JP2003314268A - Exhaust gas purifier - Google Patents
Exhaust gas purifierInfo
- Publication number
- JP2003314268A JP2003314268A JP2002122120A JP2002122120A JP2003314268A JP 2003314268 A JP2003314268 A JP 2003314268A JP 2002122120 A JP2002122120 A JP 2002122120A JP 2002122120 A JP2002122120 A JP 2002122120A JP 2003314268 A JP2003314268 A JP 2003314268A
- Authority
- JP
- Japan
- Prior art keywords
- carrier
- control device
- emission control
- exhaust emission
- slit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 40
- 239000003054 catalyst Substances 0.000 claims abstract description 37
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims description 37
- 229910052751 metal Inorganic materials 0.000 claims description 37
- 238000000746 purification Methods 0.000 claims description 23
- 230000003197 catalytic effect Effects 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims 6
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 46
- 210000004027 cell Anatomy 0.000 description 28
- 230000000694 effects Effects 0.000 description 8
- 238000003795 desorption Methods 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910018967 Pt—Rh Inorganic materials 0.000 description 1
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 1
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は主としてエンジンの
排気浄化に適用される触媒コンバータに関し、特にHC
トラップ機能を有する排気浄化装置の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalytic converter mainly applied to engine exhaust purification, and more particularly to a HC converter.
The present invention relates to an improvement of an exhaust emission control device having a trap function.
【0002】[0002]
【従来の技術と解決すべき課題】三元触媒を備えた排気
浄化システムではエンジン冷間運転時のHCの処理が課
題となっている。触媒が活性温度に達するまでは低温条
件下での燃焼時に排出されやすいHCを十分に浄化でき
ないからである。この問題を解決するものとして、特開
平9−85049号にはHCトラップ剤を適用した浄化
システムが提案されている。HCトラップ剤は排気ガス
中のHCを一時的に捕捉しておく機能を持っており、捕
捉されたHCは温度上昇に伴いトラップ剤から脱離す
る。そこで前記システムでは三元触媒の上流側にHCト
ラップ剤を設け、三元触媒が活性温度に達するまでのH
Cの排出を抑制するようにしている。しかしながら、捕
捉されたHCがトラップ剤から脱離を開始する温度に達
しても、この時点では下流側の三元触媒がまだ十分に活
性化していないため、HCの排出を抑制する効果は十分
ではない。2. Description of the Related Art In an exhaust gas purification system equipped with a three-way catalyst, treatment of HC during cold engine operation has become a problem. This is because HC that is easily discharged during combustion under low temperature conditions cannot be sufficiently purified until the catalyst reaches the activation temperature. As a solution to this problem, JP-A-9-85049 proposes a purification system to which an HC trapping agent is applied. The HC trapping agent has a function of temporarily trapping HC in the exhaust gas, and the trapped HC is desorbed from the trapping agent as the temperature rises. Therefore, in the above system, an HC trapping agent is provided on the upstream side of the three-way catalyst, and H
The emission of C is controlled. However, even if the trapped HC reaches the temperature at which desorption from the trapping agent starts, the three-way catalyst on the downstream side is not yet sufficiently activated at this point, so the effect of suppressing HC emission is not sufficient. Absent.
【0003】本発明の目的は、エンジン冷間運転時にお
いてもHCの排出をより確実に抑制することのできる排
気浄化装置を提供することである。It is an object of the present invention to provide an exhaust emission control device which can more surely suppress the emission of HC even during cold engine operation.
【0004】[0004]
【発明の概要】本発明では、ハニカム状担体のセルを横
断するようにかつ担体の下流部に偏在するように1個以
上のスリットを形成した点を基本構成とする。SUMMARY OF THE INVENTION The basic structure of the present invention is that one or more slits are formed so as to traverse cells of a honeycomb-shaped carrier and be unevenly distributed in a downstream portion of the carrier.
【0005】担体に形成したスリットはその下流側への
担体内の伝熱を遮断する作用を有するため、それだけ温
度上昇を遅らせてHCの捕捉量を増大させ、かつHCが
脱離するまでの時間を長くできる。また、これにより触
媒金属が温度上昇するための時間が稼げるので、HC脱
離時の処理効率も向上する。Since the slit formed in the carrier has a function of blocking the heat transfer in the carrier to the downstream side, the temperature rise is delayed by that much to increase the amount of trapped HC and the time until HC is desorbed. Can be long. Further, this allows time for the temperature of the catalytic metal to rise, so that the treatment efficiency at the time of HC desorption is also improved.
【0006】他方、従来の排気浄化装置はハニカム状に
形成された多数のセルの各々が担体の入口部から出口部
にわたり連続しているためセル内のガスの流れは比較的
整っており乱れは少ない。これに対して担体にセルを横
切るようにスリットを形成すると、このスリットにより
流れ方向に分割されたセルに進入したガスはスリット部
分で乱れを発生する。この乱れは、排気ガスがHCトラ
ップ剤に接触する機会を増やすのでそれだけHCトラッ
プ性能を向上させる。On the other hand, in the conventional exhaust emission control device, since a large number of cells formed in a honeycomb shape are continuous from the inlet to the outlet of the carrier, the gas flow in the cells is relatively regular and no turbulence occurs. Few. On the other hand, if a slit is formed in the carrier so as to cross the cell, the gas that has entered the cell divided in the flow direction by the slit causes turbulence at the slit portion. This turbulence increases the chances of the exhaust gas coming into contact with the HC trapping agent, and accordingly improves the HC trapping performance.
【0007】また、スリットを持たない連続したセル構
造の排気浄化装置では、担体の断面上でガス流路の流量
分布および昇温性に偏りがあり、言い換えればセル毎に
HCトラップ性能や転化率に偏りを生じるため排気浄化
装置が本来有している性能を使いきることは難しい。こ
れに対してスリットを設けた担体では前記乱流作用によ
り担体の断面方向でのガス流量分布を均一化できるので
制御性が向上し、排気浄化装置本来の性能を十分に発揮
させることが可能となる。Further, in the exhaust gas purifying device having a continuous cell structure having no slit, the flow rate distribution and the temperature rising property of the gas passage are uneven on the cross section of the carrier. In other words, the HC trap performance and the conversion rate are cell by cell. It is difficult to use up the original performance of the exhaust gas purification device because of the unevenness in the exhaust gas. On the other hand, in the case of a carrier provided with slits, the turbulent flow action makes it possible to make the gas flow rate distribution in the cross-sectional direction of the carrier uniform, so that the controllability is improved and the original performance of the exhaust gas purification device can be fully exhibited. Become.
【0008】第1の発明としてはさらに、前記担体に上
流部にて担持量が大となるようにゼオライト等のHCト
ラップ剤を担持させる。このような構成とすることによ
り、上流部での熱容量が増大して昇温を抑えられるの
で、早期に温度が上がりやすい担体上流部でのHC捕捉
量の増加とHC脱離タイミングの遅延化を図ることがで
きる。担体下流部は相対的にHCトラップ剤の担持量が
小となるが、前述したスリットによる乱流化と伝熱抑制
の作用によりHCの捕捉効率が高められることでHC捕
捉性能を確保することができる。As a first aspect of the present invention, the carrier is further loaded with an HC trapping agent such as zeolite so that the loading amount becomes large in the upstream portion. With such a configuration, the heat capacity in the upstream portion increases and the temperature rise can be suppressed. Therefore, an increase in the amount of captured HC and a delay in the HC desorption timing in the upstream portion of the carrier, where the temperature easily rises, can be reduced. Can be planned. The amount of the HC trapping agent carried becomes relatively small in the downstream portion of the carrier, but the HC trapping efficiency can be secured by increasing the HC trapping efficiency by the action of the turbulence and heat transfer suppression by the slits described above. it can.
【0009】前記構成において、上流部にて担持量が大
となるように担体にPt、Rh、Pd等の触媒金属を担
持させた構成とすることもできる。担体上流部では高温
排ガスとの接触により触媒は早期に活性化するので、触
媒担持量を大としておくことにより多量のHCを効率よ
く処理することができる。In the above structure, a carrier may be made to carry a catalytic metal such as Pt, Rh, or Pd so that the carried amount becomes large at the upstream portion. In the upstream part of the carrier, the catalyst is activated early by contact with high-temperature exhaust gas, so that a large amount of HC can be efficiently treated by increasing the amount of catalyst supported.
【0010】また第2の発明としては、前記担体下流部
にスリットを偏在させた基本構成において、担体にHC
トラップ剤を均一に担持させ、下流部にて担持量が大と
なるように触媒金属を担持させる。この場合、前記担体
下流部に形成したスリットによる乱流化の作用により排
ガスと触媒金属との接触機会が増大することから、担体
下流部での触媒の転化効率の向上を図ることができる。As a second aspect of the invention, in the basic structure in which slits are unevenly distributed in the downstream portion of the carrier, HC is added to the carrier.
The trapping agent is uniformly carried, and the catalytic metal is carried so that the carried amount becomes large in the downstream portion. In this case, the chance of contact between the exhaust gas and the catalytic metal increases due to the effect of turbulence due to the slit formed in the downstream portion of the carrier, so that the conversion efficiency of the catalyst in the downstream portion of the carrier can be improved.
【0011】また、前記第2の発明においても、HCト
ラップ剤を担体上流部にて担持量が大となるように担持
させた構成を適用することにより、担体上流部でのHC
捕捉性能の向上を図り、全体としての浄化性能をより向
上させることができる。Also in the second aspect of the present invention, by applying the structure in which the HC trapping agent is carried in the carrier upstream portion so that the carried amount becomes large, the HC trapping agent in the carrier upstream portion is applied.
It is possible to improve the trapping performance and further improve the purification performance as a whole.
【0012】なお、詳しくは以下に実施形態として説明
するが、スリットの形状や寸法に応じてそれぞれに固有
の特性を設定することができる。担体にコーティングす
る触媒金属やHCトラップ剤についても同様であり、そ
の分布や層構造の設定に応じて種々の好ましい特性を与
えることができる。Incidentally, as will be described in detail below as an embodiment, it is possible to set a unique characteristic for each according to the shape and size of the slit. The same applies to the catalyst metal and the HC trapping agent coated on the carrier, and various preferable characteristics can be given depending on the distribution and the setting of the layer structure.
【0013】[0013]
【発明の実施の形態】図1は本発明による排気浄化装置
を適用したエンジンシステムの一例を示している。図に
おいて1はエンジン、2はその吸気通路、3は排気通路
である。4は排気通路3から排気ガスの一部を吸気通路
2へと還流させるEGR通路、5は前記排気還流量を制
御するEGR制御弁である。7は燃料噴射弁、8は点火
プラグである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an engine system to which an exhaust emission control device according to the present invention is applied. In the figure, 1 is an engine, 2 is its intake passage, and 3 is an exhaust passage. Reference numeral 4 is an EGR passage for returning a part of the exhaust gas from the exhaust passage 3 to the intake passage 2, and 5 is an EGR control valve for controlling the exhaust gas recirculation amount. Reference numeral 7 is a fuel injection valve, and 8 is a spark plug.
【0014】9〜11は排気通路3に介装された排気浄
化装置である。これら3個の排気浄化装置9〜11は、
基本的にはCO,HCの酸化機能とNOxの還元機能を
併有する三元触媒であり、これらのうち何れかまたは全
部はゼオライト等のHCトラップ剤によりHCを一時的
に捕捉しておく機能を備えたHCトラップ触媒として構
成されている。上流側の9または10についてはHCト
ラップ機能のみを有するHCトラップ装置で構成される
場合もある。Reference numerals 9 to 11 denote exhaust purification devices provided in the exhaust passage 3. These three exhaust emission control devices 9-11 are
Basically, it is a three-way catalyst that has both the oxidation function of CO and HC and the reduction function of NOx, and any or all of them have the function of temporarily capturing HC by an HC trapping agent such as zeolite. It is configured as a provided HC trap catalyst. The upstream side 9 or 10 may be composed of an HC trap device having only an HC trap function.
【0015】12と13はそれぞれ最上流の排気浄化装
置9の上流と下流にて排気ガスの空燃比もしくは酸素濃
度を検出する排気ガスセンサ、14は中段の排気浄化装
置10の触媒温度を検出する温度センサである。Reference numerals 12 and 13 are exhaust gas sensors for detecting the air-fuel ratio or oxygen concentration of the exhaust gas upstream and downstream of the upstreammost exhaust purification apparatus 9, respectively, and 14 is a temperature for detecting the catalyst temperature of the exhaust purification apparatus 10 in the middle stage. It is a sensor.
【0016】15はエンジン回転速度や吸入空気量など
の運転状態信号に基づいて空燃比および点火時期などを
制御するコントローラであり、CPUおよびその周辺装
置からなるマイクロコンピュータにより構成されてい
る。Reference numeral 15 is a controller for controlling the air-fuel ratio and ignition timing on the basis of operating state signals such as engine speed and intake air amount, and is composed of a microcomputer including a CPU and its peripheral devices.
【0017】図2以下に、前記排気浄化装置9〜11に
収装されるハニカム状担体21の実施形態を示す。本発
明では、基本的には図2に示したように担体21のガス
流れ(矢印方向)を横切るように1個以上のスリット2
2を担体下流部に偏在するように形成する。この場合、
複数のスリット22のガス流れ方向の分布が下流側にて
密となるように担体21にスリット22を配列してい
る。担体21をセラミクスから形成した場合には、その
焼成後に研削によりスリット22を加工する。図示した
ものではスリット22を触媒の一側面側からガス流れに
対して直交するように形成し、他側面側に非スリット部
23を残している。また隣接するスリット22は互いに
担体21の周囲に180度ずつ異なる角度で、かつガス
流れ方向には等間隔に形成してスリットと非スリット部
とが交互に配列するようにしている。担体21のセル表
面にはゼオライトなどのHCトラップ剤を含むHCトラ
ップ層、またはPt、Rh、Pd等の触媒金属を含む触
媒金属層がコーティングにより形成してある。An embodiment of the honeycomb carrier 21 housed in the exhaust gas purification devices 9 to 11 is shown in FIG. In the present invention, basically, as shown in FIG. 2, one or more slits 2 are formed so as to cross the gas flow (direction of the arrow) of the carrier 21.
