JPH11238418A - 化合物系超電導線 - Google Patents

化合物系超電導線

Info

Publication number
JPH11238418A
JPH11238418A JP10042602A JP4260298A JPH11238418A JP H11238418 A JPH11238418 A JP H11238418A JP 10042602 A JP10042602 A JP 10042602A JP 4260298 A JP4260298 A JP 4260298A JP H11238418 A JPH11238418 A JP H11238418A
Authority
JP
Japan
Prior art keywords
diameter
wire
filament
filaments
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10042602A
Other languages
English (en)
Inventor
Hiroshi Fuji
広 富士
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP10042602A priority Critical patent/JPH11238418A/ja
Publication of JPH11238418A publication Critical patent/JPH11238418A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 【課題】 伸線による異変形がない超電導フィラメント
を有し、臨界電流の向上が可能で、交流用として優れた
化合物系超電導線の提供。 【解決手段】 金属あるいは合金基地40の内部に無数
の超電導フィラメント42が配列されてなる芯部32
と、安定化部36とが少なくとも備えられてなる化合物
系超電導線において、前記芯部32の中心から外側に向
かってTaフィラメント41が放射線状に配列されてい
る化合物系超電導線31。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、超電導交流励磁コ
イル、変圧器、限流器などの超電線を用いた交流機器等
に利用される化合物系超電導線に関する。
【0002】
【従来の技術】一般に、化合物系超電導線は、超電導体
からなる芯部の外周に安定化部などからなる付属部を設
けた構造となっている。このような化合物系超電導線の
一種にNb3Sn系超電導線が知られている。図5は、
Nb3Sn系超電導線の例を示すものである。このNb3
Sn系超電導線1は、Cu−Sn合金からなる基地の内
部に無数の極細のNb3Sn超電導フィラメントが配列
されてなる芯部2の外周に、TaあるいはNbからなる
拡散防止層3を介してCu−Nb合金からなる補強層4
が設けられ、さらにこの外周にCuなどからなる安定化
層5が設けられたものである。このような構造のNb3
Sn系超電導線1は、補強層を有してない構造の超電導
線と比べて外部からの補強の必要がないため、コンパク
トな交流機器の作製など好適に用いられていた。
【0003】ところでこのようなNb3Sn系超電導線
1において、特に、交流用として用いられるものは、交
流通電時の結合損失を減らすため、超電導フィラメント
の直径が1μm以下とする必要がある。そのため従来の
交流用の超電導線は、一般に以下のようにして製造され
ていた。まず、図6(A)に示すようなNbからなるロ
ッド状の芯材10の外周にCu−Sn合金からなる管体
11を被せ、全体を縮径して図6(B)に示すような複
合体14を得る。次いで、図6(C)に示すように前記
複合体14を複数本集合してCu−Sn合金の管体15
に挿入し、さらに縮径し、図6(D)に示す一次素線1
6を得る。次いで、この一次素線16を図6(E)に示
すように複数本集合してCu−Sn合金からなる管体1
7に挿入し、更に縮径して図6(F)に示すような二次
素線18を作製する。
【0004】次いで、前記二次素線18を複数本集合し
て、図6(G)に示すようにCuのパイプ20に挿入し
た後、このパイプ20の外方に拡散防止層3となるべき
TaあるいはNbからなる拡散防止管22を被せ、つい
で該拡散防止管22の外周に補強層4となるべきCu−
Nb合金からなる補強管23を被せ、ついで該補強管2
3の外周に安定化層5となるべきCuなどからなる被覆
管24を被せ、さらに全体を最終的に得るべき直径まで
縮径した後、拡散熱処理を行うことにより、二次素線1
8の内部のNbの極細フィラメントとSnを反応させて
Nb3Sn超電導フィラメントを生成させることによ
り、図5に示すようなNb3Sn系超電導線1を製造し
ていた。この際、超電導線1の線径が0.1〜0.3m
m程度となったとき交流用として適切な直径が1μm以
下の超電導フィラメントが得られられると考えられてい
た。
【0005】
【発明が解決しようとする課題】しかしながら従来の化
合物系超電導線においては、直径が1μm以下の超電導
フィラメントを得るために、素線の集合、縮径加工を繰
り返して伸線するために製造工程が長くなり、Nbフィ
ラメントの直径がサブミクロン近くになると、Nbフィ
ラメントの径が長さ方向における各位置において不均一
になる異変形(ソーセージング現象)が起ることがあっ
た。このような異変形が起ると、得られる超電導フィラ
メントにも異変形が起り、超電導線の臨界電流が低下し
てしまうため、得られる超電導線の超電導特性に不満が
あった。
【0006】本発明は、上記事情に鑑みてなされたもの
で、伸線による異変形がない超電導フィラメントを有
し、臨界電流の向上が可能で、交流用として優れた化合
物系超電導線を提供することにある。
【0007】
【課題を解決するための手段】本発明にあっては、金属
あるいは合金基地の内部に無数の超電導フィラメントが
配列されてなる芯部と、安定化部とが少なくとも備えら
れてなる化合物系超電導線において、前記芯部の中心か
ら外側に向かってTaフィラメントが放射線状に配列さ
れていることを特徴とする化合物系超電導線を前記課題
の解決手段とした。
【0008】
【発明の実施の形態】以下、本発明の化合物超電導線を
Nb3Sn系超電導線に適用した一実施形態について説
明する。図1は、本発明の実施形態のNb3Sn系超電
導線の例を示す断面図であり、図中符号31はNb3
n系超電導線である。このNb3Sn系超電導線31
は、芯部32と、これの外周に設けられた拡散防止層3
3と、該拡散防止層33の外周に設けられたクッション
層34と、該クッション層34の外周に設けられた補強
層35と、さらにこの補強層35の外周に設けられた安
定化層(安定化部)36とから概略構成されている。前
記芯部32は、Cu−Sn合金からなる基地40の内部
に配列された複数本のTaフィラメント41と無数のN
3Sn超電導フィラメント42とから構成されてお
り、Taフィラメント41が芯部32の中心から外側に
向かって*状(アステリスク記号状)や十字状などの放
射線状(図面では*状)に配列された構造のものであ
る。
【0009】前記拡散防止層33は、TaあるいはNb
からなるものである。前記クッション層34は、Cuな
どのクッション材からなるものであり、その厚みは15
〜17μm程度である。前記補強層35は、Cu−Nb
合金などの補強材からなるものである。前記安定化層3
6は、Cu、Alなどの金属材料などの安定化材からな
るものである。
【0010】次に、図1に示したNb3Sn系超電導線
の製造例について説明する。Nb3Sn系超電導線31
を製造するには、まず、図2(A)に示すようにNbロ
ッドからなる芯材50にCu−Sn合金からなる管体5
1を被せた後、スウェージング加工、引抜加工などの縮
径加工によって所望の直径まで縮径して図2(B)に示
す複合体54を作製する。前記芯材50としては、Nb
またはNbをTiに添加してなるものを用いるのが望ま
しく、Tiが添加されていると無添加の場合と比べて高
磁界における臨界電流特性が向上する。なお、管体51
は図面に示すような単管状のものに限るものではなく、
柱状体に複数の透孔が形成された形状のものなどを用
い、複数の透孔の各々に芯材50を挿入して複合材を形
成することもできる。
【0011】次いで、前記複合体54を複数本集合して
Cu−Sn合金の管体55に図2(C)に示すように収
納して縮径し、図2(D)に示す一次素線56を作製
し、次いで、この一次素線56を図2(E)に示すよう
に複数本集合してCu−Sn合金からなる管体57に挿
入し、更に縮径加工を施して図2(F)に示すような二
次素線58を作製する。この二次素線58の内部構造
は、Cu−Sn合金からなる基地の内部にNbからなる
極細のフィラメントが多数分散された構造となってい
る。
【0012】一方、Taロッドからなる芯材60にCu
からなる管体61を被せた後、スウェージング加工、引
抜加工などの縮径加工によって所望の直径まで縮径して
図2(G)に示すTa複合線62を作製する。なお、T
a複合線62としては、Cuからなる基地の内部にTa
フィラメントが多数分散された構造のものであってもよ
い。
【0013】次いで、図3に示すように複数本の二次素
線58と複数本のTa複合線62を集合して集合体62
aを作製するが、この際、Ta複合線62が集合体62
aの中心から外側に向かって*状や十字状などの放射線
状(図面では*状)に配列されるようにする。なお、前
記二次素線58形成用として用いたCu−Sn合金のS
n濃度が低い場合には、前記集合体62aの外周にSn
のメッキ層を形成した後、以下の工程に用いても良い。
続いて、図3に示すように前記集合体62aの外周に拡
散防止層となるべきTaあるいはNbからなる拡散防止
管63を被せた後、この拡散防止管63の外周にクッシ
ョン材からなる管体64を被せ、続いて該管体64の外
周に補強材からなる補強管65を被せ、さらに該補強管
65の外周に安定化材からなる被覆管66を被せ、更に
全体を最終的に得るべき直径(0.1〜0.3mm程
度)まで縮径加工により伸線し、素線を形成する。
【0014】前記管体64の厚みは、目的とする超電導
線線径によって異るが、10μm以上が好ましく、より
好ましくは15μm以上〜20μm以下とされる。管体
64の厚みが10μm未満であると薄過ぎて前記管体6
4自身にクラックが生じたり、あるいは拡散防止管63
までクラックが生じてしまう恐れがあり、伸線できる長
さを大幅に向上させることができない。また、20μm
を超えて厚くしてももはや効果の増大は期待できず、目
的とする超電導線内のCuの割合が多くなりすぎて超電
導部分の割合が少なくなる。
【0015】前記補強管65をなす補強材としてCu−
Nb合金が用いられた場合、補強管65はCuの金属マ
トリックスの内部にNbフィラメントが多数分散配列さ
れた構造を有している。この補強管65は、CuとNb
の両元素が互いにほとんど固溶しないという性質を有す
ることを利用して製造されたもので、Cu−Nb合金を
その溶湯から鋳造した際に、Cuマトリックス中にNb
樹枝状晶が生成された鋳塊を得ることができ、この鋳塊
を冷間線引加工することでNb樹枝状晶を引き延ばして
フィラメント状に加工することができ、これによりCu
のマトリックスの内部にNbフィラメントが分散配列さ
れた構造が得られる。このNbフィラメントは、Cuの
マトリックス中に分散配列されるが、このNbフィラメ
ントがCuのマトリックスを強化するので、補強管65
はCuからなるものより耐力が向上する。更に、Nbは
Cuにほとんど固溶しないので、補強管65の導電率が
低下することもなく、補強管65の導電率は充分に高い
ものとなる。
【0016】ここで縮径加工を施して伸線するとき、前
述のようにTa複合線62が集合体62aの中心から外
側に向かって放射線状に配列すると、Ta複合線62中
のTaの強度が高いために、Nbフィラメントの直径が
サブミクロン近くになっても、Nbフィラメントに異変
形が起るのを防止でき、これによって後工程の拡散熱処
理により得られる超電導フィラメント42に異変形が起
ることがなく、良好な超電導フィラメント42が得られ
る。また、縮径加工を施して伸線するとき、Taあるい
はNbからなるからなる拡散防止管63と、Cu−Nb
合金からなる補強管65との間にCuからなる管体64
を介在すると、隣合う金属層間の整合が良好となるの
で、縮径加工が容易となり、伸線できる長さを大幅に向
上させることができ、線長さが大幅に長い素線が得られ
る。
【0017】最後に、前記素線を500〜650℃で数
十時間〜数百時間加熱する拡散熱処理を行うことによ
り、図1に示すようなNb3Sn系超電導線31を製造
することができる。
【0018】このようにして得られたNb3Sn系超電
導線31にあっては、Cu−Sn合金からなる基地40
の内部に無数のNb3Sn超電導フィラメント42が配
列されてなる芯部32の外周上に安定化層36が設けら
れてなる化合物系超電導線において、前記芯部32の中
心から外側に向かってTaフィラメント41が放射線状
に配列されたことにより、その製造の際に縮径加工を施
して伸線するとき、Taフィラメント41をなすTaの
強度が高いために、Nbフィラメントの直径がサブミク
ロン近くになっても、Nbフィラメントに異変形が起る
のを防止でき、伸線による異変形がない良好なNb3
n超電導フィラメント42を有することができ、また、
Taフィラメント41をなすTaがNb3Sn超電導フ
ィラメント42に必要なSnと反応せず、さらにTaフ
ィラメント41は放射線状に配列されているので、Sn
を外部メッキにて供給するときのSnの拡散を阻害しな
いので、従来の交流用の超電導線に比べて臨界電流が向
上し、超電導特性が優れる。また、前記Taが非超電導
体であるので、交流通電時の結合損失を増加させず、交
流用の超電導線として特性が優れており、交流用に好適
に用いることができる。さらに、前記Taは強度が高い
ため、拡散熱処理後の歪み特性が向上し、機械的強度が
優れる。
【0019】なお、前記実施形態においては、芯部32
と、安定化層(安定化部)36との間に、拡散防止層3
3とクッション層34と補強層35などの付属部が介在
されている場合について説明したが、これらの付属部は
必ずしも設ける必要がなく、目的とする超電導線の特性
によって適宜変更可能である。また、安定化層(安定化
部)36が最外層に設けられる場合について説明した
が、必ずしもこの限りでなく、最外層以外の場所に設け
られていてもよい。また、Nb3Sn系超電導線に本発
明の化合物系超電導線を適用した例について説明した
が、本発明の化合系超電導線をNb3Snの他、Nb3G
a、Nb3Ge、Nb3Al、V3Ga、Nb−Tiなど
の超電導線に適用してもよいのは勿論である。
【0020】
【実施例】以下、本発明を、実施例および比較例によ
り、具体的に説明するが、本発明はこれらの実施例のみ
に限定されるものではない。 (実施例)直径10mmのNb−1.2wt%Tiロッ
ドをCu−13wt%Sn合金からなる外径16mm、
内径11mmの管体に挿入し、縮径して直径1.0mm
の複合体を得た。次にこの複合体を19本集合し、Cu
−8wt%Sn合金からなる外径9mm、内径6mmの
管体に挿入し、縮径加工を行って直径1.0mmの一次
素線を得た。次いで、この一次素線を61本集合し、C
u−8wt%Sn合金からなる外径9mm、内径7mm
の管体に挿入し、縮径加工を行って直径1.0mmの二
次素線を作製した。一方、直径10mmのTaロッド
を、外径11mm、内径10mmのCuからなる管体に
挿入し、縮径して直径1.0mmのTa複合線を得た。
【0021】次いで、前述のようにして作製した18本
の二次素線と、19本のTa複合線を集合して集合体を
作製した。このとき、Ta複合線が集合体の中心から外
側に向かって放射線状に配列されるようにした。続い
て、この集合体の外周に、外径8mm、内径7mmのT
aからなる拡散防止管を被せ、ついでこの拡散防止管の
外周に外径9mm、内径8mmのCuからなる管体を被
せた後、この管体の外周に外径13mm、内径9mmの
Cu−20wt%Nbからなる補強管を被せ、さらにこ
の補強管の外周に外径14mm、内径13mmのCuか
らなる被覆管を被せた後、全体を径0.2mmまで縮径
した後、675℃で10日間加熱する拡散熱処理を行う
ことにより、線長1kmのCu−Nb/(Nb,Ti)
3Sn超電導線を得た。このようにして得られた超電導
線の芯部には、Cu−Sn合金からなる基地の内部に径
0.3μmの(Nb,Ti)3Sn超電導フィラメント
が配列されており、又、径10μmのTaフィラメント
が芯部の中心から外側に向かって放射線状に配列された
構造のものであった。ここで得られた超電導線の超電導
フィラメントの占積率は、13%であった。
【0022】(比較例)芯部にTaフィラメントが配列
されていない以外は前記実施例と同様にしてCu−Nb
/(Nb,Ti)3Sn超電導線を得た。ここで得られ
た超電導線の超電導フィラメントの占積率は、実施例の
ものと同じ値の13%であった。
【0023】上記実施例、比較例で得られた超電導線を
液体ヘリウムで冷却して通電した場合の臨界電流と磁場
との関係について調べた。その結果を図4に示す。図4
中、曲線は実施例で得られた超電導線の臨界電流と磁
場との関係を示す線であり、曲線は比較例で得られた
超電導線の臨界電流と磁場との関係を示す線である。図
4から明らかなように、Taフィラメントが芯部の中心
から外側に向かって放射線状に配列された構造の実施例
の超電導線は、比較例の超電導線に比べて臨界電流が1
0%向上していることが分った。また、上記実施例、比
較例で得られた超電導線のヒステリシス損失を調べたと
ころ、両者はほぼ同じであった。
【0024】
【発明の効果】以上説明したように本発明の化合物系超
電導線にあっては、金属あるいは合金基地の内部に無数
の超電導フィラメントが配列されてなる芯部と、安定化
部とが少なくとも備えられてなる化合物系超電導線にお
いて、前記芯部の中心から外側に向かってTaフィラメ
ントが放射線状に配列されたことにより、その製造の際
に縮径加工を施して伸線するとき、Taフィラメントを
なすTaの強度が高いために、熱処理により超電導フィ
ラメントとなるフィラメントの直径がサブミクロン近く
になっても、このフィラメントに異変形が起るのを防止
でき、伸線による異変形がない良好な超電導フィラメン
トを有することができ、また、Taフィラメントをなす
Taが、メッキ法により拡散させる超電導金属間化合物
を構成する一種以上の金属元素と反応せず、さらにTa
フィラメントは放射線状に配列されているので、超電導
金属間化合物を構成する一種以上の金属元素を外部メッ
キにて供給するときの金属元素の拡散を阻害しないの
で、従来の交流用の化合物系超電導線に比べて臨界電流
が向上し、超電導特性が優れるという利点がある。ま
た、前記Taが非超電導体であるので、交流通電時の結
合損失を増加させず、交流用の超電導線として特性が優
れており、交流用に好適に用いることができる。さら
に、前記Taは強度が高いため、拡散熱処理後の歪み特
性が向上し、機械的強度が優れる。
【図面の簡単な説明】
【図1】 本発明の化合物系超電導線の一実施形態を示
す拡大断面図である。
【図2】 (A)〜(G)は、図1の化合物系超電導線
の製造例を説明するための断面図である。
【図3】 図1の化合物系超電導線の製造例を説明する
ための断面図である。
【図4】 実施例、比較例で得られた超電導線の臨界電
流と磁場の関係を示す線図である。
【図5】 従来のNb3Sn系超電導線の例を示す拡大
断面図である。
【図6】 (A)〜(G)は、従来のNb3Sn系超電
導線の製造例を工程順に示した断面図である。
【符号の説明】
31・・・超電導線、32・・・芯部、36・・・安定化層(安
定化部)、40・・・基地、41・・・Taフィラメント、4
2・・・超電導フィラメント。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 金属あるいは合金基地の内部に無数の超
    電導フィラメントが配列されてなる芯部と、安定化部と
    が少なくとも備えられてなる化合物系超電導線におい
    て、前記芯部の中心から外側に向かってTaフィラメン
    トが放射線状に配列されていることを特徴とする化合物
    系超電導線。
JP10042602A 1998-02-24 1998-02-24 化合物系超電導線 Withdrawn JPH11238418A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10042602A JPH11238418A (ja) 1998-02-24 1998-02-24 化合物系超電導線

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10042602A JPH11238418A (ja) 1998-02-24 1998-02-24 化合物系超電導線

Publications (1)

Publication Number Publication Date
JPH11238418A true JPH11238418A (ja) 1999-08-31

Family

ID=12640609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10042602A Withdrawn JPH11238418A (ja) 1998-02-24 1998-02-24 化合物系超電導線

Country Status (1)

Country Link
JP (1) JPH11238418A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983582A2 (de) * 2007-04-18 2008-10-22 European Advanced Superconductors GmbH & Co. Kg Multifilamentsupraleiter sowie Verfahren zu dessen Herstellung
JP2012243685A (ja) * 2011-05-23 2012-12-10 National Institute For Materials Science Nb3Al超伝導線の前駆体線及びNb3Al超伝導線並びにNb3Al超伝導線の前駆体線の製造方法及びNb3Al超伝導線の製造方法
EP2752856A4 (en) * 2011-08-30 2015-09-16 Japan Superconductor Tech PRELIMINARY MANUFACTURER OF A SUPERCONDUCTIVE NB3SN WIRE MATERIAL AND SUPERCONDUCTIVE NB3SN WIRE MATERIAL
JP2020161282A (ja) * 2019-03-26 2020-10-01 三菱電機株式会社 超電導線の接続構造および超電導線の接続方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1983582A2 (de) * 2007-04-18 2008-10-22 European Advanced Superconductors GmbH & Co. Kg Multifilamentsupraleiter sowie Verfahren zu dessen Herstellung
EP1983582A3 (de) * 2007-04-18 2011-08-31 European Advanced Superconductors GmbH & Co. KG Multifilamentsupraleiter sowie Verfahren zu dessen Herstellung
US8173901B2 (en) 2007-04-18 2012-05-08 European Advanced Superconductor Gmbh & Co. Kg Multifilament superconductor, as well as method for its production
JP2012243685A (ja) * 2011-05-23 2012-12-10 National Institute For Materials Science Nb3Al超伝導線の前駆体線及びNb3Al超伝導線並びにNb3Al超伝導線の前駆体線の製造方法及びNb3Al超伝導線の製造方法
EP2752856A4 (en) * 2011-08-30 2015-09-16 Japan Superconductor Tech PRELIMINARY MANUFACTURER OF A SUPERCONDUCTIVE NB3SN WIRE MATERIAL AND SUPERCONDUCTIVE NB3SN WIRE MATERIAL
JP2020161282A (ja) * 2019-03-26 2020-10-01 三菱電機株式会社 超電導線の接続構造および超電導線の接続方法

Similar Documents

Publication Publication Date Title
KR102587809B1 (ko) 강화된 초전도성 와이어의 제작
JP2016195100A (ja) Nb3Snを含有する超伝導線材のためのPITエレメントを有する半完成線材、及びこの半完成線材を製造する方法
US4195199A (en) Superconducting composite conductor and method of manufacturing same
JP2013062239A (ja) Nb3Sn超電導線材及びその製造方法
US7505800B2 (en) Superconductive element containing Nb3Sn
JP4996084B2 (ja) 超伝導素子の製造方法
JPH11238418A (ja) 化合物系超電導線
US20110136672A1 (en) Superconductors with improved mecanical strength
JP3701349B2 (ja) 超電導線の製造方法及び超電導線
JPH08180752A (ja) Nb3 Sn超電導線およびその製造方法
JP3754522B2 (ja) Nb▲3▼Sn超電導線材
EP1569285B1 (en) Superconductive element containing Nb3Sn
JPH0570888B2 (ja)
JP3585770B2 (ja) 超電導導体およびその製造方法
JP2878390B2 (ja) 超電導発電機用Nb▲下3▼Sn超電導線の製造方法
JPH05804B2 (ja)
JP3182978B2 (ja) 永久電流で運転されるマグネット用Nb▲3▼Sn超電導線材およびその製造方法
JP2003045247A (ja) 超電導線材
JP2742436B2 (ja) 化合物系超電導撚線の製造方法
JP2001057118A (ja) Nb3Sn化合物超電導線およびその製造方法
JPH087681A (ja) A3 b型化合物超電導線およびその製造方法
JP3265618B2 (ja) 化合物超電導線用の複合ビレット、及び化合物超電導線の製造方法
JPH05325664A (ja) 化合物超電導線材
JP3086487B2 (ja) Nb3Sn交流超電導線の製造方法
JP2742437B2 (ja) 化合物系超電導撚線の製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510