JP2002110171A - Conductive core for electrode plate of battery and battery using the same - Google Patents

Conductive core for electrode plate of battery and battery using the same

Info

Publication number
JP2002110171A
JP2002110171A JP2000301108A JP2000301108A JP2002110171A JP 2002110171 A JP2002110171 A JP 2002110171A JP 2000301108 A JP2000301108 A JP 2000301108A JP 2000301108 A JP2000301108 A JP 2000301108A JP 2002110171 A JP2002110171 A JP 2002110171A
Authority
JP
Japan
Prior art keywords
conductive core
electrode plate
battery
winding start
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000301108A
Other languages
Japanese (ja)
Inventor
Toru Mori
亨 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000301108A priority Critical patent/JP2002110171A/en
Publication of JP2002110171A publication Critical patent/JP2002110171A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a conductive core for an electrode plate of the battery which ensure a filled density of an active material and allow efficiently manufacturing a spiral electrode, and provide a high capacity battery. SOLUTION: A strip conductive core 10 is used in the spiral electrode and provides a number of holes. An open area ratio, which is an occupied ratio by the holes on a surface of the core in a region 10a, which is the beginning of winding, is smaller than the one in a region 10b, which is all the region except the region 10a so that a tension strength of the region 10a in the winding direction is greater than the one of the region 10b in the winding direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、渦巻状電極体に電
解液が含浸された発電素体を備えた電池及び、その電池
極板に用いる導電性芯体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery having a power generating element in which a spiral electrode body is impregnated with an electrolytic solution, and a conductive core used for the battery electrode plate.

【0002】[0002]

【従来の技術】現在、ニッケル−カドミウム蓄電池やニ
ッケル−水素蓄電池といったアルカリ蓄電池は、ポータ
ブル機器をはじめとして種々な機器に用いられている。
アルカリ蓄電池の構造は、正極板と負極板とを有機繊維
不織布等のセパレーターを介して巻回することによって
形成した渦巻状電極体にアルカリ電解液を含浸した発電
素体を外装缶に収納し、その開口部を封口蓋で封口した
物が代表的である。ここで、渦巻状電極体は、一般的に
割ピン状や一対のピンで構成された、巻芯を用いてセパ
レーターを巻きながら正極板と負極板を巻き込むことに
よって製造される。
2. Description of the Related Art At present, alkaline storage batteries such as nickel-cadmium storage batteries and nickel-hydrogen storage batteries are used in various devices including portable devices.
The structure of the alkaline storage battery is such that a spirally wound electrode body formed by winding a positive electrode plate and a negative electrode plate through a separator such as an organic fiber non-woven fabric is impregnated with an alkaline electrolyte and then stored in an outer can. The one whose opening is sealed with a sealing lid is typical. Here, the spiral electrode body is generally manufactured by winding a positive electrode plate and a negative electrode plate while winding a separator using a core, which is formed of a split pin or a pair of pins.

【0003】前記正極板及び負極板は、焼結式と非焼結
式のいずれも用いられ、いずれの方式においても導電性
芯体に活物質を充填して作製される。そして、導電性芯
体としては、ニッケル板やニッケルめっきをした鋼板か
らなる短冊状板に、活物質の充填密度を高くするために
複数の孔が開設されたもの(パンチングメタル)が広く
用いられ、特に焼結式の場合にはこのタイプの導電性芯
体が主として用いられている。
The positive electrode plate and the negative electrode plate are both of a sintered type and a non-sintered type, and are manufactured by filling a conductive core with an active material in either system. As the conductive core, there is widely used a strip-shaped plate made of a nickel plate or a nickel-plated steel plate, in which a plurality of holes are formed to increase the packing density of the active material (punched metal). In particular, in the case of a sintered type, this type of conductive core is mainly used.

【0004】ところで、電池において一般的に言えるこ
とであるが、このようなアルカリ蓄電池においても、高
容量化に対する要請が高い。そのため、上記の極板にお
いても活物質の充填密度を高くする必要があり、前記極
板に用いられる導電性芯体においては、孔の径を大きく
したり孔と孔の間隔を狭くしたりすることによって開孔
率が出来る限り大きくなるよう設定され、また、板厚が
出来る限り薄くなるよう設定されている(板厚が薄いほ
ど極板の巻き数を増やすことが出来る)。
[0004] By the way, as is generally the case with batteries, there is a high demand for such an alkaline storage battery to have a high capacity. Therefore, it is necessary to increase the packing density of the active material also in the above-mentioned electrode plate, and in the conductive core used for the electrode plate, the diameter of the hole is increased or the interval between the holes is reduced. Accordingly, the aperture ratio is set to be as large as possible, and the plate thickness is set to be as thin as possible (the smaller the plate thickness, the more the number of turns of the electrode plate can be increased).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うに導電性芯体の板厚を薄くし、且つ開孔率を大きくす
ると、その引張強度が低下してしまうため、歩留まりな
どの生産性の問題が生じやすい。すなわち、板厚を薄く
し、開孔率を大きくした導電性芯体を用いた極板は、渦
巻状電極体製造時に巻芯との間で張力を受けて巻回方向
に伸び易い。そして極板が伸びると、渦巻状電極体の外
径寸法が大きくなるため外装缶への収納性が悪くなり、
場合によっては、巻ずれが発生するので渦巻状電極体製
造時の歩留まりが悪くなる、という問題を招く。
However, when the thickness of the conductive core is reduced and the porosity is increased, the tensile strength of the conductive core is reduced. Tends to occur. That is, an electrode plate using a conductive core body having a small thickness and a large porosity is easily stretched in the winding direction due to tension between the core and the core when the spiral electrode body is manufactured. Then, when the electrode plate is elongated, the outer diameter of the spiral electrode body becomes large, so that the accommodating property in the outer can becomes worse,
In some cases, there is a problem that the yield in manufacturing the spiral electrode body is deteriorated due to the occurrence of the winding deviation.

【0006】以上のような課題に鑑み、本発明は、活物
質の充填密度を高く維持しながら、渦巻状電極体を歩留
まり良く製造することができる、電池極板用の導電性芯
体を提供し、それによって高容量の電池を歩留まり良く
生産できるようにすることを目的とする。
[0006] In view of the above problems, the present invention provides a conductive core for a battery electrode plate capable of producing a spiral electrode body with a high yield while maintaining a high packing density of an active material. It is another object of the present invention to produce a high-capacity battery with a high yield.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するため、渦巻状電極体に用いる複数の孔が開設され
た短冊状の導電性芯体の構成を、巻始め部、つまり巻始
め端から所定長さ部分の引張強度が、前記巻始め部を除
いた部分の引張強度よりも大きくなるようにした。
According to the present invention, in order to achieve the above object, the configuration of a strip-shaped conductive core having a plurality of holes formed therein for use in a spiral electrode body is defined as a winding start portion, that is, a winding. The tensile strength of a predetermined length portion from the start end was set to be higher than the tensile strength of the portion excluding the winding start portion.

【0008】ここで、前記導電性芯体において、巻始め
部の引張強度を高める方法としては、前記巻始め部での
芯体表面における孔の占める割合である開孔率を、前記
巻始め部を除いた部分の開孔率より小さくする方法、及
び、前記巻始め部の板厚を、前記巻始め部を除いた部分
の板厚よりも厚くする方法をとることができる。渦巻状
電極体の巻回時において、導電性芯体の巻始め部分の領
域は、巻回の曲率が小さいので比較的強い引張力が加え
られるが、上記発明の導電性芯体では、巻始め部分の引
張強度が高められているので、その伸びが抑えられる。
Here, in the conductive core body, as a method for increasing the tensile strength of the winding start portion, the opening ratio, which is the ratio of the hole on the core surface at the winding start portion, is determined by changing the opening ratio. And a method in which the plate thickness of the winding start portion is made larger than the plate thickness of the portion excluding the winding start portion. At the time of winding the spiral electrode body, a relatively strong tensile force is applied to the region of the winding start portion of the conductive core because the winding curvature is small. Since the tensile strength of the portion is increased, its elongation is suppressed.

【0009】一方、巻始め部分を除く領域においては、
引張強度が比較的低いが、この領域では加わる引張力は
比較的弱いので、その伸びも抑えられる。そして、この
領域においては引張強度が低くても良いので、開孔率を
大きく設定することによって、活物質の充填密度を大き
く確保することができる。従って、上記本発明の導電性
芯体を用いた電池極板は、活物質の充填密度を確保する
と共に巻回時における伸びが小さいという効果がある。
On the other hand, in the region except for the winding start portion,
Although the tensile strength is relatively low, the tensile force applied in this region is relatively weak, so that the elongation is also suppressed. Since the tensile strength may be low in this region, a large filling rate of the active material can be secured by setting the porosity large. Therefore, the battery electrode plate using the conductive core of the present invention has an effect that the filling density of the active material is ensured and the elongation during winding is small.

【0010】[0010]

【発明の実施の形態】先ず、渦巻状電極体を備えた電池
の構成、及び渦巻状電極体の製造について説明する。図
5は、本実施形態としてのアルカリ蓄電池の斜視図(一
部断面)であって、正極板1と負極板2とがセパレータ
ー3を介して渦巻状に巻回されてなる渦巻状電極体4
が、アルカリ電解液(不図示)に含浸されて円筒状の外
装缶5に収納されたものである。外装缶5の開口部は、
封口蓋6で封口されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the structure of a battery provided with a spiral electrode body and the manufacture of the spiral electrode body will be described. FIG. 5 is a perspective view (partial cross section) of the alkaline storage battery according to the present embodiment, in which a positive electrode plate 1 and a negative electrode plate 2 are spirally wound with a separator 3 interposed therebetween.
Is impregnated with an alkaline electrolyte (not shown) and accommodated in a cylindrical outer can 5. The opening of the outer can 5
It is sealed with a sealing lid 6.

【0011】正極板1は、焼結式、あるいは基板に活物
質ペーストを塗着させる非焼結式のいずれのものを用い
ても良いが、活物質としての水酸化ニッケルが基板に保
持された極板であって、前記極板には、導電性の短冊状
板に複数の孔が開設された導電性芯体(パンチングメタ
ル)が用いられる。負極板2は、正極板1と同様、焼結
式、非焼結式のいずれのものを用いても良いが、活物質
としての水酸化カドミウムが保持された極板であって、
前記極板には、導電性の短冊状板に複数の孔が開設され
た導電性芯体(パンチングメタル)が用いられる。
As the positive electrode plate 1, either a sintered type or a non-sintered type in which an active material paste is applied to a substrate may be used, but nickel hydroxide as an active material is held on the substrate. An electrode plate, wherein a conductive core body (punched metal) having a plurality of holes formed in a conductive strip-shaped plate is used as the electrode plate. As the negative electrode plate 2, similarly to the positive electrode plate 1, any of a sintered type and a non-sintered type may be used. However, the negative electrode plate 2 is an electrode plate holding cadmium hydroxide as an active material,
A conductive core (punched metal) having a plurality of holes formed in a conductive strip-shaped plate is used as the electrode plate.

【0012】セパレーター3には、従来からセパレータ
ーに用いられている不織布のほか、フィルムセパレータ
ー材も用いることができる。次に、図4は、渦巻状電極
体を製造する巻回工程を説明する斜視図である。本図に
おいて、符号100は、セパレーター材が巻かれている
ロール、符号50は巻芯である。
As the separator 3, a film separator material can be used in addition to the nonwoven fabric conventionally used for the separator. Next, FIG. 4 is a perspective view illustrating a winding step of manufacturing a spiral electrode body. In this drawing, reference numeral 100 denotes a roll around which a separator material is wound, and reference numeral 50 denotes a core.

【0013】図4(a)に矢印Aで示すように、セパレ
ーター3は、その巻回開始箇所に巻芯50がはめ込まれ
挟持される。そして、セパレーター3の巻回は、図4
(b)に矢印Bで示す方向に巻芯50を回転させること
によって行なわれる。この時、巻回は、その回転に合わ
せてロール100からセパレーター3を繰り出し、ロー
ル100と巻芯50との間で張力を加えるとともに、セ
パレーター3の端部3aと巻芯50との間でも張力を加
えながら行われる。
As shown by an arrow A in FIG. 4 (a), the separator 3 has a winding core 50 fitted at the winding start position and is sandwiched. Then, the winding of the separator 3 is performed as shown in FIG.
This is performed by rotating the core 50 in the direction indicated by the arrow B in FIG. At this time, the separator 3 is unwound from the roll 100 in accordance with the rotation, and tension is applied between the roll 100 and the core 50, and tension is also applied between the end 3 a of the separator 3 and the core 50. It is performed while adding.

【0014】そして、正極板1及び負極板2は、セパレ
ーター3を巻回しながら、正極板1の巻始め部1aと負
極板2の巻始め部2aとをセパレーター巻き込まれ部分
に差し込むことによりセパレーター3に挟み込まれ、巻
き取られていく。そして、渦巻状電極体は、正極板1及
び負極板2の巻回が終了の後、セパレーター3における
巻き終わり端を切断し、巻芯50を抜き取ることによっ
て出来上がる。
The positive electrode plate 1 and the negative electrode plate 2 are wound around the separator 3 by inserting the winding start portion 1a of the positive electrode plate 1 and the winding start portion 2a of the negative electrode plate 2 into the portion where the separator is wound. It is sandwiched between and wound up. Then, after the winding of the positive electrode plate 1 and the negative electrode plate 2 is completed, the spiral electrode body is completed by cutting the winding end end of the separator 3 and extracting the winding core 50.

【0015】以上のような工程を繰り返すことによっ
て、渦巻状電極体が連続的に製造される。アルカリ蓄電
池は、上記のように製造された渦巻状電極体4を外装缶
5に収納し、これにアルカリ電解液を注入することによ
って渦巻状電極体4にアルカリ電解液を含浸させると共
に、外装缶5を封口蓋6で封口する工程を通して製造さ
れる。
By repeating the above steps, the spiral electrode body is continuously manufactured. In the alkaline storage battery, the spirally wound electrode body 4 manufactured as described above is housed in an outer can 5, and the spirally wound electrode body 4 is impregnated with the alkaline electrolyte by injecting the alkaline electrolyte into the spirally wound electrode body 4. 5 is manufactured through the step of closing the lid 5 with the lid 6.

【0016】次に、正極板1及び負極板2に用いられる
導電性芯体の詳細について、以下実施形態1,2で説明
する。 (実施形態1)図1は、本実施形態の正極板1及び負極
板2に用いられる導電性芯体10の斜視図である。
Next, the details of the conductive core used for the positive electrode plate 1 and the negative electrode plate 2 will be described in Embodiments 1 and 2. Embodiment 1 FIG. 1 is a perspective view of a conductive core 10 used for a positive electrode plate 1 and a negative electrode plate 2 of the present embodiment.

【0017】本図に示すように導電性芯体10は、導電
性板材(ニッケル板やニッケルめっきしたステンレスス
ティール板)からなる短冊状板に、多数の孔が導電性芯
体10の幅方向及び長さ方向に一定のピッチで開設され
たものであるが、巻始め側の端10eから一定の長さX
の領域10aにおいて孔200aの径は、残りの領域1
0bにおける孔200bの径よりも小さく設定され、そ
れによって開孔率(導電性芯体の単位面積あたりに含ま
れる孔の総面積)が小さくなっている。
As shown in FIG. 1, the conductive core 10 has a rectangular plate made of a conductive plate material (a nickel plate or a nickel-plated stainless steel plate). It is opened at a constant pitch in the length direction, but a fixed length X from the end 10e on the winding start side.
The diameter of the hole 200a in the region 10a of the
The diameter of the hole 200b at 0b is set to be smaller than that of the hole 200b, whereby the opening ratio (total area of holes included per unit area of the conductive core) is reduced.

【0018】なお、本実施形態では、領域10aと領域
10bとで孔のピッチを同一で孔径を変えることで開孔
率を変えたが、孔のピッチを変えることで開孔率を変え
ることも可能である。このように領域10aと領域10
bで開孔率を変えた導電性芯体10は、従来から用いら
れている短冊状板に対してパンチで打ち抜く方法によっ
て製造できるが、領域10aと領域10bでは使用する
パンチの径を変更する必要がある。
In the present embodiment, the opening ratio is changed by changing the hole diameter with the same hole pitch in the region 10a and the region 10b. However, the opening ratio may be changed by changing the hole pitch. It is possible. Thus, the region 10a and the region 10
The conductive core body 10 in which the opening ratio is changed in b can be manufactured by punching a conventionally used strip-shaped plate with a punch, but the diameter of the punch used in the regions 10a and 10b is changed. There is a need.

【0019】上記のような開孔率とした導電性芯体10
は、従来から用いられている導電性芯体の全体領域で開
孔率を一律とする場合と比べて、以下のような優位性を
もつ。即ち、前記導電性芯体10は、前記渦巻状電極体
の巻回時に、領域10aでは比較的強い引張力が加えら
れ、領域10bでは比較的弱い引張力が加えられる。
The conductive core 10 having the above-described porosity.
Has the following advantages as compared with the conventional case where the porosity is uniform in the entire area of the conductive core. That is, when the spirally wound electrode body is wound on the conductive core 10, a relatively strong tensile force is applied in the region 10a and a relatively weak tensile force is applied in the region 10b.

【0020】ここで、導電性芯体10では、巻始め部1
0aで開孔率を小さく設定しているので導電性芯体10
を幅方向に切断したときの真の断面積が大きく、そのた
め、この領域10aの引張強度が高められている。従っ
て、巻始め部を除く部分10bでは引張強度があまり高
くなくても、導電性芯体10の伸びは抑えられ、それに
伴って、導電性芯体の伸びに伴う活物質の脱落が抑えら
れる。
Here, in the conductive core 10, the winding start portion 1
0a, the aperture ratio is set small, so that the conductive core 10
Has a large true cross-sectional area when it is cut in the width direction, so that the tensile strength of this region 10a is increased. Therefore, in the portion 10b excluding the winding start portion, even if the tensile strength is not so high, the elongation of the conductive core 10 is suppressed, and accordingly, the fall of the active material due to the elongation of the conductive core is suppressed.

【0021】一方、巻始め部を除く部分10bの活物質
の充填率は、領域10bの開孔率が比較的大きく設定さ
れているので、大きく確保することができる。従って、
上記の導電性芯体では、活物質の充填率を確保しつつ、
巻回時における伸びを抑えることができる。これに対し
て、全体領域で開孔率を一律とした導電性芯体、例えば
導電性芯体10全領域の開孔率を巻始め部10aの開孔
率と同等に設定した導電性芯体では、導電性芯体の伸び
は抑えられるが活物質の充填率は低くなり、または巻始
め部を除いた部分10bの開孔率と同等に設定すると、
活物質の充填率は確保できるが導電性芯体の伸びは抑え
られない。
On the other hand, the filling rate of the active material in the portion 10b excluding the winding start portion can be ensured to be large because the porosity of the region 10b is set relatively large. Therefore,
In the above conductive core, while ensuring the filling rate of the active material,
Elongation during winding can be suppressed. On the other hand, a conductive core having a uniform opening ratio in the entire region, for example, a conductive core in which the opening ratio of the entire conductive core 10 is set to be equal to the opening ratio of the winding start portion 10a In this case, the elongation of the conductive core is suppressed, but the filling rate of the active material is reduced, or when the opening rate of the portion 10b excluding the winding start portion is set to be equal to,
Although the filling rate of the active material can be ensured, the elongation of the conductive core cannot be suppressed.

【0022】このような効果を得るために、巻始め部1
0aの長さXは、巻芯50の外周程度の長さ(10m
m)以上に設定されることが好ましく、また、巻き始め
端部から20mmを越えるところでは巻回時にあまり引
張力がかからず、活物質充填量を大きくするには領域1
0aを小さくする方がよいので、20mm以下に設定さ
れることが好ましい。
In order to obtain such an effect, the winding start portion 1
The length X of 0a is about the outer circumference of the core 50 (10 m
m) or more, and if it is more than 20 mm from the end of the winding start, there is not much tensile force at the time of winding, and in order to increase the active material filling amount, the area 1
Since it is better to make 0a smaller, it is preferable to set it to 20 mm or less.

【0023】また、領域10aにおける開孔率、領域1
0bにおける開孔率は、それぞれに巻回時にかかる引張
力に絶える範囲で出来るだけ大きく設定するのが望まし
い。(一般的に領域10aの開孔率と領域10bの開孔
率の比は、0.50〜0.75が望ましい。) (実施形態2)本実施形態では、正極板1と負極板2に
おいて用いる導電性芯体が異なっている以外は、上記実
施の形態1と同様である。
The porosity in the region 10a, the region 1
The opening ratio at 0b is desirably set as large as possible within a range where the tensile force applied at the time of winding is cut off. (Generally, the ratio of the porosity of the region 10a to the porosity of the region 10b is desirably 0.50 to 0.75.) (Embodiment 2) In this embodiment, the positive electrode plate 1 and the negative electrode plate 2 It is the same as Embodiment 1 except that the conductive core used is different.

【0024】即ち、上記実施形態1の導電性芯体におい
ては、巻始め部10aでの開孔率を、巻始め部を除く部
分10bの開孔率と比べて、小さく設定することによっ
て導電性芯体の引張強度を高くしたが、本実施形態の導
電性芯体は、巻始め部での芯体の板厚が、巻始め部を除
く部分の芯体の板厚に比べて厚くすることによって導電
性芯体の引張強度を高くしたものである。
That is, in the conductive core of the first embodiment, the opening ratio at the winding start portion 10a is set to be smaller than the opening ratio at the portion 10b excluding the winding start portion. Although the tensile strength of the core body was increased, the conductive core body of the present embodiment requires that the thickness of the core body at the beginning of winding be thicker than the thickness of the core except for the beginning of winding. Thus, the tensile strength of the conductive core is increased.

【0025】このような導電性芯体は、具体的には、図
3に示すように、開孔率が一律である導電性芯体21の
領域20aにだけ、これと同様の開孔パターンを持つ導
電性芯体片22を溶接などの方法で接合することによっ
て実現できる。上記導電性芯体の引張強度は、実施の形
態1の導電性芯体10と同様、領域20aのほうが領域
20bに比べて高い。また、この導電性芯体では、開孔
率は領域20aと領域20bとで同じであるが、領域2
0aの板厚が厚いので、領域20aでの活物質の充填密
度が領域20bの活物質の充填密度と比べて小さくなる
点は実施の形態1の導電性芯体と同様である。
Specifically, as shown in FIG. 3, such a conductive core has a similar opening pattern only in a region 20a of the conductive core 21 having a uniform opening ratio. It can be realized by joining the conductive core pieces 22 held by welding or the like. As in the case of the conductive core 10 of the first embodiment, the tensile strength of the conductive core is higher in the region 20a than in the region 20b. In this conductive core, the porosity is the same in the region 20a and the region 20b.
The point that the packing density of the active material in the region 20a is smaller than the packing density of the active material in the region 20b is similar to the conductive core of the first embodiment because the plate thickness of 0a is large.

【0026】よって、上記導電性芯体は、実施の形態1
の導電性芯体10と同様の優位性を有する。 [実施例]図2は、本実施例にかかる導電性芯体における
開孔パターンを説明する図である。
Therefore, the above-mentioned conductive core can be used in the first embodiment.
Has the same superiority as the conductive core 10 of the first embodiment. Example FIG. 2 is a view for explaining an opening pattern in a conductive core according to the present example.

【0027】図2に示すように、導電性芯体に開設され
る孔の径をr、長手方向の孔のピッチを2h、幅方向の
孔のピッチをlで示す。図2の開孔パターンでは、長手
方向には等ピッチ、幅方向にも等ピッチで開孔されてい
るが、幅方向に隣り合う孔どうしは半ピッチ(h)ずれ
ている。なお、この開孔パターンの場合、導電性芯体の
開孔率は、πr2/8hlで表される。
As shown in FIG. 2, the diameter of the holes formed in the conductive core is indicated by r, the pitch of the holes in the longitudinal direction is indicated by 2h, and the pitch of the holes in the width direction is indicated by 1. In the hole pattern shown in FIG. 2, holes are formed at the same pitch in the longitudinal direction and at the same pitch in the width direction, but holes adjacent in the width direction are shifted by a half pitch (h). In the case of this opening pattern, the opening ratio of the conductive core is represented by πr 2 / 8hl.

【0028】以下の実施例及び比較例では、短冊状板に
はニッケルめっきしたステンレススティールからなる板
厚70μmの板材を用い、孔のピッチを共通(h=1.
2mm,l=3.6mm)とした。そして、実施例1,
2では、巻始め部の長さXを変化させるとともに孔径r
を巻始め部を除く部分に対して変化させることによっ
て、開孔率を調整した。また、実施例3では、巻始め部
の板厚を巻始め部を除く部分に対して変化させた。
In the following examples and comparative examples, a strip-shaped plate made of nickel-plated stainless steel and having a thickness of 70 μm was used, and the pitch of the holes was common (h = 1.
2 mm, l = 3.6 mm). And Example 1,
In No. 2, the length X of the winding start portion is changed and the hole diameter r is changed.
Was changed with respect to the portion excluding the winding start part, thereby adjusting the opening ratio. In Example 3, the thickness of the winding start portion was changed with respect to the portion excluding the winding start portion.

【0029】(実施例1) <極板の製造>本実施例では、図1中の巻始め端10e
から長手方向にX=10mmの間の巻始め部10aで
は、孔径r=1.0mmで孔200aを開設し、且つ、
前記巻始め部を除く部分10bでは、孔径r=1.5m
mで孔200bを開設した、導電性芯体を製造した。
Example 1 <Manufacture of Electrode Plate> In this example, the winding start end 10e in FIG.
In the winding start portion 10a between X = 10 mm in the longitudinal direction from the opening, a hole 200a is opened with a hole diameter r = 1.0 mm, and
In the part 10b excluding the winding start part, the hole diameter r = 1.5 m
m, a conductive core having a hole 200b was manufactured.

【0030】次に前記導電性芯体にニッケル粉末を連続
焼結法(スラリ式)により焼結を行い、焼結式ニッケル
基板を製造した。焼結式ニッケル基板の厚みは、正極
板、負極板ともに0.60mmとした。次に、上記焼結
式ニッケル基板を用いて正極板と負極板を製造した。正
極板は、上記焼結式ニッケル基板を硝酸ニッケルを主成
分とする含浸液に浸漬し、アルカリ処理を施す、という
操作を数回繰り返して製造した。負極板は、上記焼結式
ニッケル基板を硝酸カドミニウムを主成分とする含浸液
に浸漬し、アルカリ処理を施す、という操作を数回繰り
返して製造した。各極板のサイズについては、正極板
は、長さ200mm,幅35mmとし、負極板は、長さ
260mm,幅35mmとした。
Next, a nickel powder was sintered on the conductive core by a continuous sintering method (slurry method) to produce a sintered nickel substrate. The thickness of the sintered nickel substrate was 0.60 mm for both the positive electrode plate and the negative electrode plate. Next, a positive electrode plate and a negative electrode plate were manufactured using the sintered nickel substrate. The positive electrode plate was manufactured by repeating the operation of immersing the sintered nickel substrate in an impregnating liquid containing nickel nitrate as a main component and performing an alkali treatment several times. The negative electrode plate was manufactured by repeating the operation of immersing the sintered nickel substrate in an impregnation liquid containing cadmium nitrate as a main component and performing an alkali treatment several times. Regarding the size of each electrode plate, the positive electrode plate had a length of 200 mm and a width of 35 mm, and the negative electrode plate had a length of 260 mm and a width of 35 mm.

【0031】<電池の製造>前記正極板と前記負極板と
を用いて前記発明の実施の形態で説明した方法により、
SCサイズのアルカリ蓄電池a1(公称容量1700m
Ah)を製造した。 (実施例2) <極板、電池の製造>図1において、巻始め端10eか
ら長手方向にX=20mmの間の巻始め部10aでは、
孔径r=1.0mmで孔200aを開設し、且つ、前記
巻始め部以外の部分10bでは、孔径r=1.5mmで
孔200bを開設した導電性芯体を製造した。この導電
性芯体を用いる他は、実施例1と同様にSCサイズのア
ルカリ蓄電池a2を製造した。
<Manufacture of Battery> The method described in the embodiment of the present invention using the positive electrode plate and the negative electrode plate,
SC size alkaline storage battery a1 (1700 m nominal capacity)
Ah). (Example 2) <Manufacture of Electrode Plate and Battery> In FIG. 1, in the winding start portion 10a between X = 20 mm in the longitudinal direction from the winding start end 10e,
A conductive core having a hole 200a with a hole diameter r = 1.0 mm and a hole 200b with a hole diameter r = 1.5 mm was manufactured in a portion 10b other than the winding start portion. An SC-size alkaline storage battery a2 was manufactured in the same manner as in Example 1 except that this conductive core was used.

【0032】(実施例3)図3において、全領域で孔径
が一律(r=1.5mm)の孔200を開設した板厚7
0μmの導電性芯体21を製造した。次に、前記導電性
芯体21の巻始め端20eから長手方向に長さX=10
mmの間の巻始め部20aに、前記導電性芯体21と同
じパターンを持ち、長さ10mm,幅35mm,板厚2
0μmの導電性芯体片22を重ねて溶接し、導電性芯体
を製造した。前記導電性芯体を用いる他は、実施例1と
同様にSCサイズのアルカリ蓄電池a3を製造した。
(Embodiment 3) In FIG. 3, a plate 7 having a hole 200 having a uniform hole diameter (r = 1.5 mm) in all regions is provided.
A conductive core 21 of 0 μm was manufactured. Next, the length X = 10 in the longitudinal direction from the winding start end 20e of the conductive core 21.
mm, has the same pattern as the conductive core 21 on the winding start portion 20a, and has a length of 10 mm, a width of 35 mm, and a thickness of 2 mm.
The conductive core pieces 22 of 0 μm were overlapped and welded to produce a conductive core. An SC-size alkaline storage battery a3 was manufactured in the same manner as in Example 1, except that the conductive core was used.

【0033】(従来例1) <極板、電池の製造>図6において、全領域で孔径が一
律(r=1.5mm)であるパターンを持つ導電性芯体
を用いる他は、実施例1と同様にSCサイズのアルカリ
蓄電池b1を製造した。
(Conventional Example 1) <Manufacture of Electrode Plate and Battery> In FIG. 6, a conductive core having a pattern in which the hole diameter is uniform (r = 1.5 mm) in all regions is used. In the same manner as in the above, an SC-size alkaline storage battery b1 was manufactured.

【0034】(従来例2) <極板、電池の製造>図6において、全領域で孔径が一
律(r=1.0mm)であるパターンを持つ前記導電性
芯体を用いる他は、実施例1と同様にSCサイズのアル
カリ蓄電池b2を製造した。
(Conventional Example 2) <Manufacture of Electrode Plate and Battery> In FIG. 6, except that the above-mentioned conductive core having a pattern in which the hole diameter is uniform (r = 1.0 mm) in all regions is used. As in the case of No. 1, an SC-size alkaline storage battery b2 was manufactured.

【0035】以上のようにして製造したアルカリ蓄電池
a1,a2,a3,b1,b2について、各電池の内部
ショート率及び電池容量の2つの項目を評価した。 (評価1) 電池の内部ショート率 上記実施例及び従来例に基づいて各電池を多数製造し、
全電池数に対するショートしている電池の割合(電池内
部のショート率)について測定した。内部ショート率の
測定結果を表1に示す。
With respect to the alkaline storage batteries a1, a2, a3, b1, and b2 manufactured as described above, two items, the internal short-circuit rate and the battery capacity, of each battery were evaluated. (Evaluation 1) Internal short-circuit rate of battery A number of batteries were manufactured based on the above embodiment and the conventional example.
The ratio of short-circuited batteries to the total number of batteries (short-circuit rate inside batteries) was measured. Table 1 shows the measurement results of the internal short ratio.

【0036】[0036]

【表1】 (評価2) 電池の容量 上記実施例及び従来例に基づいて製造した各電池につい
て、その容量を以下のようにして測定した。
[Table 1] (Evaluation 2) Capacity of Battery The capacity of each battery manufactured based on the above Examples and Conventional Examples was measured as follows.

【0037】充電電流0.1C(0.17A)にて16
時間充電を行い、その後に1C(1.7A)にて放電終
止電圧が、1.0Vになるまで放電を行い、放電時にお
ける容量を測定した。
At a charging current of 0.1 C (0.17 A), 16
The battery was charged for 1 hour and then discharged at 1 C (1.7 A) until the discharge termination voltage reached 1.0 V, and the capacity at the time of discharging was measured.

【0038】[0038]

【表2】 表1より、実施例のa1,a2,a3のいずれのアルカ
リ蓄電池においても、従来例のアルカリ蓄電池b1,b
2と比べて、内部ショート率が大幅に低減されているこ
とが分かる。なお、内部ショートが発生した電池につい
て原因を調べたところ、主な原因は、巻始め部の極板破
断によるセパレーター貫通、及び巻きずれによる正極板
と負極板の接触であると判断された。
[Table 2] From Table 1, it can be seen that the alkaline storage batteries b1, b
It can be seen that the internal short-circuit rate is significantly reduced as compared with 2. When the cause of the battery in which the internal short-circuit occurred was examined, it was determined that the main causes were the penetration of the separator due to the breakage of the electrode plate at the beginning of winding, and the contact between the positive electrode plate and the negative electrode plate due to winding deviation.

【0039】次に、表2の従来例のアルカリ蓄電池b1
と実施例のアルカリ蓄電池a1,a2との比較すると容
量はほぼ同等である。これにより、導電性芯体の巻始め
部の孔径を小さくしたことによる、電池容量の低下がご
く僅かであることが分かる。なお、本実施例では、導電
性芯体の巻始め部における孔径及び板厚について前記巻
始め部を除いた部分に対して変えたものを記載したが、
導電性芯体の孔の数について巻始め部が巻始め部を除い
た部分に対して少なくなるように(すなわち、lやhを
大きく設定)しても同様に巻回方向の引張強度を上げる
ことができ、本実施例と同様の効果が得られる。
Next, the conventional alkaline storage battery b1 shown in Table 2
When compared with the alkaline storage batteries a1 and a2 of the embodiment, the capacities are substantially equal. This shows that the decrease in the battery capacity due to the reduction in the hole diameter at the winding start portion of the conductive core is very slight. In the present embodiment, the hole diameter and the plate thickness at the winding start portion of the conductive core body are changed with respect to the portion excluding the winding start portion.
Even if the number of holes in the conductive core is smaller than that of the portion excluding the portion where the winding starts, the tensile strength in the winding direction is also increased. Therefore, the same effect as that of the present embodiment can be obtained.

【0040】さらに、導電性芯体においては、巻始め部
の開孔率を巻始め部を除く部分の開孔率よりも小さくす
ることと、前記巻始め部の板厚が前記巻始め部を除く部
分よりも厚くすることを組み合わせればより効果的なも
のとなる、と考えられる。また、本実施例は、正極板、
負極板の両極板に本発明の引張強度を大きくした導電性
芯体を用いたが、正極板、または負極板のどちらか一方
に前記導電性芯体を用いる場合でも、その導電性芯体を
用いた極板については容量を維持しつつ導電性芯体の伸
びを抑えることが出来るので、従来例の導電性芯体を用
いた場合よりも、本実施例と同様の効果がある、と考え
られる。
Further, in the conductive core, the porosity of the winding start portion is made smaller than the porosity of the portion other than the winding start portion, and the plate thickness of the winding start portion is smaller than that of the winding start portion. It is considered that the combination of making the part thicker than the part to be removed is more effective. Further, the present embodiment is a positive electrode plate,
Although the conductive core with increased tensile strength of the present invention was used for the two plates of the negative electrode plate, even when the conductive core was used for either the positive electrode plate or the negative electrode plate, the conductive core was used. Since it is possible to suppress the elongation of the conductive core body while maintaining the capacity, the used electrode plate is considered to have the same effect as that of the present embodiment, compared to the case where the conductive core body of the conventional example is used. Can be

【0041】また、本実施例では、アルカリ蓄電池につ
いて実施・評価をしたが、渦巻状電極体を用いる電池で
あれば、電池のタイプによらず適用可能であり、また、
角形電池であっても渦巻状電極体を用いたものであれ
ば、適用可能である。
In the present embodiment, an alkaline storage battery was implemented and evaluated. However, any battery using a spiral electrode body can be applied regardless of the type of battery.
A prismatic battery is applicable as long as it uses a spiral electrode body.

【0042】[0042]

【発明の効果】以上のように、本発明は、渦巻状電極体
に用いられる多数の孔が開設された短冊状の導電性芯体
において、その巻始め部の引張強度が、巻始め部を除い
た部分の引張強度より大きい、という構造とすることに
より、前記導電性芯体を用いて製造した正極板、及び負
極板は、渦巻状電極体を製造する巻回工程において、極
板の巻回方向への伸びが少なくなり巻きずれや渦巻状電
極体の変形が防止できる。また、前記導電性芯体を用い
た極板は、活物質の充填密度は確保されて極板容量の低
下が低く抑えられる。
As described above, according to the present invention, in a strip-shaped conductive core having a large number of holes used for a spiral electrode body, the tensile strength of the winding start portion is such that the winding start portion has By adopting a structure that is larger than the tensile strength of the removed portion, the positive electrode plate and the negative electrode plate manufactured using the conductive core can be wound in the winding step of manufacturing the spiral electrode body. Elongation in the rotating direction is reduced, and winding deviation and deformation of the spiral electrode body can be prevented. Further, in the electrode plate using the conductive core, the filling density of the active material is ensured, and a decrease in electrode plate capacity is suppressed to a low level.

【0043】従って、本発明は、エネルギ密度の高い電
池を歩留まり良く生産するのに有効である。
Therefore, the present invention is effective for producing a battery having a high energy density with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の導電性芯体を示す図であ
る。
FIG. 1 is a diagram showing a conductive core according to a first embodiment of the present invention.

【図2】導電性芯体のパターンを示す図である。FIG. 2 is a view showing a pattern of a conductive core.

【図3】本発明の実施形態2の導電性芯体を示す図であ
る。
FIG. 3 is a view showing a conductive core according to a second embodiment of the present invention.

【図4】渦巻状電極体を製造する巻回工程を示す図であ
る。
FIG. 4 is a view showing a winding step of manufacturing a spiral electrode body.

【図5】渦巻状電極体を備えた電池の構造を示す図であ
る。
FIG. 5 is a view showing a structure of a battery provided with a spiral electrode body.

【図6】従来の導電性芯体を示す図である。FIG. 6 is a view showing a conventional conductive core.

【符号の説明】[Explanation of symbols]

1 正極板 2 負極板 3 セパレーター 4 渦巻状電極体 5 外装缶 6 封口蓋 10 実施形態1の導電性芯体 21 導電性芯体 22 導電性芯体片 50 巻芯 100 セパレーターロール 200 導電性芯体に開設された孔 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Spiral electrode body 5 Outer can 6 Sealing lid 10 Conductive core of Embodiment 1 21 Conductive core 22 Conductive core piece 50 Core 100 Separator roll 200 Conductive core Hole opened in

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 渦巻状電極体に用いられ、複数の孔が開
設された短冊状の導電性芯体であって、 前記導電性芯体において、その巻始め部の引張強度が、
前記巻始め部を除いた部分の引張強度よりも大きいこと
を特徴とする電池極板用の導電性芯体。
1. A strip-shaped conductive core used for a spiral electrode body and having a plurality of holes formed therein, wherein the conductive core has a tensile strength at a winding start portion thereof.
A conductive core for a battery electrode plate, wherein the conductive core has a tensile strength greater than that of a portion excluding the winding start portion.
【請求項2】 前記導電性芯体において、前記巻始め部
での芯体表面における孔の占める割合である開孔率が、
前記巻始め部を除いた部分の開孔率より小さいことを特
徴とする請求項1記載の電池極板用の導電性芯体。
2. In the conductive core, a porosity, which is a ratio of holes occupied on the surface of the core at the winding start portion, is as follows:
2. The conductive core for a battery electrode plate according to claim 1, wherein the porosity of the portion excluding the winding start portion is smaller than the porosity.
【請求項3】 前記導電性芯体において、前記巻始め部
の板厚が、前記巻始め部を除いた部分の板厚よりも厚い
ことを特徴とする請求項1または請求項2記載の電池極
板用の導電性芯体。
3. The battery according to claim 1, wherein, in the conductive core, a plate thickness of the winding start portion is larger than a plate thickness of a portion excluding the winding start portion. Conductive core for electrode plates.
【請求項4】 正極板と負極板とを、セパレーターを介
して巻回されてなる渦巻状電極体に電解液を含浸した発
電素体と、前記発電素体を収納する外装缶と、前記外装
缶の開口部を封口する封口蓋とを有する電池において、 前記正極板及び負極板の少なくとも一方に、請求項1か
ら請求項3のいずれかに記載の導電性芯体が用いられて
いることを特徴とする電池。
4. A power generating element in which a spiral electrode body obtained by winding a positive electrode plate and a negative electrode plate via a separator is impregnated with an electrolytic solution, an outer can containing the power generating element, and the outer case. A battery having a sealing lid for closing an opening of a can, wherein the conductive core according to any one of claims 1 to 3 is used for at least one of the positive electrode plate and the negative electrode plate. Features battery.
JP2000301108A 2000-09-29 2000-09-29 Conductive core for electrode plate of battery and battery using the same Pending JP2002110171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000301108A JP2002110171A (en) 2000-09-29 2000-09-29 Conductive core for electrode plate of battery and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000301108A JP2002110171A (en) 2000-09-29 2000-09-29 Conductive core for electrode plate of battery and battery using the same

Publications (1)

Publication Number Publication Date
JP2002110171A true JP2002110171A (en) 2002-04-12

Family

ID=18782690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000301108A Pending JP2002110171A (en) 2000-09-29 2000-09-29 Conductive core for electrode plate of battery and battery using the same

Country Status (1)

Country Link
JP (1) JP2002110171A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134109A (en) * 2010-12-24 2012-07-12 Fdk Twicell Co Ltd Negative electrode plate manufacturing method, negative electrode plate, and cylindrical battery with negative electrode plate
US20130224544A1 (en) * 2012-02-24 2013-08-29 Gs Yuasa International Ltd. Electrode plate, wound electrode group, and cylindrical battery
US8846229B2 (en) 2011-09-05 2014-09-30 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
WO2017188021A1 (en) * 2016-04-26 2017-11-02 日立マクセル株式会社 Electrochemical element electrode and lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134109A (en) * 2010-12-24 2012-07-12 Fdk Twicell Co Ltd Negative electrode plate manufacturing method, negative electrode plate, and cylindrical battery with negative electrode plate
US8846229B2 (en) 2011-09-05 2014-09-30 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
US20130224544A1 (en) * 2012-02-24 2013-08-29 Gs Yuasa International Ltd. Electrode plate, wound electrode group, and cylindrical battery
JP2013175370A (en) * 2012-02-24 2013-09-05 Gs Yuasa Corp Electrode plate, rolled electrode group, and cylindrical battery
CN103296247A (en) * 2012-02-24 2013-09-11 株式会社杰士汤浅国际 Electrode plate, wound electrode group, and cylindrical battery
US9531011B2 (en) 2012-02-24 2016-12-27 Gs Yuasa International Ltd. Electrode plate, wound electrode group, and cylindrical battery
WO2017188021A1 (en) * 2016-04-26 2017-11-02 日立マクセル株式会社 Electrochemical element electrode and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4359100B2 (en) Cylindrical alkaline storage battery
US5021306A (en) Spiral-wound galvanic cell
JP5602092B2 (en) Alkaline secondary battery using negative electrode plate for alkaline secondary battery
US20060269833A1 (en) Spirally-rolled electrodes with separator and the batteries therewith
JP5660625B2 (en) Manufacturing method of negative electrode plate
JPH11149914A (en) Cylindrical alkaline storage battery employing non-sintered electrode and its manufacture
JP4868809B2 (en) Cylindrical alkaline storage battery
US7604900B2 (en) Cylindrical alkaline storage battery
JP4439220B2 (en) Cylindrical alkaline storage battery and cylindrical nickel metal hydride secondary battery
JP2002110171A (en) Conductive core for electrode plate of battery and battery using the same
KR101010368B1 (en) Process for Preparation of Jelly-roll Type Electrode Assembly
US6551737B1 (en) Cylindrical alkaline storage battery
JP2003100339A (en) Method for manufacturing square battery and its electrode group
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JP4359099B2 (en) Cylindrical alkaline storage battery
JP4967229B2 (en) A negative electrode plate for an alkaline secondary battery and an alkaline secondary battery to which the negative electrode plate is applied.
JP4852779B2 (en) Cylindrical storage battery
JP3568356B2 (en) Method of manufacturing prismatic battery and prismatic battery
JP3706166B2 (en) Manufacturing method of nickel metal hydride secondary battery
JPH1021950A (en) Battery having non-sintered type electrode plate
JP2002025548A (en) Square alkaline storage battery
JP2013134940A (en) Cylindrical battery
JPH10321252A (en) Battery comprising electrode body with rolled structure
JP4168578B2 (en) Square alkaline storage battery and manufacturing method thereof
JP2001266899A (en) Lengthy electrode plate, cylindrical battery and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311