JPH11238516A - Active material support for battery using foamed metal porous body and its manufacture, non-sintered electrode for alkaline storage battery using this active material support and its manufacture, and alkaline storage battery using the non-sintered electrode - Google Patents

Active material support for battery using foamed metal porous body and its manufacture, non-sintered electrode for alkaline storage battery using this active material support and its manufacture, and alkaline storage battery using the non-sintered electrode

Info

Publication number
JPH11238516A
JPH11238516A JP10039184A JP3918498A JPH11238516A JP H11238516 A JPH11238516 A JP H11238516A JP 10039184 A JP10039184 A JP 10039184A JP 3918498 A JP3918498 A JP 3918498A JP H11238516 A JPH11238516 A JP H11238516A
Authority
JP
Japan
Prior art keywords
active material
electrode
metal plate
length
shaped metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10039184A
Other languages
Japanese (ja)
Inventor
Mikiaki Tadokoro
幹朗 田所
Toshihiro Akazawa
俊裕 赤澤
Takeshi Yoshida
武史 吉田
Hiroyuki Tagawa
洋之 田川
Yuji Goto
勇治 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10039184A priority Critical patent/JPH11238516A/en
Publication of JPH11238516A publication Critical patent/JPH11238516A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline storage battery with high capacity, good high rate discharge characteristics by preparing an electrode which generates no chipping or breakages even in spiral winding so as to have a margin in the elongating direction of a belt-shaped metal plate and preventing the coming off of the belt-shaped metal plate from a metal porous body. SOLUTION: An active material support alternately has a melt bonded part 12a to a foamed metal porous body 11 and a non-melt bonded part 12b in a belt-shaped metal plate 12, and the length of the non-melt bonded part 12b is made longer than a distance D between the melt bonded parts 12a. By alternately forming the melt bonded parts 12a and the non-melt bonded parts 12b, the sufficient melt bonding strength can be obtained by adjusting the distance between the melt-bonded parts 12a. When the length of the non-bonded part 12b is made longer than the distance D between the melt bonded parts 12a, the belt-shaped metal plate 12 produces a margin in the extending direction, and the generation of breakages in the belt-shaped metal plate 12 can be prevented even if it is wound spirally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル・水素蓄電
池、ニッケル・カドミウム蓄電池、ニッケル・亜鉛蓄電
池などのアルカリ蓄電池に係り、特に、これらのアルカ
リ蓄電池に用いる非焼結式電極およびこの非焼結式電極
に用いる活物質保持体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to alkaline storage batteries such as nickel-hydrogen storage batteries, nickel-cadmium storage batteries and nickel-zinc storage batteries, and more particularly to non-sintered electrodes used in these alkaline storage batteries and non-sintered electrodes. The present invention relates to an active material holder used for an electrode.

【0002】[0002]

【従来の技術】従来、ニッケル・カドミウム蓄電池、ニ
ッケル・水素蓄電池、ニッケル・亜鉛蓄電池などのアル
カリ蓄電池に使用される電極は、パンチングメタル等の
芯体にニッケル粉末を焼結して形成した焼結基板にニッ
ケル塩、カドミウム塩等の溶液を含浸し、アルカリ処理
により活物質化するいわゆる焼結式電極が知られてい
る。この焼結式電極は、焼結基板を高多孔度とした場合
には機械的強度が弱くなるため、実用的には80%程度
の多孔度とするのが限界であるとともに、パンチングメ
タル等の芯体を必要とすることから、活物質の充填密度
が低く、高エネルギー密度の電極を実現する上で問題が
ある。また、焼結基板の細孔は10μm以下であるの
で、活物質の充填工程を何度も繰り返す必要がある溶液
含浸法や電着含浸法に限定されるため、活物質の充填工
程が煩雑であるとともに製造コストも高くなるという問
題がある。
2. Description of the Related Art Conventionally, electrodes used for alkaline storage batteries such as nickel-cadmium storage batteries, nickel-hydrogen storage batteries, nickel-zinc storage batteries, etc. are formed by sintering nickel powder on a core body such as punching metal. There is known a so-called sintered electrode in which a substrate is impregnated with a solution of a nickel salt, a cadmium salt or the like, and is converted into an active material by an alkali treatment. When the sintered substrate is made to have a high porosity, the mechanical strength of the sintered electrode becomes weak. Therefore, the porosity of the sintered electrode is limited to about 80% in practice. Since a core is required, there is a problem in realizing an electrode having a low energy density and a high energy density. Also, since the pores of the sintered substrate are 10 μm or less, the active material filling step is complicated because the method is limited to the solution impregnation method or the electrodeposition impregnation method that requires repeating the active material filling step many times. In addition, there is a problem that the manufacturing cost increases.

【0003】一方、これらの欠点を改良するために、金
属繊維焼結体や発泡ニッケル(ニッケルスポンジ)など
の三次元的な網目構造をもった金属多孔体に活物質スラ
リーを直接充填した、いわゆる非焼結式電極が主流とな
ってきた。この種の三次元的な網目構造をもった金属多
孔体は、その多孔度が約95%と高多孔度であるので、
活物質を高密度に充填できる。そのため、高容量の電池
が得られるようになるとともに、この種の非焼結式電極
は活物質をそのまま金属多孔体に充填するので、面倒な
活物質化の処理が必要でなくなり、製造が容易になると
いう利点がある。
On the other hand, in order to improve these drawbacks, a so-called active material slurry is directly filled in a metal porous body having a three-dimensional network structure such as a sintered metal fiber or a foamed nickel (nickel sponge). Non-sintered electrodes have become mainstream. Such a porous metal body having a three-dimensional network structure has a high porosity of about 95%,
The active material can be filled at a high density. As a result, a high-capacity battery can be obtained, and this type of non-sintered electrode fills the porous material with the active material as it is, eliminating the need for cumbersome treatment of the active material and facilitating production. There is an advantage of becoming.

【0004】ところで、この種の非焼結式電極において
は、三次元的な網目構造をもった金属多孔体は芯体を有
していないため、この金属多孔体に活物質を充填して形
成した電極と電池端子との間の導電接続に種々の提案が
なされている。例えば、特開昭61−218067号公
報においては、金属繊維のフェルト状焼結体(金属繊維
焼結体)を電極支持体とする電極を製造するに際して、
金属繊維のフェルト状体と、網状体、パンチングメタ
ル、線材、平板などからなる導電補助体とを焼結により
一体的に形成して、金属繊維のフェルト状体の機械的強
度を向上させるとともに、集電性を改良することが提案
された。
In this type of non-sintered electrode, since a porous metal body having a three-dimensional network structure does not have a core, the porous metal body is formed by filling an active material. Various proposals have been made for the conductive connection between the electrode and the battery terminal. For example, in Japanese Patent Application Laid-Open No. 61-218067, when manufacturing an electrode using a felt-like sintered body of metal fibers (metal fiber sintered body) as an electrode support,
A metal fiber felt and a conductive body composed of a net, a punched metal, a wire, a flat plate, etc. are integrally formed by sintering to improve the mechanical strength of the metal fiber felt, It has been proposed to improve current collection.

【0005】しかしながら、金属繊維焼結体は細い金属
繊維(例えば、線経が10μm)を電極の長さ方向に束
ねて長尺状に形成されているため、この金属繊維焼結体
に活物質を塗着した後、セパレータを介して正・負極を
渦巻状に巻回すると、焼結されている金属繊維の端部が
セパレータを突き破って正・負極間が電気的に接続さ
れ、内部短絡が発生するという問題を生じる。
However, since the metal fiber sintered body is formed in a long shape by bundling thin metal fibers (for example, a wire having a diameter of 10 μm) in the length direction of the electrode, the active material is added to the metal fiber sintered body. After coating, the positive and negative electrodes are spirally wound through the separator, and the end of the sintered metal fiber breaks through the separator, and the positive and negative electrodes are electrically connected, and an internal short circuit occurs. A problem that occurs.

【0006】一方、図6に示すように、発泡ニッケル8
1を電極支持体とする電極80においては、発泡ニッケ
ル81に活物質を塗着した後、セパレータを介して正・
負極を渦巻状に巻回しても、発泡ニッケル81は構成す
るニッケル骨格に端部がほとんど存在しないためにセパ
レータを突き破って正・負極間が電気的に接続され、内
部短絡が発生するという問題を生じにくい。しかしなが
ら、この電極80からの集電のため、この電極80の一
部の活物質を剥離して発泡ニッケル81を露出させた剥
離部82を形成し、この剥離部82に舌片状集電タブ8
3を溶接するようにしている。このため、舌片状集電タ
ブ83での集電性が良好でないので、大電流放電を行う
と集電タブ83で電圧降下を生じるという問題を生じ
た。
On the other hand, as shown in FIG.
In the electrode 80 having the electrode support 1 as the electrode support, after the active material is applied to the foamed nickel 81, the positive electrode
Even when the negative electrode is spirally wound, the nickel foam 81 has almost no end in the nickel skeleton that constitutes it. It is unlikely to occur. However, in order to collect current from the electrode 80, a part of the active material of the electrode 80 is peeled to form a peeling part 82 exposing the nickel foam 81, and the tongue-shaped current collecting tab is formed on the peeling part 82. 8
3 is welded. For this reason, since the current collecting property of the tongue-shaped current collecting tab 83 is not good, there is a problem that a large current discharge causes a voltage drop in the current collecting tab 83.

【0007】そこで、特開昭62−139251号公報
において、発泡ニッケルを電極支持体とする電極の上端
部を幅方向に圧縮して密な層を形成し、この圧縮した密
な層と電極面に垂直に配置された円板状リード片とを溶
接した、いわゆるタブレス方式の電池が提案された。こ
の特開昭62−139251号公報において提案された
電極にあっては、電極の端部と円板状リード片とを溶接
しているので集電性が向上する。
Therefore, in Japanese Patent Application Laid-Open No. Sho 62-139251, the upper end of an electrode using foamed nickel as an electrode support is compressed in the width direction to form a dense layer. There has been proposed a so-called tabless type battery in which a disc-shaped lead piece arranged vertically is welded. In the electrode proposed in Japanese Patent Application Laid-Open No. Sho 62-139251, the current collecting property is improved because the end of the electrode and the disc-shaped lead piece are welded.

