JPH11236639A - Aluminum-magnesium-silicon series aluminum alloy sheet for forming excellent in surface property - Google Patents

Aluminum-magnesium-silicon series aluminum alloy sheet for forming excellent in surface property

Info

Publication number
JPH11236639A
JPH11236639A JP10056159A JP5615998A JPH11236639A JP H11236639 A JPH11236639 A JP H11236639A JP 10056159 A JP10056159 A JP 10056159A JP 5615998 A JP5615998 A JP 5615998A JP H11236639 A JPH11236639 A JP H11236639A
Authority
JP
Japan
Prior art keywords
orientation
less
aluminum alloy
alloy
texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10056159A
Other languages
Japanese (ja)
Other versions
JP4063388B2 (en
Inventor
Katsushi Matsumoto
克史 松本
Masahiro Yanagawa
政洋 柳川
Yasuo Takagi
康夫 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Alcoa Yuso Kizai KK
Original Assignee
Kobe Steel Ltd
Shinko Alcoa Yuso Kizai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26054633&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11236639(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd, Shinko Alcoa Yuso Kizai KK filed Critical Kobe Steel Ltd
Priority to JP05615998A priority Critical patent/JP4063388B2/en
Priority to US09/375,465 priority patent/US6231809B1/en
Priority to DE19938995A priority patent/DE19938995C5/en
Publication of JPH11236639A publication Critical patent/JPH11236639A/en
Application granted granted Critical
Publication of JP4063388B2 publication Critical patent/JP4063388B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an Al-Mg-Si series aluminum alloy for forming in which ridging marks are suppressed. SOLUTION: In an Al-Mg-Si series alloy sheet contg., by weight, 0.2 to 1.0% Mg and 0.2 to 1.5% Si, as to the texture, the orientation distributed density in the Goss orientation is regulated to <=3, the orientation distributed density in the PP orientation is regulated to <=3, and the orientation distributed density in the Brass orientation is regulated to <=3. As the alloy components, one or more kinds among, by weight, <=1.0% Mn, <=0.3% Cr, <=1.0% Fe, <=0.3% Zr, <=0.3% V and 0.1% Ti by 0.01 to 1.5% in total and moreover one or >= two kinds among <=1.0% Cu, <=0.2% Ag, <=1.0% Zn and <=0.2% Sn by 0.01 to 1.5% in total may be contained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プレス成形性に優
れ、特に表面性状に優れたAl−Mg−Si系アルミニ
ウム合金板(以下、「アルミニウム」は省略する)に関
し、例えば屋根、インテリア、カーテンウオール等の建
材、器物、電機部品、光学機器、自動車、鉄道車両及び
航空機等の輸送機器、一般機械部品等の材料に好適なA
l−Mg−Si系合金板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Mg-Si-based aluminum alloy plate (hereinafter abbreviated as "aluminum") having excellent press formability, particularly excellent surface properties. Suitable for materials such as building materials such as walls, equipment, electrical parts, optical equipment, transportation equipment such as automobiles, railway vehicles and aircraft, and general mechanical parts.
The present invention relates to an l-Mg-Si alloy plate.

【0002】[0002]

【従来の技術】成形性に優れるアルミニウム板及びアル
ミニウム合金としては、従来からAl−Mg系合金が主
として用いられてきたが、塗装焼付硬化性が劣ること
や、プレス成型時にストレッチャーストレインマークが
発生しやすいことから、これに代わる合金として、Al
−Mg−Si系合金が注目されるようになってきてい
る。Al−Mg−Si系合金は、常温での成形性及び耐
食性に優れ、さらに時効処理により高強度が得られると
いう利点を持っている。
2. Description of the Related Art Al-Mg alloys have been mainly used as aluminum plates and aluminum alloys having excellent formability. However, they have poor paint bake hardenability and have stretcher strain marks during press molding. As an alternative to this alloy, Al
-Mg-Si based alloys have been attracting attention. Al-Mg-Si alloys have the advantages of being excellent in formability and corrosion resistance at room temperature and of obtaining high strength by aging treatment.

【0003】ところが、Al−Mg−Si系合金板材を
成形加工した場合、特開平7−228956号公報や特
開平8−232052号公報に記載されているように、
板材表面にリジングマークと呼ばれる表面荒れが発生す
ることが問題となっている。リジングマークは、板材を
成形加工用したときに圧延方向に対して平行方向に新た
に生じる筋状の凹凸であり、特に圧延方向に対して90
゜への加工、例えば引張り加工、しごき加工、深絞り加
工、張出し加工を行った場合、顕著に生じる。このリジ
ングマークが発生すると、インテリア、カメラケース、
自動車用外板材等の表面の美麗さが特に要求される製品
では外観不良として使用できない。
[0003] However, when an Al-Mg-Si alloy sheet material is formed and processed, as described in JP-A-7-228956 and JP-A-8-232052,
The problem is that surface roughness called ridging marks occurs on the surface of the plate material. The ridging mark is a streak-like unevenness newly generated in a direction parallel to the rolling direction when a sheet material is used for forming, and is particularly 90 ° in the rolling direction.
In the case of processing to ゜, for example, pulling processing, ironing processing, deep drawing processing, and overhanging processing, remarkable occurrence occurs. When this ridging mark occurs, the interior, camera case,
Products that require particularly beautiful surfaces, such as automotive outer panels, cannot be used as poor appearance.

【0004】前記特開平7−228956号公報や特開
平8−232052号公報は、Al−Mg−Si系合金
板材についてリジンマークの発生を防止する方法とし
て、熱間圧延条件やその他の各工程の処理条件を厳密に
制御し、微細かつ結晶学的方位がランダムな結晶粒を生
じさせることにより、リジンマークの発生を防止しよう
というものである。しかし、これらの先行技術はリジン
マークが発生しない板材自体の構成を解明したものでは
ないため、表面品質に対する昨今の厳しい要求に関して
はこれだけでは不十分であった。
Japanese Patent Application Laid-Open Nos. Hei 7-228956 and Hei 8-23205 disclose a method of preventing the formation of lysine marks on an Al-Mg-Si alloy sheet material by using hot rolling conditions and other steps. By controlling the processing conditions strictly and generating crystal grains having a fine and random crystallographic orientation, it is intended to prevent the occurrence of lysine marks. However, these prior arts do not elucidate the configuration of the plate material itself in which lysine marks do not occur, and thus these requirements alone were insufficient for the recent strict requirements for surface quality.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる問題点
に鑑みてなされたものであって、従来のAl−Mg−S
i系合金板材において発生していたリジンマークが抑制
された成形加工用Al−Mg−Si系アルミニウム合金
板を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in consideration of the conventional Al-Mg-S
An object of the present invention is to provide an Al-Mg-Si-based aluminum alloy sheet for forming processing in which lysine marks generated in an i-based alloy sheet material are suppressed.

【0006】[0006]

【課題を解決するための手段】本発明者らは、Al−M
g−Si系合金板材においてリジンマークの発生を抑制
するためには、従来の技術を越えた精密な集合組織制御
を行い、最終製品の集合組織として、Goss方位、P
P方位、Brass方位の発生を抑制することが有効で
あることを見いだした。すなわち、本発明に係る表面性
状に優れた成形加工用Al−Mg−Si系合金板は、A
l−Mg−Si系合金板であって、集合組織として、G
oss方位の方位分布密度が3以下、PP方位の位分布
密度が3以下、かつBrass方位の方位分布密度が3
以下であることを特徴とする。
Means for Solving the Problems The present inventors have proposed Al-M
In order to suppress the generation of lysine marks in the g-Si alloy sheet material, precise texture control beyond the conventional technology is performed, and the Goss orientation, P
It has been found that it is effective to suppress the generation of the P direction and the Brass direction. That is, the Al-Mg-Si alloy sheet for forming process excellent in surface properties according to the present invention is A
An l-Mg-Si alloy plate, wherein the texture is G
The orientation distribution density of the oss orientation is 3 or less, the location distribution density of the PP orientation is 3 or less, and the orientation distribution density of the Brass orientation is 3
It is characterized by the following.

【0007】Al−Mg−Si系合金が上記の集合組織
を有するとき、一様にリジングマークの発生が抑制され
るが、本発明に特に好適なAl−Mg−Si系合金は、
Mg:0.2〜1.5%、Si:0.2〜1.5%を含
有するAl−Mg−Si系合金である。これは、必要に
応じてさらに、Mn:1.0wt%以下、Cr:0.
3wt%以下、Fe:1.0wt%以下、Zr:0.3
wt%以下、V:0.3wt%以下、Ti:0.1wt
%以下のうち1種又は2種以上を合計で0.01〜1.
5wt%、Cu:1.0wt%以下、Ag:0.2w
t%以下、Zn:1.0wt%以下、Sn:0.2wt
%以下のうち1種又は2種以上を合計で0.01〜1.
5wt%、のいずれか又は両者を組み合わせて含有する
ことができる。
[0007] When the Al-Mg-Si alloy has the above-mentioned texture, the generation of ridging marks is uniformly suppressed, but the Al-Mg-Si alloy particularly suitable for the present invention is:
This is an Al-Mg-Si alloy containing 0.2 to 1.5% Mg and 0.2 to 1.5% Si. This is because, if necessary, Mn: 1.0 wt% or less, Cr: 0.
3 wt% or less, Fe: 1.0 wt% or less, Zr: 0.3
wt% or less, V: 0.3 wt% or less, Ti: 0.1 wt%
% Or less, and a total of 0.01 to 1.
5 wt%, Cu: 1.0 wt% or less, Ag: 0.2 w
t% or less, Zn: 1.0 wt% or less, Sn: 0.2 wt%
% Or less, and a total of 0.01 to 1.
5 wt%, or a combination of both.

【0008】[0008]

【発明の実施の形態】本発明者らが従来のアルミニウム
合金のプレス成形時にリジンマークが発生する原因を解
明すべく種々研究を重ねた結果、集合組織の制御が十分
になされていなかったためにリジンマークが発生するこ
とが明らかになった。ここで、アルミニウム合金の集合
組織について説明すると、アルミニウム合金の場合、下
記のCube方位、RW方位、CR方位、Brass方
位、Goss方位、PP方位、C方位、S方位と呼ばれ
る集合組織が存在する。 Cube方位・・・・{001} <100> RW方位・・・・・・・・{001}<110> CR方位・・・・・・・・{001}<520> Brass方位・・{011}<221> Goss方位・・・・{011}<100> PP方位・・・・・・・・{011}<122> C方位・・・・・・・・・・{112}<111> S方位・・・・・・・・・・{123}<634> なお、本発明では基本的に、これらの方位から±10度
以内の方位のずれは同一の方位因子に属するものと定義
する。ただしBrass方位とPP方位に関しては±8
度以内の方位のずれは同一の方位因子に属するものと定
義する。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies to elucidate the cause of the formation of lysine marks during conventional aluminum alloy press forming, and as a result, the texture was not sufficiently controlled. It became clear that marks occurred. Here, the texture of the aluminum alloy will be described. In the case of an aluminum alloy, the following textures called Cube orientation, RW orientation, CR orientation, Brass orientation, Goss orientation, PP orientation, C orientation, and S orientation exist. Cube azimuth... {001} <100> RW azimuth ......... {001} <110> CR azimuth ....... {001} <520> Brass azimuth. } <221> Goss direction... {011} <100> PP direction... {011} <122> C direction... {112} <111> S azimuth..., {123} <634> In the present invention, azimuth deviations within ± 10 degrees from these azimuths are basically defined as belonging to the same azimuth factor. . However, ± 8 for Brass direction and PP direction
Orientation deviations within degrees are defined as belonging to the same orientation factor.

【0009】通常のアルミニウム合金の集合組織はこれ
らの方位因子から成立しており、これらの構成比率が変
化すると板材の塑性異方性(後述)が変化し、プレス成
形性が良くも悪くもなる。これらの方位の定量的な評価
方法として、方位分布密度がある。これは、ランダムな
方位に対する各方位の強度の割合で表され、通常のX線
回析法を用いて最低3面の完全正極点図を測定し、それ
から結晶方位分布関数を用いて求められる[下記参考文
献1、2参照]。あるいは、電子線回析法、SEM(Sc
anning-Electron-Microscopy)−ECP(Electron-Cha
nneling-Pattern)法、SEM−EBSP(Electron-Ba
ck-Scatterd-Pattern)法等を用いて測定したデータを
もとに、結晶方位分布関数を用いて方位分布密度を求め
ることができる。また、これらの方位分布は板厚方向に
変化しているため、板厚方向に何点か任意にとって平均
を取ることによって求める。 参考文献1:長島晋一編著、「集合組織」(丸善株式会
社刊)1984、P.8〜44 参考文献2:金属学会セミナー、「集合組織」(日本金
属学会編)1981、P.3〜7
[0009] The texture of a normal aluminum alloy is established from these orientation factors, and when these composition ratios change, the plastic anisotropy (described later) of the sheet material changes, and the press formability becomes good or bad. . As a quantitative evaluation method of these orientations, there is an orientation distribution density. This is expressed as a ratio of the intensity of each direction to a random direction, and is obtained by measuring a perfect positive electrode diagram of at least three planes using a normal X-ray diffraction method and then using a crystal orientation distribution function [ See References 1 and 2 below]. Alternatively, electron diffraction, SEM (Sc
anning-Electron-Microscopy) -ECP (Electron-Cha)
nneling-Pattern method, SEM-EBSP (Electron-Ba)
The orientation distribution density can be obtained by using a crystal orientation distribution function based on data measured using the ck-Scattered-Pattern method or the like. Further, since these azimuth distributions change in the thickness direction, they are determined by averaging some points in the thickness direction. Reference 1: edited by Shinichi Nagashima, “Texture” (Maruzen Co., Ltd.) 1984, pp.8-44 Reference 2: Seminar of the Institute of Metals, “Texture” (edited by The Japan Institute of Metals) 1981, pp.3-7

【0010】本発明者らは集合組織を種々変化させたA
l−Mg−Si系合金板材につきリジングマーク発生の
有無を調べ、その発生メカニズムを研究した。その結果
面内塑性異方性が強いGoss方位、PP方位、Bra
ss方位がリジングマーク発生の犯人であることを見出
した。より詳しくは、Goss方位、PP方位、Bra
ss方位においては他の方位に比べてr値(ランクフォ
ード値)の面内異方性が非常に大きく、具体的には、G
oss方位では幅方向、PP方位では圧延方向より20
°回転した方向、Brass方位では圧延方向より55
°回転した方向で引張った場合に板厚減少がほとんど生
じないのに対して、これら以外の方位は板厚減少を引き
起こし、この板厚減少率の顕著な差が表面の凹凸(リジ
ングマーク)の原因になっていることを見出した。
[0010] The present inventors have changed the texture of A
The presence / absence of ridging marks in the l-Mg-Si alloy sheet was examined, and the mechanism of the generation was studied. As a result, Goss orientation, PP orientation, Bra with strong in-plane plastic anisotropy
We found that the ss direction was the culprit of the ridging mark. More specifically, Goss direction, PP direction, Bra
In the ss orientation, the in-plane anisotropy of the r value (Rankford value) is much larger than in other orientations.
In the oss direction, the width direction, and in the PP direction, 20 from the rolling direction.
° Rotation direction, Brass orientation 55 degrees from rolling direction
° Thickness hardly decreases when pulled in the direction of rotation, whereas other orientations cause thickness reduction, and the remarkable difference in the thickness reduction rate is due to the unevenness of the surface (ridging mark). I found that it was the cause.

【0011】従って、Goss方位、PP方位、Bra
ss方位を低減させることがリジングマークの抑制に効
果的であるが、特にGoss方位の方位分布密度を3以
下、PP方位の方位分布密度を3以下、かつBrass
方位の方位分布密度を3以下としたときリジングマーク
が抑制でき、それぞれの方位分布密度がこれを越えると
リジングマークが顕著に発生して表面品質が劣化する。
Goss方位の方位分布密度が2以下、PP方位の分布
密度が2以下、かつ、Brass方位の分布密度が2以
下であるとより好ましい。
Therefore, Goss direction, PP direction, Bra
It is effective to reduce the ss azimuth to suppress the ridging mark. In particular, the azimuth distribution density of the Goss azimuth is 3 or less, the azimuth distribution density of the PP azimuth is 3 or less, and Brass.
When the azimuth distribution density of the azimuth is set to 3 or less, ridging marks can be suppressed, and when each azimuth distribution density exceeds this, ridging marks are remarkably generated and the surface quality is deteriorated.
More preferably, the distribution density of the Goss orientation is 2 or less, the distribution density of the PP orientation is 2 or less, and the distribution density of the Brass orientation is 2 or less.

【0012】次に、Al−Mg−Si系合金の合金元素
について説明する。 (Mg、Si)これらの元素は、GPゾーンと称される
Mg2Si組成の集合体(クラスター)もしくは中間相
を形成し、ベーキング処理による硬化に寄与する重要な
元素である。また、板材の加工硬化特性を向上させ、プ
レス成形時の破断限界を高める役割を果たす。さらに、
均熱処理中に生成したMg2Si安定相は再結晶方位の
優先核生成サイトとして働き、板材の集合組織形成に大
きな影響を及ぼす元素である。Mg、Si含有量がそれ
ぞれ0.2wt%未満になるとベーキング処理時に十分
な強度が得られず、それぞれ1.5wt%を越えるとベ
ーキング処理時の硬化特性の劣化、粗大な化合物を形成
しそれが破壊の起点となるための成形性の劣化を起こ
し、さらに所望の集合組織形成を阻害する。より好まし
くは、Mg:0.8%以下、Si:1.3%以下であ
る。
Next, alloy elements of the Al-Mg-Si alloy will be described. (Mg, Si) These elements are important elements that form aggregates (clusters) or intermediate phases of Mg 2 Si composition called GP zones and contribute to hardening by baking treatment. Further, it serves to improve the work hardening characteristics of the sheet material and to increase the breaking limit during press forming. further,
The Mg 2 Si stable phase generated during the soaking treatment acts as a preferential nucleation site for the recrystallization orientation, and is an element that has a great influence on the texture formation of the sheet material. If the respective contents of Mg and Si are less than 0.2 wt%, sufficient strength cannot be obtained during the baking treatment, and if each exceeds 1.5 wt%, the curing characteristics deteriorate during baking treatment and coarse compounds are formed. Deterioration of formability as a starting point of destruction is caused, and further, formation of a desired texture is inhibited. More preferably, the content of Mg is 0.8% or less and the content of Si is 1.3% or less.

【0013】(Mn、Cr、Fe、Zr、V、Ti)M
n、Cr、Zr、V、Tiは530℃以上の高温で4h
r以上の長時間均質化熱処理することで、微細な析出物
を多く形成する。その析出物は再結晶方位の優先核生成
サイトとして働き、好適な集合組織を得るために有効で
ある。また結晶粒径を微細化し成形割れ限界を高めるた
めにも有効である。さらに、Mn、Crはベーキング処
理による硬化に寄与する重要な元素である。しかし、M
n、Cr、Zr、V、Tiのいずれかが、それぞれ1.
0wt%、0.3wt%、0.3wt%、0.3wt
%、0.1wt%を越えると、粗大な化合物を成形する
ことによって破壊の起点となるため顕著に成形性が劣化
し、そして所望の集合組織形成を阻害する。FeはAl
7Cu2Fe、Al12(Fe、Mn)3Cu12、(Fe、
Mn)Al6、α−AlFeSi、β−AlFeSi等
の晶出物を形成し、これらの晶出物は、再結晶方位の優
先核生成サイトとして働き、好適な集合組織を得るため
に有効である。しかし、含有量が1.0wt%を超える
と、粗大な化合物を形成することによって破壊の起点に
なるため、顕著に形成性が劣化し、そして所望の集合組
織形成を阻害する。また、これらの元素の合計が0.0
1wt%未満では上記の効果がなく、1.5wt%を越
えると、粗大な化合物を成形することによって破壊の起
点となるため顕著に成形性が劣化し、そして所望の集合
組織形成を阻害する。なお、これらの元素の特に好まし
い範囲は、Mn:0.5wt%以下、Cr:0.2wt
%以下、Fe:0.5wt%以下、Zr:0.2wt%
以下、V:0.2wt%以下、Ti:0.05wt%以
下である。
(Mn, Cr, Fe, Zr, V, Ti) M
n, Cr, Zr, V, and Ti are 4 hours at a high temperature of 530 ° C. or higher.
By performing the homogenizing heat treatment for a long time of r or more, many fine precipitates are formed. The precipitate functions as a preferential nucleation site for the recrystallization orientation and is effective for obtaining a suitable texture. It is also effective in reducing the crystal grain size and raising the limit of forming cracks. Furthermore, Mn and Cr are important elements that contribute to hardening by baking. But M
n, Cr, Zr, V, or Ti is 1.
0 wt%, 0.3 wt%, 0.3 wt%, 0.3 wt
% Or more than 0.1 wt%, the formation of a coarse compound becomes a starting point of destruction, so that the moldability is remarkably deteriorated and the formation of a desired texture is inhibited. Fe is Al
7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 12 , (Fe,
Mn) Crystallized substances such as Al 6 , α-AlFeSi, β-AlFeSi are formed, and these crystallized substances act as preferential nucleation sites for recrystallization orientation and are effective for obtaining a suitable texture. . However, if the content exceeds 1.0 wt%, formation of a coarse compound becomes a starting point of destruction, so that the formability is remarkably deteriorated and the formation of a desired texture is inhibited. The sum of these elements is 0.0
If the amount is less than 1 wt%, the above-mentioned effect is not obtained. If the amount exceeds 1.5 wt%, a coarse compound is formed, which becomes a starting point of destruction, so that the formability is remarkably deteriorated and the formation of a desired texture is inhibited. Particularly preferred ranges of these elements are as follows: Mn: 0.5 wt% or less, Cr: 0.2 wt%.
%, Fe: 0.5 wt% or less, Zr: 0.2 wt%
Hereinafter, V: 0.2 wt% or less, Ti: 0.05 wt% or less.

【0014】(Cu、Ag、Zn、Sn)これらの元素
は、GPゾーンと称されるMg2Si組成の集合体(ク
ラスター)もしくは中間相の形成を促進する元素であ
る。また、Cu、Ag、Znはベーキング処理時の硬化
速度を速める働きがあり、Snはベーキング前の段階に
おいて室温時効を抑制し、ベーキング時の時効を促進す
る働きがある。しかし、これらの元素の合計が0.01
wt%未満では上記の効果がなく、一方、Cu、Ag、
Zn、Sn含有量がそれぞれ1.0wt%、0.2wt
%、1.0wt%、0.2wt%を越えるか、それらの
合計が1.5%を越えると、粗大な化合物を形成するこ
とによって破壊の起点となるため成形性の劣化、そして
所望の集合組織形成を阻害する。なお、これらの元素の
特に好ましい範囲は、Cu:0.5wt%以下、Ag:
0.1wt%以下、Zn:0.5wt%以下、Sn:
0.1wt%以下である。
(Cu, Ag, Zn, Sn) These elements are elements that promote the formation of an aggregate (cluster) or an intermediate phase having a Mg 2 Si composition called a GP zone. Further, Cu, Ag, and Zn have a function of accelerating the curing speed at the time of baking treatment, and Sn has a function of suppressing aging at room temperature in a stage before baking and promoting aging at the time of baking. However, the sum of these elements is 0.01
When the content is less than wt%, the above effect is not obtained.
Zn and Sn contents are 1.0 wt% and 0.2 wt%, respectively.
%, 1.0 wt%, 0.2 wt%, or the sum of them exceeds 1.5%, it becomes a starting point of destruction by forming a coarse compound. Inhibits tissue formation. Particularly preferred ranges of these elements are Cu: 0.5 wt% or less, and Ag:
0.1 wt% or less, Zn: 0.5 wt% or less, Sn:
0.1 wt% or less.

【0015】次に好適な製造条件について説明する。通
常の鋳造を行った後均質化熱処理を施すが、Mn、C
r、Fe、Zr、Vなどの遷移金属を添加する場合に
は、530℃以上の高温で4hr以上の長時間均質化熱
処理することで、微細な析出物を多く析出させることが
できる。これらの析出物は好適な集合組織を得るために
有効であり、また結晶粒径を微細化するためにも有効で
ある。次に熱間圧延を行い、冷間圧延を行うが、熱間圧
延の開始温度が450℃を越え、かつ熱間圧延終了温度
が360℃を越え、かつ最終冷間圧延率が85%以下で
あることで所望の集合組織を得ることができる。なお、
熱間圧延終了後に焼鈍を施してもよい。
Next, preferable manufacturing conditions will be described. After performing normal casting, a homogenizing heat treatment is performed.
When a transition metal such as r, Fe, Zr, or V is added, a large number of fine precipitates can be deposited by performing a homogenizing heat treatment at a high temperature of 530 ° C. or higher for 4 hours or longer. These precipitates are effective for obtaining a suitable texture, and are also effective for reducing the crystal grain size. Next, hot rolling and cold rolling are performed. The hot rolling start temperature exceeds 450 ° C., the hot rolling end temperature exceeds 360 ° C., and the final cold rolling reduction is 85% or less. In some cases, a desired texture can be obtained. In addition,
Annealing may be performed after hot rolling.

【0016】所望の集合組織を得るために特に大事なこ
とは、溶体化処理前の組織で、Goss方位からBra
ss方位までの、<110>軸が圧延面法線に平行な方
位が属するα方位群[下記参考文献3参照]が発達する
と、溶体化処理後のGoss方位、PP方位等の発達の
原因になる。そこで溶体化処理前の状態でα方位群の発
達を抑制することが必要である。このα方位群は熱間圧
延処理中に発達し、あるいは冷間圧延時にも圧下率が高
いほど発達する。従って、α方位群を抑制するために
は、熱延終了温度を高くして再結晶させることによって
熱延時のα方位群を低減させるか、あるいは冷間圧延率
を低減して冷延時のα方位群を低減させるかすることが
必要である。そのためには、熱間圧延時の終了温度を3
60℃以上にし、かつ最終冷間圧延率を85%以下にす
ることが望ましい。また、熱間圧延を450℃以上で開
始すると圧延中に再結晶が起こりやすくなり、圧延時に
形成されるα方位群以外の方位も形成されα方位群が減
少する。その結果、溶体化処理前の組織でのα方位群が
弱くなり、溶体化処理後のGoss、Brass、PP
方位が低減し、リジングマーク抑制に寄与する。なお、
熱延終了後に焼鈍を施すことによって再結晶させ、熱延
α方位群を低減させてもよい。最後に溶体化処理が施さ
れるが、530℃以上の高温に保持することが望まし
い。 参考文献3:伊藤邦雄、「軽金属」43巻(1993)、5号、
P.285〜293
What is particularly important for obtaining a desired texture is the texture before the solution treatment, and the Brass orientation from the Goss orientation is important.
When the α-orientation group [see Reference 3 below] to which the <110> axis is parallel to the rolling surface normal up to the ss orientation develops, it may cause the development of the Goss orientation, PP orientation, etc. after the solution treatment. Become. Therefore, it is necessary to suppress the development of the α-orientation group before the solution treatment. The α-orientation group develops during the hot rolling process, or also develops during the cold rolling as the rolling reduction becomes higher. Therefore, in order to suppress the α-orientation group, the α-orientation group at the time of hot rolling is reduced by increasing the hot-rolling end temperature and recrystallizing, or the α-orientation at the time of cold rolling is reduced by reducing the cold rolling rate. It is necessary to reduce or reduce groups. For this purpose, the end temperature during hot rolling is set to 3
It is desirable that the temperature be 60 ° C. or more and the final cold rolling reduction be 85% or less. Further, when hot rolling is started at 450 ° C. or higher, recrystallization tends to occur during rolling, and other orientations than the α-orientation group formed during rolling are formed, and the α-orientation group decreases. As a result, the α-orientation group in the structure before the solution treatment becomes weak, and Goss, Brass, PP after the solution treatment are weakened.
The azimuth is reduced, contributing to the suppression of ridging marks. In addition,
After the completion of hot rolling, recrystallization may be performed by annealing to reduce the α-orientation group in hot rolling. Finally, a solution treatment is performed, but it is desirable to keep the temperature at 530 ° C. or higher. Reference 3: Kunio Ito, "Light Metals", Vol. 43 (1993), No. 5,
P.285-293

【0017】[0017]

【実施例】(実施例1)Al−0.6%Mg−1.0%
Si合金(以下、ベース合金と呼ぶ)、Al−0.6%
Mg−1.0%Si−0.1%Mn合金(以下、Mn添
加合金と呼ぶ)、Al−0.6%Mg−1.0%Si−
0.1%Fe合金(以下、Fe添加合金と呼ぶ)の3組
成の合金を通常の方法で鋳造し、550℃で8hrの均
質化熱処理を施した。その後熱間圧延(500℃開始)
で500mmから10〜1.5mm厚さの板とした。熱
間圧延の終了温度を変え、また熱間圧延後の焼鈍(本発
明では荒鈍という)の有無、さらには冷間圧延開始板圧
を変化させ、冷間圧延で1mm厚さの板とした後、55
0℃で1分の溶体化処理を施した。
EXAMPLES (Example 1) Al-0.6% Mg-1.0%
Si alloy (hereinafter referred to as base alloy), Al-0.6%
Mg-1.0% Si-0.1% Mn alloy (hereinafter referred to as Mn-added alloy), Al-0.6% Mg-1.0% Si-
An alloy of three compositions of 0.1% Fe alloy (hereinafter referred to as Fe-added alloy) was cast by a usual method, and subjected to a homogenizing heat treatment at 550 ° C. for 8 hours. Then hot rolling (starting at 500 ° C)
To make a plate having a thickness of 500 mm to 10 to 1.5 mm. The end temperature of the hot rolling was changed, the presence or absence of annealing after hot rolling (referred to as roughening in the present invention), and further, the cold rolling start plate pressure was changed to obtain a 1 mm thick plate by cold rolling. Later, 55
A solution treatment was performed at 0 ° C. for 1 minute.

【0018】これらの板材について15%の引張り変形
を与え、その後板の表面を塗装処理し、リジンマーク発
生の有無を判定した(リジングマークは塗装後によく目
立つようになって発見されるという特性をもつ)。ま
た、成形性の指標として、平面歪み引張り状態の張出し
成形試験を行い、割れ限界高さを測定した。集合組織の
測定は、溶体化処理後の板の表面、1/4厚さ、板厚中
心部の3面について、通常のX線回析法でターゲットは
Cuを用い、管電圧50kV、管電流200mAの条件
で(100)、(110)、(111)完全正極点図を
測定し、それから結晶方位分布関数を用いて各板厚部毎
の各方位の方位分布密度を計算し、それらの平均を取っ
て板全体の方位分布密度を求めた。表1にその結果を示
す。本発明材においてリジングマークの発生が抑制さ
れ、かつ成形性に優れていることが明らかである。
These plates were subjected to a 15% tensile deformation, and thereafter, the surfaces of the plates were subjected to a coating treatment to determine the presence or absence of lysine marks (the characteristic that the ridging marks became noticeable after coating and were found. Yes). In addition, as an index of formability, an overhang test in a state of plane strain tension was performed to measure a crack limit height. The texture was measured by using a Cu target as a target by a normal X-ray diffraction method, using a tube voltage of 50 kV, a tube current of three surfaces of the plate after solution treatment, a quarter thickness, and a central portion of the plate thickness. The (100), (110), and (111) perfect cathode spot diagrams were measured under the condition of 200 mA, and then the orientation distribution density of each orientation for each sheet thickness portion was calculated using the crystal orientation distribution function, and the average thereof was calculated. And the orientation distribution density of the entire plate was determined. Table 1 shows the results. It is apparent that the material of the present invention suppresses the generation of ridging marks and is excellent in moldability.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例2)表2に示すMg、Si、M
n、Cr、Fe、Zr、V、Tiなどの合金成分を含有
する種々の合金を通常の方法で鋳造し、550℃で8h
rの均質化処理を施した。その後熱間圧延(開始温度:
500℃)を行い、終了温度を変えて、10〜1.5m
m厚さの板とした。そして荒鈍を行うことなく冷間圧延
で1mm厚さの板とした後、550℃で1分の溶体化処
理を施した。
Example 2 Mg, Si, M shown in Table 2
Various alloys containing alloying components such as n, Cr, Fe, Zr, V, and Ti are cast by a usual method, and are heated at 550 ° C. for 8 hours.
r was homogenized. Then hot rolling (starting temperature:
500 ° C.), changing the end temperature to 10 to 1.5 m
m-thick plate. Then, a plate having a thickness of 1 mm was formed by cold rolling without roughening, and then subjected to a solution treatment at 550 ° C. for 1 minute.

【0021】[0021]

【表2】 [Table 2]

【0022】これらの板材について、リジンマーク発生
の有無の判定、張り出し成形試験による割れ限界高さの
測定及び集合組織の測定を実施例1と同様に行った。表
3にその結果を示す。本発明材においてリジングマーク
の発生が抑制され、かつ成形性に優れていることが明ら
かである。
With respect to these sheet materials, the determination of the occurrence of lysine marks, the measurement of the crack limit height by the overhang test, and the measurement of the texture were performed in the same manner as in Example 1. Table 3 shows the results. It is apparent that the material of the present invention suppresses the generation of ridging marks and is excellent in moldability.

【0023】[0023]

【表3】 [Table 3]

【0024】(実施例3)表4に示すMg、Si、M
n、Cr、Fe、Zr、V、Ti、Cu、Ag、Zn、
Snなどの合金成分を含有する種々の合金を通常の方法
で鋳造し、550℃で8hrの均質化処理を施した。そ
の後熱間圧延(開始温度:500℃)を行い、終了温度
を変えて、10〜1.5mm厚さの板とした。そして
鈍を行うことなく冷間圧延で1mm厚さの板とした後、
550℃で1分の溶体化処理を施した。
Example 3 Mg, Si, M shown in Table 4
n, Cr, Fe, Zr, V, Ti, Cu, Ag, Zn,
Various alloys containing alloy components such as Sn were cast by a usual method and homogenized at 550 ° C. for 8 hours. Thereafter, hot rolling (start temperature: 500 ° C.) was performed, and the end temperature was changed to obtain a plate having a thickness of 10 to 1.5 mm. And rough
After making a 1mm thick plate by cold rolling without dulling,
A solution treatment was performed at 550 ° C. for 1 minute.

【0025】[0025]

【表4】 [Table 4]

【0026】これらの板材について、リジンマーク発生
の有無の判定、張り出し成形試験による割れ限界高さの
測定及び集合組織の測定を実施例1と同様に行った。表
5にその結果を示す。本発明材においてリジングマーク
の発生が抑制され、かつ成形性に優れていることが明ら
かである。
For these sheet materials, the determination of the presence or absence of lysine marks, the measurement of the crack limit height by the overhang test, and the measurement of the texture were performed in the same manner as in Example 1. Table 5 shows the results. It is apparent that the material of the present invention suppresses the generation of ridging marks and is excellent in moldability.

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【発明の効果】本発明によれば、リジンマークが抑制さ
れた成形加工用Al−Mg−Si系アルミニウム合金板
を得ることができる。
According to the present invention, it is possible to obtain an Al-Mg-Si-based aluminum alloy sheet for forming with suppressed lysine marks.

フロントページの続き (72)発明者 高木 康夫 栃木県真岡市鬼怒ケ丘15番地 株式会社神 戸製鋼所真岡製造所内Continued on the front page (72) Inventor Yasuo Takagi 15 Kinugaoka, Moka-shi, Tochigi Pref. Kobe Steel, Ltd.Moka Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Al−Mg−Si系アルミニウム合金板
であって、集合組織として、Goss方位の方位分布密
度が3以下、PP方位の方位分布密度が3以下、かつB
rass方位の方位分布密度が3以下であることを特徴
とする表面性状に優れた成形加工用Al−Mg−Si系
アルミニウム合金板。
1. An Al—Mg—Si-based aluminum alloy sheet, wherein the texture has an orientation distribution density of 3 or less in Goss orientation, 3 or less in PP orientation, and B
An Al-Mg-Si-based aluminum alloy sheet for forming excellent in surface properties, wherein the orientation distribution density of the ras orientation is 3 or less.
【請求項2】 請求項1に記載されたAl−Mg−Si
系アルミニウム合金板であって、合金成分として、M
g:0.2〜1.5wt%、Si:0.2〜1.5wt
%を含有することを特徴とする表面性状に優れた成形加
工用Al−Mg−Si系アルミニウム合金板。
2. The Al-Mg-Si according to claim 1.
Aluminum alloy plate, wherein the alloy component is M
g: 0.2 to 1.5 wt%, Si: 0.2 to 1.5 wt%
% Of an Al-Mg-Si-based aluminum alloy sheet for forming and processing having excellent surface properties.
【請求項3】 請求項2に記載されたAl−Mg−Si
系アルミニウム合金板であって、合金成分として、M
n:1.0wt%以下、Cr:0.3wt%以下、F
e:1.0wt%以下、Zr:0.3wt%以下、V:
0.3wt%以下、Ti:0.1wt%のうち1種又は
2種以上を合計で0.01〜1.5wt%含有すること
を特徴とする表面性状に優れた成形加工用Al−Mg−
Si系アルミニウム合金板。
3. The Al-Mg-Si according to claim 2,
Aluminum alloy plate, wherein the alloy component is M
n: 1.0 wt% or less, Cr: 0.3 wt% or less, F
e: 1.0 wt% or less, Zr: 0.3 wt% or less, V:
Al-Mg- for forming and processing excellent in surface properties, characterized in that one or two or more of Ti: 0.1 wt% or less are contained in a total of 0.01 to 1.5 wt%.
Si-based aluminum alloy plate.
【請求項4】 請求項2又は3に記載されたAl−Mg
−Si系アルミニウム合金板であって、合金成分とし
て、Cu:1.0wt%以下、Ag:0.2wt%以
下、Zn:1.0wt%以下、Sn:0.2wt%以下
のうち1種又は2種以上を合計で0.01〜1.5wt
%含有することを特徴とする表面性状に優れた成形加工
用Al−Mg−Si系アルミニウム合金板。
4. Al-Mg according to claim 2 or 3
A Si-based aluminum alloy plate, wherein one or more of Cu: 1.0 wt% or less, Ag: 0.2 wt% or less, Zn: 1.0 wt% or less, and Sn: 0.2 wt% or less; Two or more kinds in total of 0.01 to 1.5 wt
% Al-Mg-Si based aluminum alloy sheet for forming and processing having excellent surface properties.
JP05615998A 1998-02-20 1998-02-20 Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same Expired - Lifetime JP4063388B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05615998A JP4063388B2 (en) 1998-02-20 1998-02-20 Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same
US09/375,465 US6231809B1 (en) 1998-02-20 1999-08-17 Al-Mg-Si aluminum alloy sheet for forming having good surface properties with controlled texture
DE19938995A DE19938995C5 (en) 1998-02-20 1999-08-17 A method for producing an Al-Mg-Si alloy sheet for forming with good surface properties

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP05615998A JP4063388B2 (en) 1998-02-20 1998-02-20 Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same
DE19938995A DE19938995C5 (en) 1998-02-20 1999-08-17 A method for producing an Al-Mg-Si alloy sheet for forming with good surface properties

Publications (2)

Publication Number Publication Date
JPH11236639A true JPH11236639A (en) 1999-08-31
JP4063388B2 JP4063388B2 (en) 2008-03-19

Family

ID=26054633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05615998A Expired - Lifetime JP4063388B2 (en) 1998-02-20 1998-02-20 Al-Mg-Si-based aluminum alloy plate for forming with excellent surface properties and method for producing the same

Country Status (2)

Country Link
JP (1) JP4063388B2 (en)
DE (1) DE19938995C5 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221182B1 (en) * 1998-09-02 2001-04-24 Alcoa Inc. Al-Mg based alloy sheets with good press formability
JP2004292899A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Al-Mg-Si-BASED ALLOY SHEET HAVING EXCELLENT SURFACE PROPERTY, PRODUCTION METHOD THEREFOR, AND PRODUCTION INTERMEDIATE MATERIAL THEREOF
KR100527974B1 (en) * 2003-08-21 2005-11-09 현대자동차주식회사 A method for restraining ridging of Al-Mg-Si aluminum alloy sheet
KR100569454B1 (en) 2004-10-12 2006-04-07 현대자동차주식회사 Method of manufacturing al-mg-si alloy sheet
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
KR100857681B1 (en) * 2006-12-28 2008-09-08 주식회사 포스코 method of manufacturing a ferritic stainless steel with improved ridging property
CN101880805A (en) * 2010-07-30 2010-11-10 浙江巨科铝业有限公司 Al-Mg-Si aluminum alloy for automobile body panel and method for producing same
US8366846B2 (en) 2008-03-31 2013-02-05 Kobe Steel, Ltd. Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
CN104946941A (en) * 2010-03-15 2015-09-30 日产自动车株式会社 Aluminum alloy and high strength bolt made of aluminum alloy
CN106661679A (en) * 2014-07-04 2017-05-10 爱励轧制产品德国有限责任公司 Aluminium alloy for use in the building industry
CN108396207A (en) * 2017-02-08 2018-08-14 福建祥鑫股份有限公司 A kind of Al-Mg-Si alloy and its special strengthening method
CN114672699A (en) * 2022-03-22 2022-06-28 山东金马汽车装备科技有限公司 High-strength high-plasticity aluminum-based composite material and preparation process thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT412284B (en) * 2003-03-14 2004-12-27 Miba Gleitlager Gmbh Wrought aluminum
FR2855833B1 (en) * 2003-06-05 2007-03-16 Pechiney Rhenalu LAMINATED OR ALUMINUM ALLOY PRODUCT WITH GOOD RESISTANCE TO CORROSION
DE102004030021B4 (en) * 2003-07-09 2009-11-26 Aleris Aluminum Duffel Bvba Rolled product
ATE317025T1 (en) * 2003-11-05 2006-02-15 Erbsloeh Aluminium Gmbh ALUMINUM PRODUCT MADE FROM AN AL-MG-SI ALLOY CONTAINING AG
DE10351666B3 (en) * 2003-11-05 2005-01-27 Erbslöh Aluminium Gmbh Aluminum product for the inner and outer parts of vehicles is made from an aluminum alloy containing alloying additions of magnesium and silicon
DE102004035043A1 (en) * 2004-07-20 2006-04-13 Daimlerchrysler Ag Shaping of light metal sheet by a shaping tool useful for shaping metal sheets in vehicle production specific heat with treatment prior to shaping at temperatrure below light metal melting point
JP5059423B2 (en) 2007-01-18 2012-10-24 株式会社神戸製鋼所 Aluminum alloy plate
JP5354954B2 (en) * 2007-06-11 2013-11-27 住友軽金属工業株式会社 Aluminum alloy plate for press forming
US10161020B2 (en) * 2007-10-01 2018-12-25 Arconic Inc. Recrystallized aluminum alloys with brass texture and methods of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228956A (en) * 1994-02-16 1995-08-29 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming work
JPH08109428A (en) * 1994-08-15 1996-04-30 Nippon Steel Corp Aluminum alloy sheet excellent in baking finish hardenability and its production
JPH08325663A (en) * 1995-05-31 1996-12-10 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593479B2 (en) * 1987-07-27 1997-03-26 古河電気工業株式会社 Manufacturing method of aluminum alloy material for forming

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228956A (en) * 1994-02-16 1995-08-29 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming work
JPH08109428A (en) * 1994-08-15 1996-04-30 Nippon Steel Corp Aluminum alloy sheet excellent in baking finish hardenability and its production
JPH08325663A (en) * 1995-05-31 1996-12-10 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and its production

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221182B1 (en) * 1998-09-02 2001-04-24 Alcoa Inc. Al-Mg based alloy sheets with good press formability
JP2004292899A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Al-Mg-Si-BASED ALLOY SHEET HAVING EXCELLENT SURFACE PROPERTY, PRODUCTION METHOD THEREFOR, AND PRODUCTION INTERMEDIATE MATERIAL THEREOF
KR100527974B1 (en) * 2003-08-21 2005-11-09 현대자동차주식회사 A method for restraining ridging of Al-Mg-Si aluminum alloy sheet
KR100569454B1 (en) 2004-10-12 2006-04-07 현대자동차주식회사 Method of manufacturing al-mg-si alloy sheet
JP2006161153A (en) * 2004-11-09 2006-06-22 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet material having excellent drawing formability and its production method
KR100857681B1 (en) * 2006-12-28 2008-09-08 주식회사 포스코 method of manufacturing a ferritic stainless steel with improved ridging property
US8366846B2 (en) 2008-03-31 2013-02-05 Kobe Steel, Ltd. Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
CN104946941A (en) * 2010-03-15 2015-09-30 日产自动车株式会社 Aluminum alloy and high strength bolt made of aluminum alloy
CN101880805A (en) * 2010-07-30 2010-11-10 浙江巨科铝业有限公司 Al-Mg-Si aluminum alloy for automobile body panel and method for producing same
CN106661679A (en) * 2014-07-04 2017-05-10 爱励轧制产品德国有限责任公司 Aluminium alloy for use in the building industry
CN108396207A (en) * 2017-02-08 2018-08-14 福建祥鑫股份有限公司 A kind of Al-Mg-Si alloy and its special strengthening method
CN114672699A (en) * 2022-03-22 2022-06-28 山东金马汽车装备科技有限公司 High-strength high-plasticity aluminum-based composite material and preparation process thereof

Also Published As

Publication number Publication date
DE19938995C5 (en) 2010-04-15
DE19938995C2 (en) 2002-10-24
JP4063388B2 (en) 2008-03-19
DE19938995A1 (en) 2001-03-08

Similar Documents

Publication Publication Date Title
JPH11236639A (en) Aluminum-magnesium-silicon series aluminum alloy sheet for forming excellent in surface property
US6231809B1 (en) Al-Mg-Si aluminum alloy sheet for forming having good surface properties with controlled texture
JP4499369B2 (en) Al-Mg-Si-based alloy plate with excellent surface properties with reduced generation of ridging marks
JP2009526913A (en) Aluminum alloy with improved crash characteristics
US5460666A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet
JP2008190021A (en) Al-Mg BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
EP0613959B1 (en) An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same
WO2021070890A1 (en) Aluminum alloy material
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP3726893B2 (en) Method for producing an aluminum alloy plate used for a lid for a positive pressure can excellent in rivet formability, score workability and blow-up resistance
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
KR20190078359A (en) Magnesium alloy sheet and method for manufacturing the same
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPH0547616B2 (en)
JPH0257656A (en) Aluminum alloy for automobile panel having excellent zinc phosphate treatability and its manufacture
JP4202894B2 (en) Mg-containing Al alloy
JPH07197177A (en) Aluminum alloy rolled sheet for superplastic formation and low in cavitation
KR100513671B1 (en) A method for restraining ridging of Al-Mg-Si aluminum alloy sheet
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPH06228696A (en) Aluminum alloy sheet for di can body
JP7414452B2 (en) Aluminum alloy material and its manufacturing method
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JPH08333644A (en) Aluminum alloy foil and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

EXPY Cancellation because of completion of term