JPH11223735A - Tunable polymer waveguide diffraction grating and its production - Google Patents
Tunable polymer waveguide diffraction grating and its productionInfo
- Publication number
- JPH11223735A JPH11223735A JP2415198A JP2415198A JPH11223735A JP H11223735 A JPH11223735 A JP H11223735A JP 2415198 A JP2415198 A JP 2415198A JP 2415198 A JP2415198 A JP 2415198A JP H11223735 A JPH11223735 A JP H11223735A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- waveguide diffraction
- tunable
- waveguide
- polymer waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Integrated Circuits (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光通信等に用いら
れるチューナブル高分子導波路回折格子及びその製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tunable polymer waveguide diffraction grating used for optical communication and the like, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】光通信システムの高度化に向けて、導波
路型光デバイスの研究開発が盛んに進められている。な
かでも、導波路回折格子は、特定の波長のみの反射ある
いは透過が可能な光回路であり、波長多重システムへの
応用が期待されている。2. Description of the Related Art Research and development of waveguide type optical devices have been actively pursued in order to advance optical communication systems. Above all, a waveguide diffraction grating is an optical circuit that can reflect or transmit only a specific wavelength, and is expected to be applied to a wavelength division multiplexing system.
【0003】一般的に、光導波路の光デバイス応用に
は、作製の容易性、導波路材料の屈折率の制御性、耐熱
性等さまざまな条件が要求される。現在、光導波路材料
としては石英が最もよく利用されており、その光導波路
は波長1.3μmで0.1dB/cm以下の低光損失を
示す。しかしながら、製造プロセスが複雑、大面積化が
困難などの問題点を有し、経済性、汎用性に優れる導波
路回折格子は得にくい。さらに、石英は屈折率の温度依
存性を示す熱光学(TO)定数が1×10-5/℃と小さ
く、TO効果による波長チューニング領域も1nm程度
と狭い。In general, application of an optical waveguide to an optical device requires various conditions such as ease of fabrication, control of the refractive index of the waveguide material, and heat resistance. At present, quartz is most often used as an optical waveguide material, and the optical waveguide exhibits a low optical loss of 0.1 dB / cm or less at a wavelength of 1.3 μm. However, there are problems such as a complicated manufacturing process and difficulty in increasing the area, and it is difficult to obtain a waveguide diffraction grating which is excellent in economy and versatility. Further, quartz has a small thermo-optic (TO) constant indicating the temperature dependence of the refractive index of 1 × 10 −5 / ° C., and the wavelength tuning region by the TO effect is as narrow as about 1 nm.
【0004】一方、高分子光導波路はスピンコート法を
用いて形成できるため、石英系光導波路と比較して、作
製が容易である。さらに、高分子材料は石英に比べて1
0倍以上大きなTO定数を持つ場合が多く、理論上回折
格子の透過波長のチューニング領域を石英系導波路回折
格子の10倍以上大きくできる。しかしながら、これま
で、実用に耐えうる耐熱性と光通信波長帯での光透過性
に優れた高分子材料によるチューナブル高分子導波路回
折格子は存在しなかった。On the other hand, since a polymer optical waveguide can be formed by a spin coating method, it is easier to manufacture than a quartz optical waveguide. In addition, polymer materials are one-quarter compared to quartz.
In many cases, the TO constant is at least 0 times larger, so that the tuning region of the transmission wavelength of the diffraction grating can be theoretically increased by 10 times or more than that of the silica-based waveguide diffraction grating. However, there has been no tunable polymer waveguide diffraction grating made of a polymer material having excellent heat resistance that can withstand practical use and light transmittance in an optical communication wavelength band.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、TO
定数が大きく、耐熱性、光通信波長帯での光透過性と加
工性に優れたチューナブル高分子導波路回折格子及びそ
の製造方法を提供する事にある。SUMMARY OF THE INVENTION An object of the present invention is to provide a TO
An object of the present invention is to provide a tunable polymer waveguide diffraction grating having a large constant, excellent heat resistance, excellent light transmittance in an optical communication wavelength band, and excellent workability, and a method for manufacturing the same.
【0006】[0006]
【課題を解決するための手段】これらの観点から検討を
進めた結果、本発明者らは、フッ素化ポリイミドが波長
1.3μmおよび1.55μmの近赤外域で低損失で、
耐熱性に優れる事、屈折率の温度依存性を示す熱光学
(TO)定数が10-4/℃以上と石英より10倍も大き
い事、熱光学効果を用いるチューナブル高分子導波路回
折格子作製に必要な加工性を有し、外部からの放射光、
電子線、紫外線、あるいは近赤外線照射による光誘起効
果により屈折率が変化する事、作製した回折格子の反射
率が大きな事を見いだし本発明を完成するに至った。As a result of studying from these viewpoints, the present inventors have found that fluorinated polyimide has low loss in the near infrared region of wavelengths of 1.3 μm and 1.55 μm,
Excellent heat resistance, thermo-optic (TO) constant indicating the temperature dependence of the refractive index is 10 −4 / ° C. or more, 10 times larger than quartz, and fabrication of tunable polymer waveguide diffraction grating using thermo-optic effect Has the required processability for external radiation,
The inventors have found that the refractive index changes due to the light-induced effect of irradiation with electron beams, ultraviolet rays, or near-infrared rays, and that the reflectivity of the produced diffraction grating is large. Thus, the present invention has been completed.
【0007】かかる知見に基づく本発明の[請求項1]
にかかるチューナブル高分子導波路回折格子は、外部熱
源を用いた加熱手段を備え、熱光学効果を用いるチュー
ナブル導波路回折格子において、前記導波路回折格子の
コア及びクラッドのいずれかもしくは両方が高分子材料
からなることを特徴とする。[0007] [Claim 1] of the present invention based on such knowledge.
The tunable polymer waveguide diffraction grating according to the present invention includes a heating unit using an external heat source, and in the tunable waveguide diffraction grating using a thermo-optic effect, one or both of the core and the clad of the waveguide diffraction grating are provided. It is made of a polymer material.
【0008】本発明の[請求項2]にかかるチューナブ
ル高分子導波路回折格子は、導波路回折格子上に形成さ
れた抵抗体を用いた加熱手段を備え、熱光学効果を用い
るチューナブル導波路回折格子において、前記導波路回
折格子のコア及びクラッドのいずれかもしくは両方が高
分子材料からなることを特徴とする。[0008] A tunable polymer waveguide diffraction grating according to claim 2 of the present invention includes a heating means using a resistor formed on the waveguide diffraction grating, and provides a tunable waveguide using a thermo-optic effect. In the waveguide grating, one or both of the core and the clad of the waveguide grating are made of a polymer material.
【0009】本発明の[請求項3]にかかるチューナブ
ル高分子導波路回折格子は、請求項2において、前記抵
抗体の形状が繰り返し光軸を横切る様に屈曲した形状で
あり、その繰り返し幅および前記抵抗体の各繰り返し部
での膜厚のいずれかもしくは両方が光軸方向に徐々にチ
ャープ状に変化していることを特徴とする。According to a third aspect of the present invention, there is provided a tunable polymer waveguide diffraction grating according to the second aspect, wherein the shape of the resistor is repeatedly bent so as to intersect the optical axis, and the repetition width thereof. In addition, one or both of the film thicknesses at the respective repetitive portions of the resistor gradually change in a chirped shape in the optical axis direction.
【0010】本発明の[請求項4]にかかるチューナブ
ル高分子導波路回折格子は、請求項1〜3において、前
記高分子材料が、フッ素化ポリイミドであることを特徴
とする。[0010] A tunable polymer waveguide diffraction grating according to claim 4 of the present invention is characterized in that in claim 1 to 3, the polymer material is a fluorinated polyimide.
【0011】本発明の[請求項5]にかかるチューナブ
ル高分子導波路回折格子は、請求項1〜4において、前
記高分子材料からなる回折格子部分の両面が、いずれの
物体にも接触しない自己保持形状に構成されていること
を特徴とする。[0011] In a tunable polymer waveguide diffraction grating according to claim 5 of the present invention, in claim 1 to 4, both surfaces of the diffraction grating portion made of the polymer material do not contact any object. It is characterized by being configured in a self-holding shape.
【0012】本発明の[請求項6]にかかるチューナブ
ル高分子導波路回折格子の製造方法は、外部熱源もしく
は導波路回折格子上に形成された抵抗体を用いた加熱手
段を備え、熱光学効果を用いるチューナブル高分子導波
路回折格子の製造方法において、 基板上に前記高分子
材料からなる回折格子を形成する工程と、前記基板から
前記回折格子を剥離する工程とを有することを特徴とす
る。According to a sixth aspect of the present invention, there is provided a method of manufacturing a tunable polymer waveguide diffraction grating, comprising a heating means using an external heat source or a resistor formed on the waveguide diffraction grating; A method of manufacturing a tunable polymer waveguide diffraction grating using an effect, comprising: forming a diffraction grating made of the polymer material on a substrate; and separating the diffraction grating from the substrate. I do.
【0013】本発明の[請求項7]にかかるチューナブ
ル高分子導波路回折格子の製造方法は、請求項6におい
て、前記基板から剥離した回折格子を熱処理する工程を
有することを特徴とする。[0013] A method of manufacturing a tunable polymer waveguide diffraction grating according to claim 7 of the present invention is characterized in that in claim 6, there is provided a step of heat-treating the diffraction grating separated from the substrate.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を説明
するが、本発明はこれに限定されるものではない。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.
【0015】本発明に適用できるクラッド、コア材料
は、1)導波路材料が光通信波長帯である近赤外域、特
に波長1.3、1.55μm付近で透明であること、
2)クラッド、コア材料の熱光学定数が大きいこと、
3)耐熱性に優れていること、を満たした高分子材料で
あれば何でも良いが、耐熱性が300℃以上と大きなフ
ッ素化ポリイミドを用いた場合、最も優れた長期安定性
を有するチューナブル高分子導波路回折格子が得られ
る。フッ素化ポリイミドは、フッ素化テトラカルボン酸
またはその誘導体とジアミンから、テトラカルボン酸ま
たはその誘導体とフッ素化ジアミンから、あるいはフッ
素化テトラカルボン酸またはその誘導体とフッ素化ジア
ミンから製造する事ができる。これらのフッ素化ポリイ
ミドは、単体だけではなく、フッ素化ポリイミド共重合
体、およびこれらに必要に応じて添加材等を添加したも
のなどを用いることができる。The clad and core materials applicable to the present invention are as follows: 1) The waveguide material is transparent in the near-infrared region, which is an optical communication wavelength band, particularly at a wavelength of 1.3 or 1.55 μm
2) The thermo-optic constant of the clad and core materials is large;
3) Any polymer material can be used as long as it satisfies excellent heat resistance. However, when a fluorinated polyimide having heat resistance as large as 300 ° C. or more is used, a tunable high-grade resin having the best long-term stability can be obtained. A molecular waveguide diffraction grating is obtained. The fluorinated polyimide can be produced from a fluorinated tetracarboxylic acid or a derivative thereof and a diamine, from a tetracarboxylic acid or a derivative thereof and a fluorinated diamine, or from a fluorinated tetracarboxylic acid or a derivative thereof and a fluorinated diamine. These fluorinated polyimides can be used not only alone, but also fluorinated polyimide copolymers and those obtained by adding additives and the like as necessary.
【0016】特に上記のフッ素化ポリイミドの中で光透
過性、耐熱性でバランスの取れたものとして、2,2−
ビス(3,4−ジカルボキシフェニル)ヘキサフルオロ
プロパン二無水物(6FAD)とジアミンから合成した
フッ素化ポリイミドもしくはその共重合体、及び1,4
−ビス(3,4−ジカルボキシトリフルオロフェノキ
シ)テトラフルオロベンゼン二無水物(10FEDA)
とジアミンから合成したフッ素化ポリイミドもしくはそ
の共重合体、が望ましい。Among the above-mentioned fluorinated polyimides, those having a good balance of light transmittance and heat resistance include 2,2-
Fluorinated polyimide synthesized from bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FAD) and diamine or copolymer thereof, and 1,4
-Bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride (10FEDA)
And a fluorinated polyimide synthesized from a diamine or a copolymer thereof.
【0017】[0017]
【実施例】以下、図面を用いて本発明をさらに詳細に説
明するが、本発明はこれら実施例に限定されない。なお
本実施例では、高分子材料にフッ素化ポリイミド、基板
にシリコン、金属膜にTiを用いているが、他の材料を
用いても良い事はいうまでもない。例えば、基板材料と
してはAl、ポリイミド、インジウムリン、ガリウム砒
素、窒化ガリウム、硝子、また抵抗体薄膜形成用の材料
としては、Ti,Cr,Al,金、銀、銅、白金、酸化
スズ、酸化インジウム、酸化インジウムスズ、およびこ
れらの混合物、及びこれらの薄膜の積層膜を用いること
ができる。Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited to these examples. In this embodiment, fluorinated polyimide is used for the polymer material, silicon is used for the substrate, and Ti is used for the metal film. However, it goes without saying that other materials may be used. For example, as a substrate material, Al, polyimide, indium phosphide, gallium arsenide, gallium nitride, glass, and as a material for forming a resistor thin film, Ti, Cr, Al, gold, silver, copper, platinum, tin oxide, oxide Indium, indium tin oxide, a mixture thereof, and a stacked film of these thin films can be used.
【0018】(実施例1)2,2−ビス(3,4−ジカ
ルボキシルフェニル)ヘキサフルオロプロパン二無水物
(6FDA)と2,2′−ビス(トリフルオロメチル)
−4,4′−ジアミノビフェニル(TFDB)から合成
したポリイミド(6FDA/TFDB)と、6FDAと
4,4′−オキシジアニリン(4,4′−ODA)から
合成したポリイミド(6FDA/4,4′−ODA)の
共重合体(共重合比が1:0を含む)によるチューナブ
ル高分子導波路回折格子の作製工程を、図1を用いて具
体的に説明する。最初に、(6FDA/TFDB):
(6FDA/4,4′−ODA)の共重合比が1:0の
フッ素化ポリイミド共重合体の前駆体であるフッ素化ポ
リアミド酸のDMAc15wt%溶液をシリコン基板1
1上にスピンコートした後、オーブン中380℃で1時
間加熱しイミド化を行い下部クラッド層12(屈折率
は、波長1.3μmの時nTE;1.520、nTM;1.
510、1.55μmの時nTE;1.518、nTM;
1.508)を形成した。次に、下部クラッド層12上
へ、(6FDA/TFDB):(6FDA/4,4′−
ODA)の共重合比が4:6のフッ素化ポリイミド共重
合体の前駆体であるフッ素化ポリアミド酸のDMAc1
5wt%溶液を、加熱イミド化後の膜厚が8μmになる
ようにスピンコートした。その後、オーブン中で380
℃で1時間加熱しイミド化を行いコア層13(屈折率
は、波長1.3μmの時nTE;1.538、nTM;1.
531、1.55μmの時nTE;1.538、nTM;
1.530)を形成した(図1(a))。次に、コア層
13上へフォトレジストをスピンコートした後、光導波
路のCrマスクパターンをフォトリソグラフ法によって
レジストに転写させた(図1(b))。次に、フォトレ
ジストの現像を行う事により、コア層13上へ光導波路
のマスクパターン14を形成し、マスクパターン14が
形成されたコア層13に対して、RIE法を用いてエッ
チングを行い光導波路のコアパターン15を形成した
(図1(c),(d))。次に、光導波路のコアパター
ン15上に、下部クラッド層12と同じフッ素化ポリイ
ミド共重合体の前駆体であるフッ素化ポリアミド酸のD
MAc15wt%溶液をスピンコートした後、オーブン
中380℃で1時間加熱しイミド化を行い、下部クラッ
ド層12と同じ屈折率を持つ上部クラッド層16を形成
した(図1(e))。最後に、回折格子の透過型X線マ
スク17を通して放射光を照射することにより、屈折率
を変化させ、コア中に回折格子18を形成した(図1
(f))。このような方法によって、フッ素化ポリイミ
ド光導波路によるチューナブル高分子導波路回折格子が
形成された。Example 1 2,2-bis (3,4-dicarboxylphenyl) hexafluoropropane dianhydride (6FDA) and 2,2'-bis (trifluoromethyl)
Polyimide synthesized from -4,4'-diaminobiphenyl (TFDB) (6FDA / TFDB) and polyimide synthesized from 6FDA and 4,4'-oxydianiline (4,4'-ODA) (6FDA / 4,4 A process for producing a tunable polymer waveguide diffraction grating using a copolymer of '-ODA) (copolymerization ratio includes 1: 0) will be specifically described with reference to FIG. First, (6FDA / TFDB):
A 15 wt% solution of a fluorinated polyamic acid, which is a precursor of a fluorinated polyimide copolymer having a copolymerization ratio of (6FDA / 4,4′-ODA) of 1: 0, in DMAc 15 wt% was applied to a silicon substrate 1.
After spin-coating on 1, the mixture was heated in an oven at 380 ° C. for 1 hour to imidize the lower cladding layer 12 (refractive index: n TE ; 1.520, n TM at a wavelength of 1.3 μm;
N TE at 510, 1.55 μm; 1.518, n TM ;
1.508). Next, on the lower cladding layer 12, (6FDA / TFDB) :( 6FDA / 4,4'-
DMAc1 of a fluorinated polyamic acid which is a precursor of a fluorinated polyimide copolymer having a copolymerization ratio of ODA) of 4: 6
A 5 wt% solution was spin-coated so that the film thickness after heat imidization became 8 μm. Then 380 in the oven
1 hour heating the core layer 13 (refractive index perform imidization ℃, when the wavelength of 1.3μm n TE; 1.538, n TM ; 1.
531, n TE at 1.55 μm; 1.538, n TM ;
1.530) (FIG. 1A). Next, after a photoresist was spin-coated on the core layer 13, the Cr mask pattern of the optical waveguide was transferred to the resist by a photolithographic method (FIG. 1B). Next, by developing the photoresist, a mask pattern 14 of the optical waveguide is formed on the core layer 13, and the core layer 13 on which the mask pattern 14 is formed is etched by using the RIE method to form a light guide. The core pattern 15 of the waveguide was formed (FIGS. 1C and 1D). Next, on the core pattern 15 of the optical waveguide, fluorinated polyamic acid D, which is a precursor of the same fluorinated polyimide copolymer as the lower cladding layer 12, is added.
After spin-coating a 15 wt% MAc solution, the solution was heated in an oven at 380 ° C. for 1 hour to perform imidization, thereby forming an upper cladding layer 16 having the same refractive index as the lower cladding layer 12 (FIG. 1E). Finally, by irradiating radiation through a transmission type X-ray mask 17 of a diffraction grating, the refractive index was changed, and a diffraction grating 18 was formed in the core (FIG. 1).
(F)). By such a method, a tunable polymer waveguide diffraction grating using a fluorinated polyimide optical waveguide was formed.
【0019】本実施例においては、回折格子作製用の光
として放射光を用いたが、電子線、紫外線、近赤外線な
どを用いる事、回折格子作製用マスクとして位相マスク
等を用いる事もできる。また、これらのマスクを用いず
電子線の走査によって回折格子を作製することもでき
る。In this embodiment, emitted light is used as light for producing a diffraction grating. However, electron beams, ultraviolet rays, near-infrared rays, or the like may be used, or a phase mask or the like may be used as a mask for producing a diffraction grating. Further, a diffraction grating can be manufactured by scanning with an electron beam without using these masks.
【0020】作製したチューナブル高分子導波路回折格
子21をペルチェ素子を搭載した試料台22に乗せ(図
2)、光学特性を測定した。入射光23を光導波路24
の入射端面25から入射したところ、入射光23は回折
格子26で回折条件を満たす特定の波長のみが反射され
た。反射光27の室温における波長は1561.1nm
(TE偏光)及び1550.9nm(TM偏光)、消光
比は23dB、半値幅は0.6nmであり、優れた反射
特性が観測された(図3)。次に、全面を均一にペルチ
エ素子を用いて100℃まで加熱した所、フッ素化ポリ
イミド共重合体が有する石英の10倍以上の大きな熱光
学定数の効果により、10nm以上の波長シフトが観測
された。これは、石英製導波路回折格子の10倍の値で
ある。さらに、可変後も挿入損失、半値幅及び100℃
加熱時の中心波長のシフト量は変わらず、耐環境性、長
期安定性に優れた特性を示した。The prepared tunable polymer waveguide diffraction grating 21 was placed on a sample table 22 on which a Peltier element was mounted (FIG. 2), and the optical characteristics were measured. The incident light 23 is transmitted to the optical waveguide 24.
As a result, only a specific wavelength satisfying the diffraction condition of the incident light 23 was reflected by the diffraction grating 26. The wavelength of the reflected light 27 at room temperature is 1561.1 nm.
(TE polarized light) and 1550.9 nm (TM polarized light), the extinction ratio was 23 dB, and the half width was 0.6 nm, and excellent reflection characteristics were observed (FIG. 3). Next, when the entire surface was uniformly heated to 100 ° C. using a Peltier element, a wavelength shift of 10 nm or more was observed due to the effect of a thermo-optic constant that was 10 times or more larger than that of quartz contained in the fluorinated polyimide copolymer. . This is ten times the value of the quartz waveguide diffraction grating. Furthermore, even after variable insertion loss, half width and 100 ° C
The shift amount of the center wavelength at the time of heating did not change, and exhibited characteristics excellent in environmental resistance and long-term stability.
【0021】(実施例2)図4は、加熱用電極を有する
チューナブル高分子導波路回折格子の作製工程である。
図4に示すように、実施例1と同様の方法で作製したチ
ューナブル高分子導波路回折格子41の上に加熱用電極
とするTi金属膜43を真空蒸着により形成した(図4
(a),(b))。このTi金属膜43へフォトレジス
トをスピンコートした後、電極のマスクパターン44を
光導波路42上部の位置にフォトリソグラフ法によって
作製した(図4(c))。最後に、フォトレジストをマ
スクとし、Tiのエッチングを行い電極45を形成した
のち(図4(d))、マスクパターン44を剥離し、加
熱用電極を有するチューナブル高分子導波路回折格子を
作製した(図4(e))。(Embodiment 2) FIG. 4 shows a manufacturing process of a tunable polymer waveguide diffraction grating having a heating electrode.
As shown in FIG. 4, a Ti metal film 43 as a heating electrode was formed on a tunable polymer waveguide diffraction grating 41 manufactured in the same manner as in Example 1 by vacuum evaporation (FIG. 4).
(A), (b)). After spin coating a photoresist on the Ti metal film 43, an electrode mask pattern 44 was formed at a position above the optical waveguide 42 by a photolithographic method (FIG. 4C). Finally, using a photoresist as a mask, Ti is etched to form an electrode 45 (FIG. 4D), and then the mask pattern 44 is peeled off to produce a tunable polymer waveguide diffraction grating having a heating electrode. (FIG. 4E).
【0022】作製したフッ素化ポリイミド光導波路によ
る加熱用電極付きチューナブル高分子導波路回折格子の
模式図を図5に示す。回折格子上に作製した加熱用電極
51は、光導波路52に沿って周期的な構造を有してお
り、通電加熱により回折格子全体を均一に加熱すること
ができる。この電極を用いて通電加熱を行い100℃ま
でチューナブル高分子導波路回折格子を加熱した時、波
長シフト量は石英製導波路回折格子の10倍であり、低
消費電力で波長可変が可能なチューナブル波長フィルタ
として動作することがわかった。また、このチューナブ
ル高分子導波路回折格子は100℃熱処理も特性の変化
はなく、耐環境性、長期安定性に優れたものであった。FIG. 5 is a schematic view of a tunable polymer waveguide diffraction grating with a heating electrode using the fluorinated polyimide optical waveguide thus produced. The heating electrode 51 formed on the diffraction grating has a periodic structure along the optical waveguide 52, and the entire diffraction grating can be uniformly heated by electric heating. When the tunable polymer waveguide diffraction grating is heated up to 100 ° C. by using the electrode and heated by heating, the wavelength shift amount is 10 times that of the quartz waveguide diffraction grating, and the wavelength can be changed with low power consumption. It turned out to work as a tunable wavelength filter. The tunable polymer waveguide diffraction grating did not change its characteristics even after heat treatment at 100 ° C., and was excellent in environmental resistance and long-term stability.
【0023】本発明においては、電極の形状、周期構造
は本実施例に示した構造に限定されず、あらゆる構造を
用いることができることはいうまでもない。また、電極
の折り返し部も直角である必要はなく、あるゆる曲率の
円弧が利用できる。In the present invention, the shape and the periodic structure of the electrodes are not limited to the structures shown in this embodiment, and it goes without saying that any structure can be used. Also, the folded portion of the electrode need not be a right angle, and an arc having a certain curvature can be used.
【0024】(実施例3)図6の様に回折格子上に作製
した加熱用電極61のパターンの周期を光導波路62に
沿って変化させた加熱用電極を有するチューナブル高分
子導波路回折格子を、実施例2と同様の方法で作製し
た。回折格子上に作製した加熱用電極61は、電極の周
期が光導波路62に沿って変化しているため、通電加熱
により回折格子部に温度勾配を形成する事ができる。こ
の電極を用いて通電加熱を行った結果、本チューナブル
高分子導波路回折格子はチャープ回折格子として機能
し、電極構造に対応した任意の反射波長スペクトルを得
ることができた。チャープとは、回折格子からの反射ピ
ークの波長をシフトさせるだけでなく、反射スペクトル
形状を任意の形に制御する事を意味する。例えば、ガウ
ス分布のシングルピークをダブレット、トリプレットに
する、半値幅やピーク強度を変化させる、あるいはこれ
ら2つの複合等、数限りない応用が考えられ、電極構造
の詳細設計により本チューナブル高分子導波路回折格子
は、波長可変フィルタ、WDM合分波器、分散補償器、
利得補償器等への応用が可能である。Embodiment 3 As shown in FIG. 6, a tunable polymer waveguide diffraction grating having a heating electrode in which the pattern period of the heating electrode 61 formed on the diffraction grating is changed along the optical waveguide 62. Was produced in the same manner as in Example 2. Since the electrode period of the heating electrode 61 formed on the diffraction grating changes along the optical waveguide 62, a temperature gradient can be formed in the diffraction grating portion by conducting and heating. As a result of conducting heating using this electrode, the tunable polymer waveguide diffraction grating functioned as a chirped diffraction grating, and an arbitrary reflection wavelength spectrum corresponding to the electrode structure could be obtained. Chirp means not only shifting the wavelength of the reflection peak from the diffraction grating, but also controlling the shape of the reflection spectrum to an arbitrary shape. For example, a singular peak of Gaussian distribution is converted to a doublet or triplet, the half-width or peak intensity is changed, or a combination of the two is possible. Wave path diffraction gratings include tunable filters, WDM multiplexers / demultiplexers, dispersion compensators,
Application to a gain compensator or the like is possible.
【0025】本発明においては、電極の形状、周期構造
は本実施例に示した構造に限定されず、あらゆる構造を
用いることができる。電極の折り返し部も直角である必
要はなく、あらゆる曲率の円弧が利用できる。また、抵
抗値が導波路方向に沿って変化した加熱用電極を形成し
(例えば電極の幅、膜厚、あるいは両方を変化させ
る。)ても同様の効果が得られることは言うまでもな
い。In the present invention, the shape and the periodic structure of the electrodes are not limited to the structures shown in this embodiment, and any structure can be used. The folded portions of the electrodes need not be right angles, and arcs of any curvature can be used. It is needless to say that the same effect can be obtained by forming a heating electrode having a resistance value changed along the waveguide direction (for example, changing the width, thickness, or both of the electrodes).
【0026】(実施例4)図7にフィルム状チューナブ
ル高分子導波路回折格子の作製工程を示す。実施例1と
同様の方法で基板上に作製した図7(a)に示すような
チューナブル高分子導波路回折格子71を、図7(b)
に示すように、酸72中に浸透させ基板から剥離するこ
とにより、図7(c)に示すような自己保持性とフレキ
シビリティを有するフィルム状チューナブル高分子導波
路回折格子73を作製した。このフィルム状チューナブ
ル高分子導波路回折格子の反射スペクトルを測定した結
果、入射光の偏波面による反射ピーク波長の差は小さ
く、偏波依存性は極めて小さなものであることが明らか
になった。この結果は、基板からの剥離とアニールによ
り、フッ素化ポリイミド中の残留応力(基板との熱膨張
率差に起因)に起因する基板面と平行な偏光方向の屈折
率(nTE)と基板面に垂直な偏光方向の屈折率(nTM)
の差(複屈折)が、小さく、あるいはほとんどゼロにな
ったためである。さらに、消光比、半値幅もまた、剥離
前と同様の特性を示していた。(Embodiment 4) FIG. 7 shows a process for producing a film-like tunable polymer waveguide diffraction grating. A tunable polymer waveguide diffraction grating 71 as shown in FIG. 7A fabricated on a substrate in the same manner as in Example 1 was used as shown in FIG.
As shown in FIG. 7, a film-shaped tunable polymer waveguide diffraction grating 73 having self-holding properties and flexibility as shown in FIG. As a result of measuring the reflection spectrum of the film-like tunable polymer waveguide diffraction grating, it was found that the difference in the reflection peak wavelength due to the plane of polarization of the incident light was small and the polarization dependence was extremely small. The results show that the peeling and annealing of the substrate and the refractive index (n TE ) in the polarization direction parallel to the substrate surface due to the residual stress in the fluorinated polyimide (due to the difference in thermal expansion coefficient with the substrate) and the substrate surface Refractive index in the direction of polarization perpendicular to (n TM )
This is because the difference (birefringence) becomes small or almost zero. Further, the extinction ratio and the half width also showed the same characteristics as before the separation.
【0027】さらに、剥離したフィルムチューナブル高
分子導波路回折格子に対して、オーブン中350℃で1
時間のアニール処理を行った。本フィルムチューナブル
高分子導波路回折格子においては、アニールにより複屈
折はさらに低減され、反射ピーク波長の差はさらに小さ
くなり、偏波依存性は解消された。この偏波無依存化に
より、チューナブル高分子導波路回折格子の光通信への
応用用途は、大きく広がった。Further, the peeled film tunable polymer waveguide diffraction grating was placed in an oven at 350 ° C. for 1 hour.
Time annealing was performed. In this film tunable polymer waveguide grating, the birefringence was further reduced by annealing, the difference in the reflection peak wavelength was further reduced, and the polarization dependence was eliminated. Due to the polarization independence, the application of the tunable polymer waveguide diffraction grating to optical communication has greatly expanded.
【0028】フィルム状チューナブル高分子導波路回折
格子は、基板上のものと同様にペルチエ素子を用いた回
折格子全面の外部加熱(100℃)により、反射ピーク
波長のシフト量が10nm以上の大きな値を示した。さ
らに、実施例3に示したような導波路方向に周期を変え
た加熱用電極を用いて温度勾配を付け加熱を行う事によ
り、本フィルム状チューナブル高分子導波路回折格子は
チャープ回折格子として機能し、任意の反射波長スペク
トルを偏波無依存で得ることができた。The film-shaped tunable polymer waveguide diffraction grating has a large shift of the reflection peak wavelength of 10 nm or more due to external heating (100 ° C.) of the entire diffraction grating using a Peltier element as in the case of the substrate. The value was shown. Further, the film-shaped tunable polymer waveguide diffraction grating is used as a chirped diffraction grating by performing heating by applying a temperature gradient using a heating electrode having a period changed in the waveguide direction as shown in the third embodiment. Functioning, it was possible to obtain an arbitrary reflection wavelength spectrum without polarization.
【0029】このチューナブル高分子導波路回折格子
は、ポリイミドの有するフレキシビリティにより、屈曲
性に優れ、回折格子部の曲げによる波長可変、チャーピ
ングが可能であるため、曲がりセンサ等への応用ができ
る。This tunable polymer waveguide diffraction grating is excellent in flexibility due to the flexibility of polyimide, and can be tunable and chirped by bending the diffraction grating portion, so that it can be applied to a bending sensor and the like. it can.
【0030】[0030]
【発明の効果】本発明によれば、導波路材料として使用
したフッ素化ポリイミドの持つ大きなTO効果により、
波長可変範囲が10nm以上と大きく、さらに温度勾配
を付けた加熱によるチャーピングも可能な、チューナブ
ル高分子導波路回折格子を提供できる。また、これらの
結果として、低消費電力であり、経済性、汎用性に優れ
るチューナブル高分子導波路回折格子が製造できるよう
になった。本チューナブル高分子導波路回折格子は、波
長可変フィルタ、WDM合分波器、分散補償器、利得補
償器等へ応用できる。According to the present invention, the fluorinated polyimide used as a waveguide material has a large TO effect,
A tunable polymer waveguide diffraction grating having a large wavelength variable range of 10 nm or more and capable of performing chirping by heating with a temperature gradient can be provided. As a result, a tunable polymer waveguide diffraction grating that consumes low power, is economical, and has excellent versatility can be manufactured. The tunable polymer waveguide diffraction grating can be applied to a wavelength tunable filter, a WDM multiplexer / demultiplexer, a dispersion compensator, a gain compensator, and the like.
【図1】フッ素化ポリイミドによるチューナブル高分子
導波路回折格子の作製工程図である。FIG. 1 is a manufacturing process diagram of a tunable polymer waveguide diffraction grating made of fluorinated polyimide.
【図2】ペルチエ素子を搭載した試料台上に設置したチ
ューナブル高分子導波路回折格子図である。FIG. 2 is a diagram of a tunable polymer waveguide diffraction grating installed on a sample stage on which a Peltier element is mounted.
【図3】フッ素化ポリイミドによるチューナブル高分子
導波路回折格子の反射スペクトル図である。FIG. 3 is a reflection spectrum diagram of a tunable polymer waveguide diffraction grating made of fluorinated polyimide.
【図4】フッ素化ポリイミドによる加熱用電極付きチュ
ーナブル高分子導波路回折格子の作製工程図である。FIG. 4 is a manufacturing process diagram of a tunable polymer waveguide diffraction grating with a heating electrode made of fluorinated polyimide.
【図5】加熱用電極付きチューナブル高分子導波路回折
格子の模式図である。FIG. 5 is a schematic view of a tunable polymer waveguide diffraction grating with a heating electrode.
【図6】加熱用電極付きチューナブル高分子導波路回折
格子の模式図である。FIG. 6 is a schematic view of a tunable polymer waveguide diffraction grating with a heating electrode.
【図7】フッ素化ポリイミドによるフィルム状チューナ
ブル高分子導波路回折格子の作製工程図である。FIG. 7 is a process chart for producing a film-like tunable polymer waveguide diffraction grating made of fluorinated polyimide.
11 基板 12 下部クラッド層 13 コア層 14 マスクパターン 15 コアパターン 16 上部クラッド層 17 透過型X線マスク 18 回折格子 21 チューナブル高分子導波路回折格子 22 ペルチエ素子を搭載した試料台 23 入射光 24 光導波路 25 入射端面 26 回折格子 27 反射光 41 チューナブル高分子導波路回折格子 42 光導波路 43 Ti金属膜 44 マスクパターン 45 電極 51 回折格子上に作製した加熱用電極 52 光導波路 61 回折格子上に作製した加熱用電極 62 光導波路 71 チューナブル高分子導波路回折格子 72 酸 73 フィルム状チューナブル高分子導波路回折格子 DESCRIPTION OF SYMBOLS 11 Substrate 12 Lower cladding layer 13 Core layer 14 Mask pattern 15 Core pattern 16 Upper cladding layer 17 Transmissive X-ray mask 18 Diffraction grating 21 Tunable polymer waveguide diffraction grating 22 Peltier element mounted sample stand 23 Incident light 24 Light guide Waveguide 25 Incident end face 26 Diffraction grating 27 Reflected light 41 Tunable polymer waveguide diffraction grating 42 Optical waveguide 43 Ti metal film 44 Mask pattern 45 Electrode 51 Heating electrode fabricated on diffraction grating 52 Optical waveguide 61 Fabricated on diffraction grating Heating electrode 62 optical waveguide 71 tunable polymer waveguide diffraction grating 72 acid 73 film tunable polymer waveguide diffraction grating
───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸野 透 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Toru Maruno 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation
Claims (7)
学効果を用いるチューナブル導波路回折格子において、 前記導波路回折格子のコア及びクラッドのいずれかもし
くは両方が高分子材料からなることを特徴とするチュー
ナブル高分子導波路回折格子。1. A tunable waveguide diffraction grating comprising a heating means using an external heat source and using a thermo-optic effect, wherein one or both of a core and a clad of the waveguide diffraction grating are made of a polymer material. Tunable polymer waveguide diffraction grating.
用いた加熱手段を備え、熱光学効果を用いるチューナブ
ル導波路回折格子において、 前記導波路回折格子のコア及びクラッドのいずれかもし
くは両方が高分子材料からなることを特徴とするチュー
ナブル高分子導波路回折格子。2. A tunable waveguide diffraction grating using a thermo-optic effect, comprising heating means using a resistor formed on the waveguide diffraction grating, wherein one of the core and the clad of the waveguide diffraction grating or A tunable polymer waveguide diffraction grating, wherein both are made of a polymer material.
形状であり、その繰り返し幅および前記抵抗体の各繰り
返し部での膜厚のいずれかもしくは両方が光軸方向に徐
々にチャープ状に変化していることを特徴とするチュー
ナブル高分子導波路回折格子。3. The resistor according to claim 2, wherein the resistor has a shape repeatedly bent so as to intersect the optical axis, and one or both of the repetition width and the film thickness at each of the repeating portions of the resistor are set. A tunable polymer waveguide diffraction grating characterized by gradually changing into a chirp in the optical axis direction.
徴とするチューナブル高分子導波路回折格子。4. The tunable polymer waveguide diffraction grating according to claim 1, wherein the polymer material is a fluorinated polyimide.
の物体にも接触しない自己保持形状に構成されているこ
とを特徴とするチューナブル高分子導波路回折格子。5. The tunable polymer waveguide according to claim 1, wherein both surfaces of the diffraction grating portion made of the polymer material are formed in a self-holding shape so as not to contact any object. Wave grating.
成された抵抗体を用いた加熱手段を備え、熱光学効果を
用いるチューナブル高分子導波路回折格子の製造方法に
おいて、 基板上に前記高分子材料からなる回折格子を形成する工
程と、前記基板から前記回折格子を剥離する工程とを有
することを特徴とするチューナブル高分子導波路回折格
子の製造方法。6. A method of manufacturing a tunable polymer waveguide diffraction grating using a thermo-optic effect, comprising a heating means using an external heat source or a resistor formed on the waveguide diffraction grating, A method for manufacturing a tunable polymer waveguide diffraction grating, comprising: forming a diffraction grating made of a molecular material; and separating the diffraction grating from the substrate.
ることを特徴とするチューナブル高分子導波路回折格子
の製造方法。7. The method for manufacturing a tunable polymer waveguide diffraction grating according to claim 6, further comprising a step of heat-treating the diffraction grating separated from the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2415198A JPH11223735A (en) | 1998-02-05 | 1998-02-05 | Tunable polymer waveguide diffraction grating and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2415198A JPH11223735A (en) | 1998-02-05 | 1998-02-05 | Tunable polymer waveguide diffraction grating and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11223735A true JPH11223735A (en) | 1999-08-17 |
Family
ID=12130350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2415198A Pending JPH11223735A (en) | 1998-02-05 | 1998-02-05 | Tunable polymer waveguide diffraction grating and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11223735A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001281483A (en) * | 2000-04-03 | 2001-10-10 | Fujikura Ltd | Waveguide type variable grating |
JP2001281713A (en) * | 2000-03-29 | 2001-10-10 | Fujikura Ltd | Thermo-optical effect type light deflecting device and thermo-optical effect type deflecting device module using the same |
JP2001350047A (en) * | 2000-06-07 | 2001-12-21 | Nippon Telegr & Teleph Corp <Ntt> | Optical waveguide substrate and its manufacturing method |
JP2002139638A (en) * | 2000-08-23 | 2002-05-17 | Matsushita Electric Ind Co Ltd | Optical element and method for manufacturing the same |
WO2003034116A3 (en) * | 2001-10-18 | 2003-07-24 | Fujitsu Network Communications | Distributed gratings in optical fibres |
WO2003087922A3 (en) * | 2002-04-09 | 2003-12-31 | Du Pont | Method and apparatus for homogenous heating of an optical waveguiding structure |
US6826344B2 (en) | 2000-08-23 | 2004-11-30 | Matsushita Electric Industrial Co., Ltd. | Optical element and method of fabrication thereof |
JP2010512016A (en) * | 2006-12-05 | 2010-04-15 | 韓國電子通信研究院 | Planar optical waveguide device, wavelength variable light source including the same, and wavelength division multiplexing based passive optical subscriber network using the light source |
US9268110B2 (en) | 2009-03-13 | 2016-02-23 | Optotune Ag | Lens system and method |
CN105759350A (en) * | 2015-07-03 | 2016-07-13 | 苏州峰通光电有限公司 | Organic-inorganic hybrid integrated thermo-optical modulation type grating and preparation method thereof |
-
1998
- 1998-02-05 JP JP2415198A patent/JPH11223735A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001281713A (en) * | 2000-03-29 | 2001-10-10 | Fujikura Ltd | Thermo-optical effect type light deflecting device and thermo-optical effect type deflecting device module using the same |
JP4498528B2 (en) * | 2000-03-29 | 2010-07-07 | 株式会社フジクラ | Thermo-optic effect type optical deflection element and thermo-optic effect type optical deflection element module using the same |
JP2001281483A (en) * | 2000-04-03 | 2001-10-10 | Fujikura Ltd | Waveguide type variable grating |
JP4498530B2 (en) * | 2000-04-03 | 2010-07-07 | 株式会社フジクラ | Waveguide variable grating |
JP2001350047A (en) * | 2000-06-07 | 2001-12-21 | Nippon Telegr & Teleph Corp <Ntt> | Optical waveguide substrate and its manufacturing method |
JP2002139638A (en) * | 2000-08-23 | 2002-05-17 | Matsushita Electric Ind Co Ltd | Optical element and method for manufacturing the same |
US6826344B2 (en) | 2000-08-23 | 2004-11-30 | Matsushita Electric Industrial Co., Ltd. | Optical element and method of fabrication thereof |
WO2003034116A3 (en) * | 2001-10-18 | 2003-07-24 | Fujitsu Network Communications | Distributed gratings in optical fibres |
WO2003087922A3 (en) * | 2002-04-09 | 2003-12-31 | Du Pont | Method and apparatus for homogenous heating of an optical waveguiding structure |
JP2010512016A (en) * | 2006-12-05 | 2010-04-15 | 韓國電子通信研究院 | Planar optical waveguide device, wavelength variable light source including the same, and wavelength division multiplexing based passive optical subscriber network using the light source |
US9268110B2 (en) | 2009-03-13 | 2016-02-23 | Optotune Ag | Lens system and method |
CN105759350A (en) * | 2015-07-03 | 2016-07-13 | 苏州峰通光电有限公司 | Organic-inorganic hybrid integrated thermo-optical modulation type grating and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Eldada et al. | Advances in polymer integrated optics | |
EP0616234B1 (en) | Method of manufacturing a polyimide optical waveguide | |
EP0758665B1 (en) | Polyimides and optical parts obtained by using the same | |
JP2813713B2 (en) | Polyimide optical waveguide | |
JP4595288B2 (en) | Polybenzoxazole resin, precursor thereof, optical waveguide material using the same, and optical waveguide | |
JPH11223735A (en) | Tunable polymer waveguide diffraction grating and its production | |
KR20040097317A (en) | Method and apparatus for homogenous heating of an optical waveguiding structure | |
US6047098A (en) | Plastic optical waveguide and optical switch using same | |
Jiang et al. | Optimizing fluorinated poly (arylene ether) s for optical waveguide applications | |
JP3327356B2 (en) | Fluorinated polyimide optical waveguide and method for manufacturing the same | |
JP3674878B2 (en) | Polyimide optical waveguide | |
JP2004138886A (en) | Waveguide optical device | |
JP2003313294A (en) | Optical part using fluorinated polyimide | |
Tsushima et al. | Novel manufacturing process of waveguide using selective photobleaching of polysilane films by UV light irradiation | |
Jiang et al. | Property-tailorable PFCB-containing polymers for wavelength division devices | |
JP2002243960A (en) | Polymer-made filter type multichannel wavelength multiplexing and branching device | |
JPH04235506A (en) | Polyimide opticalwaveguide and its manufacture | |
Eldada et al. | Low-loss high-thermal-stability polymer interconnects for low-cost high-performance massively parallel processing | |
JPH04235505A (en) | Manufacture of polyimide opticalwaveguide | |
Matsuura et al. | Synthesis and properties of partially fluorinated polyimides for optical applications | |
JPH10332959A (en) | Wavelength-variable polymeric array waveguide grating-type optical device | |
JP2002148455A (en) | High polymer optical waveguide device | |
JPH10227931A (en) | Waveguide type optical device | |
JP2000310721A (en) | Double refraction polyimide layer and double refraction optical wave guide using the same | |
MATSUURA et al. | Synthesis Partially Fluorinated and Properties of Polyimides for Optical Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030708 |