【0008】しかしながら、特開昭62−139251
号公報において提案された電極にあっては、電極の端部
を幅方向に圧縮して形成した密な層は柔軟性が劣るた
め、セパレータを介して正・負極を巻回する際に密な層
の一部が破断してバリが生じ、このバリがセパレータを
突き破って内部短絡が発生するという問題を生じた。ま
た、電極全体として柔軟な部分と柔軟ではない部分が混
在すると、正・負極を一様な圧力で巻回することが難し
いため、これらを巻回して電極体とした場合に均一な圧
力が付加されないという問題を生じた。
However, Japanese Patent Application Laid-Open No. Sho 62-139251 describes
In the electrode proposed in Japanese Patent Application Laid-Open Publication No. H10-260, the dense layer formed by compressing the end of the electrode in the width direction is inferior in flexibility. A part of the layer was broken to generate burrs, and the burrs penetrated the separator to cause an internal short circuit. Also, if a flexible part and a non-flexible part are mixed in the whole electrode, it is difficult to wind the positive and negative electrodes with a uniform pressure. A problem that would not be.

【0009】また、特公昭61−61230号公報にお
いては、発泡ニッケルを電極支持体とする電極の上端部
に帯状の金属板を溶着した電池が提案された。この特公
昭61−61230号公報において提案された電極にあ
っては、電極の上端部に帯状の金属板が溶着されている
ため、電極の端部と集電体とを溶接することが可能とな
って、集電性が向上する。
Further, Japanese Patent Publication No. 61-61230 proposes a battery in which a band-shaped metal plate is welded to the upper end of an electrode using foamed nickel as an electrode support. In the electrode proposed in JP-B-61-61230, a strip-shaped metal plate is welded to the upper end of the electrode, so that the electrode end can be welded to the current collector. As a result, current collecting performance is improved.

【0010】[0010]

【発明が解決しようとする課題】ところで、この種の金
属多孔体を用いて電極を製造する場合、長尺の金属多孔
体をロール状に卷回して用い、このロール状に卷回した
金属多孔体を、活物質充填装置、圧延装置、切断装置な
どへ連続的に供給するようにした方が量産性に優れてい
る。この場合、金属多孔体の長尺方向にある程度のテン
ションをかけないと長尺の金属多孔体に蛇行を生じるた
め、この長尺の金属多孔体にはある程度のテンションを
その長尺方向にかけるようにして用いられる。
When an electrode is manufactured using this kind of metal porous body, a long metal porous body is wound into a roll, and the metal porous body wound into this roll is used. It is more excellent in mass productivity to continuously supply the body to an active material filling device, a rolling device, a cutting device, and the like. In this case, if a certain amount of tension is not applied in the longitudinal direction of the porous metal body, the long porous metal body will meander, so that a certain amount of tension is applied to the long porous metal body in the longitudinal direction. Used for

【0011】しかしながら、特公昭61−61230号
公報で提案されるように、電極の長尺方向に帯状の金属
板を溶着するようにすると、溶着部は非溶着部より剛性
が大きくなって伸びが小さくなるため、金属多孔体の幅
方向に歪みが生じて全体に波打ちが生じる。また、この
金属多孔体の圧延時には、さらに大きな伸張力が金属多
孔体に作用するため、より大きな波打ちが生じることと
なる。このため、活物質の充填密度が不均一になって、
所定の極板形状とするための切断時の精度が低下する等
の不具合を生じた。
However, when a strip-shaped metal plate is welded in the longitudinal direction of the electrode as proposed in Japanese Patent Publication No. 61-61230, the welded portion has greater rigidity than the non-welded portion, and the elongation is increased. Since it becomes smaller, distortion occurs in the width direction of the porous metal body, and the entire body is wavy. Further, when rolling the porous metal body, a larger elongation acts on the porous metal body, so that a larger waving occurs. Therefore, the packing density of the active material becomes uneven,
Inconveniences such as a decrease in precision at the time of cutting to obtain a predetermined electrode plate shape occurred.

【0012】一方、長尺の金属多孔体の幅方向に帯状の
金属板を溶着するようにすると、金属多孔体に幅方向の
歪みが発生しないために波打ちが生じないが、溶着部と
非溶着部の伸び特性が不連続であるため、曲げに対する
力が弱く、連続工程が一直線でない場合には、溶着部の
境界部分から破断するというような不具合が発生する。
また、圧延のような大きな伸びの力をかけた場合には、
伸び特性が不連続であるために、溶着部の境界部分から
破断するという問題も生じた。
On the other hand, if a strip-shaped metal plate is welded in the width direction of a long porous metal body, no wavy occurs because the widthwise distortion does not occur in the porous metal body. Since the elongation characteristic of the portion is discontinuous, the force against bending is weak, and if the continuous process is not straight, a problem such as breaking at the boundary of the welded portion occurs.
Also, when a large elongation force such as rolling is applied,
Since the elongation characteristics are discontinuous, there is also a problem that the fracture occurs at the boundary between the welded portions.

【0013】さらに、このように形成した活物質保持体
に活物質スラリーを充填した電極と対極となる電極をセ
パレータを介して渦巻状に卷回して電極体とする場合、
金属多孔体に溶着された帯状の金属板は伸びが小さいた
めに溶着部の外れ、あるいは破断が生じやすく、安定し
た特性が得られる電池の製造が困難であるという問題を
生じた。また、短辺方向の伸びが不均一であるため、卷
回時にずれが生じやすく、隣接する対極との間での短絡
などの発生率が高くなって、生産性が悪いという問題も
生じた。
[0013] Further, in the case where the thus formed active material holding body is filled with the active material slurry and an electrode serving as a counter electrode is spirally wound through a separator to form an electrode body,
Since the strip-shaped metal plate welded to the porous metal body has a small elongation, the welded portion is likely to be detached or broken, and it is difficult to manufacture a battery having stable characteristics. In addition, since the elongation in the short side direction is non-uniform, misalignment is likely to occur at the time of winding, and the rate of occurrence of short circuits between adjacent counter electrodes increases, resulting in a problem that productivity is poor.

【0014】そこで、特許第2679055号公報にお
いて、帯状の金属繊維焼結体の長さ方向に一定間隔に連
続した高密度部を設け、この高密度部にニッケルメッキ
したコルゲート鋼板を溶接し、伸びを均一にした電極が
提案された。しかしながら、この特許第2679055
号公報において提案された電極にあっては、コルゲート
状、即ち、波形に加工された金属板を使用しているた
め、金属繊維焼結基板との溶接面積が小さくなる。この
ため、金属繊維焼結体とコルゲート鋼板との溶着強度が
不十分であり、電極を製造するまでは強度的には問題を
生じないが、この電極の卷回時にはコルゲート鋼板が金
属繊維焼結体から外れるという問題を生じた。
Therefore, in Japanese Patent No. 2679055, a high-density portion is provided at a constant interval in the length direction of a strip-shaped metal fiber sintered body, and a nickel-plated corrugated steel plate is welded to the high-density portion to elongate. Have been proposed. However, this patent no.
In the electrode proposed in the publication, a metal plate processed in a corrugated shape, that is, a corrugated shape, is used, so that a welding area with a metal fiber sintered substrate is reduced. For this reason, the welding strength between the metal fiber sintered body and the corrugated steel sheet is insufficient, and there is no problem in the strength until the electrode is manufactured. I had a problem of getting out of my body.

【0015】[0015]

【課題を解決するための手段およびその作用・効果】本
発明は上記課題を解決するためになされたものであっ
て、帯状金属板の伸び方向に対して余裕を持たせるとと
もに充分な溶着強度を持たせるようにして、渦巻状に卷
回しても破断が生じなく、かつ帯状金属板が金属多孔体
から外れない電極を得て、高容量で、高率放電特性の優
れたアルカリ蓄電池が得られるようにすることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has an allowance in the elongation direction of a strip-shaped metal plate and a sufficient welding strength. As a result, an electrode that does not break even when it is wound in a spiral shape and does not cause the strip-shaped metal plate to come off from the porous metal body is obtained, and an alkaline storage battery with high capacity and excellent high-rate discharge characteristics is obtained. Is to do so.

【0016】このため、本発明の活物質保持体は、帯状
金属板に発泡金属多孔体との溶着部と非溶着部とを交互
に備えるとともに、非溶着部の長さを溶着部間の長さよ
りも長くしている。帯状金属板に発泡金属多孔体との溶
着部と非溶着部とを交互に備えるようにすると、溶着部
の長さを自由に調整することができるようになるので、
充分な溶着強度を持たせることが可能となる。この結
果、渦巻状に卷回しても帯状金属板に破断が生じること
を防止できるようになる。また、非溶着部の長さを溶着
部間の長さよりも長くすると、帯状金属板は伸び方向に
対して余裕が生じるため、この活物質保持体を渦巻状に
卷回しても、帯状金属板が金属多孔体から外れることは
ない。
For this reason, the active material holder of the present invention is provided with alternately welded portions of the porous metal body and non-welded portions on the strip-shaped metal plate, and sets the length of the non-welded portions to the length between the welded portions. It is longer than it is. If the band-shaped metal plate is provided with the welded portion of the foamed metal porous body and the non-welded portion alternately, the length of the welded portion can be freely adjusted, so that
It is possible to have sufficient welding strength. As a result, it is possible to prevent the strip-shaped metal plate from being broken even if it is spirally wound. Further, if the length of the non-welded portion is longer than the length between the welded portions, the strip-shaped metal plate has a margin in the elongation direction. Does not come off the porous metal body.

【0017】そして、この種の電極を連続的に製造する
ためにロール状に卷回した長尺の発泡金属多孔体を用
い、この長尺の発泡金属多孔体に帯状金属板を溶着して
非溶着部の長さを溶着部間の長さよりも長くする際に、
非溶着部の長さをLとし、溶着部間の長さをDとした場
合、非溶着部の長さ(L)が溶着部間の長さ(D)に対
して短かすぎると、伸びに対する余裕が少なくなる。反
対に、非溶着部の長さ(L)が溶着部間の長さ(D)に
対して長すぎると、帯状金属板に弛みが生じ、この弛み
が凸状となる。このため、活物質充填工程および延伸工
程において凸状部が邪魔になって活物質が不均一に充填
されるとともに生産効率も低下する。
Then, in order to continuously manufacture this kind of electrode, a long porous metal foam body wound in a roll shape is used. When making the length of the welding part longer than the length between the welding parts,
When the length of the non-welded portion is L and the length between the welded portions is D, if the length (L) of the non-welded portion is too short with respect to the length (D) between the welded portions, the elongation will occur. Leeway. Conversely, if the length (L) of the non-welded portion is too long with respect to the length (D) between the welded portions, the strip-shaped metal plate becomes slack, and the slack becomes convex. For this reason, in the active material filling step and the stretching step, the convex portions hinder, the active material is non-uniformly filled, and the production efficiency is reduced.

【0018】そこで、本発明においては、長尺の発泡金
属多孔体の長尺方向に帯状金属板を備える場合には、
1.030<(L/D)<1.100の関係を有するよ
うに規定するのが好ましい。また、長尺の発泡金属多孔
体の幅方向に帯状金属板を備える場合には、1.005
<(L/D)<1.020の関係を有するように規定す
るのが好ましい。
Therefore, according to the present invention, when a strip-shaped metal plate is provided in the long direction of the long porous metal foam,
It is preferable to define the relationship such that 1.030 <(L / D) <1.100. Further, when a strip-shaped metal plate is provided in the width direction of the long porous metal foam, 1.005
It is preferable to define the relationship such that <(L / D) <1.020.

【0019】また、本発明の活物質保持体の製造方法
は、帯状金属板に発泡金属多孔体との溶着部と非溶着部
とを交互に形成するように帯状金属板を発泡金属多孔体
に溶着するとともに、非溶着部の長さが溶着部間の長さ
よりも長くなるように帯状金属板と発泡金属多孔体との
間に空間部を形成するようにして帯状金属板と発泡金属
多孔体とを溶着するようにしている。
Further, the method for manufacturing an active material holding member of the present invention is characterized in that the band-shaped metal plate is formed into the foamed metal body so that the welded portion of the foamed metal body and the non-welded portion are alternately formed on the band-shaped metal plate. The band-shaped metal plate and the foamed metal porous body are formed such that a space is formed between the band-shaped metal plate and the foamed metal porous body so that the length of the non-welded portion is longer than the length between the welded portions while being welded. And welding.

【0020】このように、帯状金属板に発泡金属多孔体
との溶着部と非溶着部とを交互に形成するように帯状金
属板を発泡金属多孔体に溶着すると、溶着部の長さを自
由に調整することができるようになって、充分な溶着強
度を持たせることが可能になるとともに、渦巻状に卷回
しても帯状金属板に破断が生じることを防止できるよう
になる。また、非溶着部の長さが溶着部間の長さよりも
長くなるように帯状金属板と発泡金属多孔体との間に空
間部を形成するようにして帯状金属板と発泡金属多孔体
とを溶着すると、帯状金属板は伸び方向に対して余裕が
生じるため、この活物質保持体を渦巻状に卷回しても、
帯状金属板が金属多孔体から外れることはない。
As described above, when the band-shaped metal plate is welded to the foamed metal body so that the welded portion of the foamed metal body and the non-welded portion are alternately formed on the band-shaped metal plate, the length of the welded portion can be freely set. This makes it possible to provide a sufficient welding strength, and to prevent the strip-shaped metal plate from being broken even if it is spirally wound. Further, the band-shaped metal plate and the foamed metal porous body are formed such that a space is formed between the band-shaped metal plate and the foamed metal porous body so that the length of the non-welded portion is longer than the length between the welded portions. When welding, the strip-shaped metal plate has a margin in the elongation direction, so even if this active material holding body is spirally wound,
The strip-shaped metal plate does not come off from the porous metal body.

【0021】そして、このような帯状金属板を備えた活
物質保持体に活物質スラリーを充填してアルカリ蓄電池
用非焼結式電極とすると、帯状金属板は充分な溶着強度
を有するようになるため、この電極を渦巻状に卷回して
も、帯状金属板に破断が生じることなく、かつ帯状金属
板が金属多孔体から外れないため、集電抵抗が減少する
とともに、集電性も向上するため、高容量で、高率放電
特性の優れたアルカリ蓄電池が得られるようになる。
When an active material slurry is filled in an active material holder having such a band-shaped metal plate to form a non-sintered electrode for an alkaline storage battery, the band-shaped metal plate has a sufficient welding strength. Therefore, even if this electrode is spirally wound, the strip-shaped metal plate does not break and the strip-shaped metal plate does not come off from the porous metal body, so that the current collecting resistance is reduced and the current collecting property is improved. Therefore, an alkaline storage battery having high capacity and excellent high-rate discharge characteristics can be obtained.

【0022】[0022]

【発明の実施の形態】以下に、本発明の電池用活物質保
持体およびこの活物質保持体を用いたアルカリ蓄電池用
非焼結式電極をニッケル−水素蓄電池に用いられるニッ
ケル電極に適用した場合の一実施の形態を図に基づいて
説明する。なお、図1は長尺の発泡ニッケルからなる金
属多孔体に帯状金属板を溶着して形成した活物質保持体
を示す上面図であり、図2は金属多孔体に帯状金属板を
溶着した状態を示す断面図であり、図3はこの活物質保
持体に活物質スラリーを充填した後、所定の極板形状に
切断した状態を示す図であり、図4は図3の電極を渦巻
状に巻回して形成した電極体を金属製の外装缶に収納し
た状態を破断して示す斜視図であり、図5は正極集電板
を示す斜視図である。
BEST MODE FOR CARRYING OUT THE INVENTION In the following, an active material holder for a battery according to the present invention and a non-sintered electrode for an alkaline storage battery using the active material holder are applied to a nickel electrode used in a nickel-hydrogen storage battery. An embodiment will be described with reference to the drawings. FIG. 1 is a top view showing an active material holder formed by welding a band-shaped metal plate to a long porous metal body made of foamed nickel, and FIG. 2 shows a state in which the band-shaped metal plate is welded to the porous metal body. FIG. 3 is a view showing a state where the active material slurry is filled in the active material holding body and then cut into a predetermined electrode plate shape, and FIG. 4 is a diagram showing the electrode of FIG. FIG. 5 is a cutaway perspective view showing a state in which the wound electrode body is housed in a metal outer can, and FIG. 5 is a perspective view showing a positive electrode current collector plate.

【0023】1.活物質保持体の作製 a.長尺方向に帯状金属板を備えた活物質保持体の作製 長尺の発泡金属多孔体、例えば基体目付が約600g/
2で多孔度を95%とし、厚みを約2mmとしたニッ
ケル発泡体(ニッケルスポンジ)11に、図1(a)に
示すように、その長尺方向に3枚の帯状金属板、例えば
幅が3mmで、厚みが0.15mmの帯状ニッケル板1
2,12,12を溶着して活物質保持体10aを形成す
る。ここで、ニッケル発泡体11に帯状ニッケル板12
を溶着する場合は、図2に示すように、溶着部12aと
非溶着部12bとが交互に形成されるように、図示しな
い溶接電極を帯状ニッケル板12の溶着部12aに押し
当てて抵抗溶接により溶着する。
1. Preparation of Active Material Holder a. Preparation of Active Material Holder with Strip-shaped Metal Plate in Elongate Direction A long porous metal foam, for example, having a basis weight of about 600 g /
As shown in FIG. 1 (a), a nickel foam (nickel sponge) 11 having a porosity of 95% and a thickness of about 2 mm in m 2 is provided with three strip-shaped metal plates, Is a strip-shaped nickel plate 1 having a thickness of 3 mm and a thickness of 0.15 mm.
2, 12, 12 are welded to form the active material holding member 10a. Here, the strip-shaped nickel plate 12 is added to the nickel foam 11.
In this case, as shown in FIG. 2, a welding electrode (not shown) is pressed against the welding portion 12a of the strip-shaped nickel plate 12 so that the welding portion 12a and the non-welding portion 12b are alternately formed as shown in FIG. Welding.

【0024】抵抗溶接に際しては、図2(a)に示すよ
うに、溶接電極の押圧力を小さくして溶着部12aのニ
ッケル発泡体11が圧縮されないように抵抗溶接した
り、図2(b)に示すように、溶接電極の押圧力を少し
大きくして溶着部12aのニッケル発泡体11がある程
度圧縮されるように抵抗溶接したり、図2(c)に示す
ように、溶接電極の押圧力を大きくして溶着部12aの
ニッケル発泡体11の厚みが半分程度になるように圧縮
して抵抗溶接する。
At the time of resistance welding, as shown in FIG. 2A, the pressing force of the welding electrode is reduced to perform resistance welding so that the nickel foam 11 of the welding portion 12a is not compressed. As shown in FIG. 2, the pressing force of the welding electrode is slightly increased to perform resistance welding so that the nickel foam 11 of the welding portion 12a is compressed to some extent, or as shown in FIG. And the resistance is welded by compressing so that the thickness of the nickel foam 11 of the welded portion 12a becomes about half.

【0025】そして、図2(d)に示すように、まず、
非溶着部12bを形成する帯状ニッケル板12とニッケ
ル発泡体11との間に円柱状の金属棒13を挿入し、帯
状ニッケル板12とニッケル発泡体11との間に空間部
を形成する。この後、溶接電極を帯状ニッケル板12の
溶着部12aに押し当てて抵抗溶接により溶着すること
により、溶着部12aと非溶着部12bとが交互に形成
されるようになる。
Then, as shown in FIG. 2D, first,
A cylindrical metal rod 13 is inserted between the nickel strip 12 and the nickel strip 12 forming the non-welded portion 12 b to form a space between the nickel strip 12 and the nickel foam 11. Thereafter, the welding electrode is pressed against the welded portion 12a of the strip-shaped nickel plate 12 and welded by resistance welding, whereby the welded portion 12a and the non-welded portion 12b are alternately formed.

【0026】ここで、溶着部12a間(図2(a)の
A,B間)の長さをDmmとし、非溶着部12bの長さ
をLmmとした場合、L/Dが下記の表1に示すような
関係となるようにして、a〜nの活物質保持体10aを
作製した。なお、溶着部12aの長さは、溶着強度を考
慮すると2mm以上とするのが好ましい。なお、この活
物質保持体10aは、後述する活物質充填工程におい
て、活物質スラリー14が充填された後、各帯状ニッケ
ル板12の中央部および各帯状ニッケル板12,12の
間のニッケル発泡体11が切断線X−Xにて切断されて
帯状の電極板とされた後、所定の幅方向に切断されて、
図3に示すようなニッケル正極10が作製される。
Here, when the length between the welded portions 12a (between A and B in FIG. 2A) is D mm and the length of the non-welded portion 12b is L mm, L / D is as shown in Table 1 below. The active material holders 10a to 10n were manufactured in such a manner as to have the relationship shown in FIG. The length of the welded portion 12a is preferably 2 mm or more in consideration of the welding strength. After the active material slurry 14 is filled in a later-described active material filling step, the active material holding member 10a is provided with a nickel foam between the central portion of each strip-shaped nickel plate 12 and each of the strip-shaped nickel plates 12, 12. 11 is cut along a cutting line XX to form a strip-shaped electrode plate, and then cut in a predetermined width direction.
A nickel positive electrode 10 as shown in FIG. 3 is manufactured.

【0027】[0027]

【表1】 [Table 1]

【0028】b.幅方向に帯状金属板を備えた活物質保
持体の作製 長尺の発泡金属多孔体、例えば基体目付が約600g/
2で多孔度を95%とし、厚みを約2mmとしたニッ
ケル発泡体(ニッケルスポンジ)11に、図1(b)に
示すように、その幅方向に多数の帯状金属板、例えば幅
が1.5mmで、厚みが0.15mmの帯状ニッケル板
12,12,12・・・を溶着して活物質保持体10b
を形成する。ここで、ニッケル発泡体11に帯状ニッケ
ル板12を溶着する場合、図2に示すように、溶着部1
2aと非溶着部12bとが交互に形成されるように、図
示しない溶接電極を帯状ニッケル板12の溶着部12a
に押し当てて抵抗溶接により溶着する。
B. Preparation of Active Material Holder with Band-shaped Metal Plate in Width Direction A long porous metal foam body, for example, having a basis weight of about 600 g /
The porosity was 95% m 2, and the nickel foam was about 2mm thick (the nickel sponge) 11, as shown in FIG. 1 (b), a number of strip-shaped metal plate in the width direction, for example, the width 1 .. And a 0.15 mm-thick strip-shaped nickel plate 12, 12, 12,...
To form Here, when the strip-shaped nickel plate 12 is welded to the nickel foam 11, as shown in FIG.
The welding electrode (not shown) is welded to the welding portion 12a of the strip-shaped nickel plate 12 so that the welding electrode 2a and the non-welding portion 12b are formed alternately.
And welded by resistance welding.

【0029】抵抗溶接に際しては、図2(a)に示すよ
うに、溶接電極の押圧力を小さくして溶着部12aのニ
ッケル発泡体11が圧縮されないように抵抗溶接した
り、図2(b)に示すように、溶接電極の押圧力を少し
大きくして溶着部12aのニッケル発泡体11がある程
度圧縮されるように抵抗溶接したり、図2(c)に示す
ように、溶接電極の押圧力を大きくして溶着部12aの
ニッケル発泡体11の厚みが半分程度になるように圧縮
して抵抗溶接する。
At the time of resistance welding, as shown in FIG. 2 (a), the pressing force of the welding electrode is reduced to perform resistance welding so that the nickel foam 11 of the welded portion 12a is not compressed. As shown in FIG. 2, the pressing force of the welding electrode is slightly increased to perform resistance welding so that the nickel foam 11 of the welding portion 12a is compressed to some extent, or as shown in FIG. And the resistance is welded by compressing so that the thickness of the nickel foam 11 of the welded portion 12a becomes about half.

【0030】そして、図2(d)に示すように、まず、
非溶着部12bを形成する帯状ニッケル板12とニッケ
ル発泡体11との間に円柱状の金属棒を挿入し、帯状ニ
ッケル板12とニッケル発泡体11との間に空間部を形
成する。この後、溶接電極を帯状ニッケル板12の溶着
部12aに押し当てて抵抗溶接により溶着することによ
り、溶着部12aと非溶着部12bとが交互に形成され
るようになる。
Then, as shown in FIG. 2D, first,
A column-shaped metal rod is inserted between the strip-shaped nickel plate 12 forming the non-welded portion 12b and the nickel foam 11 to form a space between the strip-shaped nickel plate 12 and the nickel foam 11. Thereafter, the welding electrode is pressed against the welded portion 12a of the strip-shaped nickel plate 12 and welded by resistance welding, whereby the welded portion 12a and the non-welded portion 12b are alternately formed.

【0031】ここで、溶着部12a間(図2(a)の
A,B間)の長さをDmmとし、非溶着部12bの長さ
をLmmとした場合、L/Dが下記の表2に示すような
関係となるようにして、o〜wの活物質保持体10bを
作製した。なお、溶着部12aの長さは、溶着強度を考
慮すると2mm以上とするのが好ましい。なお、この活
物質保持体10bは、後述する活物質充填工程におい
て、活物質スラリーが充填された後、各帯状ニッケル板
12の端部が切断線Y−Yにて切断されて帯状の電極板
とされた後、所定の幅方向に切断されて、図3に示すよ
うなニッケル正極10が作製される。
Here, when the length between the welded portions 12a (between A and B in FIG. 2A) is D mm and the length of the non-welded portion 12b is L mm, L / D is as shown in Table 2 below. Thus, ow active material holders 10b were prepared in such a manner as to have the relationship shown in FIG. The length of the welded portion 12a is preferably 2 mm or more in consideration of the welding strength. In the active material holding member 10b, after an active material slurry is filled in an active material filling step described later, the end of each strip-shaped nickel plate 12 is cut along a cutting line YY to form a strip-shaped electrode plate. Then, it is cut in a predetermined width direction to produce a nickel positive electrode 10 as shown in FIG.

【0032】[0032]

【表2】 [Table 2]

【0033】2.ニッケル正極板の作製 共沈成分として亜鉛2.5重量%とコバルト1重量%を
含有する水酸化ニッケル粉末90重量部と、水酸化コバ
ルト粉末10重量部と、酸化亜鉛粉末3重量部との混合
粉末に、ヒドロキシプロピルセルロースの0.2重量%
水溶液50重量部を添加混練して活物質スラリーを作製
する。
2. Preparation of Nickel Positive Electrode Mixture of 90 parts by weight of nickel hydroxide powder containing 2.5% by weight of zinc and 1% by weight of cobalt, 10 parts by weight of cobalt hydroxide powder, and 3 parts by weight of zinc oxide powder as coprecipitating components 0.2% by weight of hydroxypropylcellulose in powder
An active material slurry is prepared by adding and kneading 50 parts by weight of an aqueous solution.

【0034】このようにして作製した活物質スラリー1
4を、上述したように作製した活物質保持体10aある
いは10bに連続的に充填する。なお、圧延後の活物質
充填密度が約2.9g/cc−voidとなるように活
物質スラリー14を充填する。ついで、活物質スラリー
14を連続的に充填した各活物質保持体10aあるいは
10bを乾燥させた後、厚みが約0.70mmになるま
で圧延した後、活物質保持体10aにおいては切断線X
−Xで切断し、活物質保持体10bにおいては切断線Y
−Yで切断した後、所定寸法(例えば、H(高さ)=3
4.5mm,W(幅)=213mm)に切断して、図3
に示すようなA〜Wの各ニッケル正極板10を作成す
る。
The thus prepared active material slurry 1
4 is continuously filled in the active material holder 10a or 10b produced as described above. Note that the active material slurry 14 is filled so that the active material filling density after rolling becomes about 2.9 g / cc-void. Then, after drying each active material holding member 10a or 10b continuously filled with the active material slurry 14, rolling it to a thickness of about 0.70 mm, the cutting line X in the active material holding member 10a is cut.
-X, and cut along the cutting line Y in the active material holding member 10b.
After cutting at −Y, a predetermined dimension (for example, H (height) = 3)
4.5 mm, W (width) = 213 mm)
The nickel positive electrode plates 10 of A to W shown in FIG.

【0035】ここで、活物質保持体10aにおいては、
活物質保持体aを用いたものをニッケル正極板Aとし、
活物質保持体bを用いたものをニッケル正極板Bとし、
活物質保持体cを用いたものをニッケル正極板Cとし、
活物質保持体dを用いたものをニッケル正極板Dとし、
活物質保持体eを用いたものをニッケル正極板Eとし、
活物質保持体fを用いたものをニッケル正極板Fとし、
活物質保持体gを用いたものをニッケル正極板Gとし、
活物質保持体hを用いたものをニッケル正極板Hとし、
活物質保持体iを用いたものをニッケル正極板Iとし、
活物質保持体jを用いたものをニッケル正極板Jとし、
活物質保持体kを用いたものをニッケル正極板Kとし、
活物質保持体lを用いたものをニッケル正極板Lとし、
活物質保持体mを用いたものをニッケル正極板Mとし、
活物質保持体nを用いたものをニッケル正極板Nとす
る。
Here, in the active material holding member 10a,
The one using the active material holding member a is referred to as a nickel positive plate A,
A nickel positive plate B using the active material holder b was used,
The one using the active material holder c was referred to as a nickel positive plate C,
The one using the active material holder d is referred to as a nickel positive plate D,
The one using the active material holder e is referred to as a nickel positive plate E,
A nickel positive plate F using the active material holder f was used.
A nickel positive plate G using the active material holder g was used,
The one using the active material holder h is referred to as a nickel positive plate H,
The one using the active material holder i is referred to as a nickel positive plate I,
The one using the active material holder j is referred to as a nickel positive plate J,
The one using the active material holder k is referred to as a nickel positive plate K,
A nickel positive electrode plate L using the active material holder 1 was used,
A nickel positive electrode plate M using the active material holder m was used,
One using the active material holder n is referred to as a nickel positive electrode plate N.

【0036】また、活物質保持体10bにおいては、活
物質保持体oを用いたものをニッケル正極板Oとし、活
物質保持体pを用いたものをニッケル正極板Pとし、活
物質保持体qを用いたものをニッケル正極板Qとし、活
物質保持体rを用いたものをニッケル正極板Rとし、活
物質保持体sを用いたものをニッケル正極板Sとし、活
物質保持体tを用いたものをニッケル正極板Tとし、活
物質保持体uを用いたものをニッケル正極板Uとし、活
物質保持体vを用いたものをニッケル正極板Vとし、活
物質保持体wを用いたものをニッケル正極板Wとする。
In the active material holding member 10b, a nickel positive electrode plate O using the active material holding member o, a nickel positive electrode plate P using the active material holding member p, and an active material holding member q Is used as a nickel positive electrode plate Q, an active material holder r is used as a nickel positive electrode plate R, an active material holder s is used as a nickel positive electrode plate S, and an active material holder t is used. The nickel positive plate T using the active material holder u, the nickel positive plate U using the active material holder u, the nickel positive plate V using the active material holder v, and the active material holder w Is a nickel positive electrode plate W.

【0037】2.負極の作製 ミッシュメタル(Mm:希土類元素の混合物)、ニッケ
ル、コバルト、アルミニウム、およびマンガンを1:
3.4:0.8:0.2:0.6の比率で混合し、この
混合物をアルゴンガス雰囲気の高周波誘導炉で誘導加熱
して合金溶湯となす。この合金溶湯を公知の方法で鋳型
に流し込み、冷却して、組成式Mm1.0Ni3.4Co0.8
Al0.2Mn0.6で表される水素吸蔵合金のインゴットを
作製する。
2. Preparation of Negative Electrode Misch metal (Mm: mixture of rare earth elements), nickel, cobalt, aluminum, and manganese were mixed in a ratio of 1:
The mixture is mixed at a ratio of 3.4: 0.8: 0.2: 0.6, and this mixture is induction-heated in a high-frequency induction furnace in an argon gas atmosphere to form a molten alloy. The molten alloy is poured into a mold by a known method, cooled, and then subjected to a composition formula of Mm 1.0 Ni 3.4 Co 0.8
A hydrogen storage alloy ingot represented by Al 0.2 Mn 0.6 is produced.

【0038】この水素吸蔵合金インゴットを機械的に粗
粉砕した後、不活性ガス雰囲気中で平均粒子径が約10
0μmになるまで機械的に粉砕する。このようにして作
製した水素吸蔵合金粉末にポリエチレンオキサイド等の
結着剤と、適量の水を加えて混合して水素吸蔵合金スラ
リーを作製する。このスラリーをパンチングメタルから
なる活物質保持体の両面に、圧延後の活物質密度が所定
量(例えば、5g/cc)になるように塗着した後、乾
燥、圧延を行った後、所定寸法(例えば、幅33.5m
mで長さが275mm)に切断して水素吸蔵合金負極板
20を作製する。
After mechanically coarsely pulverizing the hydrogen storage alloy ingot, an average particle size of about 10 was obtained in an inert gas atmosphere.
Mechanically pulverize to 0 μm. A binder such as polyethylene oxide and an appropriate amount of water are added to the hydrogen storage alloy powder thus prepared, and mixed to prepare a hydrogen storage alloy slurry. This slurry is applied to both sides of an active material holder made of punched metal so that the active material density after rolling becomes a predetermined amount (for example, 5 g / cc), dried and rolled, and then has a predetermined size. (For example, width 33.5m
m and a length of 275 mm) to produce a hydrogen storage alloy negative electrode plate 20.

【0039】3.ニッケル−水素電池の作製 ついで、上述のように作製した各ニッケル正極板と、上
述のように作製した水素吸蔵合金負極板を用いてニッケ
ル−水素電池を作製する例を図4および図5に基づいて
説明する。
3. Production of Nickel-Hydrogen Battery Next, an example of producing a nickel-hydrogen battery using each of the nickel positive electrode plates produced as described above and the hydrogen storage alloy negative electrode plate produced as described above will be described with reference to FIGS. Will be explained.

【0040】上述のように作製した各ニッケル正極板1
0と、上述のように作製した水素吸蔵合金負極板20と
をそれぞれポリプロピレン製不織布からなるセパレータ
(厚みが約0.2mmのもの)30を介して渦巻状に卷
回する。このとき、各ニッケル正極板10に溶着された
帯状ニッケル板12が渦巻の外側になるように配置する
とともに、渦巻の最外周が水素吸蔵合金負極板20とな
るようにして卷回する。
Each nickel positive electrode plate 1 produced as described above
0 and the hydrogen storage alloy negative electrode plate 20 produced as described above are spirally wound through a separator (thickness of about 0.2 mm) 30 made of a nonwoven fabric made of polypropylene. At this time, the strip-shaped nickel plate 12 welded to each nickel positive electrode plate 10 is arranged so as to be outside the spiral, and the spiral is wound so that the outermost periphery of the spiral becomes the hydrogen storage alloy negative electrode plate 20.

【0041】ところで、三次元的に網目構造を持った活
物質保持体11を渦巻状に卷回する場合、この活物質保
持体11の渦巻の内側には縮む方向の力が作用し、外側
には伸びる方向の力が作用する。このため、この渦巻状
電極体の内周部側に帯状ニッケル板12を配置するとと
もに外周部側に活物質保持体11を配置するようにする
と、この帯状ニッケル板12に弛みが発生し、帯状ニッ
ケル板12と活物質保持体11との溶着部12aの外
れ、あるいは水素吸蔵合金負極板20(他方の電極)と
接触して短絡を生じるという恐れがある。一方、この渦
巻状電極体の外周部側に帯状ニッケル板12を配置する
とともに内周部側に活物質保持体11を配置するように
すると、帯状ニッケル板12は活物質保持体11に比較
して伸びにくいため、帯状ニッケル板12と活物質保持
体11との溶着部12aの外れ、あるいは帯状ニッケル
板12の破断が生じる。しかしながら、本発明のよう
に、溶着部12aと非溶着部12bを交互に配置して、
その帯状ニッケル板12の形状を凹凸があるようにする
と、構造的に伸びに対する余裕が生じるため、帯状ニッ
ケル板12の破断等を防止できるようになる。
When the active material holding member 11 having a three-dimensional network structure is spirally wound, a force in the direction of contraction acts on the inside of the spiral of the active material holding member 11, and the force acts on the outside. Acts in the direction of extension. Therefore, if the strip-shaped nickel plate 12 is arranged on the inner peripheral side of the spiral electrode body and the active material holder 11 is arranged on the outer peripheral side, the strip-shaped nickel plate 12 is slackened, and the strip-shaped nickel plate 12 is loosened. There is a possibility that the welded portion 12a between the nickel plate 12 and the active material holding member 11 may be detached, or a short circuit may occur due to contact with the hydrogen storage alloy negative electrode plate 20 (the other electrode). On the other hand, when the strip-shaped nickel plate 12 is arranged on the outer peripheral side of the spiral electrode body and the active material holder 11 is arranged on the inner peripheral side, the strip-shaped nickel plate 12 is compared with the active material holder 11. Since it is difficult to elongate, the welded portion 12a between the strip-shaped nickel plate 12 and the active material holding member 11 comes off, or the strip-shaped nickel plate 12 is broken. However, as in the present invention, the welded portions 12a and the non-welded portions 12b are alternately arranged,
If the shape of the strip-shaped nickel plate 12 is made uneven, there is a margin for elongation structurally, so that breakage of the strip-shaped nickel plate 12 can be prevented.

【0042】一方、正極集電板40はニッケル金属から
なり、図4に示すように、この正極集電板40は略円板
状集電部41と導出部42とを備え、略円板状集電部4
1は多数の開口43を有するとともにこの集電部41の
中心線上に、即ち溶接時における一対の溶接電極を区画
して配置するためのスリット44が導出部42まで延出
して設けられている。略円板状集電部41の中心部には
電解液注液孔45が設けられている。また、負極集電板
50はニッケル金属を円板状に形成して構成されるもの
である。
On the other hand, the positive electrode current collector plate 40 is made of nickel metal. As shown in FIG. 4, the positive electrode current collector plate 40 has a substantially disc-shaped current collector 41 and a lead-out section 42 and has a substantially disc-shaped shape. Current collector 4
1 has a large number of openings 43 and a slit 44 extending on the center line of the current collecting portion 41, that is, a partition 44 for partitioning and arranging a pair of welding electrodes at the time of welding. An electrolyte injection hole 45 is provided at the center of the substantially disk-shaped current collector 41. Further, the negative electrode current collector plate 50 is formed by forming nickel metal into a disk shape.

【0043】そして、上述のようにして作成した渦巻状
電極体の負極板20の端部21と負極集電板50とを抵
抗溶接するとともに、ニッケル正極板10の帯状ニッケ
ル板12の端部と正極集電板40の集電部41とを抵抗
溶接する。この抵抗溶接に際しては、まず、集電部41
に設けられたスリット44を介して相対向させて一対の
溶接電極(図示せず)を配置し、これらの一対の溶接電
極間に溶接電流を流して抵抗溶接を行う。
Then, the end 21 of the negative electrode plate 20 of the spirally wound electrode body and the negative electrode current collector 50 formed as described above are resistance-welded to the end of the strip-shaped nickel plate 12 of the nickel positive electrode plate 10. The current collecting part 41 of the positive electrode current collecting plate 40 is resistance-welded. In this resistance welding, first, the current collector 41
A pair of welding electrodes (not shown) are arranged so as to face each other via a slit 44 provided in the, and a welding current is applied between the pair of welding electrodes to perform resistance welding.

【0044】ついで、SCサイズの有底円筒形の金属外
装缶60を用意し、上記のように各集電板40,50を
溶接した渦巻状電極体を金属外装缶60内に挿入し、集
電板40の電解液注液孔45より一方の溶接電極を挿入
して負極集電板50に当接させるとともに金属外装缶6
0の底部に他方の溶接電極を当接して、負極集電板50
と金属外装缶60の底部をスポット溶接する。
Next, an SC-sized cylindrical metal outer can 60 having a bottom is prepared, and the spirally wound electrode body to which the current collector plates 40 and 50 are welded as described above is inserted into the metal outer can 60. One of the welding electrodes is inserted from the electrolyte injection hole 45 of the electric plate 40 so as to be in contact with the negative electrode current collector plate 50 and the metal outer can 6.
0, the other welding electrode is in contact with the bottom of
And the bottom of the metal outer can 60 is spot-welded.

【0045】一方、正極キャップ71と蓋体72とから
なる封口体70を用意し、正極集電板40の導出部42
を蓋体72の底部に接触させて、蓋体72の底部と導出
部42とを溶接して接続する。この後、金属外装缶60
内にそれぞれ電解液(水酸化リチウム(LiOH)と水
酸化ナトリウム(NaOH)を含有した8Nの水酸化カ
リウム(KOH)水溶液)を5.3g注入し、封口体7
0を封口ガスケット62を介して外装缶60の開口部6
1に載置するとともに、この開口部61を封口体70側
にカシメて封口する。これにより、公称容量3000m
AHの円筒形ニッケル−水素蓄電池を作製する。
On the other hand, a sealing body 70 comprising a positive electrode cap 71 and a lid 72 is prepared, and a lead-out section 42 of the positive electrode current collector 40 is provided.
Is brought into contact with the bottom of the lid 72, and the bottom of the lid 72 and the lead-out portion 42 are welded and connected. Thereafter, the metal outer can 60
5.3 g of an electrolyte solution (8N aqueous potassium hydroxide (KOH) solution containing lithium hydroxide (LiOH) and sodium hydroxide (NaOH)) was injected into each of them.
0 to the opening 6 of the outer can 60 via the sealing gasket 62.
1, and the opening 61 is swaged toward the sealing body 70 to seal the opening. As a result, the nominal capacity is 3000m
A cylindrical nickel-hydrogen storage battery of AH is manufactured.

【0046】4.観察および試験結果 a.圧延後のニッケル正極板の観察結果 上述のようにして作成した圧延後のA〜Wの各ニッケル
正極板10について、帯状ニッケル板12の外れ、破
断、あるいは波打ちなどを観察すると以下の表3および
表4に示すような結果となった。なお、表3は長尺のニ
ッケル発泡体11の長尺方向に帯状金属板12を溶着し
た活物質保持体10aを用いた場合を示し、表4は長尺
のニッケル発泡体11の幅方向に帯状金属板12を溶着
した活物質保持体10bを用いた場合を示す。
4. Observations and test results a. Observation Results of Rolled Nickel Positive Electrode For each of the rolled nickel positive plates 10 of A to W prepared as described above, the stripped nickel plate 12 was observed for detachment, breakage, waving, and the like. The results are as shown in Table 4. Table 3 shows a case where the active material holding member 10a in which the strip-shaped metal plate 12 is welded in the long direction of the long nickel foam 11 is used, and Table 4 shows the width of the long nickel foam 11 in the width direction. The case where the active material holding member 10b to which the band-shaped metal plate 12 is welded is used is shown.

【0047】b.短絡試験 上述した観察結果により帯状ニッケル板12の外れ、破
断等が観察されなかったニッケル正極板10を用いて、
上述のように渦巻状電極体を構成し、この渦巻状電極体
に短絡が発生したか否かの試験を行うと、以下の表3お
よび表4に示すような結果となった。なお、この短絡試
験においては、渦巻状電極体をそれぞれ20個ずつ用い
て行った。
B. Short-circuit test Using the nickel positive electrode plate 10 in which the strip-shaped nickel plate 12 was not detached or broken according to the above-described observation results,
When the spiral electrode body was configured as described above and a test was performed to determine whether or not a short circuit occurred in the spiral electrode body, the results shown in Tables 3 and 4 below were obtained. The short-circuit test was performed using 20 spiral electrode bodies.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】上記表3および表4より明らかなように、
ニッケル正極板A,B,CあるいはQ,Rのように、帯
状ニッケル板12の溶着部間の長さ(D)に対する非溶
着部の長さ(L)、即ち、L/Dが小さくなれば、帯状
ニッケル板12がニッケル発泡体11より外れやすくな
ることが分かる。また、ニッケル正極板J,K,L,
M,NあるいはV,Wのように、帯状ニッケル板12の
溶着部間の長さ(D)に対する非溶着部の長さ(L)、
即ち、L/Dが大きくなれば、渦巻状電極体とした場合
に短絡が発生しやすくなるとともに、帯状ニッケル板1
2がニッケル発泡体11より浮き上がりやすくなること
が分かる。
As is clear from Tables 3 and 4,
If the length (L) of the non-welded portion relative to the length (D) between the welded portions of the strip-shaped nickel plate 12, that is, L / D, like the nickel positive plates A, B, C or Q, R, It can be seen that the strip-shaped nickel plate 12 is easily detached from the nickel foam 11. Also, nickel positive plates J, K, L,
M, N or V, W, the length (L) of the non-welded portion relative to the length (D) between the welded portions of the strip-shaped nickel plate 12,
That is, when the L / D is large, a short circuit is likely to occur when the spiral electrode body is used, and the strip-shaped nickel plate 1
It can be seen that 2 is more easily lifted than the nickel foam 11.

【0051】このことから、長尺のニッケル発泡体の長
尺方向に帯状金属板を溶着した活物質保持体を用いた場
合は、ニッケル正極板D,E,F,G,Hのように、L
/Dは1.030以上で、1.100以下とすることが
好ましい。また、長尺のニッケル発泡体の幅方向に帯状
金属板を溶着した活物質保持体を用いた場合は、ニッケ
ル正極板Q,R,S,T,Uのように、L/Dは1.0
05以上で、1.020以下とすることが好ましい。
From this, when an active material holder in which a strip-shaped metal plate is welded in the long direction of a long nickel foam is used, nickel positive plates D, E, F, G, and H are used. L
/ D is preferably 1.030 or more and 1.100 or less. When an active material holder in which a strip-shaped metal plate is welded in the width direction of a long nickel foam is used, the L / D is 1. as in nickel positive plates Q, R, S, T, and U. 0
It is preferable to be not less than 05 and not more than 1.020.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の長尺の発泡ニッケルからなる金属多
孔体に帯状金属板を溶着して形成した活物質保持体を示
す上面図である。
FIG. 1 is a top view showing an active material holder formed by welding a strip-shaped metal plate to a long porous metal body made of foamed nickel of the present invention.

【図2】 金属多孔体に帯状金属板を溶着した状態を示
す断面図である。
FIG. 2 is a sectional view showing a state in which a strip-shaped metal plate is welded to a porous metal body.

【図3】 この活物質保持体に活物質スラリーを充填し
た後、所定の極板形状切断した状態を示す図である。
FIG. 3 is a view showing a state in which an active material slurry is filled in the active material holding body and then cut into a predetermined electrode plate shape.

【図4】 図3の電極を渦巻状に巻回して形成した電極
体を金属製の外装缶に収納した状態を破断して示す斜視
図である。
FIG. 4 is a cutaway perspective view showing a state in which an electrode body formed by spirally winding the electrode of FIG. 3 is housed in a metal outer can.

【図5】 正極集電板を示す斜視図である。FIG. 5 is a perspective view showing a positive electrode current collector plate.

【図6】 従来例の活物質保持体の活物質未充填部分の
一部に集電タブを溶接した状態を示す図である。
FIG. 6 is a view showing a state in which a current collecting tab is welded to a part of an active material-unfilled portion of a conventional active material holder.

【符号の説明】[Explanation of symbols]

10…ニッケル正極、10a,10b…活物質保持体、
11…発泡ニッケル(三次元的に網目構造をもった発泡
金属多孔体)、12…帯状ニッケル板、12a…溶着
部、12b…非溶着部、20…負極、30…セパレー
タ、40…円板状正極集電板、41…集電部、42…導
出部、50…円板状負極集電板、60…円筒状金属製外
装缶、61…開口部、70…封口体、71…正極キャッ
プ、72…蓋体
10: nickel positive electrode, 10a, 10b: active material holder,
11: nickel foam (porous metal foam having a three-dimensional network structure), 12: strip nickel plate, 12a: welded portion, 12b: non-welded portion, 20: negative electrode, 30: separator, 40: disk shape Positive electrode current collector, 41: current collector, 42: lead-out part, 50: disk-shaped negative electrode current collector, 60: cylindrical metal outer can, 61: opening, 70: sealing body, 71: positive electrode cap, 72 ... lid

【手続補正書】[Procedure amendment]

【提出日】平成11年1月27日[Submission date] January 27, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項13[Correction target item name] Claim 13

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項14[Correction target item name] Claim 14

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田川 洋之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 後藤 勇治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (54)【発明の名称】 発泡金属多孔体を用いた電池用活物質保持体およびその製造方法、この活物質保持体を用いたア ルカリ蓄電池用非焼結式電極およびその製造方法、この非焼結式電極を用いたアルカリ蓄電池お よびその製造方法 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Tagawa 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yuji Goto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (54) [Title of the Invention] Active material holder for battery using porous metal foam, method for producing the same, non-sintering for alkaline storage battery using this active material holder Electrode and method for producing the same, alkaline storage battery using the non-sintered electrode and method for producing the same

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 三次元的に網目構造をもった発泡金属多
孔体の長辺側端部に帯状金属板を備えた電池用活物質保
持体であって、 前記帯状金属板は前記発泡金属多孔体との溶着部と非溶
着部とを交互に備えるとともに、 前記帯状金属板の前記非溶着部の長さは前記溶着部間の
長さよりも長いことを特徴とする電池用活物質保持体。
1. An active material holder for a battery comprising a band-shaped metal plate at a long side end portion of a porous metal foam having a three-dimensional network structure, wherein the band-shaped metal plate is formed of a porous metal foam. An active material holder for a battery, comprising: a welded portion to a body and a non-welded portion alternately provided; and a length of the non-welded portion of the strip-shaped metal plate is longer than a length between the welded portions.
【請求項2】 長尺の前記発泡金属多孔体の長尺方向に
前記帯状金属板を備える場合には、前記非溶着部の長さ
をLとし、前記溶着部間の長さをDとすると、1.03
0<(L/D)<1.100の関係を有するように前記
長さLおよびDを規定するようにしたことを特徴とする
請求項1に記載の電池用活物質保持体。
2. In the case where the strip-shaped metal plate is provided in the longitudinal direction of the long porous metal foam body, the length of the non-welded portion is L, and the length between the welded portions is D. , 1.03
2. The active material holder for a battery according to claim 1, wherein the lengths L and D are defined so as to have a relationship of 0 <(L / D) <1.100.
【請求項3】 長尺の前記発泡金属多孔体の幅方向に前
記帯状金属板を備える場合には、前記非溶着部の長さを
Lとし、前記溶着部間の長さをDとすると、1.005
<(L/D)<1.020の関係を有するように前記長
さLおよびDを規定するようにしたことを特徴とする請
求項1に記載の電池用活物質保持体。
3. When the band-shaped metal plate is provided in the width direction of the long porous metal foam body, the length of the non-welded portion is L, and the length between the welded portions is D. 1.005
2. The active material holder for a battery according to claim 1, wherein the lengths L and D are defined so as to have a relationship of <(L / D) <1.020. 3.
【請求項4】 三次元的に網目構造をもった発泡金属多
孔体の長辺側端部に帯状金属板を溶着して形成する電池
用活物質保持体の製造方法であって、 前記帯状金属板に前記発泡金属多孔体との溶着部と非溶
着部とを交互に形成するように前記帯状金属板を前記発
泡金属多孔体に溶着するとともに、 前記非溶着部の長さが前記溶着部間の長さよりも長くな
るように前記帯状金属板と前記発泡金属多孔体との間に
空間部を形成するようにして前記帯状金属板と前記発泡
金属多孔体とを溶着するようにしたことを特徴とする電
池用活物質保持体の製造方法。
4. A method for manufacturing an active material holder for a battery, wherein a band-shaped metal plate is formed by welding a long-side end portion of a porous metal foam having a three-dimensional network structure. The band-shaped metal plate is welded to the foamed metal porous body so that a welded portion of the foamed metal porous body and a non-welded portion are alternately formed on the plate, and the length of the non-welded portion is between the welded portions. The space between the band-shaped metal plate and the foamed metal porous body is formed so as to be longer than the length, and the band-shaped metal plate and the foamed metal porous body are welded to each other. A method for producing an active material holder for a battery.
【請求項5】 前記帯状金属板と前記発泡金属多孔体と
の間に所定の径を有する円柱体を挿入して前記帯状金属
板と前記発泡金属多孔体とを溶着することにより前記帯
状金属板と前記発泡金属多孔体との間に空間部を形成す
るようにしたことを特徴とする請求項4に記載の電池用
活物質保持体の製造方法。
5. The band-shaped metal plate by inserting a cylindrical body having a predetermined diameter between the band-shaped metal plate and the foamed metal porous body and welding the band-shaped metal plate and the foamed metal porous body. The method according to claim 4, wherein a space is formed between the porous metal foam and the porous metal foam.
【請求項6】 長尺の前記発泡金属多孔体の長尺方向に
前記帯状金属板を溶着する際には、前記非溶着部の長さ
をLとし、前記溶着部間の長さをDとした場合、1.0
30<(L/D)<1.100の関係になるように前記
円柱体の径を調整して前記空間部を形成するようにした
ことを特徴とする請求項5に記載の電池用活物質保持体
の製造方法。
6. When welding the strip-shaped metal plate in the longitudinal direction of the long porous metal foam body, the length of the non-welded portion is L, and the length between the welded portions is D. 1.0
6. The active material for a battery according to claim 5, wherein the space is formed by adjusting the diameter of the column so that 30 <(L / D) <1.100 is satisfied. A method for manufacturing a holder.
【請求項7】 長尺の前記発泡金属多孔体の幅方向に前
記帯状金属板を溶着する際には、前記非溶着部の長さを
Lとし、前記溶着部間の長さをDとした場合、1.00
5<(L/D)<1.020の関係になるように前記円
柱体の径を調整して前記空間部を形成するようにしたこ
とを特徴とする請求項5に記載の電池用活物質保持体の
製造方法。
7. When welding the strip-shaped metal plate in the width direction of the long porous metal foam body, the length of the non-welded portion is L, and the length between the welded portions is D. If 1.00
6. The active material for a battery according to claim 5, wherein the space is formed by adjusting a diameter of the cylindrical body so that a relationship of 5 <(L / D) <1.020 is satisfied. A method for manufacturing a holder.
【請求項8】 三次元的に網目構造をもった発泡金属多
孔体の長辺側端部に帯状金属板を有する活物質保持体に
活物質スラリーを備えたアルカリ蓄電池用非焼結式電極
であって、 前記帯状金属板は前記発泡金属多孔体との溶着部と非溶
着部とを交互に備えるとともに、 前記非溶着部の長さを前記溶着部間の長さよりも長くな
るようにした活物質保持体に前記活物質スラリーを備え
るようにしたことを特徴とするアルカリ蓄電池用非焼結
式電極。
8. A non-sintered electrode for an alkaline storage battery comprising an active material slurry on an active material holder having a band-shaped metal plate at a long side end of a porous metal foam having a three-dimensional network structure. The band-shaped metal plate is provided with a welded portion and a non-welded portion alternately with the foamed metal porous body, and the length of the non-welded portion is set to be longer than the length between the welded portions. A non-sintered electrode for an alkaline storage battery, wherein the active material slurry is provided in a substance holder.
【請求項9】 長尺の前記発泡金属多孔体の長尺方向に
前記帯状金属板を備える場合には、前記非溶着部の長さ
をLとし、前記溶着部間の長さをDとすると、1.03
0<(L/D)<1.100の関係を有するように前記
長さLおよびDを規定するようにしたことを特徴とする
請求項8に記載のアルカリ蓄電池用非焼結式電極。
9. When the band-shaped metal plate is provided in the longitudinal direction of the long porous metal foam body, the length of the non-welded portion is L, and the length between the welded portions is D. , 1.03
9. The non-sintered electrode for an alkaline storage battery according to claim 8, wherein the lengths L and D are defined so as to have a relationship of 0 <(L / D) <1.100.
【請求項10】 長尺の前記発泡金属多孔体の幅方向に
前記帯状金属板を備える場合には、前記非溶着部の長さ
をLとし、前記溶着部間の長さをDとすると、1.00
5<(L/D)<1.020の関係を有するように前記
長さLおよびDを規定するようにしたことを特徴とする
請求項8に記載のアルカリ蓄電池用非焼結式電極。
10. When the strip-shaped metal plate is provided in the width direction of the long porous metal foam body, the length of the non-welded portion is L, and the length between the welded portions is D. 1.00
9. The non-sintered electrode for an alkaline storage battery according to claim 8, wherein the lengths L and D are defined so as to have a relationship of 5 <(L / D) <1.020.
【請求項11】 三次元的に網目構造をもった発泡金属
多孔体の長辺側端部に帯状金属板を溶着して形成した活
物質保持体に活物質スラリーを充填して形成するアルカ
リ蓄電池用非焼結式電極の製造方法であって、 前記帯状金属板に前記発泡金属多孔体との溶着部と非溶
着部とを交互に形成するように前記帯状金属板を前記発
泡金属多孔体に溶着するとともに、 前記非溶着部の長さが前記溶着部間の長さよりも長くな
るように前記帯状金属板と前記発泡金属多孔体との間に
空間部を形成するようにして前記帯状金属板と前記発泡
金属多孔体とを溶着して前記活物質保持体を形成する活
物質保持体形成工程と、 前記活物質保持体形成工程により形成された前記活物質
保持体に前記活物質スラリーを充填する充填工程と、 前記活物質スラリーを充填した前記活物質保持体が所定
の厚みになるように圧延する圧延工程と、 前記圧延工程により所定の厚みに圧延された前記活物質
保持体を所定形状に切断する切断工程とを備えたことを
特徴とするアルカリ蓄電池用非焼結式電極の製造方法。
11. An alkaline storage battery formed by filling an active material slurry into an active material holder formed by welding a band-shaped metal plate to a long side end of a porous metal foam having a three-dimensional network structure. A method for producing a non-sintered electrode for use, wherein the band-shaped metal plate is formed on the foamed metal porous body so that a welded portion of the foamed metal porous body and a non-welded portion are alternately formed on the band-shaped metal plate. At the time of welding, the band-shaped metal plate is formed such that a space is formed between the band-shaped metal plate and the foamed metal porous body such that the length of the non-welded portion is longer than the length between the welded portions. An active material holding member forming step of forming the active material holding member by fusing the active material holding member with the foamed metal porous body; and filling the active material slurry into the active material holding member formed in the active material holding member forming step. Filling the active material slurry A rolling step of rolling the loaded active material holding body to a predetermined thickness; and a cutting step of cutting the active material holding body rolled to a predetermined thickness in the rolling step into a predetermined shape. A method for producing a non-sintered electrode for an alkaline storage battery.
【請求項12】 前記帯状金属板と前記発泡金属多孔体
との間に所定の径を有する円柱体を挿入して前記帯状金
属板と前記発泡金属多孔体とを溶着することにより前記
帯状金属板と前記発泡金属多孔体との間に前記空間部を
形成するようにしたことを特徴とする請求項11に記載
のアルカリ蓄電池用非焼結式電極の製造方法。
12. The band-shaped metal plate by inserting a cylindrical body having a predetermined diameter between the band-shaped metal plate and the foamed metal porous body and welding the band-shaped metal plate and the foamed metal porous body. The method for producing a non-sintered electrode for an alkaline storage battery according to claim 11, wherein the space is formed between the porous metal foam and the porous metal foam.
【請求項13】 長尺の前記発泡金属多孔体の長尺方向
に前記帯状金属板を溶着する際には、前記非溶着部の長
さをLとし、前記溶着部間の長さをDとした場合、1.
030<(L/D)<1.100の関係になるように前
記円柱体の径を調整して前記空間部を形成するようにし
たことを特徴とする請求項12に記載の電池用活物質保
持体の製造方法。
13. When the band-shaped metal plate is welded in the longitudinal direction of the long porous metal foam body, the length of the non-welded portion is L, and the length between the welded portions is D. If you do
13. The active material for a battery according to claim 12, wherein the space is formed by adjusting the diameter of the cylindrical body so that 030 <(L / D) <1.100. A method for manufacturing a holder.
【請求項14】 長尺の前記発泡金属多孔体の幅方向に
前記帯状金属板を溶着する際には、前記非溶着部の長さ
をLとし、前記溶着部間の長さをDとした場合、1.0
05<(L/D)<1.020の関係になるように前記
円柱体の径を調整して前記空間部を形成するようにした
ことを特徴とする請求項12に記載の電池用活物質保持
体の製造方法。
14. When welding the strip-shaped metal plate in the width direction of the long porous metal foam body, the length of the non-welded portion is L, and the length between the welded portions is D. If 1.0
13. The battery active material according to claim 12, wherein the space is formed by adjusting the diameter of the column so that the relationship of 05 <(L / D) <1.020 is satisfied. A method for manufacturing a holder.
【請求項15】 セパレータを介して一方極の非焼結式
電極と他方極の電極とを巻回あるいは積層した電極体の
前記一方極の非焼結式電極を一方極の集電体に電気的に
接続するとともに前記他方極の電極を他方極の集電体に
電気的に接続して外装缶内に収納して構成した非焼結式
電極を用いたアルカリ蓄電池であって、 前記一方極の非焼結式電極は三次元的に網目構造をもっ
た発泡金属多孔体の長辺側端部に溶着部と非溶着部とを
交互に有する帯状金属板を備えるとともに、 前記帯状金属板の前記非溶着部の長さを前記溶着部間の
長さよりも長くなるようにした活物質保持体に活物質ス
ラリーを備えるようにしたことを特徴とする非焼結式電
極を用いたアルカリ蓄電池。
15. The non-sintered electrode of one electrode of the electrode body obtained by winding or laminating a non-sintered electrode of one electrode and an electrode of the other electrode via a separator is electrically connected to a current collector of one electrode. An alkaline storage battery using a non-sintered electrode configured to be electrically connected and electrically connected to the other electrode of the other electrode to a current collector of the other electrode and housed in an outer can. The non-sintered electrode includes a band-shaped metal plate having welded portions and non-welded portions alternately at the long-side end of the porous porous metal body having a three-dimensional network structure, An alkaline storage battery using a non-sintered electrode, wherein an active material slurry is provided in an active material holder in which the length of the non-welded portion is longer than the length between the welded portions.
【請求項16】 セパレータを介して一方極の非焼結式
電極と他方極の電極とを巻回あるいは積層して電極体を
形成し、この電極体の前記一方極の非焼結式電極を一方
極の集電体に溶着するとともに前記他方極の電極を他方
極の集電体に溶着して外装缶内に収納して形成する非焼
結式電極を用いたアルカリ蓄電池の製造方法であって、 前記一方極の非焼結式電極の製造工程は、三次元的に網
目構造をもった発泡金属多孔体の長辺側端部に溶着部と
非溶着部とを交互に形成するように、かつ前記非溶着部
の長さが前記溶着部間の長さよりも長くなるように前記
帯状金属板と前記発泡金属多孔体との間に空間部を形成
するようにして前記帯状金属板と前記発泡金属多孔体と
を溶着して活物質保持体を形成する活物質保持体形成工
程と、 前記活物質保持体形成工程により形成された前記活物質
保持体に前記活物質スラリーを充填する充填工程と、 前記活物質スラリーを充填した前記活物質保持体が所定
の厚みになるように圧延する圧延工程と、 前記圧延工程により所定の厚みに圧延された前記活物質
保持体を所定形状に切断する切断工程とを備えたことを
特徴とする非焼結式電極を用いたアルカリ蓄電池の製造
方法。
16. An electrode body is formed by winding or laminating a non-sintered electrode of one pole and an electrode of the other pole via a separator, and the non-sintered electrode of one pole of the electrode body is formed. A method of manufacturing an alkaline storage battery using a non-sintered electrode formed by welding to the current collector of one electrode and welding the electrode of the other electrode to the current collector of the other electrode to be housed in an outer can. The manufacturing process of the non-sintered electrode of the one electrode includes forming a welded portion and a non-welded portion alternately at the long side end of the foamed metal porous body having a three-dimensional network structure. The band-shaped metal plate and the foamed metal porous body so as to form a space so that the length of the non-welded portion is longer than the length between the welded portions. An active material holding member forming step of forming an active material holding member by welding the foamed metal porous body; A filling step of filling the active material slurry into the active material holder formed by the holding body forming step, and a rolling step of rolling the active material holder filled with the active material slurry so as to have a predetermined thickness. A cutting step of cutting the active material holder rolled to a predetermined thickness in the rolling step into a predetermined shape, the method comprising the steps of:
JP10039184A 1998-02-20 1998-02-20 Active material support for battery using foamed metal porous body and its manufacture, non-sintered electrode for alkaline storage battery using this active material support and its manufacture, and alkaline storage battery using the non-sintered electrode Pending JPH11238516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10039184A JPH11238516A (en) 1998-02-20 1998-02-20 Active material support for battery using foamed metal porous body and its manufacture, non-sintered electrode for alkaline storage battery using this active material support and its manufacture, and alkaline storage battery using the non-sintered electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10039184A JPH11238516A (en) 1998-02-20 1998-02-20 Active material support for battery using foamed metal porous body and its manufacture, non-sintered electrode for alkaline storage battery using this active material support and its manufacture, and alkaline storage battery using the non-sintered electrode

Publications (1)

Publication Number Publication Date
JPH11238516A true JPH11238516A (en) 1999-08-31

Family

ID=12546038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10039184A Pending JPH11238516A (en) 1998-02-20 1998-02-20 Active material support for battery using foamed metal porous body and its manufacture, non-sintered electrode for alkaline storage battery using this active material support and its manufacture, and alkaline storage battery using the non-sintered electrode

Country Status (1)

Country Link
JP (1) JPH11238516A (en)

Similar Documents

Publication Publication Date Title
JP3831525B2 (en) battery
JPH11149914A (en) Cylindrical alkaline storage battery employing non-sintered electrode and its manufacture
JPH10125348A (en) Battery
JP2000077054A (en) Battery and its manufacture
EP1037297B1 (en) Alkaline storage battery with group of spiral electrodes
EP1498977A1 (en) Alkaline storage battery
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JP3649909B2 (en) battery
JP2002025604A (en) Alkaline secondary battery
JPH10125332A (en) Manufacture of battery electrode
JPH11238516A (en) Active material support for battery using foamed metal porous body and its manufacture, non-sintered electrode for alkaline storage battery using this active material support and its manufacture, and alkaline storage battery using the non-sintered electrode
JP2000090965A (en) Cylindrical alkaline secondary battery
JP3893856B2 (en) Square alkaline storage battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JP3913395B2 (en) Method for producing alkaline storage battery
JP3568356B2 (en) Method of manufacturing prismatic battery and prismatic battery
JP2762517B2 (en) Method of manufacturing spiral electrode group for alkaline battery
JP3952489B2 (en) Alkaline storage battery
JPH1021950A (en) Battery having non-sintered type electrode plate
JP2002110171A (en) Conductive core for electrode plate of battery and battery using the same
JPH10162855A (en) Hydride secondary battery
JP4703154B2 (en) Alkaline storage battery and method of manufacturing the same
JP4168578B2 (en) Square alkaline storage battery and manufacturing method thereof
JPH08329936A (en) Secondary battery and electrode preparation that is used forthis
JP2000113902A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529