき、しかも、弾性層は単層で薄くで
き、かつ構造が簡潔であるというすぐれた効果がある。
As described above, according to the bearing device according to the present invention, since the elastic body does not always function as a shear bearing, a relatively large shear deformation caused by the lateral displacement of the elastic body is repeated. Since the fatigue of the elastic body does not occur, the durability of the elastic body can be enhanced, and the upper structure can always be slidably supported while the load bearing function and the rotating bearing function of the elastic bearing device are functioning. Even if seismic force acts during construction as well as after the building of the object, the superstructure can be supported without exerting excessive lateral supporting force on the elastic bearing device. In addition, since it is a type that does not cause shear deformation, the elastic body can be made smaller than conventional bearing devices that cause shear deformation, so that the elastic bearing device can be downsized, and the structure is simple, so production is also easy. It is easy, and the transportation and installation work of the device can be performed relatively easily. In addition, since the bonding interface with the elastic layer of each steel plate at both upper and lower ends of the elastic bearing body is roughened, the bonding surface is enlarged and the shear resistance of the rubber layer is increased, so that a relatively high bearing stress Can be dealt with with a simple configuration. In addition, since the elastic layer of the load-bearing member is indirectly restrained from lateral movement and shear deformation by a shear restraint wall through a hard member such as steel, an unreasonable external force acts directly on the elastic layer. Without this, the shear deformation of the elastic layer can be reliably restrained. In addition, since the high bearing load supporting member is restrained from lateral movement and shear deformation by the shear restraint wall rising from the base plate, no shear deformation occurs in the elastic layer, and the upper structure is provided by the support member. By being slidably supported on the upper surface, the above-mentioned non-shear deformability is further ensured. Furthermore, according to the present invention, when the high bearing load supporting member is compressed and deformed under a high load, a shear force acts on the upper and lower portions of the elastic layer, but the stress is fitted on the upper and lower sides of the elastic layer. Since the reaction walls of the upper and lower fitting support members are mechanically restrained from shearing the adhesive surface, the elastic layer does not peel and shear break, and stress concentration on a part of the elastic layer is reduced The upper and lower fitting support members attached to the upper and lower portions of the rubber layer of the high bearing load supporting member have roughened adhesive interfaces with the rubber layer, or reinforcements embedded in the rubber layer. The bonding interface with the rubber layer of a hard plate such as a steel plate is roughened to enlarge the bonding surface and increase the shear resistance of the rubber layer by simple means. Improve the strength,
For a high bearing pressure, the shear resistance and the peel resistance can be increased. Further, since an annular concave portion is formed on the outer peripheral surface of the elastic layer by R processing or the like, stress concentration on a part of the elastic layer can be reduced as compared with a case where the annular concave portion is not provided. When the elastic layer is compressed and deformed by receiving a high load from above, it can be smoothly compressed and deformed so that the outer peripheral surface of the elastic layer as a whole is substantially the same, so that the elastic layer peels off from the adhesive surface with the upper and lower fitting support members. There is an excellent effect that it has little effect and can absorb vibrations of the order of magnitude, and that the elastic layer can be made thin with a single layer and the structure is simple.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る支圧荷重支持部材
を用いた支承装置の断面図である。
FIG. 1 is a sectional view of a bearing device using a bearing load supporting member according to a first embodiment of the present invention.

【図2】図1に示す支圧荷重支持部材を用いた支承装置
の平面図である。
FIG. 2 is a plan view of a bearing device using the bearing load supporting member shown in FIG.

【図3】図1に示す支圧荷重支持部材の断面図である。FIG. 3 is a sectional view of the bearing load supporting member shown in FIG. 1;

【図4】図3に示す支圧荷重支持部材の平面図である。FIG. 4 is a plan view of the bearing load supporting member shown in FIG. 3;

【図5】本発明の第2実施形態にかかる高支圧荷重支持
部材を用いた支承装置の断面図である。
FIG. 5 is a sectional view of a bearing device using a high bearing load supporting member according to a second embodiment of the present invention.

【図6】図5に示す高支圧荷重支持部材を用いた支承装
置の平面図である。
6 is a plan view of a bearing device using the high bearing load supporting member shown in FIG.

【図7】第3実施形態に係る高支圧荷重支持部材を用い
た支承装置の断面図である。
FIG. 7 is a cross-sectional view of a bearing device using a high bearing load supporting member according to a third embodiment.

【図8】図7に示す高支圧荷重支持部材の断面図であ
る。
8 is a cross-sectional view of the high bearing load supporting member shown in FIG.

【図9】第4実施形態に係る高支圧荷重支持部材の断面
図である。
FIG. 9 is a cross-sectional view of a high bearing load supporting member according to a fourth embodiment.

【図10】第5実施形態に係る高支圧荷重支持部材の断
面図である。
FIG. 10 is a cross-sectional view of a high bearing load supporting member according to a fifth embodiment.

【図11】本発明の第6実施形態にかかる高支圧荷重支
持部材を用いた支承装置の横断平面説明図である。
FIG. 11 is an explanatory cross-sectional plan view of a bearing device using a high bearing load supporting member according to a sixth embodiment of the present invention.

【図12】第7実施形態に係る高支圧荷重支持部材の断
面図である。
FIG. 12 is a sectional view of a high bearing load supporting member according to a seventh embodiment.

【図13】第8実施形態に係る高支圧荷重支持部材の断
面図である。
FIG. 13 is a cross-sectional view of a high bearing load supporting member according to an eighth embodiment.

【図14】図13に示す支圧荷重支持部材の平面図であ
る。
14 is a plan view of the bearing load supporting member shown in FIG.

【図15】(a)は図13に示す支圧荷重支持部材を用
いた支承装置の断面図であり、(b)はその荷重支持部
材の変形例を用いた支承装置の断面図である。
15A is a sectional view of a bearing device using the bearing load supporting member shown in FIG. 13, and FIG. 15B is a sectional view of a bearing device using a modified example of the load supporting member.

【図16】この発明において使用することができる下部
支持部材または反力支承壁付き下部鋼板の平面図であ
る。
FIG. 16 is a plan view of a lower support member or a lower steel plate having a reaction force bearing wall that can be used in the present invention.

【図17】図16に示す下部支持部材または反力支承壁
付き下部鋼板の断面図である。
17 is a sectional view of the lower steel plate with the lower support member or the reaction force bearing wall shown in FIG. 16;

【図18】この発明において使用することができる下部
支持部材または反力支承壁付き下部鋼板の他の例の平面
図である。
FIG. 18 is a plan view of another example of a lower steel plate with a lower support member or a reaction force bearing wall that can be used in the present invention.

【図19】図18に示す下部支持部材または反力支承壁
付き下部鋼板の断面図である。
19 is a sectional view of the lower steel plate with the lower support member or the reaction force bearing wall shown in FIG. 18;

【図20】第9実施形態に係る橋梁用支承装置の設置状
態を示す断面図である。
FIG. 20 is a sectional view showing an installation state of a bridge support device according to a ninth embodiment.

【図21】第10実施形態に係る支圧荷重支持部材を用
いた支承装置の断面図である。
FIG. 21 is a sectional view of a bearing device using a bearing load supporting member according to a tenth embodiment.

【図22】図21に示す支承装置の平面図である。FIG. 22 is a plan view of the bearing device shown in FIG. 21.

【図23】第11実施形態に係る支圧荷重支持部材を用
いた支承装置の断面図である。
FIG. 23 is a sectional view of a bearing device using a bearing load supporting member according to an eleventh embodiment.

【図24】図23に示す支承装置の平面図である。24 is a plan view of the bearing device shown in FIG.

【図25】第12実施形態に係る支圧荷重支持部材を用
いた支承装置の断面図である。
FIG. 25 is a sectional view of a bearing device using a bearing load supporting member according to a twelfth embodiment.

【図26】図26に示す支承装置の平面図である。FIG. 26 is a plan view of the bearing device shown in FIG. 26;

【図27】図21に示す形態に係る橋梁用支承装置の設
置状態を示す断面図である。
FIG. 27 is a cross-sectional view showing an installation state of the bridge support device according to the embodiment shown in FIG. 21;

【図28】第13実施形態に係る支圧荷重支持部材を用
いた支承装置を反転して使用した状態を示す断面図であ
る。
FIG. 28 is a cross-sectional view showing a state in which a bearing device using a bearing load supporting member according to a thirteenth embodiment is inverted and used.

【図29】第14実施形態に係る支圧荷重支持部材を用
いた支承装置を反転して使用した状態を示す断面図であ
る。
FIG. 29 is a cross-sectional view showing a state in which a bearing device using a bearing load supporting member according to a fourteenth embodiment is inverted and used.

【図30】比較例としての積層弾性層からなる荷重支持
部材のせん断変形を示す断面図である。
FIG. 30 is a cross-sectional view showing a shear deformation of a load supporting member including a laminated elastic layer as a comparative example.

【符号の説明】[Explanation of symbols]

1 下部構造物 2 下部支持部材 3 位置決め係止用凹部 4 鋼製短筒状せん断拘束壁 5 弾性支承体 6 弾性体 7 補強鋼板 8 スペーサ 9 下部鋼板 10 上部鋼板 11 係止用ストッパ 12 上部支持部材 13 すべり支承部材 14 補強用鋼製縦リブ 15 ボルト(アンカーボルト) 16 ナット 17 フランジ 18 透孔 19 固定用ボルト 20 雌ねじ孔 21 フランジ 22 上部構造物 23 透孔 24 内周面 25 外周面 26 環状の間隙 27 上部突出部 28 支承フランジ 29 段部 30 支承装置 31 高支圧荷重支持部材 32 ベースプレート 33 環状凹部 34 硬質板 35 上部嵌着支持部材 35a 環状反力壁 36 下部嵌着支持部材 36a 環状反力壁 37 接着面 38 ソールプレート 39b テフロン層 40 凹凸状接着面 42 反力壁 43 低摩擦摺動板 44 嵌合用凹部 45 ゴム被覆層 46 緩衝手段 47 鋼桁 48 床版 49 連結用横桁 50 ボルト 51 取付プレート 52 垂下支持部材 53 上部支持フレーム 54 取付プレート 55 起立支持部材 56 下部支持フレーム 57 ゴムダンパー 58 変形許容空間 59 薄鋼板 60 圧接支持部 61 アンカーボルト 62 R状膨出部 63 上部支持板 64 下部支持板 65 接着面 66 支承部材 67 すべり支承部材 68 円形孔 69 下フランジ DESCRIPTION OF SYMBOLS 1 Lower structure 2 Lower support member 3 Positioning and locking recess 4 Steel short cylindrical shear restraint wall 5 Elastic bearing 6 Elastic body 7 Reinforced steel plate 8 Spacer 9 Lower steel plate 10 Upper steel plate 11 Locking stopper 12 Upper support member DESCRIPTION OF SYMBOLS 13 Sliding bearing member 14 Reinforcement steel vertical rib 15 Bolt (anchor bolt) 16 Nut 17 Flange 18 Through hole 19 Fixing bolt 20 Female screw hole 21 Flange 22 Upper structure 23 Through hole 24 Inner peripheral surface 25 Outer peripheral surface 26 Annular surface Gap 27 Upper projecting portion 28 Bearing flange 29 Step 30 Bearing device 31 High bearing load support member 32 Base plate 33 Annular concave portion 34 Hard plate 35 Upper fitting support member 35a Annular reaction wall 36 Lower fitting support member 36a Annular reaction force Wall 37 Adhesive surface 38 Sole plate 39b Teflon layer 40 Irregular adhesive surface 42 Reaction force Wall 43 Low friction sliding plate 44 Fitting recess 45 Rubber coating layer 46 Buffer means 47 Steel girder 48 Floor slab 49 Connecting cross girder 50 Bolt 51 Mounting plate 52 Hanging support member 53 Upper support frame 54 Mounting plate 55 Upright support member 56 Lower support frame 57 Rubber damper 58 Deformation allowable space 59 Thin steel plate 60 Press-contact support portion 61 Anchor bolt 62 R-shaped bulging portion 63 Upper support plate 64 Lower support plate 65 Bonding surface 66 Support member 67 Sliding support member 68 Circular hole 69 Lower flange

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 上部構造物と下部構造物との間に配置さ
れる構造物用弾性支承装置において、上下に鋼板を有す
る弾性支承体における前記鋼板のいずれか一方の鋼板
を、上部構造物または下部構造物のいずれか一方の構造
物に直接または間接的に移動不能に係止し、かつその係
止した構造物側に、前記弾性支承体における他方の鋼板
を上下方向に移動可能にかつ横方向に移動不能に直接ま
たは間接的に係止し、その他方鋼板の外側が非係止状態
の前記上部構造物または下部構造物を常時スライド自在
に支承する面とされ、かつ前記弾性支承体の各鋼板にお
ける弾性層との接着界面を粗面にすることで接着面の拡
大とゴム層のせん断抵抗力を増大したことを特徴とする
構造物用スライド式弾性支承装置。
An elastic bearing device for a structure disposed between an upper structure and a lower structure, wherein one of the steel plates in the elastic bearing body having a steel plate above and below is replaced with the upper structure or the upper structure. It is immovably locked directly or indirectly to any one of the lower structures, and the other steel plate of the elastic bearing is vertically and horizontally movable on the side of the locked structure. The surface of the elastic steel plate is directly or indirectly locked so that it cannot move in the direction, and the outer surface of the other steel plate is always a surface that slidably supports the upper structure or the lower structure in an unlocked state. A sliding type elastic bearing device for a structure, characterized in that the bonding interface between each steel plate and the elastic layer is roughened to enlarge the bonding surface and increase the shear resistance of the rubber layer.
【請求項2】 上部構造物と下部構造物との間に配置さ
れる構造物用弾性支承装置において、弾性層を介して上
部鋼板および下部鋼板を一体に有する弾性支承体におけ
る前記下部鋼板が、下部構造物に固定された下部支持部
材の上面に横移動不能に係止され、かつ前記下部支持部
材側に前記他方の上部鋼板が下部支持部材に対し相対的
に上下方向に移動可能にかつ横方向に移動不能に係止さ
れ、その上部鋼板の上部に設けたすべり面を有するすべ
り支承材を介して上部構造物が横方向に常時スライド自
在に支承され、かつ前記弾性支承体の各鋼板における弾
性層との接着界面を粗面にすることで接着面の拡大とゴ
ム層のせん断抵抗力を増大したことを特徴とする構造物
用スライド式弾性支承装置。
2. An elastic bearing device for a structure disposed between an upper structure and a lower structure, wherein the lower steel plate in the elastic bearing body integrally including the upper steel plate and the lower steel plate via an elastic layer includes: The other upper steel plate is fixed to the upper surface of the lower support member fixed to the lower structure so as not to be laterally movable, and the other upper steel plate is movable toward the lower support member in the vertical direction relative to the lower support member. The upper structure is always slidably supported in the lateral direction via a slide bearing having a sliding surface provided on an upper part of the upper steel plate. A slide-type elastic bearing device for a structure, characterized in that the adhesive interface with the elastic layer is roughened to enlarge the adhesive surface and increase the shear resistance of the rubber layer.
【請求項3】 下部構造物に設置のベースプレートから
起立するせん断拘束壁により、ベースプレートに載置し
た高支圧荷重支持部材の横移動及びせん断変形を拘束
し、この高支圧荷重支持部材のゴム層の上部に装着した
上部嵌着支持部材の上面を、前記せん断拘束壁の頂部か
ら突出して設け、この上部嵌着支持部材の上面で、上部
構造物に取付けたソールプレートをスライド自在に支持
し、前記高支圧荷重支持部材のゴム層の上部および下部
に装着した上部嵌着支持部材および下部嵌着支持部材に
おけるゴム層との接着界面を粗面にすることで接着面の
拡大とゴム層のせん断抵抗力を増大したことを特徴とす
る構造物用スライド式弾性支承装置。
3. A lateral bearing and a shear deformation of a high bearing load supporting member placed on a base plate are restrained by a shear restraint wall rising from a base plate installed on the lower structure, and a rubber of the high bearing load supporting member is provided. An upper surface of an upper fitting support member mounted on the upper portion of the layer is provided so as to protrude from the top of the shear restraint wall, and the upper plate of the upper fitting support member slidably supports a sole plate attached to the upper structure. The bonding surface between the rubber layer and the upper fitting support member and the lower fitting support member mounted on the upper and lower portions of the rubber layer of the high bearing load supporting member is roughened, so that the bonding surface is enlarged and the rubber layer is enlarged. A sliding type elastic bearing device for a structure, characterized in that the shear resistance of the structure is increased.
【請求項4】 ゴム層の外周面に環状凹み部を形成する
と共に前記ゴム層の上下部に装着する上部嵌着支持部材
と下部嵌着支持部材に、前記ゴム層の高支圧応力度によ
る水平方向のせん断力を拘束する反力壁を設け、前記ゴ
ム層に埋設する補強鋼板等の硬質板の前記ゴム層との接
着界面を粗面にすることで接着面の拡大とゴム層のせん
断抵抗力を増大したことを特徴とする高支圧荷重支持部
材。
4. An annular concave portion is formed on the outer peripheral surface of the rubber layer, and an upper fitting support member and a lower fitting support member mounted on the upper and lower portions of the rubber layer are provided with a high bearing stress of the rubber layer. A reaction wall is provided to restrain the shearing force in the horizontal direction, and the bonding interface with the rubber layer of a hard plate such as a reinforcing steel plate embedded in the rubber layer is roughened to enlarge the bonding surface and shear the rubber layer. A high bearing load supporting member characterized by increased resistance.
【請求項5】 ゴム層の外周面にR加工による環状凹み
部を形成すると共に、前記ゴム層の上下部に装着する上
部嵌着支持部材と下部嵌着支持部材に、前記ゴム層の高
支圧応力度による水平方向のせん断力を拘束する反力壁
を設け、前記ゴム層に埋設する補強鋼板の肉厚を厚くす
ると共に、前記ゴム層との接着界面を粗面にすることで
接着面の拡大とゴム層のせん断抵抗力を増大したことを
特徴とする高支圧荷重支持部材。
5. An annular concave portion formed by R processing on an outer peripheral surface of the rubber layer, and an upper fitting support member and a lower fitting support member mounted on the upper and lower portions of the rubber layer are provided with a high support of the rubber layer. A reaction wall for restraining a horizontal shear force due to the pressure stress degree is provided, the thickness of the reinforcing steel sheet embedded in the rubber layer is increased, and the bonding interface with the rubber layer is roughened to form a bonding surface. A high bearing load supporting member characterized in that the expansion of the thickness and the shear resistance of the rubber layer are increased.
【請求項6】 ゴム層の外周面に応力集中を緩和させる
ためにR加工による環状凹み部を形成すると共に、高支
圧応力度による前記ゴム層の内部応力を広く分布させ、
過度な局部ひずみを抑制するために前記ゴム層に少なく
とも一枚以上の表裏両面に粗面を有する補強鋼板等の硬
質板を埋設すると共に、前記ゴム層の上下部に装着する
上部嵌着支持部材と下部嵌着支持部材に、機械的に接着
面に作用するせん断力を拘束するための反力壁を設けた
ことを特徴とする高支圧荷重支持部材。
6. An annular recessed portion formed by rounding to reduce stress concentration on the outer peripheral surface of the rubber layer, and the internal stress of the rubber layer due to a high bearing stress is distributed widely.
In order to suppress excessive local distortion, at least one or more hard plates such as reinforced steel plates having rough surfaces on both front and back surfaces are embedded in the rubber layer, and an upper fitting support member mounted on upper and lower portions of the rubber layer A high-bearing load supporting member, wherein a reaction force wall for restraining a shear force mechanically acting on the bonding surface is provided on the lower fitting support member and the lower fitting support member.
【請求項7】 上部構造物と下部構造物との間に配置さ
れる構造物用弾性支承装置において、弾性層を介して上
部鋼板および下部鋼板を一体に有する弾性体における前
記下部鋼板が下部構造物に固定され、かつその下部鋼板
に設けられたせん断拘束壁により、前記他方の上部鋼板
が下部鋼板に対し相対的に上下方向に移動可能にかつ横
方向に移動不能に係止され、その上部鋼板の上部に設け
たすべり面を有するすべり支承材を介して上部構造物が
横方向に常時スライド自在に支承され、前記上部鋼板お
よび下部鋼板におけるゴム層との接着界面を粗面にする
ことで接着面の拡大とゴム層のせん断抵抗力を増大した
ことを特徴とする構造物用スライド式弾性支承装置。
7. An elastic bearing device for a structure disposed between an upper structure and a lower structure, wherein the lower steel plate in the elastic body integrally including the upper steel plate and the lower steel plate via an elastic layer is provided. The other upper steel plate is fixed to the object, and is fixed to the lower steel plate so as to be vertically movable relative to the lower steel plate and immovable in the lateral direction by a shear restraint wall provided on the lower steel plate. The upper structure is always slidably supported in the lateral direction via a sliding bearing having a sliding surface provided on the upper part of the steel plate, and the rough interface between the upper steel plate and the lower steel plate with the rubber layer is provided. A sliding type elastic bearing device for a structure, characterized in that the bonding surface is enlarged and the shear resistance of the rubber layer is increased.
【請求項8】 前記下部鋼板の中央部に設けられた柱状
部材からなるせん断拘束壁により、前記他方の上部鋼板
が下部鋼板に対し相対的に上下方向に移動可能にかつ横
方向に移動不能に係止されていることを特徴とする請求
項7に記載の構造物用スライド式弾性支承装置。
8. The other upper steel plate is movable in the vertical direction relative to the lower steel plate and is not movable in the lateral direction by a shear restraint wall formed of a columnar member provided at a central portion of the lower steel plate. The slide type elastic bearing device for a structure according to claim 7, wherein the device is locked.
JP10333361A 1997-11-21 1998-11-10 Sliding elastic bearing device for structures Expired - Lifetime JP3018291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10333361A JP3018291B2 (en) 1997-11-21 1998-11-10 Sliding elastic bearing device for structures

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-336646 1997-11-21
JP33664697 1997-11-21
JP10333361A JP3018291B2 (en) 1997-11-21 1998-11-10 Sliding elastic bearing device for structures

Publications (2)

Publication Number Publication Date
JPH11241750A true JPH11241750A (en) 1999-09-07
JP3018291B2 JP3018291B2 (en) 2000-03-13

Family

ID=26574485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10333361A Expired - Lifetime JP3018291B2 (en) 1997-11-21 1998-11-10 Sliding elastic bearing device for structures

Country Status (1)

Country Link
JP (1) JP3018291B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226331A (en) * 2004-02-13 2005-08-25 Yuji Ishiyama Installation method of vibration isolation device to existing building and installation device used for the method
WO2007058363A1 (en) * 2005-11-21 2007-05-24 Bridgestone Kbg Co., Ltd. Laminate vibration isolating rubber
JP2011105078A (en) * 2009-11-13 2011-06-02 Sumitomo Metal Ind Ltd Elastic support link device for railroad vehicle
WO2013008828A1 (en) * 2011-07-11 2013-01-17 株式会社Ihiインフラシステム Bearing device
JP2013019166A (en) * 2011-07-11 2013-01-31 Ihi Infrastructure Systems Co Ltd Elastic body restraining degree variable structure
JP2013019167A (en) * 2011-07-11 2013-01-31 Ihi Infrastructure Systems Co Ltd Bearing device
WO2013035879A1 (en) * 2011-09-08 2013-03-14 株式会社Ihiインフラシステム Support device
JP2013057197A (en) * 2011-09-08 2013-03-28 Ihi Infrastructure Systems Co Ltd Variable elastic body restriction degree structure and bearing device
JP2013064243A (en) * 2011-09-15 2013-04-11 Ihi Infrastructure Systems Co Ltd Bearing device
JP2013064426A (en) * 2011-09-15 2013-04-11 Ihi Infrastructure Systems Co Ltd Bearing device
JP2013076298A (en) * 2011-09-30 2013-04-25 Ihi Infrastructure Systems Co Ltd Bearing structure
JP2013096194A (en) * 2011-11-04 2013-05-20 Ihi Infrastructure Systems Co Ltd Bearing device
JP2013096195A (en) * 2011-11-04 2013-05-20 Ihi Infrastructure Systems Co Ltd Bearing device
JP2013113017A (en) * 2011-11-29 2013-06-10 Ihi Infrastructure Systems Co Ltd Bearing structure
JP2013113018A (en) * 2011-11-29 2013-06-10 Ihi Infrastructure Systems Co Ltd Bearing device
CN103671693A (en) * 2013-09-29 2014-03-26 厦门嘉达声学技术有限公司 Large-load damp limiting stopper
CN105401515A (en) * 2015-11-17 2016-03-16 成都聚智工业设计有限公司 Bridge buffering part
CN106012818A (en) * 2016-07-06 2016-10-12 北京铁科首钢轨道技术股份有限公司 Horizontal anti-collision high-elasticity support
CN106560553A (en) * 2016-10-10 2017-04-12 鲁东大学 High speed railway bridge combined damping structure
JP6239802B1 (en) * 2017-07-10 2017-11-29 株式会社ビービーエム Structural support device
KR20180021534A (en) * 2016-08-22 2018-03-05 석정건설(주) Bridge bearing for earthquake-proof and construction method thereof
CN107794839A (en) * 2017-11-30 2018-03-13 中铁二院工程集团有限责任公司 A kind of stopping means of vibration absorption and isolation support
JP2019100444A (en) * 2017-12-01 2019-06-24 前田建設工業株式会社 Slide bearing seismic-isolated building and seismic-isolated building
WO2020095524A1 (en) * 2018-11-06 2020-05-14 株式会社Jvcケンウッド Member attaching structure, member attaching method, and electronic device
JP2020176635A (en) * 2019-04-15 2020-10-29 清水建設株式会社 Bearing device
CN114212264A (en) * 2021-12-04 2022-03-22 中船邮轮科技发展有限公司 Helicopter platform blotter and buffering support

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644219A (en) * 2012-04-06 2012-08-22 中国石油天然气第一建设公司 Construction process of large equipment hoisting tail sliding rail capable of reducing friction coefficient

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226331A (en) * 2004-02-13 2005-08-25 Yuji Ishiyama Installation method of vibration isolation device to existing building and installation device used for the method
WO2007058363A1 (en) * 2005-11-21 2007-05-24 Bridgestone Kbg Co., Ltd. Laminate vibration isolating rubber
JP2007139125A (en) * 2005-11-21 2007-06-07 Bridgestone Kbg Co Ltd Stacked rubber vibration isolator
JP4514694B2 (en) * 2005-11-21 2010-07-28 ブリヂストンケービージー株式会社 Laminated anti-vibration rubber
JP2011105078A (en) * 2009-11-13 2011-06-02 Sumitomo Metal Ind Ltd Elastic support link device for railroad vehicle
WO2013008828A1 (en) * 2011-07-11 2013-01-17 株式会社Ihiインフラシステム Bearing device
JP2013019166A (en) * 2011-07-11 2013-01-31 Ihi Infrastructure Systems Co Ltd Elastic body restraining degree variable structure
JP2013019167A (en) * 2011-07-11 2013-01-31 Ihi Infrastructure Systems Co Ltd Bearing device
WO2013035879A1 (en) * 2011-09-08 2013-03-14 株式会社Ihiインフラシステム Support device
JP2013057197A (en) * 2011-09-08 2013-03-28 Ihi Infrastructure Systems Co Ltd Variable elastic body restriction degree structure and bearing device
JP2013064243A (en) * 2011-09-15 2013-04-11 Ihi Infrastructure Systems Co Ltd Bearing device
JP2013064426A (en) * 2011-09-15 2013-04-11 Ihi Infrastructure Systems Co Ltd Bearing device
JP2013076298A (en) * 2011-09-30 2013-04-25 Ihi Infrastructure Systems Co Ltd Bearing structure
JP2013096195A (en) * 2011-11-04 2013-05-20 Ihi Infrastructure Systems Co Ltd Bearing device
JP2013096194A (en) * 2011-11-04 2013-05-20 Ihi Infrastructure Systems Co Ltd Bearing device
JP2013113017A (en) * 2011-11-29 2013-06-10 Ihi Infrastructure Systems Co Ltd Bearing structure
JP2013113018A (en) * 2011-11-29 2013-06-10 Ihi Infrastructure Systems Co Ltd Bearing device
CN103671693A (en) * 2013-09-29 2014-03-26 厦门嘉达声学技术有限公司 Large-load damp limiting stopper
CN105401515A (en) * 2015-11-17 2016-03-16 成都聚智工业设计有限公司 Bridge buffering part
CN106012818A (en) * 2016-07-06 2016-10-12 北京铁科首钢轨道技术股份有限公司 Horizontal anti-collision high-elasticity support
KR20180021534A (en) * 2016-08-22 2018-03-05 석정건설(주) Bridge bearing for earthquake-proof and construction method thereof
CN106560553A (en) * 2016-10-10 2017-04-12 鲁东大学 High speed railway bridge combined damping structure
CN106560553B (en) * 2016-10-10 2019-06-14 鲁东大学 A kind of high-speed railway bridge combined shock absorption structure
JP6239802B1 (en) * 2017-07-10 2017-11-29 株式会社ビービーエム Structural support device
JP2019015131A (en) * 2017-07-10 2019-01-31 株式会社ビービーエム Bearing device for structure
CN107794839A (en) * 2017-11-30 2018-03-13 中铁二院工程集团有限责任公司 A kind of stopping means of vibration absorption and isolation support
JP2019100444A (en) * 2017-12-01 2019-06-24 前田建設工業株式会社 Slide bearing seismic-isolated building and seismic-isolated building
WO2020095524A1 (en) * 2018-11-06 2020-05-14 株式会社Jvcケンウッド Member attaching structure, member attaching method, and electronic device
JP2020176635A (en) * 2019-04-15 2020-10-29 清水建設株式会社 Bearing device
CN114212264A (en) * 2021-12-04 2022-03-22 中船邮轮科技发展有限公司 Helicopter platform blotter and buffering support

Also Published As

Publication number Publication date
JP3018291B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
JP3018291B2 (en) Sliding elastic bearing device for structures
WO2000046451A1 (en) Pile foundation structure
JP2002039266A (en) Base isolation device
JP2676685B2 (en) Elastic support device with built-in control device for lift and horizontal force
JPH11236944A (en) Sliding elastic support device for structure, and high bearing-pressure load support member
JP4274557B2 (en) Horizontal load elastic support device
JP4488383B1 (en) Bridge bearing device
JP2676686B2 (en) Elastic support device with built-in control device for lift and horizontal force
JP2000234308A (en) Supporting device for bridge with slide type elastic supporting device for structure and horizontal force and lift force elastic resistance device, and installing method therefor
JP4326040B2 (en) Girder support structure
JPH11141181A (en) Laminated rubber type vibration isolation device
JP3713645B2 (en) Seismic isolation device using laminated rubber
JP2003064622A (en) Composite elastic support comprising upper and lower supports and laminated rubber support material of the same, and manufacturing method of laminated rubber support
JP2001049892A (en) Supporting structure of vertical shaft in intermediate- layer vibration isolation structure
JP2001003315A (en) Bridge bearing device equipped with approximately inverted t-shaped lift force stopping hook having interlock section
KR101166691B1 (en) Bearing apparatus of structure and construncting method thereof
JP3562711B2 (en) Sliding bearing for seismic isolation
JP3146259B2 (en) Bridge bearing device
JP2000234309A (en) Supporting device for ridge with slide type elastic supporting device for structure and horizontal force and lift force elastic resistance device, and installing method therefor
JPH02194204A (en) Rubber support device with middle stage shear stopper for structure
CN216919986U (en) Vertical elastic structure and vertical elastic support
JP3032364B2 (en) Bearing structure for structures
JPH04203543A (en) Base isolation supporting body and base isolation structure using it
JP2024045439A (en) bearing device
TW202244362A (en) Antiseismic reinforcement apparatus for bridges

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term