2 is formed so as to be unevenly distributed in the downstream portion of the carrier. in this case,
The slits 22 are arranged in the carrier 21 so that the distribution of the plurality of slits 22 in the gas flow direction becomes dense on the downstream side. When the carrier 21 is made of ceramics, the slits 22 are processed by grinding after firing. In the illustrated example, the slit 22 is formed so as to be orthogonal to the gas flow from one side surface side of the catalyst, and the non-slit portion 23 is left on the other side surface side. Further, the adjacent slits 22 are formed at different angles by 180 degrees around the carrier 21 and at equal intervals in the gas flow direction so that slits and non-slit portions are arranged alternately. On the cell surface of the carrier 21, an HC trap layer containing an HC trapping agent such as zeolite or a catalyst metal layer containing a catalyst metal such as Pt, Rh and Pd is formed by coating.
【0018】図3の(a)〜(c)は前記HCトラップ
層または触媒金属層の担持量分布例を表しており、図中
のハッチングを施した部分に符号Tで示したのはHCト
ラップ剤の担持量が多い部分、Mで示したのは触媒金属
の担持量が多い部分を表している。なお図では担持量が
上下流方向に段階的に変化するように表しているが、こ
れに限らず、担持量が連続的に変化するような構成とす
ることもできる。3 (a) to 3 (c) show an example of the distribution of the carried amount of the HC trap layer or the catalytic metal layer, and the hatched portion in the figure is designated by the symbol T is the HC trap. The portion where the amount of the supported agent is large, M indicates the portion where the supported amount of the catalytic metal is large. In the figure, the carrying amount is shown to change stepwise in the upstream and downstream directions, but the present invention is not limited to this, and the carrying amount may be changed continuously.
【0019】図3の(a)は担体21の上流部(図で左
方。以下同様。)においてHCトラップ層または触媒金
属層の肉厚が大となるようにそれぞれの担持量を設定し
た例である。図3の(b)はHCトラップ層の担持量は
担体上下流方向に均一に設定すると共に、下流部におい
て触媒金属層の肉厚を大とした例である。図3の(c)
は担体上流部においてHCトラップ層の肉厚を、下流部
において触媒金属層の肉厚を、それぞれ大に設定した例
である。前記HCトラップ剤または触媒金属の担持量分
布設定による効果は既に説明したとおりであり、HCト
ラップ剤によるHC捕捉量の増大と触媒金属による転化
効率の向上を図ることができる。FIG. 3 (a) shows an example in which the respective loading amounts are set so that the thickness of the HC trap layer or the catalytic metal layer is large in the upstream portion of the carrier 21 (left in the figure; the same applies hereinafter). Is. FIG. 3B is an example in which the amount of the HC trap layer carried is set uniformly in the upstream and downstream directions of the carrier, and the thickness of the catalytic metal layer is increased in the downstream portion. FIG. 3 (c)
Is an example in which the thickness of the HC trap layer is set to be large in the upstream portion of the carrier and the thickness of the catalyst metal layer is set to be large in the downstream portion. The effect of setting the distribution of the carried amount of the HC trapping agent or the catalyst metal is as described above, and it is possible to increase the amount of HC trapped by the HC trapping agent and improve the conversion efficiency by the catalyst metal.
【0020】また、担体21に複数のスリット22を垂
直に形成した構成は、製造が比較的容易であることに加
えて担体の強度確保の面で有利である。スリット22を
設ける数は、ガス流の乱流化と伝熱の抑制という観点か
らは多くした方が有効であるが、限られた担体容量内で
所要のセル表面積とHCトラップ性能を確保する観点か
らは、スリット22を担体下流部に偏在させる本発明の
構成が有利である。Further, the structure in which the plurality of slits 22 are vertically formed on the carrier 21 is advantageous in that the strength of the carrier is secured in addition to being relatively easy to manufacture. It is effective to increase the number of the slits 22 provided from the viewpoint of making the gas flow turbulent and suppressing heat transfer, but from the viewpoint of ensuring the required cell surface area and HC trap performance within a limited carrier volume. From the above, the configuration of the present invention in which the slits 22 are unevenly distributed in the downstream portion of the carrier is advantageous.
【0021】担体21内部の伝熱がスリット22により
抑制される作用はメタル担体であってもある程度は期待
できるが、熱伝導率の比較的小さいセラミクス材料を担
体として適用することでより顕著となる。セラミクス材
はゼオライト等のHCトラップ剤との相性が良く、コー
ティングの強度が高いという利点もある。The effect of suppressing the heat transfer inside the carrier 21 by the slits 22 can be expected to some extent even if it is a metal carrier, but it becomes more remarkable when a ceramic material having a relatively small thermal conductivity is applied as the carrier. . The ceramic material has a good compatibility with the HC trapping agent such as zeolite and has an advantage that the strength of the coating is high.
【0022】HCの捕捉量を増やすためにHCトラップ
剤の担持量を増やすとセルの通路面積が小さくなりそれ
だけ排気抵抗が増大してしまう。この点、本発明では前
述した乱流化および熱伝導抑制の効果によりHCトラッ
プ性能が向上するのでセル密度を下げて排気抵抗の軽減
を図ることも可能である。具体的には一般的な三元触媒
のセル密度が900以上であるのに対して、本発明では
300以下、少なくとも600以下にすることが可能で
ある。前記セル密度の単位は担体横断面の面積1平方イ
ンチあたりのセル数であり、当業者による取引上の常用
単位である。また、HCトラップ剤の担持量は、例えば
セル密度が300のとき350程度、セル密度が600
のとき250程度とする。前記担持量の単位は担体の見
かけ上の容積1立方フィートあたりのグラム数[g/c
f]であり、当業者による取引上の常用単位である。If the amount of the HC trapping agent carried is increased to increase the amount of trapped HC, the passage area of the cell becomes smaller and the exhaust resistance increases accordingly. In this respect, in the present invention, since the HC trap performance is improved by the effects of the turbulent flow and the suppression of heat conduction described above, it is possible to reduce the cell density and reduce the exhaust resistance. Specifically, the cell density of a general three-way catalyst is 900 or more, whereas in the present invention, it can be 300 or less, or at least 600 or less. The unit of the cell density is the number of cells per square inch of the cross section of the carrier, and is a unit commonly used for transactions by those skilled in the art. The amount of the HC trapping agent loaded is, for example, about 350 when the cell density is 300, and 600 when the cell density is 600.
At that time, it is set to about 250. The unit of the supported amount is grams per cubic foot of the apparent volume of the carrier [g / c
f], which is a commercial unit used by those skilled in the art.
【0023】図1に示したような複数の排気浄化装置9
〜11を備えた排気浄化システムでは、下流側に位置す
る排気浄化装置10または11について、そのセル密度
を上流側のものよりも小さくして排気抵抗を低減するこ
とができる。下流側の触媒は昇温性が低く活性温度に達
するまでに時間がかかるが、本発明の排気浄化装置の構
成によればHCトラップ性能を十分に高められるので、
排気浄化性能を確保しつつセル密度を粗くして排気抵抗
を小さくできるのである。A plurality of exhaust gas purification devices 9 as shown in FIG.
In the exhaust gas purification system including Nos. 11 to 11, it is possible to reduce the exhaust resistance by making the cell density of the exhaust gas purification device 10 or 11 located on the downstream side smaller than that on the upstream side. Although the catalyst on the downstream side has a low temperature rising property and takes time to reach the activation temperature, the configuration of the exhaust gas purification device of the present invention can sufficiently enhance the HC trap performance.
The exhaust resistance can be reduced by making the cell density rough while ensuring the exhaust purification performance.
【0024】図4は前記担体21の支持構造の一例を示
しており、図中の34は触媒容器、35はセラミクスフ
ァイバーあるいはアルミナファイバーなどからなる耐熱
マットである。担体21はその外周部に巻回された耐熱
マット35を介して触媒容器34内に固定される。この
実施形態では、スリット22の開放部分の外周を担体2
1と同一の線膨張係数を有する充填材36で埋めてあ
る。このように充填材36を設けることにより、スリッ
ト22を抜けてきた排気によりマット35が風蝕されて
摩耗する不具合を防止することができる。また、担体2
1と同一の線膨張係数を有する充填材36を用いること
により、担体21の強度を向上できる。FIG. 4 shows an example of the support structure of the carrier 21, in which 34 is a catalyst container and 35 is a heat-resistant mat made of ceramic fiber or alumina fiber. The carrier 21 is fixed in the catalyst container 34 via a heat-resistant mat 35 wound around the outer periphery thereof. In this embodiment, the outer periphery of the open portion of the slit 22 is the carrier 2
It is filled with a filler 36 having the same coefficient of linear expansion as 1. By providing the filling material 36 in this way, it is possible to prevent the problem that the mat 35 is wind-eroded and worn by the exhaust gas passing through the slit 22. Also, the carrier 2
By using the filler 36 having the same linear expansion coefficient as that of No. 1, the strength of the carrier 21 can be improved.
【0025】図5に担体構成に関する他の実施形態を示
す。これは図示したように複数のスリット22のうち下
流側に位置するものほどその幅dを大としてある。FIG. 5 shows another embodiment of the carrier structure. As shown in the figure, the width d of the slits 22 located on the downstream side is increased.
【0026】この実施形態によれば、スリット幅dを大
にした下流部での排気の乱流化をより促進できると共に
伝熱抑制作用も大にできる。幅dの大きなスリット22
の部分ではそれだけガスの乱れが大きいことによりその
下流側での担体横断面方向のガス流量分布が均一となる
ので、HCトラップ性能、脱離HCの浄化性能ともに向
上する。この実施形態は担体下流部が温度上昇しやすい
場合に適合する。According to this embodiment, it is possible to further promote the turbulent flow of exhaust gas in the downstream portion where the slit width d is increased, and it is also possible to increase the heat transfer suppressing effect. Slit 22 with a large width d
Since the gas turbulence is so large in the portion (2), the gas flow rate distribution in the cross-sectional direction of the carrier on the downstream side becomes uniform, so that both the HC trap performance and the desorbed HC purification performance are improved. This embodiment is suitable when the temperature of the downstream portion of the carrier tends to rise.
【0027】図6〜図10は、HCトラップ剤および触
媒金属の層構造に関する実施形態である。HCトラップ
剤と触媒金属とを同一層内に混在させてもよいが、それ
ぞれを内外に層状化することにより温度上昇に時間差が
生じるので、HC脱離と触媒活性化のタイミングを合わ
せて浄化処理の効率を高めることが可能となる。6 to 10 are embodiments relating to the layer structure of the HC trapping agent and the catalytic metal. The HC trapping agent and the catalyst metal may be mixed in the same layer, but since layering each of them inside and outside causes a time difference in temperature rise, purification treatment is performed at the same timing as HC desorption and catalyst activation. It is possible to improve the efficiency of.
【0028】特に、図6に示したようにセル24の下層
側にHCトラップ剤を含むHCトラップ層25を、上層
側に触媒金属を含む触媒金属層26をそれぞれコーティ
ングした構成においては、触媒金属層26の触媒金属を
排気との接触により早期に活性化しつつ、担体21と接
するHCトラップ層25を比較的低温に保てるので、H
Cトラップ量の確保と触媒による転化効率の向上という
相反する要求を満たすことが可能となる。In particular, as shown in FIG. 6, in the structure in which the lower layer side of the cell 24 is coated with the HC trap layer 25 containing the HC trapping agent and the upper layer side is coated with the catalytic metal layer 26 containing the catalytic metal, respectively, Since the catalyst metal of the layer 26 is activated early by contact with the exhaust gas, the HC trap layer 25 in contact with the carrier 21 can be kept at a relatively low temperature.
It is possible to satisfy the contradictory requirements of securing the amount of C trap and improving the conversion efficiency by the catalyst.
【0029】図7は、HCトラップ層25に隣接してア
ルミナ等からなる断熱層29を均一な厚さに形成した実
施形態である。断熱層29により、触媒金属層26から
HCトラップ層25への伝熱量を低減できるので、触媒
金属層26の昇温を早めつつHCトラップ量を増大し
て、浄化性能より向上させることができる。FIG. 7 shows an embodiment in which a heat insulating layer 29 made of alumina or the like is formed adjacent to the HC trap layer 25 to have a uniform thickness. Since the heat insulating layer 29 can reduce the amount of heat transfer from the catalyst metal layer 26 to the HC trap layer 25, it is possible to increase the amount of HC trap while increasing the temperature of the catalyst metal layer 26 earlier, and to improve the purification performance.
【0030】前記断熱層29を、図8に示したようにそ
の厚さが担体上流部ほど大となるように形成することに
より、排気熱と触媒反応とで昇温しやすい上流側HCト
ラップ層の温度上昇を抑制してHCトラップ性能をより
高めることができる。As shown in FIG. 8, the heat insulating layer 29 is formed so that its thickness becomes larger toward the upstream side of the carrier, so that the upstream side HC trap layer is likely to be heated by exhaust heat and catalytic reaction. It is possible to suppress the temperature rise of the above and further improve the HC trapping performance.
【0031】図9は断熱層29を担体上流側にて触媒金
属層26の表面に近接するように形成した実施形態であ
る。この実施形態によれば、昇温の比較的早い上流部で
のHCトラップ層25の熱容量を増大させて昇温を遅ら
せ、HCトラップ性能を高めることができる。FIG. 9 shows an embodiment in which the heat insulating layer 29 is formed close to the surface of the catalytic metal layer 26 on the upstream side of the carrier. According to this embodiment, it is possible to increase the heat capacity of the HC trap layer 25 in the upstream portion where the temperature rise is relatively fast, delay the temperature rise, and improve the HC trap performance.
【0032】図10は断熱層29を下流側にて担体表面
に近接するように形成した実施形態である。この実施形
態によれば、昇温の比較的遅い下流部での触媒金属層2
6の活性を早めて、HCトラップ性能とHC脱離後の浄
化性能の向上という相反する性能をさらに改善すること
ができる。FIG. 10 shows an embodiment in which the heat insulating layer 29 is formed on the downstream side so as to be close to the surface of the carrier. According to this embodiment, the catalytic metal layer 2 in the downstream portion where the temperature rise is relatively slow
It is possible to accelerate the activity of No. 6 and further improve the contradictory performances of the HC trapping performance and the purification performance after desorption of HC.
【0033】前記図6〜図10の構成において、HCト
ラップ層25または触媒金属層26を互いに特性が異な
る複数の層から構成するようにしてもよい。例えば、触
媒金属層26については、表層側にPdを適用した場合
には、深層側にはPd−Rh系、またはPt−Rh系、
または比較的低密度のPd層とする。担体やHCトラッ
プ剤の特性による昇温性に応じてHC脱離タイミングま
たは触媒金属の活性タイミングをより適切に制御するこ
とが可能となる。In the structures shown in FIGS. 6 to 10, the HC trap layer 25 or the catalyst metal layer 26 may be composed of a plurality of layers having different characteristics. For example, as for the catalytic metal layer 26, when Pd is applied on the surface side, Pd-Rh system or Pt-Rh system is formed on the deep side.
Alternatively, the Pd layer has a relatively low density. It is possible to more appropriately control the HC desorption timing or the catalyst metal activation timing according to the temperature rising property due to the characteristics of the carrier and the HC trapping agent.
【0034】図11は担体21の両側面から交互に、か
つセルに対してガス流れの上流側に傾斜するように複数
のスリット22を形成した実施形態である。ガス流れ方
向から見ると隣接するスリット22どうしが部分的に重
畳するように交互に配列している。FIG. 11 shows an embodiment in which a plurality of slits 22 are formed alternately from both side surfaces of the carrier 21 and inclined toward the upstream side of the gas flow with respect to the cells. When viewed from the gas flow direction, the adjacent slits 22 are alternately arranged so as to partially overlap each other.
【0035】この実施形態によれば、傾斜したスリット
22により担体内側から外側へとガスが拡散しやすくな
るので、担体外側部分にデッドボリューム部つまりガス
の流れが少なくHCトラップ剤および触媒金属の機能を
十分に生かせない部分が生じる場合に本構成を適用する
ことにより、デッドボリューム部を少なくすることがで
きる。According to this embodiment, the inclined slits 22 facilitate the diffusion of the gas from the inside of the carrier to the outside thereof, so that the dead volume portion, that is, the flow of gas, is small in the outside portion of the carrier, and the functions of the HC trapping agent and the catalytic metal function. The dead volume portion can be reduced by applying this configuration when there is a portion that cannot fully utilize.
【0036】図12は担体21の両側面から対向的に、
かつセルに対してガス流れの上流側に傾斜するように複
数のスリット22を形成した実施形態である。この実施
形態では、ガス流れ方向から見ると隣接するスリット2
2どうしが重畳する部分はなく、非スリット部23が中
央部に残っている。FIG. 12 shows the carrier 21 facing each other from both sides.
Further, it is an embodiment in which a plurality of slits 22 are formed so as to be inclined toward the upstream side of the gas flow with respect to the cell. In this embodiment, the slits 2 adjacent to each other when viewed from the gas flow direction
There is no portion where the two overlap, and the non-slit portion 23 remains in the central portion.
【0037】この実施形態によれば、図15のものと同
様に担体外側域のデッドボリューム部を減らしつつ、中
央の非スリット部23により担体21の強度を高めるこ
とができる。According to this embodiment, the strength of the carrier 21 can be increased by the central non-slit portion 23 while reducing the dead volume part in the outer region of the carrier as in the case of FIG.
【0038】図13は、スリット22を担体21の両側
面を貫通するように形成した実施形態である。FIG. 13 shows an embodiment in which the slit 22 is formed so as to penetrate both side surfaces of the carrier 21.
【0039】この実施形態によれば、スリット22の両
側に非スリット部23があるため担体21の強度を寄り
高められる。また、この実施形態ではスリット23の側
面形状を上流側に頂部を向けた山形形状としてあるの
で、図15または図16のものと同様に担体外側域のデ
ッドボリューム部を低減できる。According to this embodiment, since the non-slit portions 23 are provided on both sides of the slit 22, the strength of the carrier 21 can be increased. Further, in this embodiment, since the side surface shape of the slit 23 is a mountain shape with the top facing the upstream side, it is possible to reduce the dead volume part in the outer region of the carrier as in the case of FIG. 15 or 16.
【0040】図14は担体21の両側面から交互に形成
したスリット22の幅dを、担体内側に向かって狭くな
るように楔状に形成した実施形態である。隣接するスリ
ット22どうしはガス流れ方向から見て一部が重畳して
いる。FIG. 14 shows an embodiment in which the width d of the slits 22 formed alternately from both side surfaces of the carrier 21 is formed in a wedge shape so as to become narrower toward the inside of the carrier. The adjacent slits 22 partially overlap each other when viewed from the gas flow direction.
【0041】この実施形態によれば、担体外周域ほどス
リット幅が大となっているので、担体外周域のガス乱れ
をより促進してデッドボリューム部を減らすことができ
る。According to this embodiment, since the slit width is larger in the outer peripheral region of the carrier, the gas turbulence in the outer peripheral region of the carrier can be further promoted and the dead volume portion can be reduced.
【0042】図15は図18と同様の楔状のスリット2
2を、隣接するスリット22どうしがガス流れ方向から
見て重畳しないように形成した実施形態である。FIG. 15 shows a wedge-shaped slit 2 similar to FIG.
2 is an embodiment in which adjacent slits 22 are formed so as not to overlap each other when viewed from the gas flow direction.
【0043】この実施形態によれば、図18のものと同
様に担体外側域のデッドボリューム部を減らしつつ、中
央の非スリット部23により担体21の強度を高めるこ
とができる。According to this embodiment, the strength of the carrier 21 can be increased by the central non-slit portion 23 while reducing the dead volume part in the outer region of the carrier as in the case of FIG.
【0044】図16は担体21の両側面を貫通するよう
にスリット22を形成した実施形態である。担体横断面
上、各スリット22の両側に非スリット部23が残って
いる。また、各スリット22はその幅dが中央部ほど大
となるように多角形状に形成してある。FIG. 16 shows an embodiment in which a slit 22 is formed so as to penetrate both sides of the carrier 21. Non-slit portions 23 remain on both sides of each slit 22 in the cross section of the carrier. Further, each slit 22 is formed in a polygonal shape so that its width d becomes larger toward the central portion.
【0045】この実施形態によれば、スリット22の中
央の幅広部分により担体内側域でのガスの乱れが大きく
なるので、担体内側部分にデッドボリューム部が生じる
場合に本構成を適用することによりデッドボリューム部
を少なくすることができる。また、スリット22の両側
に非スリット部23があるので担体21の強度上も有利
である。According to this embodiment, since the gas turbulence in the inner region of the carrier becomes large due to the wide portion in the center of the slit 22, the dead volume can be obtained by applying this configuration when the dead volume part is generated in the inner part of the carrier. The volume part can be reduced. Further, since the non-slit portions 23 are provided on both sides of the slit 22, the strength of the carrier 21 is also advantageous.
【0046】図17は担体21の両側面を貫通するよう
に、かつガス流れの上下流方向に複数の頂部を有する屈
曲形状にスリット22を形成した実施形態である。FIG. 17 shows an embodiment in which a slit 22 is formed in a bent shape so as to penetrate both sides of the carrier 21 and has a plurality of tops in the upstream and downstream directions of the gas flow.
【0047】この実施形態によれば、屈曲したスリット
形状により担体中央部でのガス流れを複雑化してその乱
れをより大きくできるので、担体のデッドボリューム部
を効果的に減らすことができる。また、スリット両側の
非スリット部23により担体強度を確保できる。According to this embodiment, the curved slit shape complicates the gas flow in the central part of the carrier and makes the turbulence larger, so that the dead volume part of the carrier can be effectively reduced. Further, the strength of the carrier can be secured by the non-slit portions 23 on both sides of the slit.
【0048】図18は担体21の両側面を貫通するよう
に、かつガス流れの上流方向に凸の湾曲形状にスリット
22を形成した実施形態である。FIG. 18 shows an embodiment in which the slit 22 is formed so as to penetrate both sides of the carrier 21 and has a convex curved shape in the upstream direction of the gas flow.
【0049】この実施形態によれば、図17のものと同
様に担体のデッドボリューム部を減らす効果が得られる
ことに加えて、スリット22が湾曲形状であって鋭角部
分がないため、担体21が振動や衝撃力を受けたときに
応力集中を起こしにくく、強度上有利である。According to this embodiment, in addition to the effect of reducing the dead volume portion of the carrier as in the case of FIG. 17, the slit 22 has a curved shape and has no acute-angled portion, so that the carrier 21 is Stress concentration is less likely to occur when subjected to vibration or impact force, which is advantageous in terms of strength.
【0050】なお、以上の各図はスリットの形成態様や
触媒担体の構造を説明するための図面であり、スリット
の幅、ピッチなどは説明の便宜のために実際とは異なる
寸法または比率で描いてある。Each of the above drawings is a drawing for explaining the formation mode of the slits and the structure of the catalyst carrier, and the width, pitch, etc. of the slits are drawn with dimensions or ratios different from the actual ones for convenience of description. There is.
【図1】本発明による排気浄化装置を適用したエンジン
システムの一例を示す概略構成図。FIG. 1 is a schematic configuration diagram showing an example of an engine system to which an exhaust emission control device according to the present invention is applied.
【図2】本発明に係る担体の実施形態を示す側面形状の
説明図。FIG. 2 is an explanatory view of a side shape showing an embodiment of a carrier according to the present invention.
【図3】本発明に係る担体のHCトラップ剤等の担持量
分布の実施形態の説明図。FIG. 3 is an explanatory diagram of an embodiment of an amount distribution of an HC trapping agent or the like on a carrier according to the present invention.
【図4】本発明による排気浄化装置の担体支持構造の一
例を示す縦断面図。FIG. 4 is a vertical sectional view showing an example of a carrier support structure of an exhaust emission control device according to the present invention.
【図5】本発明に係る担体の他の実施形態を示す側面形
状の説明図。FIG. 5 is an explanatory view of a side shape showing another embodiment of the carrier according to the present invention.
【図6】本発明に係る担体のHCトラップ剤等の層構造
に関する実施形態のセル部詳細断面図。FIG. 6 is a detailed cross-sectional view of a cell portion of an embodiment relating to a layered structure of an HC trapping agent or the like of a carrier according to the present invention.
【図7】本発明に係る担体のHCトラップ剤等の層構造
に関する他の実施形態のセル部詳細断面図。FIG. 7 is a detailed cross-sectional view of a cell portion of another embodiment relating to the layered structure of the HC trapping agent or the like of the carrier according to the present invention.
【図8】本発明に係る担体のHCトラップ剤等の層構造
に関する他の実施形態のセル部詳細断面図。FIG. 8 is a detailed cross-sectional view of a cell portion of another embodiment relating to the layer structure of the carrier such as the HC trapping agent according to the present invention.
【図9】本発明に係る担体のHCトラップ剤等の層構造
に関する他の実施形態のセル部詳細断面図。FIG. 9 is a detailed cross-sectional view of a cell portion of another embodiment of the layer structure of the carrier such as an HC trapping agent according to the present invention.
【図10】本発明に係る担体のHCトラップ剤等の層構
造に関する他の実施形態のセル部詳細断面図。FIG. 10 is a detailed cross-sectional view of a cell portion of another embodiment relating to the layered structure of the HC trapping agent or the like of the carrier according to the present invention.
【図11】本発明による担体の他の実施形態の側面図。FIG. 11 is a side view of another embodiment of a carrier according to the present invention.
【図12】本発明による担体の他の実施形態の側面図。FIG. 12 is a side view of another embodiment of a carrier according to the present invention.
【図13】本発明による担体の他の実施形態の側面図。FIG. 13 is a side view of another embodiment of the carrier according to the present invention.
【図14】本発明による担体の他の実施形態の側面図。FIG. 14 is a side view of another embodiment of a carrier according to the present invention.
【図15】本発明による担体の他の実施形態の側面図。FIG. 15 is a side view of another embodiment of a carrier according to the present invention.
【図16】本発明による担体の他の実施形態の側面図。FIG. 16 is a side view of another embodiment of a carrier according to the present invention.
【図17】本発明による担体の他の実施形態の側面図。FIG. 17 is a side view of another embodiment of a carrier according to the present invention.
【図18】本発明による担体の他の実施形態の側面図。FIG. 18 is a side view of another embodiment of a carrier according to the present invention.
1 エンジン 2 吸気通路 3 排気通路 9〜11 排気浄化装置 21 担体 22 スリット 23 非スリット部 24 セル 25 HCトラップ層 26 触媒金属層 29 断熱層 34 触媒容器 1 engine 2 Intake passage 3 exhaust passage 9-11 Exhaust gas purification device 21 carrier 22 slits 23 Non-slit part 24 cells 25 HC trap layer 26 catalytic metal layer 29 Thermal insulation layer 34 Catalyst container
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/08 F01N 3/24 B 3/24 E L B01D 53/36 103Z (72)発明者 三石 俊一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 鵜篭 芳直 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G091 AA02 AA11 AA17 AB03 AB10 BA15 FA02 FB02 FC07 GA06 GA14 GA18 GB05W GB09Y HA18 HA27 HB05 4D048 AA18 BA10Y BB02 BB13 BB15 BB16 CC41 EA04 4G069 AA03 AA08 CA03 CA15 DA06 EA19 EB04 EC28 EC29 FA03 FB23 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/08 F01N 3/24 B 3/24 E L B01D 53/36 103Z (72) Inventor Shunichi Mitsuishi Yokohama City, Kanagawa Prefecture 2 Takaramachi, Kanagawa-ku Nissan Motor Co., Ltd. (72) Inventor Yoshinao Ugo Yoshinao, Takara-cho, Kanagawa-ku, Yokohama, Kanagawa F-Term (Nissan Motor Co., Ltd.) GB05W GB09Y HA18 HA27 HB05 4D048 AA18 BA10Y BB02 BB13 BB15 BB16 CC41 EA04 4G069 AA03 AA08 CA03 CA15 DA06 EA19 EB04 EC28 EC29 FA03 FB23
Claims (27)
つ担体の下流部に偏在するようにスリットを形成し、 前記担体には上流部にて担持量が大となるようにHCト
ラップ剤を担持させたことを特徴とする排気浄化装置。1. A slit is formed so as to traverse cells of a honeycomb-shaped carrier and be unevenly distributed in a downstream portion of the carrier, and an HC trapping agent is added to the carrier so that the amount of the carrier carried becomes large in the upstream portion. An exhaust gas purification device characterized by being carried.
うに触媒金属を担持させた請求項1に記載の排気浄化装
置。2. The exhaust gas purifying apparatus according to claim 1, wherein the catalyst metal is carried on the carrier so that the carried amount becomes large in the upstream portion.
つ担体の下流部に偏在するようにスリットを形成し、 前記担体にはHCトラップ剤を担持させると共に、下流
部にて担持量が大となるように触媒金属を担持させたこ
とを特徴とする排気浄化装置。3. A slit is formed so as to cross the cells of the honeycomb-shaped carrier and be unevenly distributed in the downstream portion of the carrier, and the carrier is loaded with an HC trapping agent, and a large amount is loaded in the downstream portion. An exhaust emission control device, which carries a catalytic metal so that
量が大となるように担持させた請求項3に記載の排気浄
化装置。4. The exhaust gas purification device according to claim 3, wherein the HC trapping agent is carried in the upstream portion of the carrier so as to have a large carrying amount.
配列した請求項1または請求項3に記載の排気浄化装
置。5. The exhaust emission control device according to claim 1, wherein a plurality of the slits are arranged in the gas flow direction of the carrier.
の幅を上流側のものに比較して大とした請求項5に記載
の排気浄化装置。6. The exhaust emission control device according to claim 5, wherein the width of the downstream side of the plurality of slits is larger than that of the upstream side.
1または請求項3に記載の排気浄化装置。7. The exhaust emission control device according to claim 1 or 3, wherein the carrier is formed of ceramics.
複数の層からなる請求項1または請求項3に記載の排気
浄化装置。8. The exhaust gas purification device according to claim 1, wherein the HC trapping agent is composed of a plurality of layers having different characteristics.
層からなる請求項2または請求項3に記載の排気浄化装
置。9. The exhaust emission control device according to claim 2, wherein the catalyst metal is composed of a plurality of layers having different characteristics.
Cトラップ層と、触媒金属を含む触媒金属層とを、それ
ぞれコーティングにより形成した請求項2または請求項
4に記載の排気浄化装置。10. The carrier contains H containing an HC trapping agent.
The exhaust emission control device according to claim 2 or 4, wherein the C trap layer and the catalyst metal layer containing a catalyst metal are formed by coating, respectively.
属層を上層側に、それぞれ形成した請求項10に記載の
排気浄化装置。11. The exhaust emission control device according to claim 10, wherein the HC trap layer is formed on the lower layer side and the catalytic metal layer is formed on the upper layer side.
に断熱層を形成した請求項11に記載の排気浄化装置。12. The exhaust emission control device according to claim 11, wherein a heat insulating layer is formed between the HC trap layer and the catalytic metal layer.
項12に記載の排気浄化装置。13. The exhaust emission control device according to claim 12, wherein the heat insulating layer is formed to have a uniform thickness.
となるように形成した請求項12に記載の排気浄化装
置。14. The exhaust emission control device according to claim 12, wherein the heat insulating layer is formed so that the thickness thereof becomes larger toward the upstream side of the carrier.
表面に近接するように形成した請求項12に記載の排気
浄化装置。15. The exhaust emission control device according to claim 12, wherein the heat insulating layer is formed so as to be close to the surface of the catalytic metal layer on the upstream side.
接するように形成した請求項12に記載の排気浄化装
置。16. The exhaust emission control device according to claim 12, wherein the heat insulating layer is formed so as to be close to the surface of the carrier on the downstream side.
る位置から対向的に、かつセル内のガス流れに対して垂
直に形成した請求項5に記載の排気浄化装置。17. The exhaust emission control device according to claim 5, wherein the plurality of slits are formed so as to face each other from opposite positions on the outer periphery of the carrier and perpendicular to the gas flow in the cell.
る位置から対向的に、かつセル内のガス流れに対して傾
斜して形成した請求項5に記載の排気浄化装置。18. The exhaust emission control device according to claim 5, wherein the plurality of slits are formed so as to face each other from opposite positions on the outer periphery of the carrier and be inclined with respect to the gas flow in the cell.
ら見て互いに重畳しないように形成した請求項17また
は請求項18に記載の排気浄化装置。19. The exhaust emission control device according to claim 17, wherein the opposing slits are formed so as not to overlap each other when viewed in the gas flow direction.
ように形成した請求項1または請求項3に記載の排気浄
化装置。20. The exhaust emission control device according to claim 1, wherein the slit is formed so as to penetrate both side surfaces of the carrier.
かって次第に幅が狭くなる形状に形成した請求項1また
は請求項3に記載の排気浄化装置。21. The exhaust emission control device according to claim 1 or 3, wherein the slit is formed in a shape in which the width gradually narrows from the outer periphery of the carrier toward the inner side.
対向的に、かつガス流れ方向から見て互いに重畳しない
ように複数個を形成した請求項21に記載の排気浄化装
置。22. The exhaust emission control device according to claim 21, wherein a plurality of the slits are formed so as to face each other from opposite positions of the carrier and do not overlap each other when viewed in the gas flow direction.
て担体の外周から内側に向かって次第に幅が広くなる形
状に形成した請求項20に記載の排気浄化装置。23. The exhaust emission control device according to claim 20, wherein the penetrating slit is formed in a shape in which the width gradually increases from the outer periphery of the carrier toward the inner side when viewed from the penetrating direction.
て上下流方向に複数の頂部を有する屈曲形状に形成した
請求項20に記載の排気浄化装置。24. The exhaust emission control device according to claim 20, wherein the penetrating slit is formed in a bent shape having a plurality of tops in the upstream and downstream directions when viewed from the penetrating direction.
て上流側に凸の湾曲形状に形成した請求項20に記載の
排気浄化装置。25. The exhaust emission control device according to claim 20, wherein the penetrating slit is formed in a curved shape convex toward the upstream side when viewed from the penetrating direction.
請求項1または請求項3に記載の排気浄化装置。26. The exhaust emission control device according to claim 1 or 3, wherein the carrier has a cell density of 600 or less.
250[g/cf]以上である請求項1または請求項3に
記載の排気浄化装置。27. The exhaust emission control device according to claim 1 or 3, wherein the coating amount of the HC trapping agent is 250 [g / cf] or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002122120A JP4239471B2 (en) | 2002-04-24 | 2002-04-24 | Exhaust purification equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002122120A JP4239471B2 (en) | 2002-04-24 | 2002-04-24 | Exhaust purification equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003314268A true JP2003314268A (en) | 2003-11-06 |
JP4239471B2 JP4239471B2 (en) | 2009-03-18 |
Family
ID=29537824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002122120A Expired - Fee Related JP4239471B2 (en) | 2002-04-24 | 2002-04-24 | Exhaust purification equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4239471B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011056464A (en) * | 2009-09-14 | 2011-03-24 | Ngk Insulators Ltd | Honeycomb structure |
WO2024201967A1 (en) * | 2023-03-30 | 2024-10-03 | 日本碍子株式会社 | Reactor and gas recovery device |
WO2024201966A1 (en) * | 2023-03-30 | 2024-10-03 | 日本碍子株式会社 | Reactor and gas recovery device |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56142212U (en) * | 1980-03-27 | 1981-10-27 | ||
JPH0276118U (en) * | 1988-11-30 | 1990-06-11 | ||
JPH06182220A (en) * | 1992-12-16 | 1994-07-05 | Toyota Motor Corp | Metal carrier for purifying exhaust gas |
JPH06262090A (en) * | 1993-03-12 | 1994-09-20 | Nippon Steel Corp | Metal catalyst carrier and its preparation |
JPH0796183A (en) * | 1993-09-27 | 1995-04-11 | Honda Motor Co Ltd | Hc eliminating member |
JPH11210451A (en) * | 1997-11-20 | 1999-08-03 | Nissan Motor Co Ltd | Exhaust emission control catalyst device of internal combustion engine |
JPH11226425A (en) * | 1998-02-12 | 1999-08-24 | Nissan Motor Co Ltd | Catalyst for purification of exhaust gas |
JPH11290699A (en) * | 1998-04-15 | 1999-10-26 | Babcock Hitachi Kk | Honeycomb catalyst |
JP2001179110A (en) * | 1999-12-28 | 2001-07-03 | Nissan Motor Co Ltd | Catalyst carrier and catalyst converter |
JP2001182527A (en) * | 1999-12-27 | 2001-07-06 | Nissan Motor Co Ltd | Catalytic converter |
JP2001190960A (en) * | 2000-01-11 | 2001-07-17 | Toyota Motor Corp | Catalyst for exhaust gas cleaning |
JP2002066325A (en) * | 2000-08-29 | 2002-03-05 | Cataler Corp | Exhaust gas cleaning catalyst |
-
2002
- 2002-04-24 JP JP2002122120A patent/JP4239471B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56142212U (en) * | 1980-03-27 | 1981-10-27 | ||
JPH0276118U (en) * | 1988-11-30 | 1990-06-11 | ||
JPH06182220A (en) * | 1992-12-16 | 1994-07-05 | Toyota Motor Corp | Metal carrier for purifying exhaust gas |
JPH06262090A (en) * | 1993-03-12 | 1994-09-20 | Nippon Steel Corp | Metal catalyst carrier and its preparation |
JPH0796183A (en) * | 1993-09-27 | 1995-04-11 | Honda Motor Co Ltd | Hc eliminating member |
JPH11210451A (en) * | 1997-11-20 | 1999-08-03 | Nissan Motor Co Ltd | Exhaust emission control catalyst device of internal combustion engine |
JPH11226425A (en) * | 1998-02-12 | 1999-08-24 | Nissan Motor Co Ltd | Catalyst for purification of exhaust gas |
JPH11290699A (en) * | 1998-04-15 | 1999-10-26 | Babcock Hitachi Kk | Honeycomb catalyst |
JP2001182527A (en) * | 1999-12-27 | 2001-07-06 | Nissan Motor Co Ltd | Catalytic converter |
JP2001179110A (en) * | 1999-12-28 | 2001-07-03 | Nissan Motor Co Ltd | Catalyst carrier and catalyst converter |
JP2001190960A (en) * | 2000-01-11 | 2001-07-17 | Toyota Motor Corp | Catalyst for exhaust gas cleaning |
JP2002066325A (en) * | 2000-08-29 | 2002-03-05 | Cataler Corp | Exhaust gas cleaning catalyst |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011056464A (en) * | 2009-09-14 | 2011-03-24 | Ngk Insulators Ltd | Honeycomb structure |
WO2024201967A1 (en) * | 2023-03-30 | 2024-10-03 | 日本碍子株式会社 | Reactor and gas recovery device |
WO2024201966A1 (en) * | 2023-03-30 | 2024-10-03 | 日本碍子株式会社 | Reactor and gas recovery device |
Also Published As
Publication number | Publication date |
---|---|
JP4239471B2 (en) | 2009-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5256881B2 (en) | Exhaust gas purification device | |
US8938953B2 (en) | Exhaust gas purifying method | |
WO2006023091A2 (en) | Pre-combustors for internal combustion engines and systems and methods therefor | |
US20030211020A1 (en) | Noise attenuating emission converter | |
JP3772583B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2004016931A (en) | Exhaust gas purification catalyst | |
JP2003314268A (en) | Exhaust gas purifier | |
JP4055475B2 (en) | Exhaust purification device | |
JP2003314267A (en) | Exhaust gas purifier | |
JP4239472B2 (en) | Exhaust purification equipment | |
JP4239469B2 (en) | Exhaust purification equipment | |
JP3882670B2 (en) | Catalytic converter | |
JPH08284646A (en) | Exhaust emission control system for internal combustion engine | |
JP3900011B2 (en) | Exhaust purification device | |
JPH11324662A (en) | Catalyst converter device | |
JP3823896B2 (en) | Exhaust purification device | |
JP3900010B2 (en) | Exhaust purification device | |
JP3900012B2 (en) | Exhaust purification device | |
JP3419310B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4410976B2 (en) | Exhaust purification device | |
JP3823897B2 (en) | Exhaust purification device | |
JP5994730B2 (en) | Method for producing exhaust gas purifying catalyst | |
JP3716585B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3402132B2 (en) | Engine exhaust purification device | |
JP2003083052A (en) | Exhaust emission control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081215 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |