JPH11220171A - Gallium nitride compound semiconductor device - Google Patents

Gallium nitride compound semiconductor device

Info

Publication number
JPH11220171A
JPH11220171A JP3661998A JP3661998A JPH11220171A JP H11220171 A JPH11220171 A JP H11220171A JP 3661998 A JP3661998 A JP 3661998A JP 3661998 A JP3661998 A JP 3661998A JP H11220171 A JPH11220171 A JP H11220171A
Authority
JP
Japan
Prior art keywords
metal layer
layer
contact
gallium nitride
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3661998A
Other languages
Japanese (ja)
Inventor
Toshiya Kamimura
俊也 上村
Shizuyo Noiri
静代 野杁
Shigemi Horiuchi
茂美 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP3661998A priority Critical patent/JPH11220171A/en
Publication of JPH11220171A publication Critical patent/JPH11220171A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gallium nitride compound semiconductor device, having large luminous intensity and a long lifetime. SOLUTION: An electrode connected to a contact layer 107 is formed of a first metal layer 108 connected with the contact layer 107 on the p-type semiconductor side and consisting of silver (Ag), etc., and a second metal layer 110 covering the surface of the first metal layer 108 and the surface of the contact layer 107 which is not covered with the first metal layer 108 is formed. The value of contact resistance per unit area to the contact layer 107 of the second metal layer 110 is made larger than that of the first metal layer 108. Junction strength to the contact layer 107 is reinforced by forming the first metal layer 108 or the second metal layer 110 into a multilayered structure by plural kinds of metals. A light-emitting element having high reflection efficiency of light by the electrode and long lifetime is obtained by these means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に窒化ガリ
ウム系化合物半導体から成る層が積層されたフリップチ
ップ型の発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flip-chip type light emitting device in which a gallium nitride-based compound semiconductor layer is stacked on a substrate.

【0002】[0002]

【従来の技術】図3に、従来技術として特開平6−12
0562によるフリップチップ型の発光素子300の断
面図を示す。301は、サファイヤ基板、302は、n
型のGaN層、303は、p型のGaN層、304は、
正電極、305は、負電極である。フリップチップ型の
発光素子では、n型のGaN層302とp型のGaN層
303の界面で発せられた光をp型のGaN層303上
の形成された正電極304で反射させ、サファイア基板
301を通して観察するため、正電極304は、比較的
大きく形成される。又、p型のGaN層303上に形成
される正電極304に用いる金属層としては、アルミニ
ウム(Al)などの金属が光の反射効率の上で優れてい
ることが判っているが、これらの光の反射効率上優れて
いる金属の種類の中には、それを電極に用いた際、例え
ばアルミニウムなどに代表される金属のようにマイグレ
ーションを起こしやすいものが有る。
2. Description of the Related Art FIG.
1 illustrates a cross-sectional view of a flip chip light emitting device 300 according to 0562. 301 is a sapphire substrate, 302 is n
GaN layer, 303 is a p-type GaN layer, 304 is
A positive electrode 305 is a negative electrode. In the flip-chip type light emitting element, light emitted at the interface between the n-type GaN layer 302 and the p-type GaN layer 303 is reflected by the positive electrode 304 formed on the p-type GaN layer 303, and the sapphire substrate 301 For observation through, the positive electrode 304 is formed relatively large. As a metal layer used for the positive electrode 304 formed on the p-type GaN layer 303, a metal such as aluminum (Al) is known to be excellent in light reflection efficiency. Among the types of metals that are excellent in light reflection efficiency, when they are used for electrodes, there are those that easily cause migration, for example, metals such as aluminum.

【0003】[0003]

【発明が解決しようとする課題】上記のように、正電極
304に用いられた金属が、マイグレーションを起こす
と、正電極304を構成する金属がイオンとして、負電
極305側に引き寄せられ、電極層の乱れによる発光
強度の低下、正電極304とn型のGaN層302が
マイグレーションにより短絡し、寿命の低下という問題
が発生する。そこで、例えば図3に示すように、p型の
GaN層303上に形成する正電極304とp型のGa
N層303との距離Dを大きくすることにより、短絡ま
での時間を延ばし、その結果として、寿命を延長する方
法も考えられる。しかし、上述のように、フリップチッ
プ型の発光素子については、p型のGaN層303上の
正電極304の大きさ=発光面積であり、距離Dを大き
くすることは、正電極の大きさを維持すれば、チップサ
イズが増大して、生産効率の低下を招き、又、正電極の
大きさを小さくすれば、p型のGaN層303のDの隙
間から漏れ出る光の量もそれに伴って増大するため、光
の反射効率が低下し、発光効率が減少するという問題が
あった。加えて、電極層の乱れによる発光強度の低下を
防止することはできない。
As described above, when the metal used for the positive electrode 304 causes migration, the metal constituting the positive electrode 304 is attracted to the negative electrode 305 as ions, and This causes a problem that the light emission intensity is reduced due to the disturbance, the positive electrode 304 and the n-type GaN layer 302 are short-circuited due to migration, and the life is shortened. Therefore, for example, as shown in FIG. 3, the positive electrode 304 formed on the p-type GaN layer 303 and the p-type Ga
By increasing the distance D from the N layer 303, the time until a short circuit is extended, and as a result, a method of extending the life can be considered. However, as described above, for the flip-chip type light emitting element, the size of the positive electrode 304 on the p-type GaN layer 303 = the light emitting area, and increasing the distance D reduces the size of the positive electrode. If it is maintained, the chip size increases and the production efficiency decreases, and if the size of the positive electrode is reduced, the amount of light leaking from the gap D of the p-type GaN layer 303 is accordingly increased. As a result, there is a problem that the light reflection efficiency is reduced and the light emission efficiency is reduced. In addition, it is impossible to prevent the emission intensity from being reduced due to the disturbance of the electrode layer.

【0004】本発明は、上記の問題を解決するために成
されたものであり、その目的は、発光強度が大きく、か
つ、寿命の長い窒化ガリウム系化合物半導体素子を提供
することである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a gallium nitride-based compound semiconductor device having a large emission intensity and a long life.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めの第1の手段は、基板上に窒化ガリウム系化合物半導
体から成る層が積層されたフリップチップ型の発光素子
において、p型半導体側のコンタクト層に接続する第1
の金属層と、この第1の金属層の少なくとも側面及びこ
の第1の金属層に覆われていないコンタクト層の表面を
覆う第2の金属層とによりコンタクト層に接続する電極
を形成することである。なお、第2の金属層は、第1の
金属層の表面の周囲部およびコンタクト層の露出部を覆
う場合と、第1の金属層の表面全体およびコンタクト層
の露出部を覆う場合ともを含む。また、第2の手段は、
上記の第1の手段において、第2の金属層のコンタクト
層に対する単位面積当たりの接触抵抗の値を第1の金属
層の値よりも大きくすることである。また、第3の手段
は、上記の第1の手段または第2の手段において、第1
の金属層または第2の金属層を複数の種類の金属により
多層構造に形成することである。また、第4の手段は、
上記の第1の手段乃至第3の手段のいずれか1つにおい
て、第1の金属層を銀(Ag)により形成することであ
る。更に、第5の手段は、上記の第1の手段乃至第4の
手段のいずれか1つにおいて、第2の金属層をバナジウ
ム(V)とアルミニウム(Al)又はチタン(Ti)と
金(Au)により形成することである。これらの手段に
より、上記の課題を解決することができる。
A first means for solving the above problems is a flip chip type light emitting device in which a layer made of a gallium nitride-based compound semiconductor is laminated on a substrate. First connecting to the contact layer of
And a second metal layer covering at least the side surface of the first metal layer and the surface of the contact layer not covered with the first metal layer to form an electrode connected to the contact layer. is there. Note that the second metal layer includes a case where the second metal layer covers the periphery of the surface of the first metal layer and the exposed portion of the contact layer, and a case where the second metal layer covers the entire surface of the first metal layer and the exposed portion of the contact layer. . The second means is:
In the above first means, the value of the contact resistance per unit area of the second metal layer with respect to the contact layer is made larger than the value of the first metal layer. Further, the third means is the first means or the second means,
Is to form a multi-layered structure using a plurality of types of metals. The fourth means is:
In any one of the first to third means, the first metal layer is formed of silver (Ag). Further, a fifth means is the device according to any one of the first to fourth means, wherein the second metal layer is formed of vanadium (V) and aluminum (Al) or titanium (Ti) and gold (Au). ). With these means, the above-mentioned problems can be solved.

【0006】[0006]

【作用および発明の効果】図1に、第1の金属層108
に銀(Ag)を用いた本発明によるフリップチップ型の
発光素子100の断面図を示す。本素子100では、第
1の金属層108が、第2の金属層110に覆われてい
るためマイグレーションが起こらない。よって本素子1
00は、長寿命となる。また、本素子100では、マイ
グレーションが起こらないため幅Dを小さくできるので
第1の金属層108を広く取ることができ、その分光の
反射効率の優れた金属を第1の金属層108に広面積に
渡り使用できる。よって発光強度を向上させることがで
きる。また、本素子100では、幅Dの部分でも第2の
金属層110により光を反射するので、コンタクト層1
07からの光の漏れ出しが殆どなくなり、よって発光強
度を更に向上させることができる。また、本素子100
では、第2の金属層110の幅Dの部分でのコンタクト
層107に対する接触抵抗の方が第1の金属層108の
コンタクト層107に対する接触抵抗よりも大きいた
め、殆どの電流は幅Dの部分を通らず、コンタクト層1
07と金属層108との接触面の方を通る。このため、
光の反射効率の優れた金属を広面積に渡り使用している
金属層108の真上の活性層が発光し、よって発光強度
が良い。更に、本素子100では、幅Dの部分は狭いた
め、コンタクト層107と第2の金属層110とを接合
する際、強い接合強度が要求されるが、図1に示すよう
に第2の金属層110を多層構造とすることで、強い接
合強度を得ることが可能となる。これにより、本素子1
00をマイグレーションが起こらない長寿命な素子にす
ることができる。また、第2の金属層110は、酸素や
水分の第1の金属層108への侵入を防ぎ、第1の金属
層108を腐食させないという効果もある。
FIG. 1 shows the first metal layer 108.
FIG. 1 is a cross-sectional view of a flip-chip type light emitting device 100 according to the present invention using silver (Ag). In the element 100, migration does not occur because the first metal layer 108 is covered with the second metal layer 110. Therefore, this element 1
00 has a long life. Further, in the present element 100, since the migration D does not occur, the width D can be reduced, so that the first metal layer 108 can be widened, and a metal having excellent spectral reflection efficiency can be provided on the first metal layer 108 over a large area. Can be used over. Therefore, the emission intensity can be improved. Further, in the present element 100, since light is reflected by the second metal layer 110 even in the portion having the width D, the contact layer 1
07 hardly leaks out, so that the emission intensity can be further improved. In addition, the present element 100
Then, since the contact resistance of the second metal layer 110 to the contact layer 107 at the portion of the width D is larger than the contact resistance of the first metal layer 108 to the contact layer 107, most of the current flows in the portion of the width D. Contact layer 1 without passing through
07 and the metal layer 108. For this reason,
The active layer immediately above the metal layer 108, which uses a metal having excellent light reflection efficiency over a wide area, emits light, and thus has a high emission intensity. Further, in the present element 100, since the portion having the width D is narrow, a strong bonding strength is required when the contact layer 107 and the second metal layer 110 are bonded. However, as shown in FIG. When the layer 110 has a multilayer structure, strong bonding strength can be obtained. Thereby, the present element 1
00 can be a long-life element in which migration does not occur. The second metal layer 110 also has an effect of preventing oxygen and moisture from entering the first metal layer 108 and preventing the first metal layer 108 from corroding.

【0007】[0007]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。図1は、第1の金属層に銀(Ag)
を用いた本発明によるフリップチップ型の発光素子10
0の断面図である。101は、サファイヤ基板、102
は、AlNバッファ層、103は、n型のGaN層、1
04は、n型のGaNクラッド層、105は、活性層、
106は、p型のAlGaNクラッド層、107は、p
型のGaNコンタクト層、108は、正電極の一部を構
成する第1の金属層であり、銀(Ag)により形成され
ている。109は、負電極であり、110は、正電極の
一部を構成する第2の金属層である。即ち、第2の金属
層110は、バナジウム(V)により形成された金属層
111とアルミニウム(Al)により形成された金属層
112とにより構成されており、接合強度が十分確保で
きるだけの幅Dをもってコンタクト層107と接してい
る。本素子100は、第1の金属層に従来のフリップチ
ップ型の正電極の部材としては用いられていなかった銀
(Ag)を用いているため、コンタクト層107に対す
る接触抵抗が小さく、かつ、図1の上方への光の反射効
率が非常に良いため、発光強度の面で著しく優れている
のが大きな特徴である。なお、第1の金属層108に銀
(Ag)を用いた上記実施例の場合、第1の金属層10
8の膜厚は、約200Å〜1μmの範囲が最も良く、こ
れよりも薄いと光の反射効率が落ち、これよりも厚いと
第2の金属層110により第1の金属層108の側面を
完全に覆うことが困難となり、さらに生産コストの面で
劣る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. FIG. 1 shows that the first metal layer has silver (Ag).
Chip type light emitting device 10 using the present invention
0 is a sectional view. 101 is a sapphire substrate, 102
Is an AlN buffer layer, 103 is an n-type GaN layer, 1
04 is an n-type GaN cladding layer, 105 is an active layer,
106 is a p-type AlGaN cladding layer, and 107 is a p-type AlGaN cladding layer.
The type GaN contact layer 108 is a first metal layer constituting a part of the positive electrode, and is formed of silver (Ag). Reference numeral 109 denotes a negative electrode, and 110 denotes a second metal layer forming a part of the positive electrode. That is, the second metal layer 110 is composed of the metal layer 111 formed of vanadium (V) and the metal layer 112 formed of aluminum (Al), and has a width D that can sufficiently secure the bonding strength. It is in contact with contact layer 107. Since the element 100 uses silver (Ag), which has not been used as a member of the conventional flip-chip type positive electrode, for the first metal layer, the contact resistance to the contact layer 107 is small, and FIG. Since the reflection efficiency of the light upward to 1 is very good, it is a great feature that the light emission intensity is remarkably excellent. In the case of the above-described embodiment using silver (Ag) for the first metal layer 108, the first metal layer 10
8 is most preferably in the range of about 200 ° to 1 μm. If it is thinner than this, the reflection efficiency of light decreases. If it is thicker, the second metal layer 110 completely covers the side surface of the first metal layer 108. It is difficult to cover the surface, and the production cost is inferior.

【0008】図2は、第1の金属層にも多層構造を採用
した本発明によるフリップチップ型の発光素子200の
断面図である。201は、サファイヤ基板、202は、
AlNバッファ層、203は、n型のGaN層、204
は、n型のGaNクラッド層、205は、活性層、20
6は、p型のAlGaNクラッド層、207は、p型の
GaNコンタクト層、208は、正電極の一部を構成す
る第1の金属層であり、膜厚3000Åの銀(Ag)層
208A、膜厚1000Åのニッケル(Ni)層208
B、膜厚1000Åのチタン(Ti)層208Cよりな
る多層構造により形成されている。209は、負電極で
あり、210は、正電極の一部を構成する第2の金属層
である。即ち、第2の金属層210は、チタン(Ti)
により形成された膜厚1000Åの金属層211と金
(Au)により形成された膜厚1.5μmの金属層21
2とにより構成されており、接合強度が十分確保できる
だけの幅Dをもってコンタクト層207と接している。
本素子200は、第1の金属層に膜厚3000Åの銀
(Ag)層208A、膜厚1000Åのニッケル(N
i)層208B、膜厚1000Åのチタン(Ti)層2
08Cよりなる多層構造を採用しているため、コンタク
ト層207に対する接触抵抗が低く、また、第1金属層
の208Cと第2金属層の211を同じ金属とすること
により第1金属層と第2金属層との接合強度が強い点が
優れている。
FIG. 2 is a cross-sectional view of a flip-chip type light emitting device 200 according to the present invention in which a multilayer structure is also used for the first metal layer. 201 is a sapphire substrate, 202 is
AlN buffer layer, 203 is an n-type GaN layer, 204
Is an n-type GaN cladding layer, 205 is an active layer, 20
6 is a p-type AlGaN cladding layer, 207 is a p-type GaN contact layer, 208 is a first metal layer constituting a part of the positive electrode, and is a 3000 mm thick silver (Ag) layer 208A; Nickel (Ni) layer 208 having a thickness of 1000 °
B, a multilayer structure composed of a titanium (Ti) layer 208C having a thickness of 1000 °. 209 is a negative electrode, and 210 is a second metal layer forming a part of the positive electrode. That is, the second metal layer 210 is made of titanium (Ti).
And a metal layer 21 with a thickness of 1.5 μm and made of gold (Au).
2 and is in contact with the contact layer 207 with a width D sufficient to ensure sufficient bonding strength.
In this element 200, the first metal layer has a silver (Ag) layer 208A having a thickness of 3000 .ANG.
i) Layer 208B, titanium (Ti) layer 2 having a thickness of 1000 °
08C, the contact resistance with respect to the contact layer 207 is low, and the first metal layer 208C and the second metal layer 211 are made of the same metal, so that the first metal layer and the second metal layer 211 are formed of the same metal. It is excellent in that the bonding strength with the metal layer is strong.

【0009】上記の実施例においては、第1の金属層の
コンタクト層に面接触する金属層において銀(Ag)を
用いたが、この層に用いる金属は、ニッケル(Ni)、
コバルト(Co)、金(Au)、白金(Pt)であって
もよく、また、これらの合金であってもよい。また、上
記の実施例においては、第2の金属層のコンタクト層に
面接触する金属層においてバナジウム(V)、チタン
(Ti)を用いたが、この層に用いる金属は、クロム
(Cr)、ニオブ(Nb)、亜鉛(Zn)、タンタル
(Ta)、モリブデン(Mo)、タングステン(W)、
ハフニウム(Hf)またはこれらの合金であってもよ
く、一般にn型のGaN層(103、203)に取り付
ける負電極(109、209)と同じものであってもよ
い。また、上記の実施例においては、第2の金属層は、
第1の金属層を完全に覆っているが、第2の金属層は、
第1の金属層を完全に覆っていなくてもよく、最低限第
1の金属層に覆われていないコンタクト層の底面と第1
の金属層の側面とを覆っていればよい。
In the above embodiment, silver (Ag) is used for the metal layer which is in surface contact with the contact layer of the first metal layer, but the metal used for this layer is nickel (Ni),
It may be cobalt (Co), gold (Au), platinum (Pt), or an alloy thereof. Further, in the above embodiment, vanadium (V) and titanium (Ti) are used for the metal layer which is in surface contact with the contact layer of the second metal layer, but the metal used for this layer is chromium (Cr), Niobium (Nb), zinc (Zn), tantalum (Ta), molybdenum (Mo), tungsten (W),
It may be hafnium (Hf) or an alloy thereof, and may be the same as the negative electrode (109, 209) generally attached to the n-type GaN layer (103, 203). Further, in the above embodiment, the second metal layer is
While completely covering the first metal layer, the second metal layer
The first metal layer may not be completely covered, and at least the bottom surface of the contact layer not covered by the first metal layer and the first
What is necessary is just to cover the side surface of the metal layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の金属層に銀(Ag)を用いた本発明によ
るフリップチップ型の発光素子の断面図。
FIG. 1 is a cross-sectional view of a flip-chip type light emitting device according to the present invention using silver (Ag) for a first metal layer.

【図2】第1の金属層にも多層構造を採用した本発明に
よるフリップチップ型の発光素子の断面図。
FIG. 2 is a cross-sectional view of a flip-chip type light emitting device according to the present invention in which a multilayer structure is also used for a first metal layer.

【図3】第1の金属層に銀(Ag)を用いた従来技術に
よるフリップチップ型の発光素子の断面図。
FIG. 3 is a cross-sectional view of a flip-chip type light emitting device according to a conventional technique using silver (Ag) for a first metal layer.

【符号の説明】[Explanation of symbols]

101、201、301…サファイヤ基板 102、202…AlNバッファ層 103、203、302…n型のGaN層 104、204…n型のGaNクラッド層 105、205…活性層 106、206…p型のAlGaNクラッド層 107、207…p型のGaNコンタクト層 108、208…正電極の一部を構成する第1の金属層 303…p型のGaN層 304…正電極 109、209、305…負電極 110、210…正電極の一部を構成する第2の金属層 101, 201, 301: sapphire substrate 102, 202: AlN buffer layer 103, 203, 302: n-type GaN layer 104, 204: n-type GaN cladding layer 105, 205: active layer 106, 206: p-type AlGaN Cladding layers 107, 207: p-type GaN contact layer 108, 208: first metal layer constituting a part of the positive electrode 303: p-type GaN layer 304: positive electrode 109, 209, 305: negative electrode 110; 210: second metal layer constituting a part of the positive electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に窒化ガリウム系化合物半導体か
ら成る層が積層されたフリップチップ型の発光素子にお
いて、 p型半導体側のコンタクト層に接続する第1の金属層
と、この第1の金属層の少なくとも側面及びこの第1の
金属層に覆われていない前記コンタクト層の表面を覆う
第2の金属層とにより前記コンタクト層に接続する電極
を構成することを特徴とする窒化ガリウム系化合物半導
体素子。
A first metal layer connected to a contact layer on a p-type semiconductor side in a flip-chip type light-emitting element in which a layer made of a gallium nitride-based compound semiconductor is laminated on a substrate; A gallium nitride-based compound semiconductor, wherein an electrode connected to the contact layer is constituted by at least a side surface of the layer and a second metal layer covering a surface of the contact layer not covered by the first metal layer. element.
【請求項2】 前記第2の金属層の前記コンタクト層に
対する単位面積当たりの接触抵抗の値は、前記第1の金
属層の前記コンタクト層に対する単位面積当たりの接触
抵抗の値よりも大きいことを特徴とする請求項1に記載
の窒化ガリウム系化合物半導体素子。
2. The value of the contact resistance per unit area of the second metal layer with respect to the contact layer is larger than the value of the contact resistance per unit area of the first metal layer with respect to the contact layer. The gallium nitride-based compound semiconductor device according to claim 1, wherein:
【請求項3】 前記第1の金属層または前記第2の金属
層は、複数の種類の金属により多層構造を成しているこ
とを特徴とする請求項1または請求項2に記載の窒化ガ
リウム系化合物半導体素子。
3. The gallium nitride according to claim 1, wherein the first metal layer or the second metal layer has a multilayer structure made of a plurality of kinds of metals. -Based compound semiconductor devices.
【請求項4】 前記第1の金属層は、銀(Ag)により
形成されている事を特徴とする請求項1乃至請求項3の
いずれか1項に記載の窒化ガリウム系化合物半導体素
子。
4. The gallium nitride based compound semiconductor device according to claim 1, wherein the first metal layer is formed of silver (Ag).
【請求項5】 前記第2の金属層は、バナジウム(V)
とアルミニウム(Al)又はチタン(Ti)と金(A
u)により形成されている事を特徴とする請求項1乃至
請求項4のいずれか1項に記載の窒化ガリウム系化合物
半導体素子。
5. The method according to claim 1, wherein the second metal layer is formed of vanadium (V).
And aluminum (Al) or titanium (Ti) and gold (A
The gallium nitride-based compound semiconductor device according to any one of claims 1 to 4, wherein the gallium nitride-based compound semiconductor device is formed of u).
JP3661998A 1998-02-02 1998-02-02 Gallium nitride compound semiconductor device Pending JPH11220171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3661998A JPH11220171A (en) 1998-02-02 1998-02-02 Gallium nitride compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3661998A JPH11220171A (en) 1998-02-02 1998-02-02 Gallium nitride compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH11220171A true JPH11220171A (en) 1999-08-10

Family

ID=12474829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3661998A Pending JPH11220171A (en) 1998-02-02 1998-02-02 Gallium nitride compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH11220171A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274462A (en) * 2000-03-27 2001-10-05 Aiwa Co Ltd Light emitting device
WO2003007390A1 (en) 2001-07-12 2003-01-23 Nichia Corporation Semiconductor device
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
JP2004260178A (en) * 2003-02-26 2004-09-16 Osram Opto Semiconductors Gmbh Electric contact used for photoelectron semiconductor chip, and method for manufacturing the same
US6794690B2 (en) 2001-09-18 2004-09-21 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
DE10350707A1 (en) * 2003-02-26 2004-11-11 Osram Opto Semiconductors Gmbh Electrical contact for optoelectronic semiconductor chip, has mirror layer containing metal or metal alloy, protective layer, which reduces corrosion of mirror layer, barrier layer, adhesion medium layer and solder layer
US6900472B2 (en) 1997-12-15 2005-05-31 Lumileds Lighting U.S., Llc Semiconductor light emitting device having a silver p-contact
WO2005064697A1 (en) * 2003-12-30 2005-07-14 Itswell Co. Ltd. Light emitting diode with vertical electrode structure and manufacturing method of the same
US6956245B2 (en) 2002-05-31 2005-10-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
WO2006001462A1 (en) * 2004-06-24 2006-01-05 Showa Denko K.K. Reflective positive electrode and gallium nitride-based compound semiconductor light-emitting device using the same
JP2006041403A (en) * 2004-07-29 2006-02-09 Nichia Chem Ind Ltd Semiconductor luminous element
JP2006041498A (en) * 2004-06-24 2006-02-09 Showa Denko Kk Reflective positive electrode and gallium nitride compound semiconductor light emitting device using the same
WO2006043422A1 (en) 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
KR100601992B1 (en) 2005-02-16 2006-07-18 삼성전기주식회사 Reflective electrode and compound semiconductor light emitting device including the same
JP2006245231A (en) * 2005-03-02 2006-09-14 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2006245230A (en) * 2005-03-02 2006-09-14 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2006245232A (en) * 2005-03-02 2006-09-14 Nichia Chem Ind Ltd Semiconductor light-emitting device
JP2006313888A (en) * 2005-05-03 2006-11-16 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element and its manufacturing method
US7141825B2 (en) 2004-03-29 2006-11-28 Stanley Electric Co., Ltd. Semiconductor light emitting device capable of suppressing silver migration of reflection film made of silver
JP2007013045A (en) * 2005-07-04 2007-01-18 Showa Denko Kk Gallium nitride group compound semiconductor light emitting element
JP2007027539A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and illuminator using same
JP2007035735A (en) * 2005-07-25 2007-02-08 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and lighting system using the same
WO2007015537A1 (en) * 2005-08-04 2007-02-08 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
JP2007081089A (en) * 2005-09-14 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element
JP2007080924A (en) * 2005-09-12 2007-03-29 Showa Denko Kk Manufacturing method of semiconductor light emitting element
JP2007311764A (en) * 2006-04-17 2007-11-29 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2007335793A (en) * 2006-06-19 2007-12-27 Sanken Electric Co Ltd Semiconductor light emitting device and its manufacturing method
JP2008140841A (en) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd Light-emitting element
EP1646093A3 (en) * 2004-10-07 2008-10-22 Samsung Electronics Co., Ltd. Reflective electrode and compound semiconductor light emitting device including the same
US7479663B2 (en) 2005-09-12 2009-01-20 Showa Denko K.K. Gallium nitride-based semiconductor light emitting device and process for its production
JP2009065182A (en) * 2002-09-30 2009-03-26 Osram Opto Semiconductors Gmbh Method of manufacturing semiconductor element
US7646036B2 (en) 2007-02-05 2010-01-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Electrode and Group III nitride-based compound semiconductor light-emitting device having the electrode
WO2010017793A1 (en) * 2008-08-12 2010-02-18 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
US7691656B2 (en) 2000-10-17 2010-04-06 Osram Gmbh Method for fabricating a semiconductor component based on GaN
US7736924B2 (en) 2006-10-18 2010-06-15 Samsung Electro-Mechanics Co., Ltd. Multiple reflection layer electrode, compound semiconductor light emitting device having the same and methods of fabricating the same
US7795144B2 (en) 2007-06-06 2010-09-14 Sony Corporation Method for forming electrode structure for use in light emitting device and method for forming stacked structure
JP2012028662A (en) * 2010-07-27 2012-02-09 Denki Kagaku Kogyo Kk Light emitting member and use thereof
US20120049152A1 (en) * 2010-08-31 2012-03-01 Micron Technology, Inc. Solid state lighting devices with low contact resistance and methods of manufacturing
JP4940363B1 (en) * 2011-02-28 2012-05-30 株式会社東芝 Semiconductor light emitting device and semiconductor light emitting device
JP2012248795A (en) * 2011-05-31 2012-12-13 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
JP2013012781A (en) * 1999-12-03 2013-01-17 Cree Inc Light-emitting diodes with enhanced light extraction through use of internal and external optical elements
WO2013190656A1 (en) * 2012-06-20 2013-12-27 パイオニア株式会社 Organic electroluminescence element
CN103682027A (en) * 2012-09-26 2014-03-26 奇力光电科技股份有限公司 Light emitting device and method for manufacturing the same
US8835954B2 (en) 2011-03-08 2014-09-16 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
JP2014527313A (en) * 2011-09-16 2014-10-09 ソウル バイオシス カンパニー リミテッド Light emitting diode and method of manufacturing the same
US8860067B2 (en) 2010-12-08 2014-10-14 Stanley Electric Co., Ltd. Semiconductor light emitting device
US9368689B2 (en) 2012-10-24 2016-06-14 Stanley Electric Co., Ltd. Light emitting element
JP2016195275A (en) * 2016-07-21 2016-11-17 日亜化学工業株式会社 Semiconductor light emitting element

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900472B2 (en) 1997-12-15 2005-05-31 Lumileds Lighting U.S., Llc Semiconductor light emitting device having a silver p-contact
US7262436B2 (en) 1997-12-15 2007-08-28 Philips Lumileds Lighting Company, Llc III-nitride semiconductor light emitting device having a silver p-contact
JP2013012781A (en) * 1999-12-03 2013-01-17 Cree Inc Light-emitting diodes with enhanced light extraction through use of internal and external optical elements
JP2001274462A (en) * 2000-03-27 2001-10-05 Aiwa Co Ltd Light emitting device
US7691656B2 (en) 2000-10-17 2010-04-06 Osram Gmbh Method for fabricating a semiconductor component based on GaN
WO2003007390A1 (en) 2001-07-12 2003-01-23 Nichia Corporation Semiconductor device
EP1406314A1 (en) * 2001-07-12 2004-04-07 Nichia Corporation Semiconductor device
EP1406314A4 (en) * 2001-07-12 2007-09-12 Nichia Corp Semiconductor device
US6977395B2 (en) 2001-07-12 2005-12-20 Nichia Corporation Semiconductor device
US6794690B2 (en) 2001-09-18 2004-09-21 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
US6956245B2 (en) 2002-05-31 2005-10-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
JP2009065182A (en) * 2002-09-30 2009-03-26 Osram Opto Semiconductors Gmbh Method of manufacturing semiconductor element
US7696078B2 (en) 2003-02-26 2010-04-13 Osram Opto Semiconductors Gmbh Method for producing an electrical contact for an optoelectronic semiconductor chip
US7164158B2 (en) 2003-02-26 2007-01-16 Osram Opto Semiconductors Gmbh Electrical contact for optoelectronic semiconductor chip and method for its production
DE10350707B4 (en) * 2003-02-26 2014-02-13 Osram Opto Semiconductors Gmbh Electrical contact for optoelectronic semiconductor chip and method for its production
JP2004260178A (en) * 2003-02-26 2004-09-16 Osram Opto Semiconductors Gmbh Electric contact used for photoelectron semiconductor chip, and method for manufacturing the same
DE10350707A1 (en) * 2003-02-26 2004-11-11 Osram Opto Semiconductors Gmbh Electrical contact for optoelectronic semiconductor chip, has mirror layer containing metal or metal alloy, protective layer, which reduces corrosion of mirror layer, barrier layer, adhesion medium layer and solder layer
KR100613273B1 (en) * 2003-12-30 2006-08-18 주식회사 이츠웰 Light emitting diode with vertical electrode structure and manufacturing method of the same
WO2005064697A1 (en) * 2003-12-30 2005-07-14 Itswell Co. Ltd. Light emitting diode with vertical electrode structure and manufacturing method of the same
US7141825B2 (en) 2004-03-29 2006-11-28 Stanley Electric Co., Ltd. Semiconductor light emitting device capable of suppressing silver migration of reflection film made of silver
JP2006041498A (en) * 2004-06-24 2006-02-09 Showa Denko Kk Reflective positive electrode and gallium nitride compound semiconductor light emitting device using the same
WO2006001462A1 (en) * 2004-06-24 2006-01-05 Showa Denko K.K. Reflective positive electrode and gallium nitride-based compound semiconductor light-emitting device using the same
JP2006041403A (en) * 2004-07-29 2006-02-09 Nichia Chem Ind Ltd Semiconductor luminous element
EP1646093A3 (en) * 2004-10-07 2008-10-22 Samsung Electronics Co., Ltd. Reflective electrode and compound semiconductor light emitting device including the same
US7973325B2 (en) 2004-10-07 2011-07-05 Samsung Electronics Co., Ltd. Reflective electrode and compound semiconductor light emitting device including the same
JPWO2006043422A1 (en) * 2004-10-19 2008-08-07 日亜化学工業株式会社 Semiconductor element
WO2006043422A1 (en) 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
US7436066B2 (en) 2004-10-19 2008-10-14 Nichia Corporation Semiconductor element
KR100601992B1 (en) 2005-02-16 2006-07-18 삼성전기주식회사 Reflective electrode and compound semiconductor light emitting device including the same
JP2006245230A (en) * 2005-03-02 2006-09-14 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2006245232A (en) * 2005-03-02 2006-09-14 Nichia Chem Ind Ltd Semiconductor light-emitting device
JP2006245231A (en) * 2005-03-02 2006-09-14 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2006313888A (en) * 2005-05-03 2006-11-16 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element and its manufacturing method
JP2007013045A (en) * 2005-07-04 2007-01-18 Showa Denko Kk Gallium nitride group compound semiconductor light emitting element
JP2007027539A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and illuminator using same
JP2007035735A (en) * 2005-07-25 2007-02-08 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and lighting system using the same
US8093605B2 (en) 2005-08-04 2012-01-10 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device with an electrode covered by an over-coating layer
WO2007015537A1 (en) * 2005-08-04 2007-02-08 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
EP1911105A1 (en) * 2005-08-04 2008-04-16 Showa Denko Kabushiki Kaisha Gallium nitride-based compound semiconductor light-emitting device
JP2007042952A (en) * 2005-08-04 2007-02-15 Showa Denko Kk Gallium nitride based compound semiconductor light emitting element
KR100955007B1 (en) 2005-08-04 2010-04-27 쇼와 덴코 가부시키가이샤 Gallium nitride-based compound semiconductor light-emitting device
EP1911105A4 (en) * 2005-08-04 2011-05-25 Showa Denko Kk Gallium nitride-based compound semiconductor light-emitting device
US7479663B2 (en) 2005-09-12 2009-01-20 Showa Denko K.K. Gallium nitride-based semiconductor light emitting device and process for its production
JP2007080924A (en) * 2005-09-12 2007-03-29 Showa Denko Kk Manufacturing method of semiconductor light emitting element
JP2007081089A (en) * 2005-09-14 2007-03-29 Showa Denko Kk Nitride-based semiconductor light-emitting element
JP2007311764A (en) * 2006-04-17 2007-11-29 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2007335793A (en) * 2006-06-19 2007-12-27 Sanken Electric Co Ltd Semiconductor light emitting device and its manufacturing method
US7737456B2 (en) 2006-10-18 2010-06-15 Samsung Electro-Mechanics Co., Ltd. Multiple reflection layer electrode, compound semiconductor light emitting device having the same and methods of fabricating the same
US7736924B2 (en) 2006-10-18 2010-06-15 Samsung Electro-Mechanics Co., Ltd. Multiple reflection layer electrode, compound semiconductor light emitting device having the same and methods of fabricating the same
JP2008140841A (en) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd Light-emitting element
US7646036B2 (en) 2007-02-05 2010-01-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Electrode and Group III nitride-based compound semiconductor light-emitting device having the electrode
US7795144B2 (en) 2007-06-06 2010-09-14 Sony Corporation Method for forming electrode structure for use in light emitting device and method for forming stacked structure
WO2010017793A1 (en) * 2008-08-12 2010-02-18 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2012028662A (en) * 2010-07-27 2012-02-09 Denki Kagaku Kogyo Kk Light emitting member and use thereof
US20120049152A1 (en) * 2010-08-31 2012-03-01 Micron Technology, Inc. Solid state lighting devices with low contact resistance and methods of manufacturing
US9059377B2 (en) 2010-08-31 2015-06-16 Micron Technology, Inc. Solid state lighting devices with low contact resistance and methods of manufacturing
US8536595B2 (en) * 2010-08-31 2013-09-17 Micron Technology, Inc. Solid state lighting devices with low contact resistance and methods of manufacturing
US8860067B2 (en) 2010-12-08 2014-10-14 Stanley Electric Co., Ltd. Semiconductor light emitting device
JP4940363B1 (en) * 2011-02-28 2012-05-30 株式会社東芝 Semiconductor light emitting device and semiconductor light emitting device
US8921886B2 (en) 2011-02-28 2014-12-30 Kabushiki Kaisha Toshiba Semiconductor light emitting device, semiconductor light emitting apparatus, and method for manufacturing semiconductor light emitting device
US9373753B2 (en) 2011-02-28 2016-06-21 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor light emitting device
US8835954B2 (en) 2011-03-08 2014-09-16 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
US9142728B2 (en) 2011-03-08 2015-09-22 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
JP2012248795A (en) * 2011-05-31 2012-12-13 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
JP2014527313A (en) * 2011-09-16 2014-10-09 ソウル バイオシス カンパニー リミテッド Light emitting diode and method of manufacturing the same
WO2013190656A1 (en) * 2012-06-20 2013-12-27 パイオニア株式会社 Organic electroluminescence element
CN103682027A (en) * 2012-09-26 2014-03-26 奇力光电科技股份有限公司 Light emitting device and method for manufacturing the same
US9368689B2 (en) 2012-10-24 2016-06-14 Stanley Electric Co., Ltd. Light emitting element
JP2016195275A (en) * 2016-07-21 2016-11-17 日亜化学工業株式会社 Semiconductor light emitting element

Similar Documents

Publication Publication Date Title
JPH11220171A (en) Gallium nitride compound semiconductor device
JP4946195B2 (en) Semiconductor light emitting device and manufacturing method thereof
US7405431B2 (en) Light-emitting semiconductor device having an overvoltage protector
TW546856B (en) III nitride compound semiconductor light-emitting device
JP5045336B2 (en) Semiconductor light emitting device
JP5162909B2 (en) Semiconductor light emitting device
US8604502B2 (en) Light emitting diodes including barrier sublayers
KR101546929B1 (en) Light emitting diode and led module having the same
KR100386543B1 (en) Semiconductor light emitting device
US8569784B2 (en) Light emitting device and method for manufacturing the same
JP5195452B2 (en) Light emitting element
JP2001217456A (en) Gallium nitride system compound semiconductor light- emitting device
JP4449405B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JPH11191641A (en) Semiconductor light-emitting element, semiconductor light-emitting device using the same and manufacture thereof
JP2000036619A (en) Iii nitride compound semiconductor light emitting element
US9054276B2 (en) Semiconductor light-emitting device
JPH0864871A (en) Gallium nitride compound semiconductor element
JP2000183400A (en) Iii nitride compound semiconductor light-emitting element
JP3916011B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same
JP5169397B2 (en) Semiconductor light emitting element and semiconductor light emitting device using the same
JP2000091638A (en) Gallium nitride compound semiconductor light emitting element
JP3582349B2 (en) Gallium nitride based compound semiconductor device
JP2007149881A (en) Semiconductor light-emitting element and light-emitting device
KR20220086167A (en) Semiconductor light emitting device
JP3342336B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803