JP2001286725A - Method and apparatus for treating exhaust gas - Google Patents

Method and apparatus for treating exhaust gas

Info

Publication number
JP2001286725A
JP2001286725A JP2000108799A JP2000108799A JP2001286725A JP 2001286725 A JP2001286725 A JP 2001286725A JP 2000108799 A JP2000108799 A JP 2000108799A JP 2000108799 A JP2000108799 A JP 2000108799A JP 2001286725 A JP2001286725 A JP 2001286725A
Authority
JP
Japan
Prior art keywords
dust
zeolite
gas
exhaust gas
zeolite catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000108799A
Other languages
Japanese (ja)
Other versions
JP4774573B2 (en
Inventor
Yuji Ogawa
裕治 小川
Hideyuki Yamanaka
秀之 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2000108799A priority Critical patent/JP4774573B2/en
Publication of JP2001286725A publication Critical patent/JP2001286725A/en
Application granted granted Critical
Publication of JP4774573B2 publication Critical patent/JP4774573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently perform the treatment of soot and smoke and denitration at the same time. SOLUTION: Exhaust gas is brought into contact with a metal supported ZSM-5 type zeolite catalyst 10 in a reaction column 11 to make soot and nitrogen oxide in the exhaust gas adsorbed by the catalyst to burn the same at the temperature of the gas. As the metal supported on the zeolite catalyst, there is Cu, Mn or Co.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、煤塵、窒素酸化物
(NOx)等を含んだ排ガスの処理方法及びその装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating exhaust gas containing dust, nitrogen oxides (NOx) and the like.

【0002】[0002]

【従来の技術】ディーゼルエンジン等のエンジンから排
出される排気ガスには、大気汚染の原因となる煤煙等含
まれるばかりでなく、有害物質の窒素酸化物(NOx)
が含まれている。大気汚染を防止するためにも、この煤
煙を除去することは急務な課題である。
2. Description of the Related Art Exhaust gas emitted from an engine such as a diesel engine not only contains soot and the like that cause air pollution, but also contains toxic nitrogen oxides (NOx).
It is included. It is an urgent task to remove this soot in order to prevent air pollution.

【0003】現在、煤煙を処理する方法として、煤煙の
主成分である煤塵を処理する幾つかの集塵方法がある。
集塵方法には、下記の重力集塵、遠心力集塵、洗浄集
塵、濾過集塵及び電気集塵等がある(大気関係の基礎知
識(環境庁大気保全局担当官編著)。
[0003] At present, there are several dust collection methods for treating dust, which is a main component of the smoke, as a method of treating the smoke.
Examples of the dust collection method include the following gravity dust collection, centrifugal dust collection, cleaning dust collection, filtration dust collection, and electric dust collection (basic knowledge on the atmosphere (edited by the person in charge of the Air Quality Bureau, Environment Agency).

【0004】重力集塵とは、沈降室内に含塵ガスを導入
し、粒子速度を低下させ粒子の慣性力を失わせて、粒子
自身の重力で自然沈降させる方法である。粒子は沈降室
によって粒子速度を小さくすればするほど小粒子まで分
離することが可能になる。しかし、粒子速度を小さくす
るためには沈降室を大きくする必要があり、敷地面積は
大きくなり設備の大型化を強いられる。
[0004] Gravity dust collection is a method in which a dust-containing gas is introduced into a sedimentation chamber, the velocity of the particles is reduced, the inertia force of the particles is lost, and the particles sediment naturally by gravity. The particles can be separated into smaller particles as the particle velocity is reduced by the settling chamber. However, in order to reduce the particle velocity, it is necessary to increase the size of the sedimentation chamber.

【0005】遠心集塵とは、重力の代わりに強力な遠心
力の場をつくり、ガス中のダスト粒子を気流から分離補
集する方法である。重力の数十倍、ないし数百倍の沈降
速度を粒子に与えることができるため、優れた集塵性能
を備えている。重力式に比べ高性能であり、また、他の
集塵手段比べても比較的低コストであるが、摩耗性のダ
ストに対しては良質の材料を用いる必要がある。
[0005] Centrifugal dust collection is a method in which a strong centrifugal force field is created instead of gravity to separate and collect dust particles in a gas from an air flow. Since the particles can have a sedimentation velocity several tens or hundreds of times the gravity, they have excellent dust collection performance. Although it has higher performance than the gravity type and is relatively inexpensive as compared with other dust collecting means, it is necessary to use a high quality material for abrasive dust.

【0006】洗浄集塵とは、含塵液滴または液膜と衝突
または接触させ、粒子を洗浄水中に補足する方法で、一
般にスクラバーと呼ばれる。かかる手段は、多量の使用
するため、汚水処理設備が必要である。サイクロンスク
ラバー、洗浄塔及び噴霧塔は親水性ダストや各種ミスト
に対してはかなり高性能を示すが、乾燥したダストに対
しては、能力は低くなる。
[0006] Washing dust collection is a method of colliding or contacting with dust-containing droplets or liquid films to trap particles in washing water, and is generally called a scrubber. Since such means are used in large quantities, sewage treatment facilities are required. Cyclone scrubbers, scrubbers and spray towers perform significantly better for hydrophilic dust and various mist, but have less capacity for dry dust.

【0007】濾過集塵とは、含塵ガスを濾材に通すこと
により煤塵を濾過集塵する方法である。濾布には、各種
の化学繊維や天然繊維が用いられ、高温の場合はガラス
繊維等の対熱濾布を用いる。1ミクロン以下のダストに
対しても高性能を発揮するなど集塵率が高く、広く利用
されている。しかし、水分の多い場合、粘着性の粒子に
は不向きである。
[0007] The filtration and dust collection is a method of filtering and collecting dust by passing a dust-containing gas through a filter medium. Various kinds of chemical fibers and natural fibers are used for the filter cloth. In the case of high temperature, a filter cloth against heat such as glass fiber is used. It has a high dust collection rate, such as exhibiting high performance even for dust of 1 micron or less, and is widely used. However, when the water content is high, it is not suitable for sticky particles.

【0008】電気集塵とは、コロナ放電を利用して含塵
ガス中に電荷を与え帯電粒子に電気的に補集する方法で
ある。高性能であるが、設備費が高い。
[0008] Electro-dust collection is a method in which an electric charge is given to a dust-containing gas by utilizing corona discharge to electrically collect charged particles. High performance, but high equipment costs.

【0009】以上の集塵方法のうち、我が国において
は、設置数が最も多いのが遠心集塵、総処理能力が最も
大きいのは電気集塵である。
[0009] Among the above dust collection methods, centrifugal dust collection is the largest in Japan and electric dust collection has the largest total processing capacity in Japan.

【0010】[0010]

【発明が解決しようとする課題】しかし、先に列挙した
集塵方法は、物理的に煤煙に含まれる煤塵(すす)を集
塵するため、集塵した煤塵は回収除去して別途処理必要
があり、窒素酸化物も同様に別途除去しなければならな
い。そのため、装置は集塵部と集塵・窒素酸化物除去部
の設備が強いられ大型化し、結局、設備費、管理費が高
価なものとなる。
However, since the dust collection methods listed above physically collect dust (soot) contained in the smoke, the collected dust must be collected and removed and then separately treated. Yes, nitrogen oxides must be removed separately as well. For this reason, the apparatus is required to have a large dust collecting unit and a dust collecting / nitrogen oxide removing unit, which results in an increase in the size of the device.

【0011】本発明は、かかる事情に鑑み創作されたも
ので、煤煙除去と脱硝とを同時かつ効率的に行うことが
可能であり、かつ将来的にも小型化が可能で、生産面、
維持管理面からも経済的な排ガス処理方法及びその装置
を新たに提供することを課題としている。
The present invention has been made in view of such circumstances, and it is possible to perform soot removal and denitration simultaneously and efficiently, and it is possible to reduce the size in the future.
Another object of the present invention is to newly provide an economical exhaust gas treatment method and its apparatus from the viewpoint of maintenance and management.

【0012】[0012]

【課題を解決するための手段】前記課題の解決手段とし
て創作された発明は、以下のことを特徴とする。
Means for Solving the Problems The invention created as a means for solving the above problems is characterized by the following.

【0013】第1発明は、被処理ガスを、金属担持させ
たZSM-5型ゼオライト(SiO2/Al2O3=30〜80)と接触さ
せて前記ガス中から煤塵と窒素酸化物とを前記ゼオライ
トに吸着除去し、さらにこの吸着させた煤塵を燃焼除去
させることを特徴としている。ここで、前記ゼオライト
への金属の担持は、イオン交換法により行なう。
In the first invention, the gas to be treated is brought into contact with a metal-supported ZSM-5 type zeolite (SiO 2 / Al 2 O 3 = 30 to 80) to remove dust and nitrogen oxides from the gas. It is characterized in that the zeolite is adsorbed and removed, and the adsorbed dust is burnt and removed. Here, the metal is supported on the zeolite by an ion exchange method.

【0014】かかる手段により、単一反応系の下で、排
ガス中に含まれる煤塵と窒素酸化物とを同時除去するこ
とが可能になる。しかも、吸着させた煤塵の燃焼は、前
記被処理ガスの温度の下で行なうことができることか
ら、エネルギー効率の観点から有効な手段となる。
By such means, it is possible to simultaneously remove dust and nitrogen oxides contained in exhaust gas under a single reaction system. Moreover, the combustion of the adsorbed dust can be performed at the temperature of the gas to be treated, which is an effective means from the viewpoint of energy efficiency.

【0015】尚、ZSM-5型ゼオライトの他に脱硝作用の
あるゼオライトとして、β型(SiO2/Al2O3=22〜100)
などがある。これらのゼオライトに金属(例えば、Pt、
Pd、Ga、Ce等)を担持させて、これに被処理ガスを接触
させ、それぞれの適性温度の下で燃焼させても、煤塵と
窒素酸化物とを同時処理することは可能である。
In addition to the ZSM-5 type zeolite, β type (SiO 2 / Al 2 O 3 = 22 to 100) is a zeolite having a denitration effect.
and so on. These zeolites contain metal (eg, Pt,
Even if Pd, Ga, Ce, etc. are supported, and the gas to be treated is brought into contact with the gas and burned at an appropriate temperature, it is possible to simultaneously treat the dust and the nitrogen oxide.

【0016】第2発明は、前記金属は、Cu、Mn若しくは
Coであることを特徴としている。
According to a second aspect, the metal is Cu, Mn or
It is characterized by being Co.

【0017】第3発明は、被処理ガスが供給される反応
カラムと、前記反応カラム内に充填され、かつ前記ガス
中から煤塵と窒素酸化物とを吸着除去し、さらにこの吸
着させた煤塵を前記ガス温度の下で燃焼除去させるゼオ
ライト触媒とからなる排ガス処理装置において、前記ゼ
オライト触媒は、Cu、Mn若しくはCoを担持させたZSM-5
型ゼオライト、または、このゼオライトの担持体である
ことを特徴としている。
According to a third aspect of the present invention, there is provided a reaction column to which a gas to be treated is supplied, a method of adsorbing and removing dust and nitrogen oxides from the gas filled in the reaction column, and further removing the adsorbed dust. In an exhaust gas treatment device comprising a zeolite catalyst that is burned and removed under the gas temperature, the zeolite catalyst is a ZSM-5 supporting Cu, Mn, or Co.
It is characterized by being a zeolite type or a support of this zeolite.

【0018】ここで、前記ゼオライト触媒は、煤煙との
接触表面をできるだけ広くした構造、例えば、ゼオライ
ト粉をハニカム状、ペレット状等に成形させること、ま
たは金属製若しくはセラミック製のフィルター、ビーズ
状、ボール状またはハニカム状を成したボール状担体の
全面にゼオライトを担持させることにより構成される。
ゼオライト触媒の充填量は、単位触媒表面当りの被処理
ガス(窒素酸化物含有煤煙)負荷量によって定められ
る。
Here, the zeolite catalyst has a structure in which the contact surface with soot is made as wide as possible, for example, a zeolite powder is formed into a honeycomb shape, a pellet shape, a metal or ceramic filter, a bead shape, or the like. The zeolite is supported on the entire surface of a ball-shaped or honeycomb-shaped ball-shaped carrier.
The filling amount of the zeolite catalyst is determined by the load of the gas to be treated (nitrogen oxide-containing soot) per unit catalyst surface.

【0019】[0019]

【発明の実施の形態】発明者らは、本発明の創作に先立
ち、脱硝用触媒に用いているゼオライトにおいて、煤煙
の主成分である煤塵の燃焼除去用触媒としての有効性を
確認し、さらにこの脱硝触媒用いた除塵、脱硝機能を備
えた排ガス処理方法の検討を行なった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to the creation of the present invention, the inventors confirmed the effectiveness of zeolite used as a denitration catalyst as a catalyst for burning and removing dust, which is a main component of soot, An exhaust gas treatment method using the denitration catalyst and having dust removal and denitration functions was studied.

【0020】ゼオライトは、結晶性アルミノ珪酸塩の一
種であり、粘土鉱物であるが、合成可能なものも多々あ
る。また、天然には存在しない結晶構造をもつものも合
成されている。A型、B型、β型、Y型及び後述のZSM-5型
などがよく知られておる。これらは、その特性として、
細孔を有し、分子ふるい作用、陽イオン交換機能を備え
ていることから、吸着剤や触媒として利用されている。
Zeolite is a kind of crystalline aluminosilicate and is a clay mineral, but many can be synthesized. In addition, those having a crystal structure that does not exist in nature have been synthesized. A type, B type, β type, Y type, and ZSM-5 type described later are well known. These are, as their properties,
Since it has pores and has a molecular sieve action and a cation exchange function, it is used as an adsorbent or a catalyst.

【0021】前記ゼオライトの煤塵燃焼試験は、以下の
二つの方法で行った。
The dust combustion test of the zeolite was performed by the following two methods.

【0022】これらの方法の概要について述べると、第
一の方法は、各種金属を担持させた粉末状ゼオライト触
媒と煤塵(すす)を混合したものを、固定床ガス流通式
カラムに充填し、窒素、酸素及び窒素酸化物からなるガ
スを流通させ、反応カラムの温度を徐々に上昇させて煤
塵を燃焼させ、その燃焼ガスを分析することで煤塵の燃
焼除去効果を観測した(以下、試験1)。
The outline of these methods is as follows. In the first method, a mixture of a powdery zeolite catalyst supporting various metals and dust (soot) is packed in a fixed bed gas flow type column, and nitrogen is mixed. A gas composed of oxygen and nitrogen oxides was passed, the temperature of the reaction column was gradually increased to burn the dust, and the combustion gas was analyzed to observe the effect of burning and removing the dust (hereinafter, Test 1). .

【0023】第二の方法は、各種金属を担持させたゼオ
ライト触媒をハニカム状に形成させたものに対し、28kw
級ディーゼル発電機の初期始動時の煤塵(すす)を吸着
させ、排気ガスそれ自体の温度で吸着した煤塵の燃焼除
去効果を観測した(以下、試験2)。 (試験1) 1.本発明に係るゼオライト触媒の煤塵及び窒素酸化物
除去性能試験 図3(a)は本試験に係る測定システム概要図であり、
図3(b)は本試験に係る固定床ガス流通式反応カラム
(以下、反応カラム)の概要図である。
In the second method, a zeolite catalyst supporting various metals is formed into a honeycomb shape, and a 28 kW catalyst is used.
Soot was adsorbed at the time of the initial start-up of the diesel diesel generator, and the combustion removal effect of the adsorbed dust at the temperature of the exhaust gas itself was observed (hereinafter, Test 2). (Test 1) Dust and nitrogen oxide removal performance test of zeolite catalyst according to the present invention FIG. 3 (a) is a schematic diagram of a measurement system according to this test,
FIG. 3B is a schematic view of a fixed bed gas flow type reaction column (hereinafter, reaction column) according to the present test.

【0024】反応カラム33内は、粉末状の試供ゼオライ
ト触媒と煤塵(すす)を混合したものが充填され、この
混合物がガスの流通によって移動しないように、その両
端はガラスウール33aで固定される(図3(b))。そ
して、この反応カラム33の内部に、ディーゼルエンジン
等の通常の燃料燃焼設備から排出されたガスと同程度の
濃度の酸素及び窒素酸化物(NOx)とヘリウムの成分を
含む混合ガスが供給される。尚、反応カラム33は、温度
調整付電気炉32によって一定の昇温速度で加熱され、カ
ラム33内の煤塵は試料ガスによって燃焼される。
The reaction column 33 is filled with a mixture of a powdery sample zeolite catalyst and dust (soot), and both ends thereof are fixed with glass wool 33a so that the mixture does not move due to gas flow. (FIG. 3 (b)). Then, a mixed gas containing components of oxygen and nitrogen oxides (NOx) and helium having a concentration similar to that of a gas discharged from a normal fuel combustion facility such as a diesel engine is supplied into the inside of the reaction column 33. . The reaction column 33 is heated at a constant heating rate by the electric furnace 32 with temperature adjustment, and the dust in the column 33 is burned by the sample gas.

【0025】また、反応カラム33の二次側にはガスクロ
マトグラフ分析装置34,35が設置され、前記ゼオライト
触媒を通過したガスの二酸化炭素の濃度を測定すること
により燃焼温度を測定し、さらに、このガスの窒素濃度
を測定することにより窒素酸化物の窒素への転化率つま
り脱硝性能を測定している。
Gas chromatograph analyzers 34 and 35 are installed on the secondary side of the reaction column 33, and measure the concentration of carbon dioxide in the gas passing through the zeolite catalyst to measure the combustion temperature. By measuring the nitrogen concentration of this gas, the conversion rate of nitrogen oxides to nitrogen, that is, the denitration performance is measured.

【0026】本試験において、試供ゼオライト触媒は、
Na-ZSM-5型若しくはNH4-ZSM-5型のゼオライトを主原料
として、これに金属イオン(本試験においては、Cu、Mn
及びCo)を担持させて成る。尚、前記ゼオライトへの金
属イオンの担持は、イオン交換法により行なった。
In this test, the sample zeolite catalyst was:
Na-ZSM-5 type or NH 4 -ZSM-5 type zeolite is used as a main raw material, and metal ions (Cu, Mn
And Co). The metal ions were supported on the zeolite by an ion exchange method.

【0027】前記主原料の種類とその組成を表1に、試
供ゼオライトの種類を表2に示す。
Table 1 shows the types and compositions of the main raw materials, and Table 2 shows the types of the sample zeolite.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】2.試験要領 1)試供ゼオライト触媒粉末0.285gと煤塵の粉末0.015
gとを混合した後、反応カラム33へ充填し、この混合物
の両端をガラスウール33aで押える。そして、この反応
カラム33を電気炉内に設置し、当該反応カラム33内に酸
素10%、一酸化炭素0.1%、ヘリウム89.9%からなる試
料ガスを50ml/分で供給する。
2. Test procedure 1) 0.285 g of sample zeolite catalyst powder and 0.015 dust powder
g, and then packed into a reaction column 33. Both ends of the mixture are pressed with glass wool 33a. Then, the reaction column 33 is set in an electric furnace, and a sample gas composed of 10% of oxygen, 0.1% of carbon monoxide, and 89.9% of helium is supplied into the reaction column 33 at a rate of 50 ml / min.

【0031】2)電気炉33により反応カラム32を室温よ
り1℃/分の昇温温度で加熱させる。温度が120℃となっ
たところから、ガスクロマトグラフ分析装置34,35によ
る二酸化炭素と窒素の濃度測定を開始し、660℃まで、
この測定を行う。
2) The reaction column 32 is heated by the electric furnace 33 at a temperature rise of 1 ° C./min from room temperature. When the temperature reached 120 ° C., measurement of the concentration of carbon dioxide and nitrogen was started by the gas chromatograph analyzers 34 and 35, until 660 ° C.
Perform this measurement.

【0032】3)測定終了後、二酸化炭素と窒素濃度を
縦軸、温度を横軸としてグラフ化し、燃焼温度の評価を
行う。 3.測定機器 ガスクロマトグラフ分析装置(島津GC-14B) 4.実施結果 図4は、試供ゼオライトによる煤塵の燃焼及び脱硝状況
を示した特性図である。
3) After completion of the measurement, the combustion temperature is evaluated by graphing the concentration of carbon dioxide and nitrogen on the vertical axis and the temperature on the horizontal axis. 3. Measuring equipment Gas chromatograph analyzer (Shimadzu GC-14B) FIG. 4 is a characteristic diagram showing the state of dust combustion and denitration by the sample zeolite.

【0033】当該特性図は、ゼオライト1(Cu-ZSM-
5)、ゼオライト2(Mn-ZSM-5)及びゼオライト3(Co-
ZSM-5)による煤塵の燃焼状況を、横軸に燃焼温度、縦
軸にこのとき発生した二酸化炭素と窒素の濃度をプロッ
トすることで表している。ここで、上段は二酸化炭素濃
度、下段は窒素濃度を示している。
The characteristic diagram shows that zeolite 1 (Cu-ZSM-
5), zeolite 2 (Mn-ZSM-5) and zeolite 3 (Co-
The combustion status of dust by ZSM-5) is shown by plotting the combustion temperature on the horizontal axis and the concentrations of carbon dioxide and nitrogen generated at this time on the vertical axis. Here, the upper part shows the carbon dioxide concentration, and the lower part shows the nitrogen concentration.

【0034】特性図が示すように、Cu-ZSM-5を用いた場
合、煤塵の燃焼は283℃から燃焼が開始され、これに伴
い、二酸化炭素ガスの生成も始まり、360℃で最も燃焼
が盛んなピークとなっていることが分かる。また、窒素
ガスも二酸化炭素に追随して生成されていることから、
煤塵燃焼時に脱硝が同時におこり、煤塵と一酸化窒素の
同時除去が確認された。同様のことが、ゼオライト2
(Mn-ZSM-5)及びゼオライト3(Co-ZSM-5)でも観測で
きた。
As shown in the characteristic diagram, when Cu-ZSM-5 is used, combustion of dust starts at 283 ° C., accompanied by generation of carbon dioxide gas. It can be seen that the peak is active. Also, since nitrogen gas is also produced following carbon dioxide,
The denitration occurred at the same time during the combustion of the dust, and the simultaneous removal of the dust and nitric oxide was confirmed. The same is true for zeolite 2
(Mn-ZSM-5) and zeolite 3 (Co-ZSM-5) were also observed.

【0035】さらに、この試験によって得られた燃焼開
始温度、燃焼ピーク温度、窒素排出量及び脱硝率の結果
を表3にまとめた。尚、前記窒素排出量は、図4のグラフ
を積分することにより得た。かかる結果により、どのゼ
オライトを用いても、300℃以下で燃焼が開始し、燃焼
ピークは380℃以下であることがわかる。
Further, Table 3 summarizes the results of the combustion start temperature, the combustion peak temperature, the nitrogen emission amount, and the denitration rate obtained in this test. Incidentally, the nitrogen discharge amount was obtained by integrating the graph of FIG. From these results, it can be seen that combustion starts at 300 ° C. or less and the combustion peak is 380 ° C. or less, regardless of which zeolite is used.

【0036】[0036]

【表3】 [Table 3]

【0037】(試験2) 1.本発明に係るハニカム状ゼオライト触媒の実負荷試
験 図1は本試験に係る測定システムの概要図、図5(a)
は本試験に係るハニカム状ゼオライト触媒の外観図、図
5(b)(c)(d)は前記ゼオライト触媒単体の外観
図である。
(Test 2) Actual load test of honeycomb-shaped zeolite catalyst according to the present invention FIG. 1 is a schematic diagram of a measurement system according to the present test, and FIG.
Fig. 5 is an external view of a honeycomb-shaped zeolite catalyst according to this test, and Figs. 5 (b), 5 (c), and 5 (d) are external views of the zeolite catalyst alone.

【0038】当該ゼオライト触媒10は、二つ以上のハニ
カム状ゼオライト触媒単体から成り、図1において、反
応カラム11に充填される。反応カラム11は発電機(28k
W)12の排気経路に備え付けられ、さらに、このカラム1
1の一次側と二次側には、差圧計とNOx計が設置され
る。
The zeolite catalyst 10 is composed of two or more honeycomb-shaped zeolite catalysts alone, and is packed in a reaction column 11 in FIG. The reaction column 11 is a generator (28k
W) Equipped with 12 exhaust paths, and this column 1
A differential pressure gauge and a NOx meter are installed on the primary side and the secondary side.

【0039】また、前記ゼオライト触媒は、3段から成
り、その1段は前記ゼオライト触媒単体4個で構成される
(図5(a))。さらに、前記単体は、65mm×65mm×13
0mmの直方体を成し、主原料のゼオライトにゼオライト1
(Cu-ZSM-5)を用いている。
The zeolite catalyst is composed of three stages, one of which is composed of four zeolite catalysts alone (FIG. 5 (a)). Further, the single piece is 65 mm x 65 mm x 13
It has a rectangular parallelepiped of 0mm, and zeolite 1
(Cu-ZSM-5) is used.

【0040】本試験において試みられた二種の単体を、
以下に示す。
The two kinds of simple substances tested in this test were:
It is shown below.

【0041】図5(b)のB-B断面図において、それぞ
れ単位通気口一辺の長さが3.4mmであり、その壁厚が0.8
5mm(1インチ平方当り30セル、以下30cpiと略す)とす
るゼオライト触媒単体(以下、30セルハニカムと称
す)。
In the sectional view taken along the line BB in FIG. 5B, the length of each side of the unit vent is 3.4 mm, and the wall thickness is 0.8 mm.
A single zeolite catalyst having a size of 5 mm (30 cells per square inch, hereinafter abbreviated as 30 cpi) (hereinafter referred to as a 30 cell honeycomb).

【0042】図5(c)のB-B断面図において、それぞ
れ単位通気口一辺の長さが1.9mmであり、その壁厚が0.5
mm(1インチ平方当り100セル、以下100cpiと略す)とす
るゼオライト触媒単体(以下、100セルハニカムと称
す)。
In the sectional view taken along the line BB in FIG. 5C, the length of each side of the unit vent is 1.9 mm and the wall thickness is 0.5
zeolite catalyst alone (hereinafter, referred to as 100 cell honeycomb) in mm (100 cells per square inch, hereinafter abbreviated as 100 cpi).

【0043】尚、前記いずれの単体の重さも、約250g
である。 2.試験要領 1)切替弁15を反応カラム11側にして発電機(28kW)12
を始動し、そのまま無負荷で20分間運転して煤塵をゼオ
ライト触媒10に吸着させる。
Incidentally, the weight of any of the above-mentioned simple substances is about 250 g.
It is. 2. Test procedure 1) Generator (28 kW) 12 with switching valve 15 facing reaction column 11
Is started, and it is operated without load for 20 minutes to adsorb dust to the zeolite catalyst 10.

【0044】2)発電負荷を80%に上げ、そのまま定常
で2時間発電機12を作動させ、煤塵を排気ガス温度で燃
焼させる。
2) The power generation load is increased to 80%, and the generator 12 is operated for 2 hours in a steady state to burn dust at the exhaust gas temperature.

【0045】3)2時間後、負荷を0に戻し、切替弁15
をバイパス経路16側にして発電機12を停止させる。
3) After 2 hours, the load is returned to 0 and the switching valve 15
To the bypass path 16 to stop the generator 12.

【0046】上記の手順において、発電中の反応カラム
11の入口と出口で排ガス温度、動圧、静圧、NOx濃度を
測定する。試験終了後、使用したゼオライト触媒10を縦
割りにし、煤塵と燃焼状態について観察する。 3.測定機器 L型ピトー管 NOx-O2分析計(島津NOA-307) 4.試験結果 1)30セルハニカム 図6は、始動20分後のゼオライト触媒(Cu-ZSM-5)単体
への煤塵吸着状況(左側)と、試験後のゼオライト表面
(図5中のC-C断面)に吸着した煤塵の焼失状況(右
側)を示している。すなわち、実負荷80%、排気ガス温
度380℃及び2時間運転後の、前記ハニカム表面上(C-C
断面)における煤塵焼失状況の変化が示されている。
In the above procedure, the reaction column during power generation
The exhaust gas temperature, dynamic pressure, static pressure, and NOx concentration are measured at the inlet and outlet of 11. After the test is completed, the used zeolite catalyst 10 is divided vertically, and the dust and the combustion state are observed. 3. Measuring equipment L-type pitot tube NOx-O 2 analyzer (Shimadzu NOA-307) Test results 1) 30-cell honeycomb Fig. 6 shows the dust adsorption state on the zeolite catalyst (Cu-ZSM-5) alone 20 minutes after start-up (left side) and the zeolite surface after test (CC cross section in Fig. 5). The burning state of the adsorbed dust (right side) is shown. That is, after operating at an actual load of 80%, an exhaust gas temperature of 380 ° C., and 2 hours, the above honeycomb surface (CC
(Cross section) shows the change in the dust burnout situation.

【0047】尚、運転中の排ガス流量は110m3/hであ
り、このときの当該ゼオライト触媒(30cpi,130mm×13
0mm×390mm)の圧力損失は1.568kPa(160mmH2O)であっ
た。また、反応カラム11入口のNOX濃度は681cm3/m3N(v
ol ppm)、出口のNOX濃度は644cm3/m3N(vol ppm)であ
り、脱硝率5.4%の脱硝が観測された。
The exhaust gas flow rate during operation was 110 m 3 / h, and the zeolite catalyst (30 cpi, 130 mm × 13
The pressure loss of 0 mm × 390 mm) was 1.568 kPa (160 mmH 2 O). Further, the reaction column 11 inlet of the NO X concentration is 681cm 3 / m 3 N (v
ol ppm), the NO X concentration at the outlet was 644 cm 3 / m 3 N (vol ppm), and denitration with a denitration rate of 5.4% was observed.

【0048】2)100セルハニカム 100セルハニカムについても、前記30セルハニカムと同
様の要領で測定した。
2) 100 Cell Honeycomb A 100 cell honeycomb was also measured in the same manner as in the case of the 30 cell honeycomb.

【0049】図7は、100セルハニカムでの始動20分後
のゼオライト触媒(Cu-ZCM-5)単体への煤塵吸着状況
(左側)と試験後のゼオライト表面(図5中のC-C断
面)に吸着された煤塵の焼失状況(右側)を示してい
る。これも、負荷80%排気ガス温度380℃で2時間運転後
の、前記ハニカム表面上(C-C断面)における煤塵焼失
状況の変化が示されている。
FIG. 7 shows the state of dust adsorption on the zeolite catalyst (Cu-ZCM-5) alone (left) and the surface of the zeolite after the test (CC cross section in FIG. 5) after 20 minutes of startup with a 100-cell honeycomb. The burning state (right side) of the adsorbed dust is shown. This also shows a change in the state of dust burnout on the honeycomb surface (CC cross section) after operation for 2 hours at a load of 80% exhaust gas temperature of 380 ° C.

【0050】尚、運転中の排ガス流量は110m3/hであ
り、このときの当該ゼオライト触媒(100cpi,130mm×1
30mm×390mm)の圧力損失は2.058kPa(210mmH2O)であ
った。また、反応カラム入口のNOX濃度は、707cm3/m3N
(vol ppm)、出口のNOX濃度は651cm3/m3N(vol ppm)
であり、脱硝率7.9%の脱硝が観測された。
The flow rate of the exhaust gas during operation was 110 m 3 / h, and the zeolite catalyst (100 cpi, 130 mm × 1
The pressure loss of 30 mm × 390 mm) was 2.058 kPa (210 mmH 2 O). The NO X concentration at the inlet of the reaction column was 707 cm 3 / m 3 N
(Vol ppm), NO X concentration at the outlet is 651cm 3 / m 3 N (vol ppm)
The denitration with a denitration rate of 7.9% was observed.

【0051】以上の試験結果から、30セルハニカム及び
100セルハニカムのいずれの場合でも、銅イオンを担持
させたゼオライト触媒に吸着された煤塵が排気ガス温度
380℃の下で、ほぼ焼失していることが確認された。
From the above test results, a 30 cell honeycomb and
In each case of 100-cell honeycomb, the dust adsorbed on the zeolite catalyst supporting copper ions is the exhaust gas temperature.
It was confirmed that it was almost burned down at 380 ° C.

【0052】また、本試験において、前記ゼオライト2
及び3、すなわちMn若しくはCoを担持したZSM-5型ゼオラ
イト触媒を用いても、同様の効果が得られている。
In this test, zeolite 2
And 3, that is, the same effect is obtained by using a ZSM-5 type zeolite catalyst supporting Mn or Co.

【0053】以上のことから明らかなように、脱硝機能
を有するゼオライト(ZSM-5型)にCu、Mn若しくはCoを
担持させたものを、被処理ガスと接触させれば、被処理
ガス温度の下で、当該ガス中に含まれた煤塵と窒素酸化
物の同時除去が可能となる。 (実施形態)本発明に係る排ガス処理方法の実施形態を
図面に基づいて説明する。
As is clear from the above, when a zeolite (ZSM-5 type) having a denitrification function carrying Cu, Mn or Co is brought into contact with the gas to be treated, the temperature of the gas to be treated is reduced. Below, it is possible to simultaneously remove dust and nitrogen oxides contained in the gas. (Embodiment) An embodiment of an exhaust gas treatment method according to the present invention will be described with reference to the drawings.

【0054】当該排ガス処理方法は、前述のように、前
記金属を担持させたZSM-5型ゼオライトを用い、これと
被処理ガスとを、被処理ガス温度のもとで接触させて燃
焼させることにより前記排ガス中に含まれる煤塵と窒素
酸化物とを同時に行なう。
In the exhaust gas treatment method, as described above, a ZSM-5 type zeolite carrying the metal is used, and the zeolite is brought into contact with the gas to be treated at the temperature of the gas to be treated and burned. Thus, dust and nitrogen oxides contained in the exhaust gas are simultaneously performed.

【0055】本発明に係る排ガス処理装置は、図2
(b)に示されたように、被処理ガスが供給される反応
カラム21にゼオライト触媒20が充填されることで構成さ
れ、発電機等の煤塵及び窒素酸化物を含むガスを排出す
る燃料燃焼設備の排気経路に設置される。反応カラム21
へのゼオライト触媒20の充填量は、単位触媒表面当りの
被処理ガス(窒素酸化物含有煤煙)負荷量によって定め
られる。
The exhaust gas treatment apparatus according to the present invention is shown in FIG.
As shown in (b), the reaction column 21 to which the gas to be treated is supplied is filled with the zeolite catalyst 20, and the fuel combustion of a generator or the like for discharging a gas containing dust and nitrogen oxides Installed in the exhaust path of equipment. Reaction column 21
The amount of the zeolite catalyst 20 charged into the catalyst is determined by the load of the gas to be treated (nitrogen oxide-containing soot) per unit catalyst surface.

【0056】ゼオライト触媒20は、少なくとも二つ以上
のゼオライト触媒単体20aからなる。そして、ゼオライ
ト触媒単体20aは、前記試験と同様に、煤煙との接触表
面をできるだけ広くした構造、すなわちゼオライト粉を
ハニカム状若しくはペレット状に成形させること、また
は、金属製若しくはセラミック製のフィルター、ビーズ
状、ボール状若しくはハニカム構造のボール状担体にゼ
オライトを担持させることにより構成される。
The zeolite catalyst 20 comprises at least two or more zeolite catalysts 20a. The zeolite catalyst unit 20a has a structure in which the contact surface with soot is as large as possible, that is, the zeolite powder is formed into a honeycomb shape or a pellet shape, or a metal or ceramic filter or bead, as in the above test. It is constituted by supporting zeolite on a ball-shaped carrier having a shape of, a ball, or a honeycomb structure.

【0057】前記試験結果によると、ハニカム状に形成
させた場合、ゼオライト触媒単体20aの通気口径は、煤
塵、窒素酸化物負荷量に合せて30〜100セルの間で調整
することが可能であり、また、いずれかの単体20aの煤
塵除去・脱硝効率が著しく低下した場合に新しい単体と
容易に交換が可能であること、さらに、煤塵・窒素酸化
物負荷量に合せて任意適量に触媒の量を調整すること
(例えば、図2(2)のように、24〜40の単体20aを充
填)が可能であることから、維持管理の面からも有効と
なる。
According to the above test results, when formed into a honeycomb shape, the vent diameter of the zeolite catalyst unit 20a can be adjusted between 30 and 100 cells according to the dust and nitrogen oxide load. If the dust removal / denitration efficiency of any single unit 20a is significantly reduced, it can be easily replaced with a new single unit.In addition, the amount of the catalyst can be arbitrarily adjusted according to the dust and nitrogen oxide load. (For example, as shown in FIG. 2 (2), the filling of 24 to 40 single substances 20a) is possible, which is also effective from the viewpoint of maintenance.

【0058】ゼオライト触媒20は、ZSM-5型ゼオライト
に、Cu、Mn若しくはCoを担持させたものを主原料とす
る。前期試験2で明らかなように、当該ゼオライト触媒
は、供給される被処理ガス自体の温度で煤塵を焼失させ
ることができるので外部から熱を加える必要がない。
The main raw material of the zeolite catalyst 20 is one in which Cu, Mn or Co is supported on a ZSM-5 type zeolite. As is clear from the first test 2, the zeolite catalyst can burn off dust at the temperature of the supplied gas itself, so that it is not necessary to apply heat from the outside.

【0059】かかる構成により、本発明に係る排ガス処
理装置は、被処理ガスと金属担持させたゼオライトとの
接触効率が高まり、被処理ガス温度の下で、同ガス中に
含まれる煤塵を効率的に燃焼除去させることができる。
With this configuration, the exhaust gas treatment apparatus according to the present invention increases the contact efficiency between the gas to be treated and the zeolite carrying the metal, and efficiently removes the dust contained in the gas at the temperature of the gas to be treated. Can be burned off.

【0060】さらに、本発明に係るゼオライトは、脱硝
機能を有していることから、単一反応系の下で、脱硝と
煤塵除去とを同時に行うことができる。これにより、反
応系における被処理ガス(煤煙)の処理時間は短縮化さ
れ、装置の単純小型化が可能となる。このことから、本
発明に係る排ガス処理装置は、既存の煤煙処理装置の付
帯設備として容易に設置可能となり、既存排ガス処理設
備の機能維持や機能低下対策の一助ともなる。
Furthermore, since the zeolite according to the present invention has a denitration function, denitration and dust removal can be performed simultaneously in a single reaction system. Thereby, the processing time of the gas to be treated (smoke) in the reaction system is shortened, and the apparatus can be simply reduced in size. For this reason, the exhaust gas treatment apparatus according to the present invention can be easily installed as an auxiliary facility of the existing soot treatment apparatus, and also helps to maintain the function of the existing exhaust gas treatment facility and take measures to reduce the function.

【0061】図2に基づいて本発明に係る煤煙処理装置
の作用について述べる。
The operation of the soot treatment apparatus according to the present invention will be described with reference to FIG.

【0062】発電機等の燃料燃焼設備から排出された被
処理ガスは、反応カラム内に移行し、ゼオライト触媒20
と接触する。カラム21内に供給された被処理ガスは、排
出口に向かってゼオライト触媒20の通気口(ボール状ま
たはハニカム構造ボール状のゼオライト触媒が充填され
ている場合は、その空隙)を通過する。このとき、ゼオ
ライト触媒20はフィルターの役目し、前記ガス中の煤塵
及び窒素酸化物を触媒20表面に吸着させる。吸着された
煤塵は、供給された被処理ガスの温度の下で焼失され
る。煤塵除去及び脱硝処理されたガスは、系外に排気さ
れ、必要とあらばさらに高度処理に供される。
The gas to be treated discharged from the fuel combustion equipment such as a generator is transferred into the reaction column and the zeolite catalyst 20 is discharged.
Contact with. The gas to be treated supplied into the column 21 passes through the vent of the zeolite catalyst 20 toward the discharge port (the void when the ball-shaped or honeycomb-structured zeolite catalyst is filled). At this time, the zeolite catalyst 20 functions as a filter, and adsorbs dust and nitrogen oxides in the gas on the surface of the catalyst 20. The adsorbed dust is burned off under the temperature of the supplied gas to be treated. The gas that has been subjected to the dust removal and denitration treatment is exhausted to the outside of the system, and is subjected to further advanced treatment if necessary.

【0063】[0063]

【発明の効果】以上詳細に述べたように、本発明に係る
排ガス処理方法及びその装置によれば、被処理ガスを、
金属担持させたZSM-5型ゼオライトに接触させ、さらに
この被処理ガス温度の下で燃焼させれば、当該ガス中に
含まれる煤塵を効率的に除去することができる。
As described above in detail, according to the exhaust gas treatment method and apparatus of the present invention, the gas to be treated is
If the gas is brought into contact with the metal-supported ZSM-5 type zeolite and further burned at the temperature of the gas to be treated, dust contained in the gas can be efficiently removed.

【0064】また、本発明に係るZSM-5型ゼオライト
は、脱硝機能を有していることから、単一反応系のもと
で、脱硝と煤塵除去とを同時に行うことができる。さら
に、Cu、Mn若しくはCoを担持させたZSM型ゼオライト
は、煤塵及び窒素酸化物の除去効率をさらに向上させる
ことができる。
Since the ZSM-5 type zeolite according to the present invention has a denitration function, denitration and dust removal can be performed simultaneously in a single reaction system. Further, the ZSM zeolite supporting Cu, Mn or Co can further improve the efficiency of removing dust and nitrogen oxides.

【0065】これらのことから、反応系における煤煙の
処理時間は短縮化され、装置の単純化及び小型化が可能
となる。したがって、装置としての取扱も容易となるこ
とから、生産面及び維持管理面からも経済的に有効な手
段となる。
From these facts, the time required for treating soot in the reaction system is reduced, and the apparatus can be simplified and downsized. Therefore, the handling as an apparatus is facilitated, which is an economically effective means from the viewpoint of production and maintenance.

【0066】それゆえに、本発明に係る排ガス処理方法
及びその装置は、既存の煤煙処理装置の付帯設備として
容易に設置することも可能となり、既存排ガス処理設備
の機能維持や機能低下対策の一助にもなる。
Therefore, the exhaust gas treatment method and apparatus according to the present invention can be easily installed as an incidental facility of an existing soot treatment apparatus, and can help maintain the functions of existing exhaust gas treatment facilities and countermeasures against deterioration. Also.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る排ガス処理システムの概要図。FIG. 1 is a schematic diagram of an exhaust gas treatment system according to the present invention.

【図2】(a)は本発明に係るゼオライト触媒の概要
図、(b)は本発明に係る排ガス処理装置システムにお
ける反応カラムの外観図。
2A is a schematic view of a zeolite catalyst according to the present invention, and FIG. 2B is an external view of a reaction column in an exhaust gas treatment system according to the present invention.

【図3】(a)は試験1に係る測定システムの概要図、
(b)は試験1に係る反応カラムの概要図。
FIG. 3A is a schematic diagram of a measurement system according to a test 1,
(B) is a schematic diagram of a reaction column according to test 1.

【図4】試供ゼオライトによる煤塵の燃焼及び脱硝状況
を示した特性図。
FIG. 4 is a characteristic diagram showing the situation of dust combustion and denitration by a sample zeolite.

【図5】(a)は試験2に係るハニカム状ゼオライト触
媒の外観図、(b)(c)(d)は前記ゼオライト触媒
単体の外観図。
5A is an external view of a honeycomb zeolite catalyst according to Test 2, and FIGS. 5B, 5C, and 5D are external views of the zeolite catalyst alone.

【図6】始動20分後の30セルハニカム(図5(d)C-C
断面)への煤塵(すす)付着状況(左側)と、2時間後
の同ハニカムに吸着した煤塵(すす)の焼失状況(右
側)。
FIG. 6 shows a 30-cell honeycomb 20 minutes after startup (FIG. 5 (d) CC
The cross-section) shows how dust (soot) adheres to it (left), and the dust (soot) adsorbed on the same honeycomb after 2 hours (right).

【図7】始動20分後の100セルハニカム(図5(d)C-C
断面)への煤塵(すす)付着状況(左側)と、2時間後
の同ハニカムに吸着した煤塵(すす)の焼失状況(右
側)。
FIG. 7: 100-cell honeycomb 20 minutes after startup (FIG. 5 (d) CC
The cross-section) shows how dust (soot) adheres to it (left), and the dust (soot) adsorbed on the honeycomb two hours later burns out (right).

【符号の説明】[Explanation of symbols]

10,20…ゼオライト触媒 10a,20a…ゼオライト触媒単体 11,21…反応カラム 10,20… Zeolite catalyst 10a, 20a… Zeolite catalyst alone 11,21… Reaction column

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 29/46 ZAB F01N 3/10 A 4G069 29/48 3/24 E F01N 3/02 321 B01D 53/34 129A 3/08 ZAB 3/10 53/36 104B 3/24 Fターム(参考) 3G090 AA02 AA03 BA01 3G091 AA06 AA18 AB09 AB13 BA13 BA14 GB02W GB09Y 4D002 AA12 AB01 AC10 BA04 BA05 DA21 DA23 DA24 DA45 4D048 AA06 AA14 AB01 AB02 BA11X BA28X BA35X BA37X BB01 BB02 CA02 CC36 CC38 DA03 DA06 EA04 4D058 JA32 JB03 JB06 MA44 PA14 TA02 TA06 UA01 4G069 AA03 BA07A BA07B BC31A BC31B BC62A BC62B BC67A BC67B CA02 CA03 CA07 CA08 CA13 CA18 DA06 EA19 EB14Y EB15Y EE07 ZA11A ZA11B ZC04 ZF05A ZF05BContinued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) B01J 29/46 ZAB F01N 3/10 A 4G069 29/48 3/24 E F01N 3/02 321 B01D 53/34 129A 3 / 08 ZAB 3/10 53/36 104B 3/24 F term (reference) 3G090 AA02 AA03 BA01 3G091 AA06 AA18 AB09 AB13 BA13 BA14 GB02W GB09Y 4D002 AA12 AB01 AC10 BA04 BA05 DA21 DA23 DA24 DA45 4D048 AA06 AA14BA28 BA28X BA28X BB02 CA02 CC36 CC38 DA03 DA06 EA04 4D058 JA32 JB03 JB06 MA44 PA14 TA02 TA06 UA01 4G069 AA03 BA07A BA07B BC31A BC31B BC62A BC62B BC67A BC67B CA02 CA03 CA07 CA08 CA13 CA18 DA06 EA19 EB14Z05B EB15A EB15Z EB15A EB15Z EB15Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被処理ガスを、金属担持させたZSM-5型
ゼオライト(SiO2/Al2O3=30〜80)と接触させて前記
ガス中から煤塵と窒素酸化物とを前記ゼオライトに吸着
除去し、さらにこの吸着させた煤塵を燃焼除去させるこ
とを特徴とする排ガス処理方法。
1. A gas to be treated is brought into contact with a metal-supported ZSM-5 type zeolite (SiO 2 / Al 2 O 3 = 30 to 80) to convert dust and nitrogen oxides from the gas into the zeolite. An exhaust gas treatment method comprising: removing by adsorption, and burning and removing the absorbed dust.
【請求項2】 前記担持させた金属は、Cu、Mn若しくは
Coであることを特徴とする請求項1記載の窒素酸化物含
有排ガス処理方法。
2. The supported metal is Cu, Mn or
2. The method for treating an exhaust gas containing nitrogen oxides according to claim 1, wherein the exhaust gas is Co.
【請求項3】 被処理ガスが供給される反応カラムと、
前記反応カラム内に充填され、かつ前記ガス中から煤塵
と窒素酸化物とを吸着除去し、さらにこの吸着させた煤
塵を前記ガス温度の下で燃焼除去させるゼオライト触媒
とからなる排ガス処理装置において、前記ゼオライト触
媒は、Cu、Mn若しくはCoを担持させたZSM-5型ゼオライ
ト、または、このゼオライトの担持体であることを特徴
とする排ガス処理装置。
3. A reaction column to which a gas to be treated is supplied,
An exhaust gas treatment device comprising a zeolite catalyst packed in the reaction column and adsorbing and removing dust and nitrogen oxides from the gas, and further burning and removing the adsorbed dust at the gas temperature. An exhaust gas treatment apparatus, wherein the zeolite catalyst is a ZSM-5 type zeolite supporting Cu, Mn or Co, or a support of the zeolite.
JP2000108799A 2000-04-11 2000-04-11 Exhaust gas treatment method and apparatus Expired - Fee Related JP4774573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000108799A JP4774573B2 (en) 2000-04-11 2000-04-11 Exhaust gas treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108799A JP4774573B2 (en) 2000-04-11 2000-04-11 Exhaust gas treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2001286725A true JP2001286725A (en) 2001-10-16
JP4774573B2 JP4774573B2 (en) 2011-09-14

Family

ID=18621580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108799A Expired - Fee Related JP4774573B2 (en) 2000-04-11 2000-04-11 Exhaust gas treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4774573B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074848A1 (en) * 2002-03-04 2003-09-12 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus
JP2010075879A (en) * 2008-09-26 2010-04-08 Cs Engineering:Kk Method of deodorizing exhaust
KR20140035982A (en) * 2011-06-01 2014-03-24 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Cold start catalyst and its use in exhaust systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108421558A (en) * 2018-04-04 2018-08-21 武汉理工大学 A kind of bar shaped manganese-based catalyst and preparation method thereof for NO catalysis oxidations

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162014A (en) * 1986-12-25 1988-07-05 Matsushita Electric Ind Co Ltd Exhaust gas filter
JPH01159029A (en) * 1987-12-16 1989-06-22 Toyota Motor Corp Exhaust gas purification apparatus of diesel engines
JPH02108806A (en) * 1988-10-17 1990-04-20 Toyota Autom Loom Works Ltd Exhaust gas purifying device for diesel engine
JPH03118820A (en) * 1989-09-29 1991-05-21 Agency Of Ind Science & Technol Method and device for decomposing and removing nitrogen oxide
JPH04141218A (en) * 1990-09-28 1992-05-14 Mazda Motor Corp Exhaust gas purifying apparatus of engine
JPH05277324A (en) * 1992-02-05 1993-10-26 Kawasaki Heavy Ind Ltd Method for regenerating nitrogen oxides adsorbent
JPH0671142A (en) * 1992-08-31 1994-03-15 Meidensha Corp Method for denitrification, denitrification agent and its preparation
JPH06165917A (en) * 1992-11-27 1994-06-14 Kawasaki Heavy Ind Ltd Centrifugal fluidized bed waste gas treating device
JPH06198136A (en) * 1992-10-20 1994-07-19 Corning Inc Method and device for conversion of exhaust gas
JPH0796178A (en) * 1993-09-30 1995-04-11 Babcock Hitachi Kk Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JPH07155548A (en) * 1993-12-10 1995-06-20 Meidensha Corp Denitrification method
JPH08150316A (en) * 1994-11-29 1996-06-11 Meidensha Corp Device for removing smoke dust in gas
JPH08229350A (en) * 1995-02-24 1996-09-10 I C T:Kk Catalyst for decomposing nitrogen oxide and purifying method of diesel engine exhaust gas using the same
JPH1181983A (en) * 1997-06-12 1999-03-26 Toyota Central Res & Dev Lab Inc Particulate filter
JPH11226425A (en) * 1998-02-12 1999-08-24 Nissan Motor Co Ltd Catalyst for purification of exhaust gas
JPH11300165A (en) * 1998-04-23 1999-11-02 Sumitomo Electric Ind Ltd Post-treating device of exhaust gas and post-treating method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162014A (en) * 1986-12-25 1988-07-05 Matsushita Electric Ind Co Ltd Exhaust gas filter
JPH01159029A (en) * 1987-12-16 1989-06-22 Toyota Motor Corp Exhaust gas purification apparatus of diesel engines
JPH02108806A (en) * 1988-10-17 1990-04-20 Toyota Autom Loom Works Ltd Exhaust gas purifying device for diesel engine
JPH03118820A (en) * 1989-09-29 1991-05-21 Agency Of Ind Science & Technol Method and device for decomposing and removing nitrogen oxide
JPH04141218A (en) * 1990-09-28 1992-05-14 Mazda Motor Corp Exhaust gas purifying apparatus of engine
JPH05277324A (en) * 1992-02-05 1993-10-26 Kawasaki Heavy Ind Ltd Method for regenerating nitrogen oxides adsorbent
JPH0671142A (en) * 1992-08-31 1994-03-15 Meidensha Corp Method for denitrification, denitrification agent and its preparation
JPH06198136A (en) * 1992-10-20 1994-07-19 Corning Inc Method and device for conversion of exhaust gas
JPH06165917A (en) * 1992-11-27 1994-06-14 Kawasaki Heavy Ind Ltd Centrifugal fluidized bed waste gas treating device
JPH0796178A (en) * 1993-09-30 1995-04-11 Babcock Hitachi Kk Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JPH07155548A (en) * 1993-12-10 1995-06-20 Meidensha Corp Denitrification method
JPH08150316A (en) * 1994-11-29 1996-06-11 Meidensha Corp Device for removing smoke dust in gas
JPH08229350A (en) * 1995-02-24 1996-09-10 I C T:Kk Catalyst for decomposing nitrogen oxide and purifying method of diesel engine exhaust gas using the same
JPH1181983A (en) * 1997-06-12 1999-03-26 Toyota Central Res & Dev Lab Inc Particulate filter
JPH11226425A (en) * 1998-02-12 1999-08-24 Nissan Motor Co Ltd Catalyst for purification of exhaust gas
JPH11300165A (en) * 1998-04-23 1999-11-02 Sumitomo Electric Ind Ltd Post-treating device of exhaust gas and post-treating method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003074848A1 (en) * 2002-03-04 2003-09-12 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus
CN100365252C (en) * 2002-03-04 2008-01-30 揖斐电株式会社 Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus
US7427308B2 (en) 2002-03-04 2008-09-23 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus
JP2010075879A (en) * 2008-09-26 2010-04-08 Cs Engineering:Kk Method of deodorizing exhaust
KR20140035982A (en) * 2011-06-01 2014-03-24 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Cold start catalyst and its use in exhaust systems
JP2014519975A (en) * 2011-06-01 2014-08-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Cold start catalyst and its use in exhaust systems
KR102111999B1 (en) 2011-06-01 2020-05-18 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Cold start catalyst and its use in exhaust systems

Also Published As

Publication number Publication date
JP4774573B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
RU2611519C2 (en) Method of applying sorbent coating on substrate, support, and/or substrate coated with support
CA2490671C (en) Method and apparatus for removing particulate and vapor phase contaminants from a gas stream
US7731781B2 (en) Method and apparatus for the enhanced removal of aerosols and vapor phase contaminants from a gas stream
RU2392456C2 (en) Method and device for cleaning of exhaust gas
JP4236884B2 (en) Exhaust gas treatment equipment
JP3994605B2 (en) PFC gas processing method and processing apparatus
JP3108649B2 (en) Vehicle exhaust gas purification device
JP2011131213A (en) Method and catalyst/adsorbent for treating exhaust gas containing sulfur compound
RU2012122525A (en) SELECTIVE CATALYTIC NEUTRALIZATION SYSTEM FOR ABSORPTION OF VOLATILE COMPOUNDS
CN107876043A (en) A kind of ceramic catalytic filter core and flue gas integration desulfurization denitration dust removal method for gas cleaning
CN203075822U (en) Indoor air purifying device
JPH08229404A (en) Exhaust gas purifying catalyst and apparatus
KR20040090182A (en) Baghouse for simultaneously removing fine particle and nitric oxides to preliminary reduction of dust loading
JP4774573B2 (en) Exhaust gas treatment method and apparatus
LT5934B (en) Treatment method, treatment facility and impurity removing material for radioactive gaseous vaste
JP4774569B2 (en) Exhaust gas treatment method and apparatus
JP3831312B2 (en) Exhaust gas cleaning device
KR20170034691A (en) Apparatus for exhaust gas purification and exhaust gas purification method
JPH02251226A (en) Air cleaning apparatus
JP3414808B2 (en) Hydrocarbon adsorbent in exhaust gas
KR101407115B1 (en) Method for treating hazardous gas generated in semiconductor manufacturing process
CN110513176A (en) A kind of heavy-duty diesel vehicle exhaust gas cleaner
JPH10263368A (en) Purifying device of exhaust gas
JPH0312338Y2 (en)
JP2007321678A (en) Method and device for treating exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4774573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees