JP3716585B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3716585B2
JP3716585B2 JP31679197A JP31679197A JP3716585B2 JP 3716585 B2 JP3716585 B2 JP 3716585B2 JP 31679197 A JP31679197 A JP 31679197A JP 31679197 A JP31679197 A JP 31679197A JP 3716585 B2 JP3716585 B2 JP 3716585B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust passage
internal combustion
combustion engine
cell density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31679197A
Other languages
Japanese (ja)
Other versions
JPH11148346A (en
Inventor
勝弘 柴田
秀俊 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP31679197A priority Critical patent/JP3716585B2/en
Publication of JPH11148346A publication Critical patent/JPH11148346A/en
Application granted granted Critical
Publication of JP3716585B2 publication Critical patent/JP3716585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、三元触媒とNOx吸蔵触媒とを備える内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
内燃機関の排気浄化装置として、排気通路に、ストイキ運転時に効率良くHC、CO及びNOxを処理可能な三元触媒と、リーン運転時にNOxを吸収し、ストイキ又はリッチ運転時にNOxを放出してHCと反応させることにより還元処理するNOx吸蔵触媒とを備えるものがある(例えば特開平8−270440号公報参照)。
【0003】
ところで、三元触媒は、内燃機関のコールドスタート対策のため(コールドスタート時にも触媒転化効率を確保してHC低減を図るため)、排気温度の低下の少ない排気通路の比較的上流側(例えば排気マニホールド出口部)に配置するのがよく、特に燃焼室内に直接ガソリン燃料を噴射する直噴ガソリンエンジンでは、熱効率が良く排気温度が低くなるため、このように配置する必要がある。
【0004】
その一方、NOx吸蔵触媒は、高負荷時などに吸収材の熱劣化が問題となるなど、耐熱性に乏しいことから、排気通路の比較的下流側にいわゆる床下触媒として配置する必要がある。
従って、排気通路の上流側に三元触媒を配置し、下流側にNOx吸蔵触媒を配置する必要がある。
【0005】
【発明が解決しようとする課題】
しかしながら、このように排気通路の上流側に三元触媒を配置し、下流側にNOx吸蔵触媒を配置すると、ストイキ又はリッチ運転時にNOx吸蔵触媒からNOxを放出する際、この放出したNOxを還元するのに必要なHCが上流側の三元触媒によって浄化処理されてしまい、NOx吸蔵触媒によるNOxの還元処理が不十分となるという問題点があった。
【0006】
本発明は、このような従来の問題点に鑑み、ストイキ又はリッチ運転時に三元触媒下流側のNOx吸蔵触媒からNOxを放出する際に、十分なNOx還元処理性能を確保できるようにすることを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1に係る発明では、排気通路に三元触媒を備え、その下流側に、リーン運転時にNOxを吸収し、ストイキ又はリッチ運転時にNOxを放出するNOx吸蔵触媒を備える内燃機関において、前記三元触媒の触媒担体の排気通路中心側のセル密度を、排気通路周辺側(外周側)のセル密度に比べて小さくしたことを特徴とする。
【0008】
このようにすることで、次のような作用が得られる。
三元触媒の触媒担体の中心側のセル密度を周辺側のセル密度に比べて小さくすれば、中心側での触媒表面積を小さくして、中心側での転化効率を低下させることができる。
一方、リーン運転とストイキ又はリッチ運転とを切換可能な内燃機関において、ストイキ又はリッチ運転に切換えるのは、加速時などで、比較的空気流量(従って排気流量)が多いときである。
【0009】
そして、排気流量が小さい時は、触媒の中心側と周辺側との流速差は小さく、排気が均一に流れるが、排気流量が大きい時は、触媒の中心側の流速が周辺側の流速に比べ極めて大きくなり、中心側を流れる割合が多くなる。
よって、三元触媒の中心側のセル密度を小さくして、中心側での転化効率を低下させておくことにより、排気流量が大となって、三元触媒の中心側を流れる割合が多くなるストイキ又はリッチ運転時に、三元触媒の転化効率を実質的に低下させることが可能となる。
【0010】
このため、ストイキ又はリッチ運転時に、NOx吸蔵触媒からNOxを放出した際に、上流側の転化効率が低下した三元触媒からある程度のHCが供給され、NOx還元処理性能を確保することが可能となる。
また、加速時などに、排気の多くが流れる触媒中心側のセル密度が小さいため、排気系の圧力損失も減少し、出力向上も図れる。
【0011】
請求項2に係る発明では、前記三元触媒の触媒担体は、平板と波板とを交互に積層してなり、波板の波のピッチを排気通路中心側のものについて排気通路周辺側のものより大きくして、セル密度を変化させたことを特徴とする。
請求項3に係る発明では、セル密度を排気通路中心側と排気通路周辺側とで2段階に変化させたことを特徴とする。
【0012】
請求項4に係る発明では、セル密度を排気通路中心側から排気通路周辺側へ連続的に変化させたことを特徴とする。
【0013】
【発明の効果】
請求項1に係る発明によれば、ストイキ又はリッチ運転時に三元触媒下流側のNOx吸蔵触媒からNOxを放出する際に、三元触媒の転化効率を低下させて、NOxの還元に必要なHCを供給することができ、十分なNOx還元処理性能を確保できるという効果が得られる。また、排気系の圧力損失を低減して、出力向上を図ることができるという効果も得られる。
【0014】
請求項2に係る発明によれば、セル密度を変化させる際に、波板の波のピッチを変えることで、簡単に実施できるという効果が得られる。
請求項3に係る発明によれば、セル密度を2段階に変化させることで、簡単に実施できるという効果が得られる。
請求項4に係る発明によれば、セル密度を連続的に変化させることで、NOx還元処理性能等を更に向上させることができるという効果が得られる。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明を適用する自動車用内燃機関の排気系のシステム図である。
内燃機関1は、例えば燃焼室内に直接ガソリン燃料を噴射する直噴ガソリンエンジンであり、空燃比の制御により、少なくともリーン運転とストイキ運転とに切換可能である。具体的には、図4に走行パターン例を示すように、定常及び減速時にリーン運転を行い、加速時にストイキ運転に切換える。
【0016】
内燃機関1の排気通路2には、その比較的上流側(例えば排気マニホールド出口部)に三元触媒3が配置されている。三元触媒3は、ストイキ運転時に効率良くHC、CO及びNOxを処理可能である。
そして、排気通路2の比較的下流側(床下位置)にNOx吸蔵触媒4が配置されている。
【0017】
NOx吸蔵触媒4は、リーン運転時にNOxを吸収し、ストイキ運転時にNOxを放出してHCと反応させることにより還元処理するもので、特性上、NOxを吸収するときはHCが少ないほどよく、放出するときはHCが多いほど転化率が向上する。
すなわち、図5はある一定の流量、HC,NOx濃度である排気ガスの下で、NOx吸蔵触媒にNOxを吸収させたときの飽和吸収量を示した図であり、HC/NOxが小さい程、すなわちHCが少ない程、吸収量が向上することを示している。また、図6は上記の吸収したNOxをある一定時間転化できるNOx転化率について流入させるHC濃度を変化させたときの傾向を示した図であり、HC濃度が大きい程、NOx転化率が向上することを示している。
【0018】
ここにおいて、三元触媒3の触媒担持用のメタル担体は、例えば図2又は図3に示すように、共に一定の厚さ(例えば30〜50μm)のメタル箔材からなる平板11と波板12とを交互に積層して、同心円状に巻いたものであり、隣り合う平板11,11間で波板12の波のピッチ毎に、セル(小空間)が形成される。
【0019】
そして、波板12の波のピッチを排気通路中心側のものについて排気通路周辺側のものより大きくして、セル密度を変化させ、三元触媒3のメタル担体の中心側のセル密度を周辺側のセル密度に比べて小さく(粗く)してある。
この場合、図2に示すように、セル密度を中心側と周辺側とで2段階に変化させるようにしてもよいし、図3に示すように、セル密度を中心側から周辺側へ連続的に変化させるようにしてもよい。
【0020】
また、中心側のセル密度は、50〜200cpsi、周辺側のセル密度は、400〜1000cpsi程度が適当である(cpsi=セル・パー・スクエア・インチ)。
尚、メタル担体には、この例のように同心円状に巻くものと、S字状に巻くものとがあり、S字状に巻くものに適用してもよい。
【0021】
次に作用を説明する。
三元触媒3のメタル担体の中心側のセル密度を周辺側のセル密度に比べて小さくすれば、中心側での触媒表面積を小さくして、中心側での転化効率を低下させることができる。
一方、ストイキ運転に切換えるのは、加速時などで、比較的空気流量(従って排気流量)が多いときである。
【0022】
そして、図7に触媒での流速分布を示すように、排気流量が小さい時は、触媒の中心側と周辺側との流速差は小さく、排気が均一に流れるが、排気流量が大きい時は、触媒の中心側の流速が周辺側の流速に比べ極めて大きくなり、中心側を流れる割合が多くなる。
よって、三元触媒3の中心側のセル密度を小さくして、中心側での転化効率を低下させておくことにより、排気流量が大となって、三元触媒3の中心側を流れる割合が多くなるストイキ運転時に、三元触媒3の転化効率を実質的に低下させることが可能となる。
【0023】
このため、ストイキ運転時に、NOx吸蔵触媒4からNOxを放出した際に、三元触媒3からある程度のHCが供給され、NOx還元処理性能を確保することが可能となる。
すなわち、リーン運転時のように比較的排気流量が少なく触媒中の流速分布が均一な時は、三元触媒3でなるべくHCを転化して、下流側のNOx吸蔵触媒4での吸収性能を向上させ、ストイキ運転時のように比較的排気流量が多く触媒の中心流速が速い時には、三元触媒3でなるべくHCを転化せずに、下流側のNOx吸蔵触媒4へHCを供給し、NOx還元反応を促進させるのである。
【0024】
また、ストイキ運転を行う加速時などに、排気の多くが流れる触媒中心側のセル密度が小さいため、排気系の圧力損失も減少し、出力向上も図れる。
尚、セル密度を変化させる際に、平板11の間隔を変え、この間に入る波板12の波の高さを変化させるようにすることもできるが、波板12の波のピッチを変える方が比較的容易に実施できる。
【0025】
また、メタル担体を用いる場合、通電が可能であるので、ヒータ付き触媒(EHC)として構成することも可能である。
【図面の簡単な説明】
【図1】 本発明の実施の形態を示す内燃機関の排気系のシステム図
【図2】 三元触媒のセル構造の一例を示す図1のA−A断面図
【図3】 三元触媒のセル構造の他の例を示す図1のA−A断面図
【図4】 走行パターン例を示す図
【図5】 NOx吸蔵触媒のNOx吸収特性を示す図
【図6】 NOx吸蔵触媒のNOx還元特性を示す図
【図7】 触媒での流速分布を示す図
【符号の説明】
1 内燃機関
2 排気通路
3 三元触媒
4 NOx吸蔵触媒
11 平板
12 波板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine including a three-way catalyst and a NOx storage catalyst.
[0002]
[Prior art]
As an exhaust gas purification device for an internal combustion engine, a three-way catalyst capable of efficiently treating HC, CO, and NOx in a stoichiometric operation and an NOx is absorbed in a stoichiometric or rich operation, and NOx is released in a stoichiometric or rich operation. And a NOx occlusion catalyst that performs a reduction treatment by reacting with NOx (see, for example, JP-A-8-270440).
[0003]
By the way, the three-way catalyst is used as a countermeasure against the cold start of the internal combustion engine (to ensure the catalyst conversion efficiency even at the cold start and to reduce the HC), so that it is relatively upstream (for example, the exhaust gas) The direct injection gasoline engine that injects gasoline fuel directly into the combustion chamber is good in thermal efficiency and lowers the exhaust gas temperature, and thus needs to be arranged in this way.
[0004]
On the other hand, since the NOx storage catalyst has poor heat resistance, such as thermal degradation of the absorbent material at high loads, it is necessary to arrange it as a so-called underfloor catalyst relatively downstream of the exhaust passage.
Therefore, it is necessary to arrange a three-way catalyst upstream of the exhaust passage and a NOx storage catalyst downstream.
[0005]
[Problems to be solved by the invention]
However, when the three-way catalyst is disposed upstream of the exhaust passage and the NOx storage catalyst is disposed downstream, the released NOx is reduced when NOx is released from the NOx storage catalyst during stoichiometric or rich operation. However, there is a problem that the HC necessary for the purification is purified by the upstream three-way catalyst, and the NOx reduction treatment by the NOx storage catalyst becomes insufficient.
[0006]
In view of such conventional problems, the present invention is intended to ensure sufficient NOx reduction treatment performance when releasing NOx from the NOx storage catalyst downstream of the three-way catalyst during stoichiometric or rich operation. Objective.
[0007]
[Means for Solving the Problems]
For this reason, in the invention according to claim 1, in the internal combustion engine provided with the three-way catalyst in the exhaust passage, and on the downstream side thereof, the NOx storage catalyst that absorbs NOx during the lean operation and releases NOx during the stoichiometric or rich operation. The cell density on the exhaust passage center side of the catalyst carrier of the three-way catalyst is smaller than the cell density on the exhaust passage peripheral side (outer peripheral side).
[0008]
By doing in this way, the following operations are obtained.
If the cell density on the center side of the catalyst carrier of the three-way catalyst is made smaller than the cell density on the peripheral side, the catalyst surface area on the center side can be reduced and the conversion efficiency on the center side can be lowered.
On the other hand, in an internal combustion engine capable of switching between lean operation and stoichiometric or rich operation, switching to stoichiometric or rich operation is performed when the air flow rate (and hence the exhaust flow rate) is relatively high, such as during acceleration.
[0009]
When the exhaust flow rate is small, the flow rate difference between the center side and the peripheral side of the catalyst is small and the exhaust gas flows uniformly. However, when the exhaust flow rate is large, the flow rate at the center side of the catalyst is higher than the flow rate at the peripheral side. It becomes very large and the ratio of flowing through the center increases.
Therefore, by reducing the cell density on the center side of the three-way catalyst and reducing the conversion efficiency on the center side, the exhaust flow rate becomes large and the ratio of flowing through the center side of the three-way catalyst increases. During the stoichiometric or rich operation, the conversion efficiency of the three-way catalyst can be substantially reduced.
[0010]
For this reason, when NOx is released from the NOx storage catalyst during stoichiometric or rich operation, a certain amount of HC is supplied from the three-way catalyst having reduced upstream conversion efficiency, and it is possible to ensure NOx reduction treatment performance. Become.
In addition, since the cell density on the catalyst center side where a large amount of exhaust flows during acceleration or the like is small, the pressure loss of the exhaust system is reduced, and the output can be improved.
[0011]
In the invention according to claim 2, the catalyst carrier of the three-way catalyst is formed by alternately laminating flat plates and corrugated plates, and the wave pitch of the corrugated plates is on the exhaust passage peripheral side with respect to the central portion of the exhaust passage. and larger, wherein the varying cell density.
The invention according to claim 3 is characterized in that the cell density is changed in two steps on the exhaust passage center side and the exhaust passage periphery side.
[0012]
The invention according to claim 4 is characterized in that the cell density is continuously changed from the exhaust passage center side to the exhaust passage periphery side.
[0013]
【The invention's effect】
According to the first aspect of the present invention, when NOx is released from the NOx storage catalyst on the downstream side of the three-way catalyst during stoichiometric or rich operation, the conversion efficiency of the three-way catalyst is reduced to reduce the HC required for NOx reduction. Can be supplied, and an effect that sufficient NOx reduction treatment performance can be secured is obtained. Moreover, the effect that the pressure loss of the exhaust system can be reduced and the output can be improved is also obtained.
[0014]
According to the second aspect of the present invention, when the cell density is changed, an effect can be easily obtained by changing the wave pitch of the corrugated plate.
According to the third aspect of the present invention, the effect of being easily implemented can be obtained by changing the cell density in two stages.
According to the invention which concerns on Claim 4, the effect that NOx reduction process performance etc. can be improved further by changing a cell density continuously is acquired.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of an exhaust system of an automobile internal combustion engine to which the present invention is applied.
The internal combustion engine 1 is, for example, a direct injection gasoline engine that directly injects gasoline fuel into a combustion chamber, and can be switched at least between a lean operation and a stoichiometric operation by controlling an air-fuel ratio. Specifically, as shown in an example of a running pattern in FIG. 4, the lean operation is performed during steady and deceleration, and the operation is switched to the stoichiometric operation during acceleration.
[0016]
A three-way catalyst 3 is disposed in the exhaust passage 2 of the internal combustion engine 1 on the relatively upstream side (for example, the exhaust manifold outlet). The three-way catalyst 3 can efficiently process HC, CO, and NOx during stoichiometric operation.
A NOx occlusion catalyst 4 is disposed relatively downstream (under the floor position) of the exhaust passage 2.
[0017]
The NOx occlusion catalyst 4 absorbs NOx during lean operation, reduces NOx during stoichiometric operation and reacts with HC to reduce the amount of HC. When doing so, the conversion rate improves as the amount of HC increases.
That is, FIG. 5 is a diagram showing a saturated absorption amount when NOx is absorbed by the NOx storage catalyst under a certain flow rate and exhaust gas having HC and NOx concentrations, and the smaller the HC / NOx, That is, the smaller the amount of HC, the better the absorption. FIG. 6 is a graph showing a tendency when the HC concentration to be introduced is changed with respect to the NOx conversion rate at which the absorbed NOx can be converted for a certain period of time. As the HC concentration increases, the NOx conversion rate increases. It is shown that.
[0018]
Here, as shown in FIG. 2 or FIG. 3, for example, the metal carrier for supporting the catalyst of the three-way catalyst 3 includes a flat plate 11 and a corrugated plate 12 made of a metal foil material having a constant thickness (for example, 30 to 50 μm). Are alternately stacked and wound concentrically, and a cell (small space) is formed between adjacent flat plates 11 and 11 for each wave pitch of the corrugated plate 12.
[0019]
Then, the wave pitch of the corrugated plate 12 is made larger at the exhaust passage center side than at the exhaust passage periphery side, the cell density is changed, and the cell density on the center side of the metal carrier of the three-way catalyst 3 is changed to the peripheral side. The cell density is smaller (coarse).
In this case, as shown in FIG. 2, the cell density may be changed in two steps at the central side and the peripheral side, or the cell density is continuously changed from the central side to the peripheral side as shown in FIG. You may make it change to.
[0020]
Further, it is appropriate that the cell density on the center side is 50 to 200 cpsi, and the cell density on the peripheral side is about 400 to 1000 cpsi (cpsi = cell per square inch).
In addition, the metal carrier has a concentric winding shape and an S-shaped winding shape as in this example, and may be applied to an S-shaped winding shape.
[0021]
Next, the operation will be described.
If the cell density on the center side of the metal carrier of the three-way catalyst 3 is made smaller than the cell density on the peripheral side, the catalyst surface area on the center side can be reduced and the conversion efficiency on the center side can be lowered.
On the other hand, switching to the stoichiometric operation is performed when the air flow rate (and hence the exhaust flow rate) is relatively high, such as during acceleration.
[0022]
As shown in FIG. 7, when the exhaust flow rate is small, the flow rate difference between the central side and the peripheral side of the catalyst is small and the exhaust flows uniformly, but when the exhaust flow rate is large, The flow rate on the center side of the catalyst becomes extremely larger than the flow rate on the peripheral side, and the ratio of flowing through the center side increases.
Therefore, by reducing the cell density on the center side of the three-way catalyst 3 and reducing the conversion efficiency on the center side, the exhaust flow rate becomes large, and the ratio of flowing through the center side of the three-way catalyst 3 is increased. At the time of increasing stoichiometric operation, the conversion efficiency of the three-way catalyst 3 can be substantially reduced.
[0023]
For this reason, when NOx is released from the NOx occlusion catalyst 4 during the stoichiometric operation, a certain amount of HC is supplied from the three-way catalyst 3, and the NOx reduction treatment performance can be ensured.
That is, when the exhaust flow rate is relatively small and the flow velocity distribution in the catalyst is uniform as in lean operation, the three-way catalyst 3 converts HC as much as possible to improve the absorption performance of the downstream NOx storage catalyst 4. When the exhaust gas flow rate is relatively large and the central flow rate of the catalyst is high, such as during stoichiometric operation, the HC is supplied to the downstream NOx storage catalyst 4 without being converted by the three-way catalyst 3 as much as possible, and NOx reduction is performed. It promotes the reaction.
[0024]
Further, since the cell density on the catalyst center side where a large amount of exhaust gas flows is small during acceleration in which stoichiometric operation is performed, the pressure loss in the exhaust system is reduced and the output can be improved.
When changing the cell density, it is possible to change the distance between the flat plates 11 and change the wave height of the corrugated sheet 12 that enters between them. However, it is better to change the wave pitch of the corrugated sheet 12. It is relatively easy to implement.
[0025]
Further, when a metal carrier is used, it can be energized, so that it can be configured as a catalyst with a heater (EHC).
[Brief description of the drawings]
FIG. 1 is a system diagram of an exhaust system of an internal combustion engine showing an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 showing an example of a cell structure of a three-way catalyst. 1 is a cross-sectional view taken along the line AA in FIG. 1 showing another example of the cell structure. FIG. 4 is a diagram showing an example of a running pattern. FIG. 5 is a diagram showing NOx absorption characteristics of the NOx storage catalyst. Diagram showing characteristics [Fig. 7] Diagram showing flow velocity distribution in catalyst [Explanation of symbols]
1 Internal combustion engine 2 Exhaust passage 3 Three-way catalyst 4 NOx storage catalyst 11 Flat plate 12 Corrugated plate

Claims (4)

排気通路に三元触媒を備え、その下流側に、リーン運転時にNOxを吸収し、ストイキ又はリッチ運転時にNOxを放出するNOx吸蔵触媒を備える内燃機関の排気浄化装置において、
前記三元触媒の触媒担体の排気通路中心側のセル密度を排気通路周辺側のセル密度に比べて小さくしたことを特徴とする内燃機関の排気浄化装置。
In an exhaust gas purification apparatus for an internal combustion engine comprising a three-way catalyst in an exhaust passage and having a NOx occlusion catalyst that absorbs NOx during lean operation and releases NOx during stoichiometric or rich operation on the downstream side thereof,
An exhaust gas purification apparatus for an internal combustion engine, characterized in that the cell density on the exhaust passage center side of the catalyst carrier of the three-way catalyst is smaller than the cell density on the exhaust passage periphery side.
前記三元触媒の触媒担体は、平板と波板とを交互に積層してなり、波板の波のピッチを排気通路中心側のものについて排気通路周辺側のものより大きくして、セル密度を変化させたことを特徴とする請求項1記載の内燃機関の排気浄化装置。The catalyst carrier of the three-way catalyst is formed by alternately laminating flat plates and corrugated plates, and the wave density of the corrugated plates is larger on the central side of the exhaust passage than on the peripheral side of the exhaust passage, so that the cell density is increased. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is changed. セル密度を排気通路中心側と排気通路周辺側とで2段階に変化させたことを特徴とする請求項1又は請求項2記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2, wherein the cell density is changed in two stages at the exhaust passage center side and the exhaust passage periphery side. セル密度を排気通路中心側から排気通路周辺側へ連続的に変化させたことを特徴とする請求項1又は請求項2記載の内燃機関の排気浄化装置。3. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the cell density is continuously changed from the exhaust passage center side to the exhaust passage periphery side.
JP31679197A 1997-11-18 1997-11-18 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3716585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31679197A JP3716585B2 (en) 1997-11-18 1997-11-18 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31679197A JP3716585B2 (en) 1997-11-18 1997-11-18 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11148346A JPH11148346A (en) 1999-06-02
JP3716585B2 true JP3716585B2 (en) 2005-11-16

Family

ID=18080973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31679197A Expired - Lifetime JP3716585B2 (en) 1997-11-18 1997-11-18 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3716585B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10053904C2 (en) * 2000-10-31 2003-05-22 Emitec Emissionstechnologie Small volume NO¶x¶ adsorber
CN115045737A (en) * 2022-07-11 2022-09-13 合肥神舟催化净化器股份有限公司 Automobile exhaust purification catalyst carrier

Also Published As

Publication number Publication date
JPH11148346A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US7240483B2 (en) Pre-combustors for internal combustion engines and systems and methods therefor
US8006484B2 (en) Systems and methods for reducing emissions of internal combustion engines using a fuel processor bypass
US7735313B2 (en) Method of raising temperature in exhaust-gas purifier and exhaust-gas purification system
KR100576960B1 (en) Catalytic converter for cleaning exhaust gas from an internal combustion engine
JP4723783B2 (en) NOx reduction catalyst with temperature control of exhaust gas
JP3709953B2 (en) Exhaust gas purification device for internal combustion engine
JP5273304B1 (en) Exhaust gas purification device for internal combustion engine
US9777654B2 (en) Method and apparatus for improved lightoff performance of aftertreatment catalysts
EP1255918B1 (en) Light-duty diesel catalysts
US6155044A (en) Exhaust gas purifying system for internal combustion engine
JP2904431B2 (en) Exhaust gas purification equipment
JP2011033039A (en) Exhaust system
JP3716585B2 (en) Exhaust gas purification device for internal combustion engine
JP4055475B2 (en) Exhaust purification device
JP3882670B2 (en) Catalytic converter
JPH03154617A (en) Exhaust gas purification device
JP4239469B2 (en) Exhaust purification equipment
KR20070021266A (en) METHODS OF REGENERATING A NOx ABSORBENT
JP3900011B2 (en) Exhaust purification device
JP2004019446A (en) Exhaust emission control device
JP4239471B2 (en) Exhaust purification equipment
JP3900012B2 (en) Exhaust purification device
JPH04287820A (en) Exhaust gas purifying device for internal combustion engine
JPH0437223Y2 (en)
JPH0455222Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 9

EXPY Cancellation because of completion of term