JPH11226425A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH11226425A
JPH11226425A JP10029821A JP2982198A JPH11226425A JP H11226425 A JPH11226425 A JP H11226425A JP 10029821 A JP10029821 A JP 10029821A JP 2982198 A JP2982198 A JP 2982198A JP H11226425 A JPH11226425 A JP H11226425A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
pore diameter
hydrocarbon
adsorbents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10029821A
Other languages
Japanese (ja)
Other versions
JP3956466B2 (en
Inventor
Shinji Yamamoto
伸司 山本
Tomomi Eto
智美 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP02982198A priority Critical patent/JP3956466B2/en
Publication of JPH11226425A publication Critical patent/JPH11226425A/en
Application granted granted Critical
Publication of JP3956466B2 publication Critical patent/JP3956466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for purification of exhaust gas containing HC adsorbents which have excellent adsorption efficiency of cold HC of various kinds of molecular diameters and hardly desorb the adsorbed HC. SOLUTION: This catalyst for purification of exhaust gas contains two or more kinds of hydrocarbon adsorbents having different medians in the pore diameter distributions in the catalyst component layers, and the hydrocarbon adsorbents have 4 to 9 Å distribution of the pore diameters. The catalyst has a multilayered structure comprising each layer of two or more kinds of hydrocarbon adsorbents having different medians in the pore diameter distributions. The uppermost layer consists of a hydrocarbon adsorbent having a larger median in the pore diameter distribution, and from the uppermost layer, layers of adsorbents with smaller medians in the pore diameter distributions are successively formed. The hydrocarbon adsorbents are preferably arranged in such a manner that an exhaust gas is successively brought into contact with the hydrocarbon adsorbent having a larger median in the pore diameter distribution and then successively into contact with hydrocarbon adsorbents having smaller medians in the pore diameter distributions. Two or more catalysts for purification of exhaust gas are disposed in series along the exhaust gas stream.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒に関し、特に自動車等の内燃機関からエンジン始動直
後の低温時に排出される排気ガス中の炭化水素(以下、
「HC」と称す)、一酸化炭素(以下、「CO」と称
す)及び窒素酸化物(以下、「NOx 」と称す)のう
ち、特に、HCを効率良く吸着することができる排気ガ
ス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst and, more particularly, to a hydrocarbon (hereinafter, referred to as an exhaust gas) discharged from an internal combustion engine of an automobile or the like at a low temperature immediately after starting the engine.
Among HC, carbon monoxide (hereinafter, referred to as “CO”), and nitrogen oxides (hereinafter, referred to as “NO x ”), particularly, exhaust gas purification capable of efficiently adsorbing HC For catalysts.

【0002】[0002]

【従来の技術】従来より、排気ガス浄化用触媒は高温下
での耐久性が十分でなく、触媒が劣化し浄化性能が著し
く低下するため、エンジン始動直後の低温時に排出され
る排気ガス中のHC(「以下、コールドHC」と称す)
の低減を目的に、ゼオライトを主成分とした吸着材によ
りHCを一時的に貯蔵し、三元触媒が活性化した後、該
HCを吸着材より脱離させ、三元触媒で浄化する方法が
検討されている。
2. Description of the Related Art Conventionally, exhaust gas purifying catalysts have not been sufficiently durable at high temperatures, and the catalyst has deteriorated and purification performance has been significantly reduced. HC (hereinafter referred to as "cold HC")
For the purpose of reducing CO, a method in which HC is temporarily stored by an adsorbent mainly composed of zeolite, and after the three-way catalyst is activated, the HC is desorbed from the adsorbent and purified by the three-way catalyst is used. Are being considered.

【0003】かかるゼオライトを主成分としたHC吸着
材を用いた排気ガス浄化用触媒としては、例えば特開平
7−144119号公報、特開平7−96179号公
報、特開平7−88364号公報等に開示されているも
のがある。また、リン酸ジルコニウムを触媒成分の担体
とした排気ガス浄化用触媒としては、例えば特開平8−
281116号公報等に開示されているものがある。
[0003] Examples of such an exhaust gas purifying catalyst using an HC adsorbent containing zeolite as a main component include, for example, JP-A-7-144119, JP-A-7-96179, and JP-A-7-88364. Some have been disclosed. Further, as an exhaust gas purifying catalyst using zirconium phosphate as a carrier of a catalyst component, for example, Japanese Unexamined Patent Publication No.
There is one disclosed in, for example, Japanese Patent No. 281116.

【0004】特開平8−24655号公報には、自動車
内燃機関の排気系の上流に三元触媒を、その下流に、ゼ
オライトを主成分としたHC吸着材を前段に、またその
後段に三元触媒を配置した複合触媒を配置し、コールド
HC吸着を除去するシステムが提案されている。特開平
7−88364号公報には、HC吸着材として、耐熱性
を改良したZSM5にAgやCdを含有させたHC吸着
触媒が提案されている。特開平8−281116号公報
には、リン酸ジルコニウム担体に、アルカリ金属、アル
カリ土類金属及び希土類元素と更に貴金属とが担持され
た、酸素過剰雰囲気において窒素酸化物を浄化する排気
ガス浄化用触媒が提案されている。
JP-A-8-24655 discloses a three-way catalyst upstream of an exhaust system of an automobile internal combustion engine, an HC adsorbent mainly composed of zeolite downstream thereof, and a three-way catalyst downstream thereof. There has been proposed a system for disposing a composite catalyst on which a catalyst is disposed to remove cold HC adsorption. JP-A-7-88364 proposes, as an HC adsorbent, an HC adsorption catalyst in which Ag or Cd is added to ZSM5 having improved heat resistance. Japanese Patent Application Laid-Open No. 8-281116 discloses an exhaust gas purification catalyst for purifying nitrogen oxides in an oxygen-excess atmosphere in which an alkali metal, an alkaline earth metal, a rare earth element, and a noble metal are supported on a zirconium phosphate carrier. Has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、かかる従来の
ゼオライトを主成分としたHC吸着材は、各種ゼオライ
ト構造に起因する細孔径に因って捕集可能なHC種が決
定されるため、分子径の小さいHC種から分子径の大き
いHC種まで、広範囲のHC種に対して充分な吸着性能
を得ることができず、また、HC吸着材の耐久性が不十
分なため、耐久後にはHCの脱離が速まってしまう。そ
こで、各種HCに対する吸着性能の向上を図るため、細
孔径の異なる2種以上のゼオライトを混合して用いた
り、HC脱離の遅延化を図るため、高温ガスのバイパス
法が用いられているが、材料やシステム構成が煩雑化
し、しかもコストが上昇するという問題点があった。
However, in such conventional HC adsorbents mainly composed of zeolite, the HC species that can be trapped are determined based on the pore diameter caused by various zeolite structures. Sufficient adsorption performance cannot be obtained for a wide range of HC species from HC species having a small diameter to HC species having a large molecular diameter, and the HC adsorbent has insufficient durability. Desorption is accelerated. Therefore, two or more types of zeolites having different pore diameters are mixed and used to improve the adsorption performance to various HCs, and a hot gas bypass method is used to delay the HC desorption. However, there has been a problem that the materials and the system configuration are complicated and the cost is increased.

【0006】従って、本発明の目的は、各種分子径のコ
ールドHCに対する吸着効率に優れ、更に吸着したHC
を脱離し難いHC吸着材を含む排気ガス浄化用触媒を提
供するにある。
Accordingly, it is an object of the present invention to provide an excellent adsorption efficiency for cold HC of various molecular diameters,
It is an object of the present invention to provide an exhaust gas purifying catalyst containing an HC adsorbent that is difficult to desorb.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために研究した結果、結晶構造及び細孔径の
異なる炭化水素吸着材を組み合わせ、かかる細孔径分布
を制御し、該炭化水素吸着材を多層構造化することによ
ってコールドHCの吸着効率が向上でき、更に吸着した
HCの脱離遅延化が図れることを見出し、本発明に到達
した。
Means for Solving the Problems As a result of research conducted to solve the above problems, the present inventors have combined hydrocarbon adsorbents having different crystal structures and pore sizes, controlled such pore size distribution, The present inventors have found that the formation efficiency of cold HC can be improved by forming the hydrogen adsorbent into a multilayer structure, and that the desorption of the adsorbed HC can be delayed, thereby achieving the present invention.

【0008】請求項1記載の排気ガス浄化用触媒は、触
媒成分層中に細孔径分布の中央値の異なる2種以上の炭
化水素吸着材を含有し、該炭化水素吸着材の細孔径分布
が4〜9Åであって、かかる細孔径分布の中央値の異な
る2種以上の炭化水素吸着材を該吸着材毎の多層構造体
とし、上層に細孔径分布の中央値の大きい炭化水素吸着
材を、順次下層に細孔径分布の中央値の小さい炭化水素
吸着材を配置することを特徴とする。
[0008] The exhaust gas purifying catalyst according to the first aspect of the present invention contains two or more hydrocarbon adsorbents having different median pore diameter distributions in the catalyst component layer, and the hydrocarbon adsorbent has a pore diameter distribution. 4 to 9 °, two or more hydrocarbon adsorbents having different median pore diameter distributions are used as a multilayer structure for each of the adsorbents, and a hydrocarbon adsorbent having a large median pore diameter distribution is formed in the upper layer. A hydrocarbon adsorbent having a small median pore size distribution is sequentially disposed in the lower layer.

【0009】請求項2記載の排気ガス浄化用触媒は、請
求項1記載の排気ガス浄化用触媒において、炭化水素吸
着材が、ZSM12、ZSM22、ZSM34、MF
I、β−ゼオライト及びUSYゼオライトからなる群よ
り選ばれた少なくとも2種以上の炭化水素吸着材を組み
合わせることを特徴とする。
According to a second aspect of the present invention, there is provided the exhaust gas purifying catalyst according to the first aspect, wherein the hydrocarbon adsorbing material is ZSM12, ZSM22, ZSM34, MF.
It is characterized by combining at least two or more kinds of hydrocarbon adsorbents selected from the group consisting of I, β-zeolite and USY zeolite.

【0010】請求項3記載の排気ガス浄化用触媒は、請
求項1又は2記載の排気ガス浄化用触媒において、排気
ガスが、細孔径分布の中央値の大きい炭化水素吸着材か
ら順次細孔径分布の中央値の小さい炭化水素吸着材に接
触するように炭化水素吸着材を配置することを特徴とす
る。
According to a third aspect of the present invention, there is provided the exhaust gas purifying catalyst according to the first or second aspect, wherein the exhaust gas has a pore size distribution starting from a hydrocarbon adsorbent having a large median pore size distribution. Wherein the hydrocarbon adsorbent is arranged so as to come into contact with the hydrocarbon adsorbent having a small median value.

【0011】請求項4記載の排気ガス浄化用触媒は、請
求項1〜3いずれかの項記載の排気ガス浄化用触媒を、
排気ガス流れに対して2個以上直列に配置することを特
徴とする。
According to a fourth aspect of the present invention, there is provided the exhaust gas purifying catalyst according to any one of the first to third aspects.
It is characterized in that two or more are arranged in series with respect to the exhaust gas flow.

【0012】[0012]

【発明の実施の形態】本発明の排気ガス浄化用触媒は、
排気ガス、特に内燃機関から排出されるエンジン始動直
後の低温排気ガスを浄化するにあたり、HCの吸着効率
の向上と脱離を抑制するため、触媒成分層中に細孔径分
布の中央値の異なる2種以上の炭化水素吸着材を含有
し、該炭化水素吸着材の細孔径分布が4Å〜9Åであっ
て、かかる細孔径分布の中央値の異なる2種以上の炭化
水素吸着材を該吸着材毎の多層構造体とし、上層に細孔
径分布の中央値の大きい炭化水素吸着材を、順次下層に
細孔径分布の中央値の小さい炭化水素吸着材を配置す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The exhaust gas purifying catalyst of the present invention is
In purifying exhaust gas, particularly low-temperature exhaust gas discharged from an internal combustion engine immediately after engine startup, in order to improve the adsorption efficiency of HC and suppress desorption, the catalyst component layer has different median pore diameter distributions. At least two kinds of hydrocarbon adsorbents having a pore diameter distribution of 4 to 9 mm, and different medians of the pore diameter distribution. , A hydrocarbon adsorbent having a large median pore size distribution is disposed in the upper layer, and a hydrocarbon adsorbent having a small median pore size distribution is sequentially disposed in the lower layer.

【0013】触媒成分層中に含有される炭化水素吸着材
は、エンジン始動直後の低温排気ガス中のHC種の分子
径分布に適した細孔径分布を形成してその吸着能を向上
させるため、細孔径分布の中央値の異なる2種以上の炭
化水素吸着材が用いられる。かかる細孔径の異なる炭化
水素吸着材としては、ZSM12、ZSM22、ZS3
4、MFI、β−ゼオライト及びUSYゼオライトから
なる群より選ばれた少なくとも2種以上の炭化水素吸着
材が組み合わされて用いられる。
The hydrocarbon adsorbent contained in the catalyst component layer forms a pore size distribution suitable for the molecular size distribution of the HC species in the low-temperature exhaust gas immediately after the start of the engine, thereby improving the adsorbability. Two or more hydrocarbon adsorbents having different median pore size distributions are used. Such hydrocarbon adsorbents having different pore diameters include ZSM12, ZSM22, ZS3
4. At least two or more hydrocarbon adsorbents selected from the group consisting of MFI, β-zeolite and USY zeolite are used in combination.

【0014】かかる2種以上の炭化水素吸着材は、細孔
構造と細孔径分布の中央値が異なり、その細孔径分布は
4Å〜9Åの範囲にあるものが好ましい。細孔径分布が
かかる範囲内にあることにより、各種コールドHC種を
幅広く効率良く吸着でき、更に吸着したHCの脱離遅延
化を図ることができる。
The two or more hydrocarbon adsorbents preferably have different pore structures and median pore diameter distributions, and the pore diameter distribution is preferably in the range of 4 ° to 9 °. When the pore size distribution is within the above range, various cold HC species can be widely and efficiently adsorbed, and the desorption of the adsorbed HC can be delayed.

【0015】かかる炭化水素吸着材の使用量は、触媒1
Lあたり5〜400gである。5g未満だと充分なHC
吸着能が得られず、400gより多く使用してもHC吸
着能は飽和し有効ではない。
The amount of the hydrocarbon adsorbent used is the catalyst 1
5 to 400 g per L. If it is less than 5g, sufficient HC
The adsorption ability is not obtained, and even if it is used more than 400 g, the HC adsorption ability is saturated and is not effective.

【0016】また、細孔径分布の中央値の小さい炭化水
素吸着材の吸着能を向上させるため、触媒成分層中をエ
ンジン始動直後の低温排気ガスが通過する際に、最初に
細孔径分布の中央値の大きい炭化水素吸着材に排気ガス
を接触させて分子径の大きいHCを吸着させた後、順次
細孔径分布の中央値の小さい炭化水素吸着材と排気ガス
とが接触するように炭化水素吸着材を多層構造に配置す
る。
Further, in order to improve the adsorbing ability of the hydrocarbon adsorbent having a small median pore diameter distribution, when the low-temperature exhaust gas immediately after the start of the engine passes through the catalyst component layer, the center of the pore diameter distribution is first determined. After the exhaust gas is brought into contact with the hydrocarbon adsorbent having a large value to adsorb HC having a large molecular diameter, the hydrocarbon is adsorbed so that the hydrocarbon adsorbent having a small median pore size distribution and the exhaust gas are sequentially contacted. The materials are arranged in a multilayer structure.

【0017】このように、当該細孔径分布の中央値の異
なる2種以上の炭化水素吸着材を各炭化水素吸着材毎の
多層構造とすることによっても、排気ガス中のコールド
HC成分の吸着に適した複雑な細孔構造網を形成できる
ため、よりHC吸着能が向上し、更に、吸着したHCも
放出され難く脱離の遅延化が更に図れるようになる。
As described above, by forming two or more kinds of hydrocarbon adsorbents having different median values of the pore diameter distribution into a multilayer structure for each hydrocarbon adsorbent, the adsorption of cold HC components in the exhaust gas can be prevented. Since a suitable complicated pore structure network can be formed, the HC adsorption ability is further improved, and the adsorbed HC is hardly released, so that the desorption can be further delayed.

【0018】かかる炭化水素吸着材にて形成される層構
造は、特に限定されないが、触媒1個あたり2層から5
層が好ましい。2層未満だと充分なHC吸着能を有する
多層構造が得られず、5層より多く使用しても多層構造
化によるHC吸着能はさほど上向上しないからである。
[0018] The layer structure formed of such a hydrocarbon adsorbent is not particularly limited.
Layers are preferred. If the number of layers is less than two, a multilayer structure having a sufficient HC adsorption ability cannot be obtained, and even if more than five layers are used, the HC adsorption ability by the multilayer structure is not so much improved.

【0019】更に、エンジン始動直後の低温排気ガス中
のHC種に対する吸着能を向上させるため、触媒成分層
中に細孔径分布の中央値の異なる2種以上の炭化水素吸
着材を含有し、更に、該触媒成分層中の細孔径分布の中
央値の異なる2種以上の炭化水素吸着材を2層以上の多
層構造に配置した上記触媒を、数個排気ガス流れに対し
て直列に配置することが好ましく、直列に配置する触媒
は、同種のものであっても異なるものであってもよい。
Further, in order to improve the ability to adsorb HC species in the low-temperature exhaust gas immediately after starting the engine, the catalyst component layer contains two or more hydrocarbon adsorbents having different median pore diameter distributions. A plurality of the above-described catalysts in which two or more kinds of hydrocarbon adsorbents having different median pore diameter distributions in the catalyst component layer are arranged in a multilayer structure of two or more layers, and are arranged in series with respect to the exhaust gas flow. Preferably, the catalysts arranged in series may be the same or different.

【0020】かかる炭化水素吸着材を多層構造化した触
媒の使用個数は、特に限定されないが、触媒システム1
個当たり0.3Lから2.6Lの容量の触媒を、特に、
2個から5個直列に配置することが好ましい。触媒容量
0.3L層未満だと充分なHC吸着能が得られず、2.
6Lより大きくしても単一容量によるHC吸着能は飽和
しより有効ではない。また、2個未満だと充分なHC吸
着能が得られず、5個より多く使用しても多段化によH
C吸着能はそれ以上向上しないからである。
The number of such catalysts having a multilayer structure of the hydrocarbon adsorbent is not particularly limited.
A catalyst volume of 0.3 L to 2.6 L per piece, in particular
It is preferable to arrange two to five in series. If the catalyst capacity is less than 0.3 L layer, sufficient HC adsorption capacity cannot be obtained, and
Even if it is larger than 6 L, the HC adsorption capacity by a single volume is saturated and is not more effective. If the number is less than 2, sufficient HC adsorption capacity cannot be obtained.
This is because the C adsorption capacity does not further improve.

【0021】[0021]

【実施例】本発明を次の実施例及び比較例により説明す
る。実施例1 MFI(細孔径5.5〜6.5Å:細孔径分布の中央値
5.8Å)500g、シリカゾル100g及び純水10
00gを磁性ボールミルに投入し、混合・粉砕してスラ
リーを得た。このスラリー液をコージェライト質モノリ
ス担体(1.3L、400セル)に付着させ、空気流に
てセル内の余剰のスラリーを除去・乾燥し、400℃で
1時間焼成して、コート量重量60g/L−担体の触媒
を得た(触媒A)。
The present invention will be described with reference to the following examples and comparative examples. Example 1 500 g of MFI (pore diameter 5.5 to 6.5 °: median of pore diameter distribution 5.8 °), 100 g of silica sol, and 10 pure water
00g was charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was attached to a cordierite-based monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air stream, dried, and baked at 400 ° C. for 1 hour, and the coat weight was 60 g. / L-support catalyst was obtained (catalyst A).

【0022】β−ゼオライト(細孔径5.5〜7.5
Å:細孔径分布の中央値6.3Å)500g、シリカゾ
ル100g及び純水1000gを磁性ボールミルに投入
し、混合・粉砕してスラリーを得た。このスラリー液を
上記触媒Aに付着させ、空気流にてセル内の余剰のスラ
リーを除去・乾燥し、400℃で1時間焼成して、コー
ト量重量60g/L(総コート量120g/L)−担体
の排気ガス浄化用触媒を得た(触媒B)。
Β-zeolite (pore diameter 5.5 to 7.5)
Å: 500 g of median pore size distribution), 100 g of silica sol and 1000 g of pure water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is adhered to the above-mentioned catalyst A, the excess slurry in the cell is removed by an air stream, dried, baked at 400 ° C. for 1 hour, and the coating weight 60 g / L (total coating weight 120 g / L) -A catalyst for purifying the exhaust gas of the carrier was obtained (catalyst B).

【0023】実施例2 ZSM22(細孔径4.5〜5.0Å:細孔径分布の中
央値4.7Å)500g、シリカゾル100g及び純水
1000gを磁性ボールミルに投入し、混合・粉砕して
スラリーを得た。このスラリー液をコージェライト質モ
ノリス担体(1.3L、400セル)に付着させ、空気
流にてセル内の余剰のスラリーを除去・乾燥し、400
℃で1時間焼成して、コート量重量60g/L−担体の
触媒を得た(触媒C)。
Example 2 500 g of ZSM22 (pore size: 4.5 to 5.0 mm: median of pore size distribution: 4.7 mm), 100 g of silica sol and 1000 g of pure water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. Obtained. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air flow, and dried,
Calcination was carried out at 1 ° C. for 1 hour to obtain a catalyst having a coating weight of 60 g / L-support (catalyst C).

【0024】MFI(細孔径5.5〜6.5Å:細孔径
分布の中央値5.8Å)500g、シリカゾル100g
及び純水1000gを磁性ボールミルに投入し、混合・
粉砕してスラリーを得た。このスラリー液を上記触媒C
に付着させ、空気流にてセル内の余剰のスラリーを除去
・乾燥し、400℃で1時間焼成して、コート量重量6
0g/L(総コート量120g/L)−担体の触媒を得
た(触媒D)。
500 g of MFI (pore diameter 5.5-6.5 °: median of pore diameter distribution 5.8 °), 100 g of silica sol
And 1000 g of pure water into a magnetic ball mill.
The slurry was obtained by crushing. This slurry liquid is mixed with the above catalyst C
The excess slurry in the cell is removed by an air stream, dried, and baked at 400 ° C. for 1 hour to obtain a coating weight of 6
A catalyst of 0 g / L (total coating amount: 120 g / L) -carrier was obtained (catalyst D).

【0025】β−ゼオライト(細孔径5.5〜7.5
Å:細孔径分布の中央値6.3Å)500g、シリカゾ
ル100g及び純水1000gを磁性ボールミルに投入
し、混合・粉砕してスラリーを得た。このスラリー液を
上記触媒Dに付着させ、空気流にてセル内の余剰のスラ
リーを除去・乾燥し、400℃で1時間焼成して、コー
ト量重量60g/L(総コート量180g/L)−担体
の触媒を得た(触媒E)。
Β-zeolite (pore diameter 5.5 to 7.5)
Å: 500 g of median pore size distribution), 100 g of silica sol and 1000 g of pure water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is adhered to the above catalyst D, the excess slurry in the cell is removed by an air stream, dried, and baked at 400 ° C. for 1 hour, so that the coat weight is 60 g / L (total coat amount 180 g / L). A catalyst on the carrier was obtained (catalyst E).

【0026】USY(細孔径7.0〜8.0Å:細孔径
分布の中央値7.6Å)500g、シリカゾル100g
及び純水1000gを磁性ボールミルに投入し、混合・
粉砕してスラリーを得た。このスラリー液を上記触媒E
に付着させ、空気流にてセル内の余剰のスラリーを除去
・乾燥し、400℃で1時間焼成して、コート量重量6
0g/L(総コート量240g/L)−担体の排気ガス
浄化用触媒を得た(触媒F)。
500 g of USY (pore size: 7.0-8.0 °: median of pore size distribution: 7.6 °), 100 g of silica sol
And 1000 g of pure water into a magnetic ball mill.
The slurry was obtained by crushing. This slurry liquid is mixed with the above catalyst E
The excess slurry in the cell is removed by an air stream, dried, and baked at 400 ° C. for 1 hour to obtain a coating weight of 6
0 g / L (total coating amount 240 g / L) -a catalyst for purifying exhaust gas of a carrier was obtained (catalyst F).

【0027】実施例3 ZSM34(細孔径分布4.2〜4.8Å:細孔径分布
の中央値4.6Å)500g、シリカゾル100g及び
純水1000gを磁性ボールミルに投入し、混合・粉砕
してスラリーを得た。このスラリー液をコージェライト
質モノリス担体(1.3L、400セル)に付着させ、
空気流にてセル内の余剰のスラリーを除去・乾燥し、4
00℃で1時間焼成して、コート量重量60g/L−担
体の触媒を得た(触媒G)。
Example 3 500 g of ZSM34 (pore size distribution 4.2 to 4.8%: median of pore size distribution 4.6), 100 g of silica sol and 1000 g of pure water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. I got This slurry liquid was adhered to a cordierite-based monolith carrier (1.3 L, 400 cells),
The excess slurry in the cell is removed by air flow and dried,
By calcining at 00 ° C. for 1 hour, a catalyst having a coat weight of 60 g / L-carrier was obtained (catalyst G).

【0028】MFI(細孔径5.5〜6.5Å:細孔径
分布の中央値5.8Å)500g、シリカゾル100g
及び純水1000gを磁性ボールミルに投入し、混合・
粉砕してスラリーを得た。このスラリー液を上記触媒G
に付着させ、空気流にてセル内の余剰のスラリーを除去
・乾燥し、400℃で1時間焼成して、コート量重量6
0g/L(総コート量120g/L)−担体の排気ガス
浄化用触媒を得た(触媒H)。
500 g of MFI (pore diameter 5.5 to 6.5 °: median of pore diameter distribution 5.8 °), 100 g of silica sol
And 1000 g of pure water into a magnetic ball mill.
The slurry was obtained by crushing. This slurry liquid was used as the catalyst G
The excess slurry in the cell is removed by an air stream, dried, and baked at 400 ° C. for 1 hour to obtain a coating weight of 6
0 g / L (total coating amount 120 g / L) -a catalyst for purifying exhaust gas of a carrier was obtained (catalyst H).

【0029】ZSM12(細孔径5.8〜6.5Å:細
孔径分布の中央値6.2Å)500g、シリカゾル10
0g及び純水1000gを磁性ボールミルに投入し、混
合・粉砕してスラリーを得た。このスラリー液を上記触
媒Hに付着させ、空気流にてセル内の余剰のスラリーを
除去・乾燥し、400℃で1時間焼成して、コート量重
量60g/L(総コート量180g/L)−担体の排気
ガス浄化用触媒を得た(触媒I)。
500 g of ZSM12 (pore size: 5.8 to 6.5 °: median of pore size distribution: 6.2 °), silica sol 10
0 g and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is adhered to the above catalyst H, excess slurry in the cell is removed by an air stream, dried, baked at 400 ° C. for 1 hour, and coat weight 60 g / L (total coat amount 180 g / L). -A catalyst for purifying the exhaust gas of the carrier was obtained (catalyst I).

【0030】β−ゼオライト(細孔径5.5〜7.5
Å:細孔径分布の中央値6.3Å)500g、シリカゾ
ル100g及び純水1000gを磁性ボールミルに投入
し、混合・粉砕してスラリーを得た。このスラリー液を
上記触媒Iに付着させ、空気流にてセル内の余剰のスラ
リーを除去・乾燥し、400℃で1時間焼成して、コー
ト量重量60g/L(総コート量240g/L)−担体
の触媒を得た(触媒J)。
Β-zeolite (pore diameter 5.5 to 7.5)
Å: 500 g of median pore size distribution), 100 g of silica sol and 1000 g of pure water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is adhered to the above-mentioned catalyst I, the excess slurry in the cell is removed by an air stream, dried, and baked at 400 ° C. for 1 hour, and the coat weight is 60 g / L (total coat weight 240 g / L). -The catalyst on the carrier was obtained (Catalyst J).

【0031】USY(細孔径7.0〜8.0Å:細孔径
分布の中央値7.6Å)500g、シリカゾル100g
及び純水1000gを磁性ボールミルに投入し、混合・
粉砕してスラリーを得た。このスラリー液を上記触媒J
に付着させ、空気流にてセル内の余剰のスラリーを除去
・乾燥し、400℃で1時間焼成して、コート量重量6
0g/L(総コート量300g/L)−担体の排気ガス
浄化用触媒を得た(触媒K)。
500 g of USY (pore size: 7.0 to 8.0 °: median of pore size distribution: 7.6 °), 100 g of silica sol
And 1000 g of pure water into a magnetic ball mill.
The slurry was obtained by crushing. This slurry liquid is mixed with the above catalyst J
The excess slurry in the cell is removed by an air stream, dried, and baked at 400 ° C. for 1 hour to obtain a coating weight of 6
0 g / L (total coating amount: 300 g / L) -a catalyst for purifying exhaust gas of a carrier was obtained (catalyst K).

【0032】実施例4 排気流れに対して上流側に触媒Fを、下流側に触媒Kを
配置して、排気ガス浄化用触媒を得た。
Example 4 A catalyst for exhaust gas purification was obtained by disposing a catalyst F upstream of the exhaust flow and a catalyst K downstream thereof.

【0033】実施例5 排気流れに対して上流側に触媒Bを、下流側に触媒Kを
配置して、排気ガス浄化用触媒を得た。
Example 5 A catalyst for purifying exhaust gas was obtained by arranging the catalyst B on the upstream side and the catalyst K on the downstream side with respect to the exhaust gas flow.

【0034】実施例6 排気流れに対して上流側に触媒Kを、下流側に触媒Kを
配置して、排気ガス浄化用触媒を得た。
Example 6 An exhaust gas purifying catalyst was obtained by disposing the catalyst K on the upstream side and the catalyst K on the downstream side with respect to the exhaust gas flow.

【0035】比較例1 ZSM34(細孔径4.2〜4.8Å:細孔径分布の中
央値4.6Å)1500g、シリカゾル100g及び純
水1000gを磁性ボールミルに投入し、混合・粉砕し
てスラリーを得た。このスラリー液をコージェライト質
モノリス担体(1.3L、400セル)に付着させ、空
気流にてセル内の余剰のスラリーを除去・乾燥し、40
0℃で1時間焼成して、コート量重量300g/L−担
体の排気ガス浄化用触媒を得た(触媒M)。
Comparative Example 1 1500 g of ZSM34 (pore size 4.2-4.8 mm: median pore size distribution 4.6), 100 g of silica sol and 1000 g of pure water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. Obtained. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.3 L, 400 cells), and excess slurry in the cells was removed by an air stream and dried to obtain a slurry.
By calcining at 0 ° C. for 1 hour, an exhaust gas purifying catalyst having a coat weight of 300 g / L-carrier was obtained (catalyst M).

【0036】比較例2 USY(細孔径7.0〜4.8Å:細孔径分布の中央値
7.6Å)1500g、シリカゾル100g及び純水1
000gを磁性ボールミルに投入し、混合・粉砕してス
ラリーを得た。このスラリー液をコージェライト質モノ
リス担体(1.3L、400セル)に付着させ、空気流
にてセル内の余剰のスラリーを除去・乾燥し、400℃
で1時間焼成して、コート量重量300g/L−担体の
排気ガス浄化用触媒を得た(触媒N)。
Comparative Example 2 1500 g of USY (pore diameter 7.0-4.8 °: median of pore diameter distribution 7.6 °), silica sol 100 g and pure water 1
000 g was put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.3 L, 400 cells), and excess slurry in the cells was removed by an air stream and dried, and then dried at 400 ° C.
For 1 hour to obtain an exhaust gas purifying catalyst having a coat weight of 300 g / L-carrier (catalyst N).

【0037】比較例3 USY(細孔径7.0〜8.0Å:細孔径分布の中央値
7.6Å)500g、シリカゾル100g及び純水10
00gを磁性ボールミルに投入し、混合・粉砕してスラ
リーを得た。このスラリー液をコージェライト質モノリ
ス担体(1.3L、400セル)に付着させ、空気流に
てセル内の余剰のスラリーを除去・乾燥し、400℃で
1時間焼成して、コート量重量60g/L−担体の排気
ガス浄化用触媒を得た(触媒O)。
Comparative Example 3 500 g of USY (pore size: 7.0-8.0 °: median of pore size distribution: 7.6 °), 100 g of silica sol, and 10 g of pure water
00g was charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was attached to a cordierite-based monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air stream, dried, and baked at 400 ° C. for 1 hour, and the coat weight was 60 g. / L-carrier exhaust gas purifying catalyst was obtained (catalyst O).

【0038】β−ゼオライト(細孔径5.5〜7.5
Å:細孔径分布の中央値6.3Å)500g、シリカゾ
ル100g及び純水1000gを磁性ボールミルに投入
し、混合・粉砕してスラリーを得た。このスラリー液を
上記触媒Oに付着させ、空気流にてセル内の余剰のスラ
リーを除去・乾燥し、400℃で1時間焼成して、コー
ト量重量60g/L(総コート量120g/L)−担体
の触媒を得た(触媒P)。
Β-zeolite (pore diameter 5.5 to 7.5)
Å: 500 g of median pore size distribution), 100 g of silica sol and 1000 g of pure water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is adhered to the catalyst O, the excess slurry in the cell is removed by an air stream, dried, and baked at 400 ° C. for 1 hour, so that the coat weight is 60 g / L (total coat amount 120 g / L). A catalyst on the carrier was obtained (catalyst P).

【0039】ZSM12(細孔径5.8〜6.5Å:細
孔径分布の中央値6.2Å)500g、シリカゾル10
0g及び純水1000gを磁性ボールミルに投入し、混
合・粉砕してスラリーを得た。このスラリー液を上記触
媒Pに付着させ、空気流にてセル内の余剰のスラリーを
除去・乾燥し、400℃で1時間焼成して、コート量重
量60g/L(総コート量180g/L)−担体の排気
ガス浄化用触媒を得た(触媒Q)。
500 g of ZSM12 (pore size: 5.8 to 6.5 °: median of pore size distribution: 6.2 °), silica sol 10
0 g and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid is attached to the catalyst P, the excess slurry in the cell is removed by an air stream, dried, baked at 400 ° C. for 1 hour, and the coating weight 60 g / L (total coating 180 g / L) -A catalyst for purifying the exhaust gas of the carrier was obtained (catalyst Q).

【0040】MFI(細孔径5.5〜6.5Å:細孔径
分布の中央値5.8Å)500g、シリカゾル100g
及び純水1000gを磁性ボールミルに投入し、混合・
粉砕してスラリーを得た。このスラリー液を上記触媒Q
に付着させ、空気流にてセル内の余剰のスラリーを除去
・乾燥し、400℃で1時間焼成した。コート量重量6
0g/L(総コート量240g/L)−担体の排気ガス
浄化用触媒を得た(触媒R)。
500 g of MFI (pore diameter 5.5 to 6.5 °: median of pore diameter distribution 5.8 °), 100 g of silica sol
And 1000 g of pure water into a magnetic ball mill.
The slurry was obtained by crushing. This slurry liquid is mixed with the above catalyst Q
The excess slurry in the cell was removed by an air stream, dried, and fired at 400 ° C. for 1 hour. Coat weight 6
0 g / L (total coating amount 240 g / L) -a catalyst for purifying exhaust gas of a carrier was obtained (catalyst R).

【0041】ZSM22(細孔径4.5〜5.5Å:細
孔径分布の中央値4.7Å)500g、シリカゾル10
0g及び純水1000gを磁性ボールミルに投入し、混
合・粉砕してスラリーを得た。このスラリー液を上記触
媒Rに付着させ、空気流にてセル内の余剰のスラリーを
除去・乾燥し、400℃で1時間焼成した。コート量重
量60g/L(総コート量300g/L)−担体の排気
ガス浄化用触媒を得た(触媒S)。
500 g of ZSM22 (pore size 4.5-5.5 °: median of pore size distribution 4.7 °), silica sol 10
0 g and 1000 g of pure water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was attached to the catalyst R, excess slurry in the cell was removed with an air stream, dried, and calcined at 400 ° C. for 1 hour. A coat weight 60 g / L (total coat amount 300 g / L) -a catalyst for purifying exhaust gas of a carrier was obtained (catalyst S).

【0042】比較例4 ZSM22(細孔径4.5〜5.5Å:細孔径分布の中
央値4.7Å)500g、MFI(細孔径5.5〜6.
5Å:細孔径分布の中央値5.8Å)500g、ZSM
34(細孔径4.2〜4.8Å:細孔径分布の中央値
4.6Å)500g、β−ゼオライト(細孔径5.5〜
7.5Å:細孔径分布の中央値6.3Å)500g、U
SY(細孔径7.0〜8.0Å:細孔径分布の中央値
7.6Å)500g、シリカゾル500g及び純水30
00gを磁性ボールミルに投入し、混合・粉砕してスラ
リーを得た。このスラリー液をコージェライト質モノリ
ス担体(1.3L、400セル)に付着させ、空気流に
てセル内の余剰のスラリーを除去・乾燥し、400℃で
1時間焼成して、コート量重量300g/L−担体の排
気ガス浄化用触媒を得た(触媒T)。
Comparative Example 4 500 g of ZSM22 (pore size: 4.5-5.5 °: median of pore size distribution: 4.7 °), MFI (pore size: 5.5-6.
5 °: median pore size distribution 5.8 °) 500 g, ZSM
34 (pore size 4.2 to 4.8Å: median pore size distribution 4.6Å) 500 g, β-zeolite (pore size 5.5 to 5.5)
7.5%: median pore size distribution 6.3%) 500 g, U
500 g of SY (pore diameter 7.0 to 8.0 °: median of pore diameter distribution 7.6 °), 500 g of silica sol and 30 parts of pure water
00g was charged into a magnetic ball mill, mixed and pulverized to obtain a slurry. This slurry liquid was adhered to a cordierite-based monolithic carrier (1.3 L, 400 cells), excess slurry in the cells was removed by an air stream, dried, and baked at 400 ° C. for 1 hour to obtain a coating weight of 300 g. A catalyst for purifying exhaust gas of / L-carrier was obtained (catalyst T).

【0043】比較例5 排気流れに対して上流側に触媒Nを、下流側に触媒Mを
配置して、排気ガス浄化用触媒を得た。
Comparative Example 5 A catalyst for purifying exhaust gas was obtained by disposing a catalyst N on the upstream side and a catalyst M on the downstream side with respect to the exhaust gas flow.

【0044】上記実施例1〜6及び比較例1〜5で得ら
れた排気ガス浄化用触媒の仕様を図1a〜kに示す。
The specifications of the exhaust gas purifying catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 5 are shown in FIGS.

【0045】試験例 前記実施例1〜6及び比較例1〜5で得られた排気ガス
浄化用触媒を、以下の耐久条件により耐久を行った後、
図2のシステムを用いて下記評価条件で触媒活性評価を
行った。図2のシステムは、実施例1〜6及び比較例1
〜5で得られた排気ガス浄化用触媒の上流側に1.0L
の三元触媒Pd/Rh=240g/cf−11/1を2
個平列に配置し、その下流に排気ガス浄化用触媒を配置
したものである。
Test Examples The exhaust gas purifying catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were subjected to durability under the following durability conditions.
The catalytic activity was evaluated under the following evaluation conditions using the system of FIG. The system shown in FIG.
1.0L upstream of the exhaust gas purifying catalyst obtained in
Of the three-way catalyst Pd / Rh = 240 g / cf-11 / 1
The exhaust gas purifying catalysts are arranged in a row in a row and an exhaust gas purifying catalyst is arranged downstream of the individual rows.

【0046】耐久条件 エンジン排気量 3000cc 燃料 無鉛ガソリン 触媒入口ガス温度 650℃ 耐久時間 100時間 入口ガス組成 CO 0.5±0.1% O2 0.5±0.1% HC 約1100ppm NO 1300ppm CO2 15% A/F変動 5500回(周期65秒/回) 周期:A/F=14.6 55秒 燃料カット 5秒 リッチ スパイク 5秒 Endurance conditions Engine displacement 3000cc Fuel unleaded gasoline Catalyst inlet gas temperature 650 ° C Endurance time 100 hours Inlet gas composition CO 0.5 ± 0.1% O 2 0.5 ± 0.1% HC About 1100ppm NO 1300ppm CO 2 15% A / F fluctuation 5500 times (65 seconds / cycle) Cycle: A / F = 14.655 seconds Fuel cut 5 seconds Rich spike 5 seconds

【0047】評価条件 エンジン排気量 日産自動車株式会社製 V型6気筒3.3L 燃料 無鉛ガソリン 評価モード ECE 各実施例1〜6及び比較例1〜5で得られた排気ガス浄
化用触媒について上記評価条件下、以下の方法によりコ
ールドHC吸着量を測定した。
Evaluation conditions Engine displacement Nissan Motor Co., Ltd. V-6 3.3 L fuel Unleaded gasoline Evaluation mode ECE The above exhaust gas purifying catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were evaluated as described above. Under the conditions, the amount of cold HC adsorbed was measured by the following method.

【0048】コールドHC吸着量の測定 図2の車両システムにおいて、コージェライトに活性ア
ルミナ(300g/L)のみを担持した触媒(1:1.
3L+2:1.3L)を床下に配置した時の排出HC量
(0.65g/test)をベースに、ECEの0秒から約
60秒(排出HC量がベースを下まわる区間)を吸着区
間とし、ベースからの低減量を吸着HC量とした。得ら
れた結果を表1に示す。
Measurement of Cold HC Adsorption In the vehicle system shown in FIG. 2, a catalyst in which only activated alumina (300 g / L) is supported on cordierite (1: 1.
3L + 2: 1.3L) based on the discharged HC amount (0.65 g / test) when placed under the floor, and from 0 seconds of ECE to about 60 seconds (the section where the discharged HC amount falls below the base) as the adsorption section. The amount reduced from the base was defined as the amount of adsorbed HC. Table 1 shows the obtained results.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【発明の効果】請求項1記載の排気ガス浄化用触媒は、
内燃機関から排出されるエンジン始動直後の低温排気ガ
ス中のHC吸着能に優れ、しかも、吸着したHCの脱離
を遅延化することができる。
The exhaust gas purifying catalyst according to claim 1 is
It is excellent in the ability to adsorb HC in low-temperature exhaust gas immediately after the start of the engine discharged from the internal combustion engine, and can delay the desorption of the adsorbed HC.

【0051】請求項2記載の排気ガス浄化用触媒は、上
記効果に加えて、更に、HC吸着能に優れ、排気ガス中
のHCを効率良く吸着することができる。
The exhaust gas purifying catalyst according to the second aspect has, in addition to the above effects, further excellent HC adsorbing ability and can adsorb HC in the exhaust gas efficiently.

【0052】請求項3記載の排気ガス浄化用触媒は、上
記効果に加えて、分子径の小さいHC種から分子径の大
きいHC種まで、各種HC種に対する吸着能を向上する
ことができる。
The exhaust gas purifying catalyst according to the third aspect can improve the adsorption capacity for various HC species from HC species having a small molecular diameter to HC species having a large molecular diameter, in addition to the above effects.

【0053】請求項4記載の排気ガス浄化用触媒は、更
に吸着能を向上し、低温排気ガス中に含まれるHC種の
うち未捕集HC分を低減できる。
The exhaust gas purifying catalyst according to the fourth aspect can further improve the adsorbing ability and reduce the uncollected HC content among the HC species contained in the low-temperature exhaust gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の排気ガス浄化用触媒の構造仕様
の一例を示す概略図である。
FIG. 1 is a schematic view showing an example of a structural specification of an exhaust gas purifying catalyst of the present invention.

【図2】図2は、本発明の排気ガス浄化用触媒のコール
ドHC吸着量を評価する評価システムの一例を示す概略
図である。
FIG. 2 is a schematic diagram showing an example of an evaluation system for evaluating the amount of cold HC adsorbed by the exhaust gas purifying catalyst of the present invention.

【図3】図3は本発明の排気ガス浄化用触媒の車両評価
経過時間(SEC)とHC排出量との関係の一例を示す
線図である。
FIG. 3 is a diagram showing an example of a relationship between a vehicle evaluation elapsed time (SEC) and an HC emission amount of the exhaust gas purifying catalyst of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 29/70 B01D 53/36 C 35/02 104Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 29/70 B01D 53/36 C 35/02 104Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 触媒成分層中に細孔径分布の中央値の異
なる2種以上の炭化水素吸着材を含有し、該炭化水素吸
着材の細孔径分布が4〜9Åであって、かかる細孔径分
布の中央値の異なる2種以上の炭化水素吸着材を該吸着
材毎の多層構造体とし、上層に細孔径分布の中央値の大
きい炭化水素吸着材を、順次下層に細孔径分布の中央値
の小さい炭化水素吸着材を配置することを特徴とする排
気ガス浄化用触媒。
1. A catalyst component layer comprising two or more hydrocarbon adsorbents having different median pore diameter distributions, wherein the hydrocarbon adsorbent has a pore diameter distribution of 4 to 9 °, and the pore diameter distribution is At least two types of hydrocarbon adsorbents having different median distributions are used as a multilayer structure for each adsorbent, and a hydrocarbon adsorbent having a large median pore size distribution is provided in an upper layer, and a median pore size distribution is provided in a lower layer sequentially. An exhaust gas purifying catalyst comprising a hydrocarbon adsorbent having a small particle size.
【請求項2】 請求項1記載の排気ガス浄化用触媒にお
いて、炭化水素吸着材は、ZSM12、ZSM22、Z
SM34、MFI、β−ゼオライト及びUSYゼオライ
トからなる群より選ばれた少なくとも2種以上の炭化水
素吸着材が組み合わされることを特徴とする排気ガス浄
化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the hydrocarbon adsorbent is ZSM12, ZSM22, ZSM22.
An exhaust gas purification catalyst comprising a combination of at least two or more hydrocarbon adsorbents selected from the group consisting of SM34, MFI, β-zeolite and USY zeolite.
【請求項3】 請求項1又は2記載の排気ガス浄化用触
媒において、炭化水素吸着材は、排気ガスが、細孔径分
布の中央値の大きい炭化水素吸着材から順次細孔径分布
の中央値の小さい炭化水素吸着材に接触するように配置
されることを特徴とする排気ガス浄化用触媒。
3. The exhaust gas purifying catalyst according to claim 1, wherein the hydrocarbon adsorbent is such that the exhaust gas has a median pore diameter distribution in order from a hydrocarbon adsorbent having a large median pore diameter distribution. An exhaust gas purifying catalyst, which is arranged to be in contact with a small hydrocarbon adsorbent.
【請求項4】 請求項1〜3いずれかの項記載の排気ガ
ス浄化用触媒を、排気ガス流れに対して2個以上直列に
配置することを特徴とする排気ガス浄化用触媒。
4. An exhaust gas purifying catalyst, wherein two or more exhaust gas purifying catalysts according to claim 1 are arranged in series with respect to an exhaust gas flow.
JP02982198A 1998-02-12 1998-02-12 Exhaust gas purification system Expired - Fee Related JP3956466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02982198A JP3956466B2 (en) 1998-02-12 1998-02-12 Exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02982198A JP3956466B2 (en) 1998-02-12 1998-02-12 Exhaust gas purification system

Publications (2)

Publication Number Publication Date
JPH11226425A true JPH11226425A (en) 1999-08-24
JP3956466B2 JP3956466B2 (en) 2007-08-08

Family

ID=12286700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02982198A Expired - Fee Related JP3956466B2 (en) 1998-02-12 1998-02-12 Exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP3956466B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286725A (en) * 2000-04-11 2001-10-16 Meidensha Corp Method and apparatus for treating exhaust gas
JP2003314267A (en) * 2002-04-24 2003-11-06 Nissan Motor Co Ltd Exhaust gas purifier
JP2003314268A (en) * 2002-04-24 2003-11-06 Nissan Motor Co Ltd Exhaust gas purifier
US7425312B2 (en) 2002-04-24 2008-09-16 Nissan Motor Co., Ltd. Hydrocarbon trapping device
JP2008284432A (en) * 2007-05-16 2008-11-27 Nissan Diesel Motor Co Ltd Exhaust gas purification apparatus for engine
JP2009226275A (en) * 2008-03-20 2009-10-08 Denso Corp Exhaust gas-purification catalyst
WO2021044687A1 (en) * 2019-09-05 2021-03-11 三井金属鉱業株式会社 Exhaust gas purifying composition and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286725A (en) * 2000-04-11 2001-10-16 Meidensha Corp Method and apparatus for treating exhaust gas
JP2003314267A (en) * 2002-04-24 2003-11-06 Nissan Motor Co Ltd Exhaust gas purifier
JP2003314268A (en) * 2002-04-24 2003-11-06 Nissan Motor Co Ltd Exhaust gas purifier
US7425312B2 (en) 2002-04-24 2008-09-16 Nissan Motor Co., Ltd. Hydrocarbon trapping device
JP2008284432A (en) * 2007-05-16 2008-11-27 Nissan Diesel Motor Co Ltd Exhaust gas purification apparatus for engine
JP2009226275A (en) * 2008-03-20 2009-10-08 Denso Corp Exhaust gas-purification catalyst
WO2021044687A1 (en) * 2019-09-05 2021-03-11 三井金属鉱業株式会社 Exhaust gas purifying composition and production method therefor
JPWO2021044687A1 (en) * 2019-09-05 2021-11-25 三井金属鉱業株式会社 Exhaust gas purification composition and its manufacturing method
CN114206489A (en) * 2019-09-05 2022-03-18 三井金属矿业株式会社 Exhaust gas purifying composition and method for producing same

Also Published As

Publication number Publication date
JP3956466B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP3855266B2 (en) Exhaust gas purification catalyst
JP3489049B2 (en) Exhaust gas purification catalyst
JP3411942B2 (en) HC adsorbent for exhaust gas purification, catalyst for exhaust gas purification, and exhaust gas purification device
US20080282683A1 (en) Device for the purification of exhaust gas
JP2001286769A (en) Catalyst for exhaust gas treatment
EP0914864B1 (en) Hydrocarbon-Adsorbent
KR100731257B1 (en) Exhaust gas purifying catalyst and process for purifying exhaust gas
JP3854134B2 (en) Exhaust gas purification device for internal combustion engine
EP1166854B1 (en) Exhaust gas purifing catalyst and method for purifying exhaust gas
JP2800499B2 (en) Hydrocarbon adsorbent
JPH07124468A (en) Production of hydrocarbon adsorbent and adsorption catalyst
JP3282344B2 (en) Exhaust gas purification device
JP3956466B2 (en) Exhaust gas purification system
JP3551348B2 (en) Exhaust gas purification device
JPH1147596A (en) Catalyst for purifying exhaust gas
JPH1190226A (en) Catalyst for exhaust gas purification
JPH0999217A (en) Exhaust gas purifying system
JPH07124467A (en) Production of hydrocarbon adsrobent and catalyst
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JP3414808B2 (en) Hydrocarbon adsorbent in exhaust gas
JP2005007260A (en) Exhaust gas cleaner
JP2003135970A (en) Exhaust gas cleaning catalyst
JP4565424B2 (en) Exhaust gas purification catalyst
JP2004105821A (en) Hydrocarbon adsorbent for exhaust gas and exhaust gas cleaning catalyst using it
JP2004132193A (en) Catalyst system for exhaust emission control

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees