JPH11226403A - Catalyst layer for purification of exhaust gas, catalyst-coated structure for purification of exhaust gas, and purifying method of exhaust gas using that - Google Patents

Catalyst layer for purification of exhaust gas, catalyst-coated structure for purification of exhaust gas, and purifying method of exhaust gas using that

Info

Publication number
JPH11226403A
JPH11226403A JP10050167A JP5016798A JPH11226403A JP H11226403 A JPH11226403 A JP H11226403A JP 10050167 A JP10050167 A JP 10050167A JP 5016798 A JP5016798 A JP 5016798A JP H11226403 A JPH11226403 A JP H11226403A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
reference example
purifying
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10050167A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Taiji Sugano
泰治 菅野
Atsushi Kagakui
敦 加岳井
Masaki Funabiki
正起 船曳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, NE Chemcat Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10050167A priority Critical patent/JPH11226403A/en
Publication of JPH11226403A publication Critical patent/JPH11226403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst layer in a purifying device of exhaust gas which purifies NOx in lean burnt exhaust gas in a high efficiency and which high reliability. SOLUTION: This catalyst layer consists of a catalyst (A) containing iridium and at least one kind selected from among alkali metals and alkaline earth metals on a porous inorg. oxide carrier in the preceding stage, and a catalyst (B) described below in the succeeding stage. The catalyst (B) contains silver and >=0.05 wt.% and <5 wt.% of silica or titania in an alumina carrier. This alumina carrier has a pore structure with such a relation of the pore radius and the pore volume that the total X of th pore volume of pores having <=300 Åpore radius, the total Y the pore volume of pores having >=25 Å and <100 Åpore radius, and the total Z of the pore volume of pores having 100 Å to 300 Å pore radius satisfy Y>=70%×X and Z<=20% × X.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃焼排ガス、特に自
動車、ボイラー、ガスエンジン、ガスタービン、船舶な
どの移動式および固定式内燃機関の燃焼排ガス中に含ま
れる窒素酸化物の浄化に用いられる排ガス浄化用触媒層
および排ガス浄化用触媒被覆構造体に関し、さらに詳細
には希薄燃焼領域で運転される内燃機関から排出される
排ガス中の窒素酸化物を高い空間速度で、かつ高効率で
浄化可能な排ガス浄化用触媒層および排ガス浄化用触媒
被覆構造体ならびにこれらを使用しての排ガス浄化方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas used for purifying nitrogen oxides contained in combustion exhaust gas of mobile and stationary internal combustion engines of automobiles, boilers, gas engines, gas turbines, ships and the like. The present invention relates to a purification catalyst layer and an exhaust gas purification catalyst-coated structure, and more specifically, it can purify nitrogen oxides in exhaust gas discharged from an internal combustion engine operated in a lean burn region at a high space velocity and with high efficiency. The present invention relates to an exhaust gas purifying catalyst layer, an exhaust gas purifying catalyst coated structure, and an exhaust gas purifying method using the same.

【0002】[0002]

【従来の技術】自動車をはじめとする内燃機関から排出
される各種の燃焼排ガス中には、燃焼生成物である水や
二酸化炭素と共に一酸化窒素や二酸化窒素などの窒素酸
化物(NOx)が含まれている。NOxは人体、特に呼
吸器系に悪影響をおよぼすばかりでなく、地球環境保全
の上からも問題視される酸性雨の原因の1つとなってい
る。そのためこれら各種の排ガスから効率よく窒素酸化
物を除去する脱硝技術の開発が望まれている。
2. Description of the Related Art Various combustion exhaust gases emitted from internal combustion engines such as automobiles contain nitrogen oxides (NOx) such as nitric oxide and nitrogen dioxide together with water and carbon dioxide as combustion products. Have been. NOx not only has an adverse effect on the human body, particularly on the respiratory system, but also is one of the causes of acid rain, which is regarded as a problem from the viewpoint of global environmental protection. Therefore, development of a denitration technology for efficiently removing nitrogen oxides from these various exhaust gases is desired.

【0003】他方において、地球温暖化防止の観点から
近年希薄燃焼方式の内燃機関が注目されている。従来の
自動車用ガソリンエンジンは、空燃比(A/F)=1
4.7付近で制御された化学量論比での燃焼であり、そ
の排ガス処理に対しては排ガス中の一酸化炭素、炭化水
素とNOxとを主として白金、ロジウム、パラジウムお
よびセリアを含むアルミナ触媒に接触させて有害三成分
を同時に除去する三元触媒方式が採用されてきた。
On the other hand, in view of the prevention of global warming, lean-burn internal combustion engines have recently attracted attention. A conventional gasoline engine for an automobile has an air-fuel ratio (A / F) = 1.
This is combustion at a stoichiometric ratio controlled around 4.7. For exhaust gas treatment, an alumina catalyst mainly containing platinum, rhodium, palladium and ceria mainly containing carbon monoxide, hydrocarbons and NOx in the exhaust gas. A three-way catalyst system has been adopted in which harmful three components are simultaneously removed by contact with a catalyst.

【0004】しかしながらこの三元触媒方式は、エンジ
ンが化学量論比で運転されることが絶対条件であるた
め、希薄空燃比で運転される希薄燃焼ガソリンエンジン
の排ガス浄化には適用することができない。またディー
ゼルエンジンは本来希薄燃焼エンジンであるが、その排
気ガスに対しては浮遊粒子状物質とNOxの両方に厳し
い規制がかけられようとしている。
However, this three-way catalyst system cannot be applied to exhaust gas purification of a lean burn gasoline engine operated at a lean air-fuel ratio because it is an absolute condition that the engine is operated at a stoichiometric ratio. . Diesel engines are originally lean burn engines, but strict regulations are being imposed on both the suspended particulate matter and NOx in the exhaust gas.

【0005】従来、酸素過剰雰囲気下でNOxを還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着するNHを使用する技術が既に確立さ
れている。この技術は、いわゆる固定発生源であるボイ
ラーやディーゼルエンジンからの排ガス脱硝方法として
工業化されている。しかしこの方法においては未反応の
還元剤を回収処理するための特別な装置を必要とするば
かりでなく、また臭気が強く有害なアンモニアを用いる
ので、特に自動車などの移動発生源からの排ガス脱硝技
術としては危険性があり適用できない。
Conventionally, as a method of reducing removing NOx in an oxygen-rich atmosphere, a technique of using NH 3 also adsorb selectively catalyst small amount as the reducing gas has already been established. This technology has been industrialized as a method for denitration of exhaust gas from boilers and diesel engines, which are so-called stationary sources. However, this method requires not only a special device for collecting and processing the unreacted reducing agent, but also uses ammonia, which has a strong odor and is harmful. It is dangerous and cannot be applied.

【0006】近年、酸素過剰雰囲気の希薄燃焼排ガス中
に残存する未燃の炭化水素を還元剤として用いることに
より、NOx還元反応を促進させることができるという
報告がなされて以来、この反応を促進するための触媒が
種々開発され報告されている。例えばアルミナやアルミ
ナに遷移金属を担持した触媒が、炭化水素を還元剤とし
て用いるNOx還元反応に有効であるとする数多くの報
告がある。また、特開平4−284848号公報には
0.1〜4重量%のCu、Fe、Cr、Ζn、Ni、V
を含有するアルミナあるいはシリカ−アルミナをNOx
還元触媒として使用した例が報告されている。
In recent years, it has been reported that a NOx reduction reaction can be promoted by using unburned hydrocarbons remaining in a lean combustion exhaust gas in an oxygen-excess atmosphere as a reducing agent. Various catalysts have been developed and reported. For example, there are many reports that alumina or a catalyst in which a transition metal is supported on alumina is effective for a NOx reduction reaction using a hydrocarbon as a reducing agent. JP-A-4-284848 discloses that 0.1 to 4% by weight of Cu, Fe, Cr, Δn, Ni, V
NOx containing alumina or silica-alumina containing
An example of use as a reduction catalyst has been reported.

【0007】さらにPtをアルミナに担持した触媒を用
いると、NOx還元反応が200〜300℃程度の低温
領域で進行することが特開平4−267946号公報、
特開平5−68855号公報や特開平5−103949
号公報などに報告されている。しかしながらこれらの担
持貴金属触媒を用いた場合、還元剤である炭化水素の燃
焼反応が過度に促進されたり、地球温暖化の原因物質の
1つといわれているNOが多量に副生し、無害なN
への還元反応を選択的に進行させることが困難であると
いった欠点を有していた。
Further, when a catalyst in which Pt is supported on alumina is used, the NOx reduction reaction proceeds in a low temperature range of about 200 to 300 ° C., as disclosed in JP-A-4-267946.
JP-A-5-68855 and JP-A-5-103949
No., etc. However, when these supported noble metal catalysts are used, the combustion reaction of hydrocarbons as a reducing agent is excessively promoted, and a large amount of N 2 O, which is said to be one of the substances causing global warming, is produced as a by-product, resulting in harmlessness. a N 2
However, it has a drawback that it is difficult to selectively advance the reduction reaction to.

【0008】本出願人の一方は、先に酸素過剰雰囲気下
で炭化水素を還元剤として銀を含有する触媒を用いると
NOx還元反応が選択的に進行することを見出し、この
技術を特開平4−281844号公報に開示した。この
開示がなされた後においてさえも、銀を含有する触媒を
用いる類似のNOx還元除去技術が特開平4−3545
36号公報、特開平5−92124号公報、特開平5−
92125号公報および特開平6−277454号公報
などに開示されている。
One of the present applicants has previously found that the use of a catalyst containing silver with a hydrocarbon as a reducing agent in an oxygen-excess atmosphere causes the NOx reduction reaction to proceed selectively. -281844. Even after this disclosure was made, a similar NOx reduction and removal technique using a silver-containing catalyst was disclosed in JP-A-4-3545.
No. 36, JP-A-5-92124, JP-A-5-92124
No. 92125 and JP-A-6-277454.

【0009】[0009]

【発明の解決しようとする課題】しかしながらこれら従
来の公報に記載されたアルミナ担持銀触媒は、SOxお
よび水蒸気共存下での脱硝性能が実用的にまだ不十分で
あり、また耐久性に問題があった。
However, the alumina-supported silver catalysts described in these conventional publications still have practically insufficient denitration performance in the presence of SOx and steam, and have problems in durability. Was.

【0010】本発明は上記従来技術の欠点を解決すべく
なされたものであり、その目的とするところは希薄燃焼
排ガス中のNOxを効率よく除去することができ、かつ
耐久性に優れた排ガス浄化用触媒層および排ガス浄化用
触媒被覆構造体と、これらを使用しての希薄燃焼排ガス
中のNOxを高効率、高信頼性をもって浄化する排ガス
浄化方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art, and an object of the present invention is to efficiently remove NOx from lean combustion exhaust gas and to purify the exhaust gas with excellent durability. It is an object of the present invention to provide an exhaust gas purifying method for purifying NOx in lean combustion exhaust gas with high efficiency and high reliability by using the catalyst layer for exhaust gas and the catalyst coated structure for exhaust gas purification.

【0011】[0011]

【課題を解決するための手段】本発明者らは、SOxと
水蒸気が共存する希薄燃焼領域において高い脱硝性能を
有し、かつ耐久性に優れる排ガス浄化用触媒層および排
ガス浄化用触媒披覆構造体と、これらを使用しての排ガ
ス浄化方法について鋭意研究を重ねた結果、多孔質無機
酸化物担体にイリジウムと、アルカリ金属および/また
はアルカリ土類金属とを含有させてなる触媒Aを前段
に、特定の細孔構造を有するアルミナ担体に銀と、微量
のシリカまたはチタニアとを含有させてなる触媒Bを後
段になるように区分して配置させることにより上記した
問題点を解決できることを見出し本発明を完成するに至
った。
The present inventors have developed an exhaust gas purifying catalyst layer and an exhaust gas purifying catalyst exhibiting high denitration performance and excellent durability in a lean burn region where SOx and steam coexist. As a result of intensive studies on the body and the exhaust gas purification method using the same, a catalyst A comprising iridium and an alkali metal and / or an alkaline earth metal in a porous inorganic oxide carrier was provided at the front stage. It has been found that the above-mentioned problems can be solved by arranging catalyst B, which contains silver and a small amount of silica or titania in an alumina carrier having a specific pore structure, separately in the latter stage. The invention has been completed.

【0012】すなわち上記課題を解決するための本発明
の第1の実施態様は、多孔質無機酸化物担体にイリジウ
ムと、アルカリ金属またはアルカリ土類金属のうち少な
くとも1種とを含有させてなる触媒Aと、窒素ガス吸着
法により測定された細孔半径と細孔容積の関係が、細孔
半径300オングストローム以下の細孔の占める細孔容
積の合計値をXとし、細孔半径25オングストローム以
上で100オングストローム未満の細孔の占める細孔容
積の合計値をYとし、細孔半径100オングストローム
以上で300オングストローム以下の細孔の占める細孔
容積の合計値をΖとしたとき、YがXの70%以上であ
り、ΖがXの20%以下であるような細孔構造を有する
アルミナ担体に銀と、0.05重量%以上で5重量%未
満のシリカまたはチタニアとを含有させてなる触媒Bと
から構成される排ガス浄化用触媒層を特徴とするもので
ある。該触媒層は、粉体または成型した状態で排ガスの
流通空間に配置するのが好ましい。
That is, a first embodiment of the present invention for solving the above problems is a catalyst comprising a porous inorganic oxide carrier containing iridium and at least one of an alkali metal and an alkaline earth metal. A, and the relationship between the pore radius and the pore volume measured by the nitrogen gas adsorption method is such that when the total value of the pore volume occupied by pores having a pore radius of 300 Å or less is X, the pore radius is 25 Å or more. When the total value of the pore volume occupied by pores smaller than 100 Å is Y, and the total value of the pore volume occupied by pores having a radius of 100 Å or more and 300 Å or less is Ζ, Y is 70 of X. % Or more and Ζ is 20% or less of X on an alumina support having a pore structure, and 0.05% by weight or more and less than 5% by weight of silica or titanium. An exhaust gas purifying catalyst layer comprising a catalyst B containing tania. The catalyst layer is preferably disposed in a flow space of the exhaust gas in a powdered or molded state.

【0013】また本発明の第2の実施態様は、多数の貫
通孔を有する耐火性材料からなる一体構造の支持基質
と、該支持基質における少なくとも該貫通孔の内表面に
上記の触媒を区分して被覆した排ガス浄化用触媒被覆構
造体を特徴とするものである。
According to a second embodiment of the present invention, there is provided a support substrate having an integral structure made of a refractory material having a large number of through holes, and the above-mentioned catalyst is divided at least on the inner surface of the through hole in the support substrate. The present invention is characterized by an exhaust gas purifying catalyst-coated structure coated with the catalyst.

【0014】またさらに本発明の第3の実施態様は、希
薄空燃比で運転される内燃機関の燃焼排ガスを触媒含有
層と接触させることからなる炭化水素を還元剤とする排
ガス中のNOxを除去する方法において、該触媒含有層
に含まれる触媒は前記第1の実施態様における触媒層ま
たは第2の実施態様における触媒被覆構造体であること
を特徴とし、また排ガスの流通方向に対して前記触媒A
が前段に、前記触媒Bが後段になるように区分して配置
されている排ガス浄化方法を特徴とするものである。
Further, a third embodiment of the present invention is a method for removing NOx in exhaust gas containing hydrocarbons as a reducing agent, which comprises contacting the exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with a catalyst-containing layer. Wherein the catalyst contained in the catalyst-containing layer is the catalyst layer according to the first embodiment or the catalyst-coated structure according to the second embodiment, and the catalyst is disposed in a flowing direction of the exhaust gas. A
Is characterized by an exhaust gas purifying method in which the catalyst B is divided and arranged in the former stage, and the catalyst B is arranged in the latter stage.

【0015】[0015]

【発明の実施の形態】以下本発明の詳細およびその作用
についてさらに具体的に説明する。 (触媒の製造およびその製法)本発明の排ガス浄化用触
媒層における触媒Aの多孔質無機酸化物担体は特に限定
されないが、アルミナ、シリカ、チタニア、ジルコニ
ア、ゼオライトおよびこれらの複合酸化物などが挙げら
れる。一方触媒Bの主成分の1つであるアルミナは、例
えば鉱物学上ベーマイト、擬ベーマイト、バイアライ
ト、あるいはノルストランダイトに分類される水酸化ア
ルミニウムの粉体やゲルを、空気中あるいは真空中30
0〜800℃、好ましくは400〜900℃で加熱脱水
することによって、結晶学的にγ−型、η−型、δ−
型、χ−型あるいはその混合型に分類されるアルミナに
相転移させたものが脱硝性能上好ましい。他の結晶構造
をとるアルミナ、例えばα−型のアルミナは極端に比表
面積が小さく固体酸性にも乏しいので本発明の触媒成分
としては不適当である。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention and its operation will be described more specifically below. (Production of Catalyst and Production Method Thereof) The porous inorganic oxide carrier of the catalyst A in the exhaust gas purifying catalyst layer of the present invention is not particularly limited, and examples thereof include alumina, silica, titania, zirconia, zeolite, and composite oxides thereof. Can be On the other hand, alumina, which is one of the main components of the catalyst B, is obtained by converting aluminum hydroxide powder or gel classified as boehmite, pseudoboehmite, vialite or norstrandite in mineralogy, for example, in air or vacuum.
By heating and dehydrating at 0 to 800 ° C, preferably 400 to 900 ° C, crystallographically, γ-type, η-type, δ-
It is preferable from the viewpoint of denitration performance that a phase transition is made to alumina classified into a type, a χ-type or a mixed type thereof. Alumina having another crystal structure, for example, α-type alumina, is unsuitable as the catalyst component of the present invention because of its extremely small specific surface area and poor solid acidity.

【0016】また前記した触媒Bにおける主成分として
のアルミナは、窒素ガス吸着法により測定された細孔半
径が300オングストローム以下の細孔の占める細孔容
積の合計値をXとし、細孔半径が25オングストローム
以上で100オングストローム未満の細孔の占める細孔
容積の合計値をYとし、細孔半径が100オングストロ
ーム以上で300オングストローム以下の細孔の占める
細孔容積の合計値をZとしたとき、YがXの70%以上
であり、ΖがXの20%以下であるような細孔構造を有
するアルミナであることが必要である。細孔構造が上記
した条件を満たさないアルミナを本発明の触媒Bにおけ
る担体として用いた場合には、これにより構成される排
ガス浄化用触媒は水蒸気とSOxとの共存下での排ガス
の脱硝性能が不十分であった。したがって本発明の触媒
Bの成分として有効なアルミナは、上記した結晶構造お
よび細孔特性を有するものが適切であるといえる。
The alumina as a main component of the catalyst B has a pore radius X of pores having a pore radius of 300 angstroms or less as measured by a nitrogen gas adsorption method. When the total value of the pore volume occupied by pores of 25 Å or more and less than 100 Å is Y, and the total value of the pore volume occupied by pores having a pore radius of 100 Å or more and 300 Å or less is Z, It is necessary that the alumina has a pore structure such that Y is 70% or more of X and Ζ is 20% or less of X. When alumina having a pore structure not satisfying the above-mentioned conditions is used as a carrier in the catalyst B of the present invention, the exhaust gas purifying catalyst constituted thereby has a denitration performance of exhaust gas in the coexistence of steam and SOx. It was not enough. Therefore, it can be said that alumina having the above-mentioned crystal structure and pore characteristics is suitable as the alumina effective as a component of the catalyst B of the present invention.

【0017】本発明の排ガス浄化用触媒層は、以下のよ
うな触媒である。本発明にかかる触媒層は、多孔質無機
酸化物担体にイリジウムとアルカリ金属またはアルカリ
土類金属のうち少なくとも1種とを含有させてなる触媒
Aと、上記した結晶構造および細孔特性を有するアルミ
ナ担体に銀と、0.05重量%以上で5重量%未満のシ
リカまたはチタニアとを含有させてなる触媒Bとから構
成されるものである。触媒Aに含有されるアルカリ金属
は特に限定されないが、例えばナトリウム、カリウムな
どが挙げられ、またアルカリ土類金属も特に限定されな
いが、例えばバリウム、カルシウム、ストロンチウムな
どが挙げられる。
The exhaust gas purifying catalyst layer of the present invention is the following catalyst. The catalyst layer according to the present invention comprises a catalyst A comprising a porous inorganic oxide carrier containing iridium and at least one of an alkali metal or an alkaline earth metal; and an alumina having the above-mentioned crystal structure and pore characteristics. The catalyst B comprises silver and 0.05% by weight or more and less than 5% by weight of silica or titania in the carrier. The alkali metal contained in the catalyst A is not particularly limited, but includes, for example, sodium and potassium. The alkaline earth metal is not particularly limited, and includes, for example, barium, calcium, strontium, and the like.

【0018】さらに触媒Aに含有されるイリジウムとア
ルカリ金属またはアルカリ土類金属のうちの少なくとも
1種の状態は特に限定されず、金属状態、酸化物状態、
複合酸化物状態およびこれらの混合状態などが挙げられ
る。また触媒Bに含有される銀と、シリカまたはチタニ
アの状態は特に限定されず、例えば銀の場合には金属状
態、酸化物状態およびこれらの混合状態などが挙げら
れ、またシリカまたはチタニアの場合には酸化物状態、
局所的な複合酸化物状態およびこれらの混合状態などが
挙げられる。特に希薄燃焼ガソリン自動車などの内燃機
関の燃焼排ガス組成は運転状態によってその都度変化す
るため、触媒は還元雰囲気および酸化雰囲気に曝され
る。したがって触媒を構成する活性金属の状態は雰囲気
により変化することが想定される。触媒Aにおけるイリ
ジウムとアルカリ金属またはアルカリ土類金属のうちの
少なくとも1種の出発原料、および触媒Bにおける銀と
シリカまたはチタニアの出発原料は特に限定されない。
Further, the state of iridium and at least one of the alkali metal and the alkaline earth metal contained in the catalyst A is not particularly limited.
Examples include a composite oxide state and a mixed state thereof. Further, the state of silver and silica or titania contained in the catalyst B is not particularly limited. For example, in the case of silver, a metal state, an oxide state, a mixed state thereof, and the like can be mentioned, and in the case of silica or titania, Is the oxide state,
A local complex oxide state and a mixed state thereof are exemplified. In particular, the composition of the combustion exhaust gas of an internal combustion engine such as a lean burn gasoline automobile changes each time depending on the operating conditions, and therefore, the catalyst is exposed to a reducing atmosphere and an oxidizing atmosphere. Therefore, it is assumed that the state of the active metal constituting the catalyst changes depending on the atmosphere. The starting materials of at least one of iridium and an alkali metal or an alkaline earth metal in the catalyst A, and the starting materials of silver, silica, or titania in the catalyst B are not particularly limited.

【0019】そして本発明では触媒Aにおける多孔質無
機酸化物担体にイリジウムと、アルカリ金属またはアル
カリ土類金属のうちの少なくとも1種とを含有させる方
法および触媒Bにおけるアルミナに銀と、シリカまたは
チタニアとを含有させる方法は、特に限定されず従来か
ら行われている手法、例えば吸着法、ポアフィリング
法、インシピエントウェットネス法、蒸発乾固法、スプ
レー法などの含浸法、混練法、物理混合法およびこれら
の組み合わせ法など通常採用されている公知の方法を任
意に採用することができる。
In the present invention, the porous inorganic oxide carrier of the catalyst A contains iridium and at least one of an alkali metal and an alkaline earth metal, and the catalyst B contains alumina, silica, or titania. The method of containing is not particularly limited, and conventionally performed methods such as an adsorption method, a pore filling method, an incipient wetness method, an evaporation to dryness method, an impregnation method such as a spray method, a kneading method, and a physical method. Any known method such as a mixing method and a combination thereof can be arbitrarily adopted.

【0020】一方触媒Bの場合、アルミナあるいはアル
ミナ前駆体物質に銀源と、シリカ源またはチタニア源と
を同時に担持させた後、乾燥、焼成してもよいし、銀源
と、シリカ源またはチタニア源とを逐次的に担持させた
後、乾燥、焼成してもよい。また前記のような特定の細
孔構造をとるアルミナまたはアルミナ担体の製造時に活
性金属種を含有させる触媒製造法、例えばアルミニウム
アルコキシドのアルコール溶液と、銀源およびシリカ源
またはチタニア源の各塩のアルコール溶液を混合後、加
熱し加水分解させるアルコキシド法や、アルミニウム源
と、銀源およびシリカ源またはチタニア源との混合水溶
液にアルカリを添加して沈殿させる共沈法も適用でき
る。
On the other hand, in the case of the catalyst B, the silver source, the silica source or the titania source may be simultaneously supported on the alumina or the alumina precursor material, and then dried and calcined, or the silver source, the silica source or the titania After supporting the source sequentially, drying and firing may be performed. Further, a method for producing a catalyst containing an active metal species at the time of producing alumina or an alumina carrier having a specific pore structure as described above, for example, an alcohol solution of aluminum alkoxide and an alcohol of each salt of a silver source and a silica source or a titania source An alkoxide method in which a solution is mixed and then heated and hydrolyzed, or a coprecipitation method in which an alkali is added to an aqueous mixed solution of an aluminum source and a silver source and a silica source or a titania source to cause precipitation, can be applied.

【0021】触媒Aに対する金属換算でのイリジウムの
含有量は特に限定されないが、脱硝性能上0.001〜
2重量%、好ましくは0.005〜1重量%である。ま
た、触媒Aに対する金属換算でのアルカリ金属の含有量
は特に限定されないが、0.01〜20重量%、好まし
くは0.05〜15重量%であり、さらにアルカリ土類
金属の含有量も特に限定されないが、0.3〜30重量
%、好ましくは0.5〜20重量%である。一方触媒B
に対する金属換算での銀の含有量は特に限定されない
が、脱硝性能上0.1〜10重量%、好ましくは1〜8
重量%である。またシリカまたはチタニアの含有量は、
酸化物換算で0.05重量%以上で5重量%未満、好ま
しくは0.1〜3重量%とする必要がある。シリカまた
はチタニアの含有量が5重量%以上であるとSOxと水
蒸気共存下での耐久性能が低下し、一方0.05重量%
未満の場合、シリカまたはチタニアの添加による相乗効
果が十分に発揮されないので上記範囲とする必要があ
る。
The content of iridium in terms of metal with respect to the catalyst A is not particularly limited.
It is 2% by weight, preferably 0.005 to 1% by weight. The content of the alkali metal in terms of metal with respect to the catalyst A is not particularly limited, but is 0.01 to 20% by weight, preferably 0.05 to 15% by weight, and the content of the alkaline earth metal is also particularly preferable. Although not limited, it is 0.3 to 30% by weight, preferably 0.5 to 20% by weight. On the other hand, catalyst B
The content of silver in terms of metal is not particularly limited, but is 0.1 to 10% by weight, preferably 1 to 8% in terms of denitration performance.
% By weight. The content of silica or titania,
It is necessary to be 0.05% by weight or more and less than 5% by weight, preferably 0.1 to 3% by weight in terms of oxide. If the content of silica or titania is 5% by weight or more, the durability performance in the presence of SOx and water vapor decreases, while 0.05% by weight
If it is less than 10, the synergistic effect due to the addition of silica or titania is not sufficiently exerted, so that the above range is required.

【0022】触媒Aおよび触媒Bの乾燥温度は特に限定
されるものではなく、通常80〜120℃程度で乾燥す
る。また焼成温度は300〜1000℃、好ましくは4
00〜900℃程度である。このときの雰囲気は特に限
定されないが、触媒組成に応じて空気中、不活性ガス
中、酸素中などの各雰囲気を適宜選択すればよい。また
各雰囲気を一定時問毎に交互に代えてもよい。
The drying temperature of the catalyst A and the catalyst B is not particularly limited, and is usually dried at about 80 to 120 ° C. The firing temperature is 300-1000 ° C., preferably 4
It is about 00 to 900 ° C. The atmosphere at this time is not particularly limited, but each atmosphere such as in air, in an inert gas, or in oxygen may be appropriately selected according to the catalyst composition. Further, each atmosphere may be alternately changed at regular intervals.

【0023】本発明の第1の実施態様において、排ガス
浄化用の触媒層を形成するに際し、該触媒層は上記した
触媒を所定の形状に成型または粉末状態のまま目的とす
る排ガスが流通する一定の空間内に充填する。触媒層を
成型体とするに際して、その形状は特に制限されず、例
えば球状、円筒状、ハニカム状、螺旋状、粒状、ペレッ
ト状、リング状など種々の形状を採用することができ
る。これらの形状、大きさなどは使用条件に応じて任意
に選択すればよい。
In the first embodiment of the present invention, when forming a catalyst layer for purifying exhaust gas, the catalyst layer is formed by molding the above-mentioned catalyst into a predetermined shape or in a powdered state to allow a target exhaust gas to flow therethrough. Fill in the space. When the catalyst layer is formed into a molded body, its shape is not particularly limited, and various shapes such as a spherical shape, a cylindrical shape, a honeycomb shape, a spiral shape, a granular shape, a pellet shape, and a ring shape can be adopted. These shapes, sizes, and the like may be arbitrarily selected according to use conditions.

【0024】次に本発明の第2の実施態様の排ガス浄化
用触媒被覆構造体について説明する。ここでいう触媒被
覆構造体とは、多数の貫通孔を有する耐火性材料で構成
された一体構造の支持基質の少なくとも該貫通孔の内表
面に上記した触媒Aと触媒Bとを区分して被覆した構造
を有するものである。
Next, an exhaust gas purifying catalyst-coated structure according to a second embodiment of the present invention will be described. The term "catalyst-coated structure" as used herein means that the above-mentioned catalyst A and catalyst B are separately coated on at least the inner surface of the through-hole of a monolithic supporting substrate made of a refractory material having many through-holes. It has the following structure.

【0025】前記支持基質には、多数の貫通孔が排ガス
の流通方向に沿って設けられるが、その流通方向に垂直
な断面において、通常、開孔率60〜90%、好ましく
は70〜90%であって、その数は1平方インチ(5.
06cm)当り30〜700個、好ましくは200〜
600個である。触媒は、少なくとも該貫通孔の内表面
に区分して被覆されるが、その支持基質の端面や側面に
区分して被覆されていてもよい。
The support substrate is provided with a large number of through holes along the flow direction of the exhaust gas. In a section perpendicular to the flow direction, the porosity is usually 60 to 90%, preferably 70 to 90%. Where the number is one square inch (5.
30 to 700, preferably 200 to 0.6 cm 2 )
There are 600. The catalyst is coated at least on the inner surface of the through-hole, but may be coated on the end face or side face of the support substrate.

【0026】該耐火性支持基質の材質としては、α−型
のアルミナ、ムライト、コージェライト、シリコンカー
バイトなどのセラミックスやオーステナイト系、フェラ
イト系のステンレス鋼などの金属などが使用される。形
状もハニカムやフォームなどの慣用のものが使用できる
が、好ましいものはコージェライト製やステンレス鋼製
のハニカム状の支持基質である。
As the material of the refractory support substrate, ceramics such as α-type alumina, mullite, cordierite and silicon carbide, and metals such as austenitic and ferritic stainless steels are used. The shape may be a conventional one such as a honeycomb or a foam, but a preferred one is a cordierite or stainless steel honeycomb supporting substrate.

【0027】該支持基質への触媒の被覆方法としては、
一定の粒度に整粒した本発明の触媒をバインダーと共
に、またはバインダーを用いないで前記支持基質の内表
面に区分して被覆する、いわゆる通常のウオッシュコー
ト法やゾル−ゲル法が適用できる。また上記の支持基質
に予めアルミナを被覆しておいて、これに本発明の触媒
活性物質の担持処理を行って触媒被覆層を形成してもよ
い。支持基質への触媒層の被覆量は特に限定されない
が、支持基質単位体積当り50〜250g/リットル程
度が好ましく、100〜200g/リットル程度とする
ことがより好ましい。
As a method for coating the support substrate with a catalyst,
A so-called ordinary washcoat method or a sol-gel method, in which the catalyst of the present invention sized to a certain particle size is separately coated on the inner surface of the support substrate together with or without a binder, that is, a so-called wash-gel method can be applied. Alternatively, the support substrate may be coated with alumina in advance, and the catalyst support layer of the present invention may be subjected to the treatment to form a catalyst coating layer. The coating amount of the catalyst layer on the support substrate is not particularly limited, but is preferably about 50 to 250 g / L, more preferably about 100 to 200 g / L per unit volume of the support substrate.

【0028】次に本発明の第3の実施態様の排ガス浄化
方法について説明する。本発明の第3の実施態様は、第
1の実施態様の触媒層や第2の実施態様の触媒被覆構造
体を使用して、これと排ガス中のCO、HCおよびH
といった還元性成分をNOxおよびOといった酸化性
成分で完全酸化するに要する化学量論量近傍から過剰の
酸素を含有する排ガスとを接触させることによって、N
OxはNとHOにまで還元分解されると同時にHC
などの還元剤もCOとHOに酸化されるものであ
る。
Next, an exhaust gas purifying method according to a third embodiment of the present invention will be described. The third embodiment of the present invention uses the catalyst layer of the first embodiment and the catalyst-coated structure of the second embodiment to combine CO, HC and H 2 in exhaust gas.
By contacting the exhaust gas containing excess oxygen reducing component from stoichiometry near required to complete oxidation with oxidizing components such as NOx and O 2, such as, N
Ox is reduced and decomposed to N 2 and H 2 O,
And the like are also oxidized to CO 2 and H 2 O.

【0029】また本発明において触媒Aを前段に、触媒
Bを後段に配置させる理由は、前段の触媒Aで還元剤の
一部を燃焼させることによって後段の触媒Bの反応ガス
入口温度を上昇させ、後段の触媒Bのコーキング劣化や
硫黄被毒劣化を抑制し、トータル触媒システムでの触媒
寿命を向上させるためである。触媒Aと触媒Bの割合
は、SOx耐久性能とNOx除去性能に応じて適宜選択
すればよい。
In the present invention, the reason why the catalyst A is disposed in the former stage and the catalyst B is disposed in the latter stage is that the catalyst A in the former stage burns a part of the reducing agent to raise the reaction gas inlet temperature of the latter catalyst B. This is because the coking deterioration and the sulfur poisoning deterioration of the catalyst B at the subsequent stage are suppressed, and the catalyst life in the total catalyst system is improved. The ratio between the catalyst A and the catalyst B may be appropriately selected according to the SOx durability performance and the NOx removal performance.

【0030】ディーゼルエンジンの排ガスのように、排
ガスそのもののHC/NOx比が低い場合には、排ガス
中にメタン換算濃度で数百〜数千ppm程度の燃料HC
を追加添加した後、本発明の触媒と接触させるシステム
を採用すれば充分に高いNOx除去率を達成できる。な
おここでいうHCとは、パラフィン系炭化水素、オレフ
ィン系炭化水素および芳香族系炭化水素、アルコール、
アルデヒド、ケトン、エーテルなどの含酸素有機化合
物、ガソリン、灯油、軽油、A重油などを含んだものを
意味する。
When the HC / NOx ratio of the exhaust gas itself is low, such as the exhaust gas of a diesel engine, the fuel HC has a concentration of about several hundreds to several thousands ppm in terms of methane in the exhaust gas.
If the system for contacting with the catalyst of the present invention is added after additionally adding, a sufficiently high NOx removal rate can be achieved. Note that HC here refers to paraffinic hydrocarbons, olefinic hydrocarbons and aromatic hydrocarbons, alcohols,
It means those containing oxygen-containing organic compounds such as aldehydes, ketones, and ethers, gasoline, kerosene, light oil, and heavy oil A.

【0031】本発明による触媒層を用いて、希薄空燃比
の領域で運転される内燃機関の燃焼排ガスを浄化する際
のガス空間速度(SV)は特に限定されるものではない
が、SV5,000h−1以上で200,000h−1
以下とすることが好ましい。
The gas space velocity (SV) at the time of purifying the combustion exhaust gas of the internal combustion engine operated in the lean air-fuel ratio region using the catalyst layer according to the present invention is not particularly limited. 200,000h -1 at -1 or more
It is preferable to set the following.

【0032】そしてガス組成を一定とした場合の脱硝率
は触媒の種類とHCの種類に依存するが、本発明の触媒
層を用いた場合は、例えばC〜Cのパラフィン、オ
レフィンおおびC〜Cの芳香族HCに対しては45
0〜600℃、C〜Cのパラフィンおよびオレフイ
ンに対しては350〜550℃、C10〜C25のパラ
フィンおよびオレフィンに対しては250〜500℃で
高い脱硝率を示すため触媒層入口温度を100℃以上で
700℃以下、好ましくは200℃以上で600℃以下
にすることが適切である。
The denitration rate when the gas composition is constant depends on the type of the catalyst and the type of HC. When the catalyst layer of the present invention is used, for example, C 2 to C 6 paraffin, olefin and olefin. 45 for C 6 -C 9 aromatic HC
0-600 ° C., 350-550 ° C. for C 6 -C 9 paraffins and olefins, and 250-500 ° C. for C 10 -C 25 paraffins and olefins. It is appropriate that the temperature be 100 ° C or higher and 700 ° C or lower, preferably 200 ° C or higher and 600 ° C or lower.

【0033】[0033]

【実施例】以下に実施例および比較例により、本発明を
さらに詳細に説明する。但し、本発明は下記実施例に限
定されるものでない。 (1)触媒Bのアルミナの選定 触媒Bの使用アルミナ担体の選定のために、表1に示す
ような比表面積と細孔分布を有する種々のγ−型のアル
ミナにおいて、a〜cが本発明の触媒Bの範囲に入るア
ルミナであり、d〜gが本発明の範囲外のアルミナであ
る。なおa〜gのアルミナの細孔分布は、カルロエルバ
社製のソープトマチックにより測定した。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to the following examples. (1) Selection of Alumina for Catalyst B In order to select an alumina carrier to be used for Catalyst B, a to c of the present invention are used in various γ-type aluminas having specific surface areas and pore distributions as shown in Table 1. Of the catalyst B, and d to g are aluminas outside the scope of the present invention. In addition, the pore distribution of alumina of a to g was measured by a soapmatic manufactured by Carlo Elba.

【0034】[0034]

【表1】 ───────────────────────────── アルミナ 比表面積 細 孔 分 布 (m/g) Y/X(%) Z/X(%) ───────────────────────────── a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7 ─────────────────────────────[Table 1] ───────────────────────────── Alumina specific surface area pore distribution (m 2 / g) Y / X ( %) Z / X (%) ─────────────────────────────a 241 83.2 2.4 b 219 87.0 3.9 c 174 88.4 4.4 d 199 47.0 0.7 e 177 68.5 4.9 f 241 51.0 45.9 g 266 71.1 22.7} ──────────────────────

【0035】(2)触媒層の調製 以下に、本発明の触媒層を構成するための各触媒の調製
についての調製例を参考例として示す。 (イ)触媒Bの製造 [参考例1]表1のγ−型のアルミナaの前駆体物質で
あるアルミナ水和物300gを、硝酸銀16.1gおよ
びシリカゾル(SiO:20重量%)9gを含む50
0ミリリットル水溶液に浸漬した後、撹拌しながら加熱
し水分を蒸発させた。これを110℃で通風乾燥後、空
気中550℃で3時間焼成して触媒1(参考例1)を得
た。なお触媒1における金属換算でのAgの含有量は、
触媒全体に対して4.5重量%、酸化物換算でのSiO
の含有量は0.8重量%であった。
(2) Preparation of Catalyst Layer Hereinafter, preparation examples of preparation of each catalyst for constituting the catalyst layer of the present invention will be shown as reference examples. (A) Production of Catalyst B Reference Example 1 300 g of alumina hydrate, which is a precursor of γ-type alumina a in Table 1, was mixed with 16.1 g of silver nitrate and 9 g of silica sol (SiO 2 : 20% by weight). Including 50
After immersion in a 0 ml aqueous solution, the mixture was heated with stirring to evaporate water. This was air-dried at 110 ° C. and then calcined in air at 550 ° C. for 3 hours to obtain Catalyst 1 (Reference Example 1). The content of Ag in the catalyst 1 in terms of metal is:
4.5% by weight of the total catalyst, SiO in oxide conversion
The content of 2 was 0.8% by weight.

【0036】[参考例2〜参考例17]同様に、表1に
示すγ−型のアルミナb〜gが得られる前駆体物質であ
るアルミナ水和物を用いた以外は参考例1と同様にし
て、それぞれ触媒2(参考例2)、触媒3(参考例
3)、触媒4(参考例4)、触媒5(参考例5)、触媒
6(参考例6)、触媒7(参考例7)を得た。また参考
例1の触媒1の調製に際し、銀の含有量を0重量%、3
重量%および8重量%とした以外は参考例1と同様にし
て、それぞれ触媒8(参考例8)、触媒9(参考例
9)、触媒10(参考例10)を、シリカの含有量を0
重量%、0.02重量%、0.1重量%、1.2重量
%、3重量%、5重量%とした以外は参考例1と同様に
して、それぞれ触媒11(参考例11)、触媒12(参
考例12)、触媒13(参考例13)、触媒14(参考
例14)、触媒15(参考例15)、触媒16(参考例
16)を、さらにシリカゾルの代わりにチタニアゾル
(TiO:30重量%)6gを用いた以外は参考例1
と同様にして触媒17(参考例17)を得た。
Reference Examples 2 to 17 Similarly to Reference Example 1, except that alumina hydrate which is a precursor substance from which γ-type aluminas b to g shown in Table 1 were obtained was used. Catalyst 2 (Reference Example 2), Catalyst 3 (Reference Example 3), Catalyst 4 (Reference Example 4), Catalyst 5 (Reference Example 5), Catalyst 6 (Reference Example 6), Catalyst 7 (Reference Example 7) I got In preparing Catalyst 1 of Reference Example 1, the silver content was set to 0% by weight,
Catalyst 8 (Reference Example 8), Catalyst 9 (Reference Example 9), and Catalyst 10 (Reference Example 10) were prepared in the same manner as Reference Example 1 except that the content of silica was 0% by weight and 8% by weight, respectively.
Catalyst 11 (Reference Example 11) and Catalyst 11 (Reference Example 11) in the same manner as in Reference Example 1 except that the weight%, 0.02%, 0.1%, 1.2%, 3% and 5% by weight were used. 12 (Reference Example 12), Catalyst 13 (Reference Example 13), Catalyst 14 (Reference Example 14), Catalyst 15 (Reference Example 15), Catalyst 16 (Reference Example 16), and a titania sol (TiO 2 : Reference Example 1 except that 6 g was used.
Catalyst 17 (Reference Example 17) was obtained in the same manner as described above.

【0037】(ロ)触媒Aの製造: [参考例18]市販のγ−型のアルミナ50gを、四塩
化イリジウム水和物0.049gと硝酸バリウム8gを
含む200ミリリットルの水溶液中に含浸した後、撹拌
しながら加熱し水分を蒸発させた。これを110℃で通
風乾燥後、空気中550℃で3時間焼成して触媒18
(参考例18)を得た。なお触媒18における金属換算
でのIrとBaの含有量は、アルミナに対してそれぞれ
0.05重量%と8.4重量%であった。
(B) Production of catalyst A: [Reference Example 18] After impregnating 50 g of commercially available γ-type alumina in a 200 ml aqueous solution containing 0.049 g of iridium tetrachloride hydrate and 8 g of barium nitrate. The mixture was heated with stirring to evaporate water. This is dried by ventilation at 110 ° C., and calcined at 550 ° C. for 3 hours in the air to obtain a catalyst 18.
(Reference Example 18) was obtained. The contents of Ir and Ba in terms of metal in the catalyst 18 were 0.05% by weight and 8.4% by weight with respect to alumina, respectively.

【0038】[参考例19〜参考例23]参考例18の
触媒18の調製に際し、イリジウムの含有量を0重量
%、0.01重量%、0.02重量%、1重量%および
3重量%とした以外は参考例18と同様にして、それぞ
れ触媒19(参考例19)、触媒20(参考例20)、
触媒21(参考例21)、触媒22(参考例22)およ
び触媒23(参考例23)を得た。
[Reference Examples 19 to 23] In preparing catalyst 18 of Reference Example 18, the contents of iridium were reduced to 0%, 0.01%, 0.02%, 1% and 3% by weight. Catalyst 19 (Reference Example 19), Catalyst 20 (Reference Example 20),
Catalyst 21 (Reference Example 21), Catalyst 22 (Reference Example 22), and Catalyst 23 (Reference Example 23) were obtained.

【0039】[参考例24〜参考例28]参考例18の
触媒18の調製に際し、バリウムの含有量を0重量%、
0.42重量%、4.2重量%、20重量%および35
重量%とした以外は参考例18と同様にして、それぞれ
触媒24(参考例24)、触媒25(参考例25)、触
媒26(参考例26)、触媒27(参考例27)および
触媒28(参考例28)を得た。
[Reference Examples 24 to 28] In the preparation of the catalyst 18 of Reference Example 18, the barium content was 0% by weight,
0.42 wt%, 4.2 wt%, 20 wt% and 35
Catalyst 24 (Reference Example 24), Catalyst 25 (Reference Example 25), Catalyst 26 (Reference Example 26), Catalyst 27 (Reference Example 27), and Catalyst 28 ( Reference Example 28) was obtained.

【0040】[参考例29〜参考例32]参考例18の
触媒18の調製に際し、アルミナの代わりにシリカ、チ
タニア、ジルコニアおよびβ−型のゼオライトを用いた
以外は参考例18と同様にして、それぞれ触媒29(参
考例29)、触媒30(参考例30)、触媒31(参考
例31)、触媒32(参考例32)を得た。
[Reference Examples 29 to 32] In the same manner as in Reference Example 18, except that silica, titania, zirconia and β-type zeolite were used instead of alumina in preparing the catalyst 18 of Reference Example 18, Catalyst 29 (Reference Example 29), Catalyst 30 (Reference Example 30), Catalyst 31 (Reference Example 31), and Catalyst 32 (Reference Example 32) were obtained, respectively.

【0041】[参考例33〜参考例34]参考例18の
触媒18の調製に際し、硝酸バリウムの代わりに硝酸カ
ルシウム、硝酸ストロンチウムを用いた以外は参考例1
8と同様にして、それぞれ触媒33(参考例33)、触
媒34(参考例34)を得た。
REFERENCE EXAMPLES 33-34 Reference Example 1 was repeated except that calcium nitrate and strontium nitrate were used instead of barium nitrate in the preparation of catalyst 18 of Reference Example 18.
In the same manner as in Example 8, catalyst 33 (Reference Example 33) and catalyst 34 (Reference Example 34) were obtained.

【0042】[参考例35〜参考例36]参考例18の
触媒18の調製に際し、硝酸バリウム8gの代わりに硝
酸ナトリウム2.6g、酢酸カリウム3gを用いた以外
は参考例18と同様にして、それぞれ触媒35(参考例
35)、触媒36(参考例36)を得た。
Reference Examples 35 to 36 The procedure of Reference Example 18 was repeated, except that 2.6 g of sodium nitrate and 3 g of potassium acetate were used instead of 8 g of barium nitrate in the preparation of catalyst 18 of Reference Example 18. Catalyst 35 (Reference Example 35) and Catalyst 36 (Reference Example 36) were obtained, respectively.

【0043】[参考例37]参考例18の触媒18の調
製に際し、硝酸バリウム8gの代わりに硝酸バリウム4
gと酢酸カリウム1.5gを用いた以外は参考例18と
同様にして、触媒37(参考例37)を得た。
[Reference Example 37] In preparing catalyst 18 of Reference Example 18, barium nitrate 4 was used instead of barium nitrate 8 g.
Catalyst 37 (Reference Example 37) was obtained in the same manner as in Reference Example 18, except that g and 1.5 g of potassium acetate were used.

【0044】(ハ)ハニカム触媒の製造: [参考例38〜参考例39]上記の粉末触媒1の60g
を、アルミナゾル(Al固形分:10重量%)8
gおよび水120ミリリットルと共にボールミルポット
に仕込み、湿式粉砕してスラリーを得た。このスラリー
の中に、市販の400cpsi(セル/inch)コ
ージェライトハニカム基質からくり貫かれた直径1イン
チ、長さ2.5インチの円筒状コアを浸漬し、引き上げ
た後余分のスラリーをエアーブローで除去し乾燥した。
その後500℃で30分間焼成し、ハニカム1リットル
当たりドライ換算で150gの固形分を被覆して4.5
%Ag/Al組成のハニカム触媒38(参考例3
8)を得た。また粉末触媒1の代わりに粉末触媒18を
用いた以外は参考例38と同様にして、0.05%Ir
/8.4%Ba/Al組成のハニカム触媒39
(参考例39)を得た。
(C) Production of honeycomb catalyst: [Reference Examples 38 to 39] 60 g of the above-mentioned powdered catalyst 1
With alumina sol (Al 2 O 3 solid content: 10% by weight) 8
g and 120 ml of water were charged into a ball mill pot and wet-pulverized to obtain a slurry. A cylindrical core having a diameter of 1 inch and a length of 2.5 inches penetrated from a commercially available 400 cpsi (cell / inch 2 ) cordierite honeycomb substrate is immersed in the slurry, and the excess slurry is air blown. And dried.
Thereafter, the mixture is baked at 500 ° C. for 30 minutes, and is coated with 150 g of solid content in terms of dry weight per 1 liter of the honeycomb to 4.5.
% Ag / Al 2 O 3 composition of the honeycomb catalyst 38 (Reference Example 3
8) was obtained. Further, in the same manner as in Reference Example 38 except that the powder catalyst 18 was used instead of the powder catalyst 1, 0.05% Ir
/8.4%Ba/Al 2 O 3 composition honeycomb catalyst 39
(Reference Example 39) was obtained.

【0045】以下に上記した参考例1〜39の触媒を用
いて形成した排ガス浄化用触媒層について、種々の条件
下において脱硝性能を評価した結果について述べる。 (実施例1)参考例18の触媒18と参考例1の触媒1
をそれぞれ加圧成型した後、粉砕して粒度を350〜5
00μmに整粒し、排ガスの流通方向に対して触媒18
が前段に、触媒1が後段になるように内径15mmのス
テンレス製反応管に充填して触媒層を形成し、これを常
圧固定床流通反応装置に装着した触媒18と触媒1の重
量比は1:3であった。
Hereinafter, the results of evaluating the denitration performance of the exhaust gas purifying catalyst layer formed using the catalysts of Reference Examples 1 to 39 under various conditions will be described. (Example 1) Catalyst 18 of Reference Example 18 and Catalyst 1 of Reference Example 1
Is press-molded, and then pulverized to a particle size of 350 to 5
The particle size is adjusted to 00 μm, and the catalyst 18
Is filled in a stainless steel reaction tube having an inner diameter of 15 mm so that the catalyst 1 is placed in the former stage to form a catalyst layer, and the catalyst is attached to an atmospheric fixed bed flow reactor. 1: 3.

【0046】[性能評価例1]この触媒層に、反応管内
の排ガス温度を400℃に保ち、モデル排ガスとしてN
O:750ppm、灯油(C):4500ppm、O
:10%、SO:1ppm、HO:10%、残
部:Nからなる混合ガスを空間速度75,000h
−1で通過させた。反応管出口ガス組成の分析におい
て、NOとNOの濃度については化学発光式NOx計
で測定し、NO濃度はPorapack Qカラムを
装着したガスクロマトグラフ・熱伝導度検出器を用いて
測定した。脱硝率は、以下の式1で定義した。また、本
発明のいずれの触媒層でもNOおよびNOは殆ど生
成しなかった。
[Performance Evaluation Example 1] The temperature of the exhaust gas in the reaction tube was maintained at 400 ° C.
O: 750 ppm, kerosene (C 1 ): 4500 ppm, O
2 : 10%, SO 2 : 1 ppm, H 2 O: 10%, balance: N 2 with a space velocity of 75,000 h
-1 . In the analysis of the gas composition at the outlet of the reaction tube, the concentrations of NO and NO 2 were measured with a chemiluminescence NOx meter, and the N 2 O concentration was measured with a gas chromatograph / thermal conductivity detector equipped with a Porapak Q column. . The denitration rate was defined by the following equation 1. Further, N 2 O and NO 2 were hardly generated in any of the catalyst layers of the present invention.

【0047】[0047]

【式1】 (Equation 1)

【0048】[実施例2〜24および比較例1〜9]参
考例2、3、9、10、13〜15、17の触媒2、
3、9、10、13〜15、17および参考例4〜8、
11、12、16の触媒4〜8、11、12、16を、
それぞれ実施例1の触媒1の代わりに用いて、上記と同
様の触媒層を形成し、同様にしてモデルガスによる評価
試験を行った。触媒2、3、9、10、13〜15、1
7を用いた触媒層を、それぞれ実施例2〜9とし、また
触媒4〜8、11、12、16を用いた触媒層を、それ
ぞれ比較例1〜8とした。さらに実施例1の触媒18の
代わりに、参考例19〜37の触媒19〜37を用いて
実施例1と同様の触媒層を形成し、同様にしてモデルガ
スによる評価試験を行った。触媒20〜22、25〜2
7および29〜37を用いた触媒層を実施例10〜24
とし、触媒19、23、24、28を用いた触媒層をそ
れぞれ比較例9〜12とした。表2に、上記実施例1〜
24および比較例1〜12の触媒層について初期の脱硝
率(%)を示す。
Examples 2 to 24 and Comparative Examples 1 to 9 Catalysts 2 of Reference Examples 2, 3, 9, 10, 13 to 15 and 17
3, 9, 10, 13 to 15, 17 and Reference Examples 4 to 8,
11, 12, 16 catalysts 4-8, 11, 12, 16
A catalyst layer similar to that described above was formed using each of the catalysts 1 of Example 1 and an evaluation test was performed using a model gas in the same manner. Catalysts 2, 3, 9, 10, 13 to 15, 1
The catalyst layers using Examples 7 to 9 were used as Examples 2 to 9, and the catalyst layers using Catalysts 4 to 8, 11, 12, and 16 were used as Comparative Examples 1 to 8, respectively. Further, a catalyst layer similar to that of Example 1 was formed using Catalysts 19 to 37 of Reference Examples 19 to 37 in place of the catalyst 18 of Example 1, and an evaluation test was performed using a model gas in the same manner. Catalysts 20-22, 25-2
Catalyst layers using Examples 7 and 29 to 37 were prepared in Examples 10 to 24.
The catalyst layers using the catalysts 19, 23, 24, and 28 were Comparative Examples 9 to 12, respectively. Table 2 shows that the above Examples 1 to
24 shows the initial denitration ratio (%) for the catalyst layers of 24 and Comparative Examples 1 to 12.

【0049】[性能評価例2(実施例25)]性能評価
例1において、参考例38のハニカム触媒38を直径1
5mm、長さ24mmの円筒状に加工し、参考例39の
ハニカム触媒39を直径15mm、長さ8mmの円筒状
に加工して排ガスの流通方向に対してハニカム触媒39
が前段に、ハニカム触媒38が後段になるように、内径
15mmのステンレス製反応管に充填した。フィードす
るガスの空間速度を13,000h−1とした以外は性
能評価例1と同様のモデルガス評価試験を行い、これを
実施例25とした。その結果を性能評価例1の結果とと
もに表2に示す。
[Performance Evaluation Example 2 (Example 25)] In the performance evaluation example 1, the honeycomb catalyst 38 of Reference Example 38 was replaced with a diameter 1
The honeycomb catalyst 39 of Reference Example 39 was processed into a cylindrical shape having a diameter of 15 mm and a length of 8 mm, and the honeycomb catalyst 39 was processed into a cylindrical shape having a diameter of 15 mm and a length of 8 mm.
Was filled in a stainless steel reaction tube having an inner diameter of 15 mm such that the honeycomb catalyst 38 was provided in the first stage and the honeycomb catalyst 38 was provided in the second stage. A model gas evaluation test was performed in the same manner as in the performance evaluation example 1 except that the space velocity of the gas to be fed was set to 13,000 h −1, and this was designated as Example 25. The results are shown in Table 2 together with the results of Performance Evaluation Example 1.

【0050】[0050]

【表2】 [Table 2]

【0051】表2より明らかな通り、実施例1〜25お
よび比較例6〜9、11、12は初期の脱硝性能が70
%以上であり、比較例1〜5および比較例10に比べて
優れた性能を示した。
As is clear from Table 2, Examples 1 to 25 and Comparative Examples 6 to 9, 11, and 12 had an initial denitration performance of 70%.
% Or more, showing superior performance as compared with Comparative Examples 1 to 5 and Comparative Example 10.

【0052】[性能評価例3]実施例1、7および比較
例6〜9、11、12の触媒層について、性能評価例1
と同様のガス組成で10時間の耐久試験を行った。表3
に10時間後の経時変化を示す。なお経時変化率は以下
の式2で定義した。
[Performance Evaluation Example 3] Performance evaluation example 1 for the catalyst layers of Examples 1 and 7 and Comparative Examples 6 to 9, 11, and 12
A 10-hour endurance test was carried out with the same gas composition as in the above. Table 3
Figure 10 shows the change over time after 10 hours. The rate of change with time was defined by the following equation 2.

【0053】[0053]

【式2】 (Equation 2)

【0054】[0054]

【表3】 ────────────────────────── 触 媒 10時間耐久後 経時変化率(%) 前 段 後 段 ────────────────────────── 実施例1 触媒18+触媒1 3.9 実施例7 触媒18+触媒14 1.0 比較例6 触媒18+触媒11 5.7 比較例7 触媒18+触媒12 26.0 比較例8 触媒18+触媒16 23.4 比較例9 触媒19十触媒1 20.9 比較例11 触媒24+触媒1 19.8 比較例12 触媒28+触媒1 15.7 ────────────────────────── 表3より明らかな通り、実施例1と7は、比較例6〜
9、11、12に比べ10時間耐久後の経時変化率が小
さく、高い耐久性を有することが分かった。
[Table 3] 率 After 10 hours of endurance catalyst Change over time (%) First stage Second stage ──── ────────────────────── Example 1 Catalyst 18 + Catalyst 1 3.9 Example 7 Catalyst 18 + Catalyst 14 1.0 Comparative Example 6 Catalyst 18 + Catalyst 115 7.7 Comparative Example 7 Catalyst 18 + Catalyst 12 26.0 Comparative Example 8 Catalyst 18 + Catalyst 16 23.4 Comparative Example 9 Catalyst 19 + Catalyst 1 20.9 Comparative Example 11 Catalyst 24 + Catalyst 19.8 Comparative Example 12 Catalyst 28 + Catalyst 1 15.7 通 り As is clear from Table 3, Examples 1 and 7 are Comparative Examples 6 to
It was found that the rate of change with time after 10 hours of durability was smaller than that of 9, 11, and 12, indicating high durability.

【0055】[0055]

【発明の効果】以上述べた通り本発明による排ガス浄化
用触媒層、排ガス浄化用触媒被覆構造体およびこれらを
使用しての排ガス浄化方法によれば、水蒸気とSOxが
共存する希薄燃焼排ガス中に含まれる窒素酸化物を高い
脱硝率で還元浄化でき、またSOx共存下で優れた耐久
性を発揮することから内燃機関の燃焼排ガス中の窒素酸
化物の浄化に有用である。
As described above, according to the exhaust gas purifying catalyst layer, the exhaust gas purifying catalyst coating structure and the exhaust gas purifying method using the same according to the present invention, the lean flue gas in which steam and SOx coexist is contained in the lean flue gas. Nitrogen oxides contained therein can be reduced and purified at a high denitration rate, and exhibit excellent durability in the presence of SOx, so that they are useful for purifying nitrogen oxides in combustion exhaust gas of an internal combustion engine.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加岳井 敦 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 (72)発明者 船曳 正起 静岡県沼津市一本松678 エヌ・イーケム キャット株式会社沼津工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsushi Katakei 3-18-5, Chugoku, Ichikawa-shi, Chiba Sumitomo Metal Mining Co., Ltd. Central Research Laboratory (72) Inventor Masaki Funabiki 678 Ichihonmatsu, Numazu-shi, Shizuoka N・ Echem Cat Co., Ltd. Numazu Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多孔質無機酸化物担体にイリジウムと、
アルカリ金属またはアルカリ土類金属のうち少なくとも
1種とを含有させてなる触媒Aと、窒素ガス吸着法によ
り測定された細孔半径と細孔容積の関係が、細孔半径3
00オングストローム以下の細孔の占める細孔容積の合
計値をXとし、細孔半径25オングストローム以上で1
00オングストローム未満の細孔の占める細孔容積の合
計値をYとし、細孔半径100オングストローム以上で
300オングストローム以下の細孔の占める細孔容積の
合計値をΖとしたとき、YがXの70%以上であり、Ζ
がXの20%以下であるような細孔構造を有するアルミ
ナ担体に銀と、シリカまたはチタニアとを含有させてな
る触媒Bとから構成されることを特徴とする排ガス浄化
用触媒層。
1. A porous inorganic oxide carrier comprising: iridium;
The relationship between the catalyst A containing at least one of an alkali metal and an alkaline earth metal and the pore radius and pore volume measured by the nitrogen gas adsorption method is as follows.
Let X be the total value of the pore volume occupied by pores of not more than 00 Å, and 1
When the total value of the pore volume occupied by pores less than 00 Å is Y, and the total value of the pore volume occupied by pores having a radius of 100 Å or more and 300 Å or less is Ζ, Y is 70 of X. % Or more,
A catalyst layer for purifying exhaust gas, comprising: a catalyst B containing silver and silica or titania in an alumina carrier having a pore structure such that X is 20% or less of X.
【請求項2】 触媒Bに対する酸化物換算でのシリカま
たはチタニアの含有量は、0.05重量%以上で5重量
%未満であることを特徴とする請求項1記載の排ガス浄
化用触媒層。
2. The exhaust gas purifying catalyst layer according to claim 1, wherein the content of silica or titania in terms of oxide with respect to the catalyst B is 0.05% by weight or more and less than 5% by weight.
【請求項3】 多数の貫通孔を有する耐火性材料からな
る一体構造の支持基質における少なくとも貫通孔の内表
面に請求項1または2記載の触媒層を区分して被覆して
なることを特徴とする排ガス浄化用触媒被覆構造体。
3. A catalyst substrate according to claim 1 or 2, wherein at least the inner surface of the through-hole in the integral support substrate made of a refractory material having a large number of through-holes is coated separately. Exhaust gas purification catalyst coated structure.
【請求項4】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させることからなる炭化水素
を還元剤とする排ガス浄化方法において、前記触媒含有
層に含まれる触媒は請求項1または2記載の排ガス浄化
用触媒層であることを特徴とする排ガス浄化方法。
4. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with the catalyst-containing layer, wherein the catalyst contained in the catalyst-containing layer is 3. An exhaust gas purifying method comprising the exhaust gas purifying catalyst layer according to 1 or 2.
【請求項5】 希薄空燃比で運転される内燃機関の燃焼
排ガスを触媒含有層と接触させることからなる炭化水素
を還元剤とする排ガス浄化方法において、前記触媒含有
層に含まれる触媒は請求項3記載の排ガス浄化用触媒被
覆構造体で構成されることを特徴とする排ガス浄化方
法。
5. A method for purifying exhaust gas using a hydrocarbon as a reducing agent, comprising contacting combustion exhaust gas of an internal combustion engine operated at a lean air-fuel ratio with the catalyst-containing layer, wherein the catalyst contained in the catalyst-containing layer is An exhaust gas purifying method comprising the exhaust gas purifying catalyst-coated structure according to claim 3.
【請求項6】 排ガスの流通方向に対して前記排ガス浄
化用触媒層に含まれる触媒Aが前段に、触媒Bが後段に
区分して配置されていることを特徴とする請求項4また
は5記載の排ガス浄化方法。
6. The catalyst according to claim 4, wherein the catalyst A contained in the exhaust gas purifying catalyst layer is disposed at a front stage and the catalyst B is disposed at a rear stage in a flow direction of the exhaust gas. Exhaust gas purification method.
JP10050167A 1998-02-16 1998-02-16 Catalyst layer for purification of exhaust gas, catalyst-coated structure for purification of exhaust gas, and purifying method of exhaust gas using that Pending JPH11226403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10050167A JPH11226403A (en) 1998-02-16 1998-02-16 Catalyst layer for purification of exhaust gas, catalyst-coated structure for purification of exhaust gas, and purifying method of exhaust gas using that

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10050167A JPH11226403A (en) 1998-02-16 1998-02-16 Catalyst layer for purification of exhaust gas, catalyst-coated structure for purification of exhaust gas, and purifying method of exhaust gas using that

Publications (1)

Publication Number Publication Date
JPH11226403A true JPH11226403A (en) 1999-08-24

Family

ID=12851657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10050167A Pending JPH11226403A (en) 1998-02-16 1998-02-16 Catalyst layer for purification of exhaust gas, catalyst-coated structure for purification of exhaust gas, and purifying method of exhaust gas using that

Country Status (1)

Country Link
JP (1) JPH11226403A (en)

Similar Documents

Publication Publication Date Title
CA2991061A1 (en) Nitrous oxide removal catalysts for exhaust systems
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JP4058503B2 (en) Exhaust gas purification catalyst layer, exhaust gas purification catalyst coating structure, and exhaust gas purification method using the same
JPH11128688A (en) Purification of waste gas
JPH09299763A (en) Denitration catalyst layer and denitrating method
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JPH11226403A (en) Catalyst layer for purification of exhaust gas, catalyst-coated structure for purification of exhaust gas, and purifying method of exhaust gas using that
JP2001205109A (en) Catalyst layer for cleaning exhaust gas, catalyst-coated structure for cleaning exhaust gas and method for cleaning exhaust gas by using both
JP2002370030A (en) Exhaust cleaning catalyst and exhaust cleaning method using the same
JPH11128689A (en) Purification of waste gas
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these
JPH1176839A (en) Exhaust gas cleaning catalysis layer, exhaust gas cleaning catalysis coated structure, and exhaust gas cleaning method using them
JPH11104492A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure, and exhaust gas purifying process using the layer and the structure
JPH10286463A (en) Catalytic layer for purification of exhaust gas, catalytic structure for purification of exhaust gas and method for purifying exhaust gas with the same
JPH1066871A (en) Catalyst for cleaning exhaust gas, structural body coated with catalyst and method for cleaning exhaust gas
JPH10174887A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH10128126A (en) Catalyst bed for purifying exhaust gas, catalyst coated structure for purifying exhaust gas and purification of exhaust gas
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JPH10118489A (en) Catalyst layer for purifying exhaust gas, catalyst structure for purifying exhaust gas, and method for purifying exhaust gas thereby
JPH1110002A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst-coated structural body, and exhaust gas purifying method
JPH10235157A (en) Purification of nox in exhaust gas
JPH1170338A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst coated structure and exhaust purifying process using structure
JPH10113559A (en) Exhaust gas purifying catalyst layer, exhaust gas purifying catalyst structure and exhaust gas purifying process using them
JPH10118502A (en) Catalyst for purification of exhaust gas, structural body coated with the catalyst and method for purifying exhaust gas