JP2000183400A - Iii nitride compound semiconductor light-emitting element - Google Patents

Iii nitride compound semiconductor light-emitting element

Info

Publication number
JP2000183400A
JP2000183400A JP35854998A JP35854998A JP2000183400A JP 2000183400 A JP2000183400 A JP 2000183400A JP 35854998 A JP35854998 A JP 35854998A JP 35854998 A JP35854998 A JP 35854998A JP 2000183400 A JP2000183400 A JP 2000183400A
Authority
JP
Japan
Prior art keywords
metal layer
layer
light emitting
emitting element
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35854998A
Other languages
Japanese (ja)
Other versions
JP3847477B2 (en
Inventor
Toshiya Kamimura
俊也 上村
Shigemi Horiuchi
茂美 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP35854998A priority Critical patent/JP3847477B2/en
Priority to DE19921987A priority patent/DE19921987B4/en
Priority to TW88107776A priority patent/TW419836B/en
Priority to US09/559,273 priority patent/US6936859B1/en
Publication of JP2000183400A publication Critical patent/JP2000183400A/en
Priority to US10/864,495 priority patent/US7109529B2/en
Application granted granted Critical
Publication of JP3847477B2 publication Critical patent/JP3847477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element of high brightness and durability and to simplify the configuration of an electrode. SOLUTION: In a flip-chip III nitride compound semiconductor light-emitting element, a multiplex thick-film positive electrode 120 which connected to a p-type semiconductor layer, reflects light toward a sapphire substrate side comprises, a first metal layer 11 comprising rhodium(Rh), platinum(Pt), or an alloy of them, a second metal layer 112 of gold (Au), and a third metal layer 113 of titanium(Ti) or chromium(Cr). Thus, a positive electrode of high reflectivity is provided. The multiplex thick-film positive electrode 120 does not corrode with infiltration of water content, etc., for superior durability. Thus, a region a which covers a protective layer 130 is less, the configuration of electrode is simplified, providing a light-emitting element which requires no wire bonding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上にIII族窒
化物系化合物半導体から成る層が積層されたフリップチ
ップ型の発光素子に関し、特に高光度で、駆動電圧の低
いフリップチップ型の発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flip-chip type light emitting device in which a layer made of a group III nitride compound semiconductor is laminated on a substrate, and more particularly to a flip-chip type light emitting device having a high luminous intensity and a low driving voltage. Related to the element.

【0002】[0002]

【従来の技術】図5に、フリップチップ型の発光素子9
10の断面図を示す。101はサファイヤ基板、102
はAlNバッファ層、103はn型のGaN層、104は発光
層、105はp型のAlGaN層、106はp型のGaN層、1
91は正電極、130は保護膜、140は負電極であ
る。また、p型層106に接続されている厚膜の正電極
191は、従来例えば、ニッケル(Ni)又はコバルト(Co)
より成る膜厚3000Åの金属層により形成されている。
2. Description of the Related Art FIG.
10 shows a sectional view. 101 is a sapphire substrate, 102
Is an AlN buffer layer, 103 is an n-type GaN layer, 104 is a light-emitting layer, 105 is a p-type AlGaN layer, 106 is a p-type GaN layer, 1
91 is a positive electrode, 130 is a protective film, and 140 is a negative electrode. Further, a thick positive electrode 191 connected to the p-type layer 106 is conventionally formed of, for example, nickel (Ni) or cobalt (Co).
It is formed of a metal layer having a thickness of 3000 mm.

【0003】また、透過性の金属薄膜電極とパッド電極
を正電極とする発光素子920の断面図を図6に示す。
III族窒化物系半導体の積層構造は図5の発光素子91
0と同様であるが、透光性の金属薄膜電極192、パッ
ド電極193を正電極としている。図6の発光素子92
0は金属薄膜電極192が透光性であるため、フリップ
チップ型の発光素子とするためには発光素子を覆う外部
部材により、金属薄膜電極192を透過した光を所望の
方向に反射する必要がある。
FIG. 6 is a cross-sectional view of a light emitting device 920 having a transparent metal thin film electrode and a pad electrode as positive electrodes.
The stacked structure of the group III nitride-based semiconductor has a light emitting element 91 shown in FIG.
0, but the translucent metal thin film electrode 192 and the pad electrode 193 are positive electrodes. Light emitting device 92 in FIG.
Reference numeral 0 denotes that the metal thin-film electrode 192 is translucent. Therefore, in order to form a flip-chip light-emitting element, light transmitted through the metal thin-film electrode 192 needs to be reflected in a desired direction by an external member covering the light-emitting element. is there.

【0004】[0004]

【発明が解決しようとする課題】図5のフリップチップ
型の発光素子910においては、発光層104より放出
された光をサファイヤ基板101の側に十分に反射させ
るために、通常フリップチップ型の正電極120には厚
膜の金属電極を用いる。しかし、従来技術においては、
この厚膜の正電極120にニッケル(Ni)やコバルト(Co)
などの金属が用いられていたため、波長が380nm〜550nm
(青紫、青、緑)の可視光の反射量が十分ではなく、発
光素子として十分な発光強度が確保できていなかった。
また、図6の発光素子920は、金属薄膜電極192に
少なからず光が吸収され、発光素子としての効率が好ま
しくなかった。
In the flip chip type light emitting element 910 shown in FIG. 5, in order to sufficiently reflect the light emitted from the light emitting layer 104 toward the sapphire substrate 101, a normal flip chip type light emitting element 910 is used. As the electrode 120, a thick metal electrode is used. However, in the prior art,
Nickel (Ni) or cobalt (Co) is applied to this thick film positive electrode 120.
Since the metal was used, the wavelength is 380nm ~ 550nm
The amount of reflected (blue-violet, blue, green) visible light was not sufficient, and a sufficient luminous intensity as a light-emitting element could not be secured.
Further, in the light emitting element 920 of FIG. 6, light was absorbed by the metal thin film electrode 192 to a considerable extent, and the efficiency of the light emitting element was not favorable.

【0005】本発明は、上記の課題を解決するために成
されたものであり、その目的は、高光度かつ高耐久性の
発光素子を提供することである。また、他の目的は、高
反射率かつ高耐久性の厚膜電極を形成することにより、
発光素子の電極部分の構成を簡略化し、ワイヤボンディ
ングの不要な発光素子を提供することである。
[0005] The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a light emitting element having high luminous intensity and high durability. Another purpose is to form a high-reflectance and high-durability thick-film electrode,
An object of the present invention is to provide a light emitting element which does not require wire bonding by simplifying the configuration of an electrode portion of the light emitting element.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めには、以下の手段が有効である。即ち、第1の手段
は、基板上にIII族窒化物系化合物半導体から成る層が
積層されたフリップチップ型の発光素子であって、p型
半導体層上にその大部分を覆うよう形成された、光を基
板側へ反射する多重厚膜正電極を有するIII族窒化物系
化合物半導体発光素子において、p型半導体層に接する
第1金属層をロジウム(Rh)、白金(Pt)、又は、これらの
金属を少なくとも1種類以上含んだ合金より形成したこ
とを特徴とする。
In order to solve the above-mentioned problems, the following means are effective. That is, the first means is a flip-chip type light emitting element in which a layer made of a group III nitride compound semiconductor is laminated on a substrate, and is formed on a p-type semiconductor layer so as to cover most of the element. In a group III nitride compound semiconductor light emitting device having a multi-thick film positive electrode that reflects light to the substrate side, the first metal layer in contact with the p-type semiconductor layer is rhodium (Rh), platinum (Pt), or Characterized in that it is formed from an alloy containing at least one kind of metal.

【0007】また、第2の手段は、第1の手段におい
て、第1金属層の膜厚が0.01〜5μmであることを特徴と
する。第1金属層の膜厚は望ましくは0.02〜2μmであ
り、より望ましくは0.05〜1μmである。
A second means is the first means, wherein the thickness of the first metal layer is 0.01 to 5 μm. The thickness of the first metal layer is preferably 0.02 to 2 μm, and more preferably 0.05 to 1 μm.

【0008】また、第3の手段は、上記のような第1金
属層の上に金(Au)から成る第2金属層を形成したことを
特徴とする。また、第4の手段は第2金属層の膜厚が0.
1〜5μmであることを特徴とする。第2金属層の膜厚は
望ましくは0.2〜3μmであり、より望ましくは0.5〜2μm
である。
The third means is characterized in that a second metal layer made of gold (Au) is formed on the first metal layer as described above. In the fourth means, the thickness of the second metal layer is set to 0.
It is 1 to 5 μm. The thickness of the second metal layer is preferably 0.2 to 3 μm, more preferably 0.5 to 2 μm
It is.

【0009】また、 第5の手段は、上記のような 第2
金属層の上にチタン(Ti)又はクロム(Cr)から成る第3金
属層を形成したことを特徴とする。更に、第6の手段は
第3金属層の膜厚が5〜1000Åであることを特徴とす
る。第3金属層の膜厚は望ましくは10〜500Åであり、
より望ましくは15〜100Åである。以上の手段により、
上記の課題を解決することができる。
Further, the fifth means is the second means as described above.
A third metal layer made of titanium (Ti) or chromium (Cr) is formed on the metal layer. Further, the sixth means is characterized in that the thickness of the third metal layer is 5 to 1000 °. The thickness of the third metal layer is desirably 10 to 500 °,
More preferably, it is 15 to 100 °. By the above means,
The above problem can be solved.

【0010】[0010]

【作用および発明の効果】ロジウム(Rh)及び白金(Pt)
は、波長が380nm〜550nm(青紫、青、緑)の可視光に対
する光の反射率Rが非常に大きい金属(0.6<R<1.0)
であるため、これらの金属、又は、これらの金属を少な
くとも1種類以上含んだ合金を、多重厚膜正電極のp層
に接する第1金属層として用いることにより、これらの
可視光の電極による反射量を十分大きくすることがで
き、よって、発光素子として十分な発光強度を確保する
ことができるようになる。
[Action and effect of the invention] Rhodium (Rh) and platinum (Pt)
Is a metal (0.6 <R <1.0) having a very large light reflectance R with respect to visible light having a wavelength of 380 nm to 550 nm (blue violet, blue, and green).
Therefore, by using these metals or an alloy containing at least one of these metals as the first metal layer in contact with the p-layer of the multi-thick film positive electrode, reflection of these visible light by the electrode can be achieved. The amount can be made sufficiently large, so that a sufficient light emission intensity as a light emitting element can be secured.

【0011】また、上記の金属又は合金は、仕事関数が
大きい等の理由により、p型半導体層との接触抵抗が小
さいので、これらの金属を用いれば、同時に低駆動電圧
の発光素子を実現することができる。また、上記の金属
は、貴金属若しくは白金族元素であるため、これらの金
属を用いれば、水分等に対する耐蝕性が良好となり、信
頼性の高い電極を形成することができるという効果も同
時に得られる。
In addition, since the above metals or alloys have low contact resistance with the p-type semiconductor layer due to a large work function and the like, the use of these metals simultaneously realizes a light emitting element with a low driving voltage. be able to. In addition, since the above-mentioned metals are noble metals or platinum group elements, the use of these metals improves the corrosion resistance against moisture and the like, and also has the effect of forming a highly reliable electrode.

【0012】この第1金属層の膜厚は、0.01μm以上、5
μm以下が良い。この膜厚を0.01μm以下にすると膜厚が
薄すぎて、反射されない透過光を生じ、この膜厚を5μm
以上にすると、電極形成に多大な時間を要することとな
り、好ましくない。
The thickness of the first metal layer is 0.01 μm or more,
μm or less is good. When this film thickness is 0.01 μm or less, the film thickness is too thin, and the transmitted light that is not reflected is generated.
This is not preferable because it takes a lot of time to form the electrodes.

【0013】また、金(Au)から成る第2金属層を設ける
ことにより、正電極の抵抗値を上げることなく厚膜正電
極とすることができる。また、金(Au)はロジウム(Rh)又
は白金(Pt)程ではないものの、光の反射率Rが大きい金
属であるので、この点でも第1金属層の働きを補うこと
ができる。この第2金属層の膜厚は、0.1μm以上5μm以
下であることが望ましい。0.1μm以下にすると膜厚が薄
すぎて効果が薄く、この膜厚を5μm以上にすると、電極
形成に多大な時間を要することとなり、また、後述する
加工工程における都合により負電極の膜厚も不必要に厚
くすることになり、好ましくない。
By providing the second metal layer made of gold (Au), a thick positive electrode can be obtained without increasing the resistance of the positive electrode. In addition, although gold (Au) is a metal having a large light reflectance R, although not as large as rhodium (Rh) or platinum (Pt), the function of the first metal layer can be supplemented also in this regard. The thickness of the second metal layer is desirably 0.1 μm or more and 5 μm or less. When the thickness is less than 0.1 μm, the thickness is too thin and the effect is small.When the thickness is 5 μm or more, a large amount of time is required for forming an electrode. Unnecessarily thickening is not preferred.

【0014】また、チタン(Ti)又はクロム(Cr)から成る
第3金属層を設けることにより、基板面の反対側に並ぶ
正電極と負電極との間に、例えば酸化珪素膜(SiO2)、窒
化珪素膜(SiNx)、或いはポリイミドから成る絶縁層を設
けた際、絶縁層の正電極からの剥離を抑えることができ
る。これにより、後述する加工工程におけるバンプを形
成する際にバンプ材により短絡が発生することを防ぐこ
とができる。この第3薄膜金属層の膜厚は、5Å以上、1
000Å以下が良い。この膜厚を5Å以下にすると、膜厚が
薄すぎて絶縁層との強固な密着性を得ることができず、
1000Å以上にするとバンプ材や金ボール等の接続部材と
の強固な密着性を得ることができなくなるため、好まし
くない。
Further, by providing a third metal layer made of titanium (Ti) or chromium (Cr), for example, a silicon oxide film (SiO 2 ) is provided between the positive electrode and the negative electrode arranged on the opposite side of the substrate surface. When an insulating layer made of a silicon nitride film (SiN x ) or polyimide is provided, peeling of the insulating layer from the positive electrode can be suppressed. This can prevent a short circuit from occurring due to the bump material when forming a bump in a processing step described later. The thickness of the third thin film metal layer is 5 mm or more, 1
000 良 い or less is good. If the thickness is less than 5 mm, the thickness is too thin to obtain a strong adhesion with the insulating layer,
If it is more than 1000 mm, it is not preferable because strong adhesion to a connecting member such as a bump material or a gold ball cannot be obtained.

【0015】以上のような構成により形成された多重厚
膜正電極は、光の反射率が高く、水分等の浸入に対して
も耐久性が高いので、保護層を簡略化でき、結果ワイヤ
ボンディングを使用しないで外部電極と接続することも
可能となる。
The multi-thick film positive electrode formed as described above has a high light reflectivity and a high durability against penetration of moisture and the like, so that the protective layer can be simplified, and as a result, wire bonding can be performed. It is also possible to connect to an external electrode without using.

【0016】[0016]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。なお、本発明は、以下の実施例に限
定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. Note that the present invention is not limited to the following embodiments.

【0017】(第1実施例)図1に、本発明によるフリ
ップチップ型の半導体発光素子100の模式的断面図を
示す。サファイヤ基板101の上には窒化アルミニウム
(AlN)から成る膜厚約200Åのバッファ層102が設けら
れ、その上にシリコン(Si)ドープのGaNから成る膜厚約
4.0μmの高キャリア濃度n+層103が形成されてい
る。そして、層103の上にGaNとGa0.8In0.2Nからなる
多重量子井戸構造(MQW)の発光層104が形成され
ている。発光層104の上にはマグネシウム(Mg)ドープ
のAl0.15Ga0.85Nから成る膜厚約600Åのp型層105が
形成されている。さらに、p型層105の上にはマグネ
シウム(Mg)ドープのGaNから成る膜厚約1500Åのp型層
106が形成されている。
(First Embodiment) FIG. 1 is a schematic sectional view of a flip-chip type semiconductor light emitting device 100 according to the present invention. Aluminum nitride on sapphire substrate 101
A buffer layer 102 having a thickness of about 200 ° made of (AlN) is provided, and a buffer layer 102 made of GaN doped with silicon (Si) is formed thereon.
A high carrier concentration n + layer 103 of 4.0 μm is formed. A light emitting layer 104 having a multiple quantum well structure (MQW) made of GaN and Ga 0.8 In 0.2 N is formed on the layer 103. On the light emitting layer 104, a p-type layer 105 made of magnesium (Mg) doped Al 0.15 Ga 0.85 N and having a thickness of about 600 ° is formed. Further, on the p-type layer 105, a p-type layer 106 made of magnesium (Mg) -doped GaN and having a thickness of about 1500 ° is formed.

【0018】また、p型層106の上には金属蒸着によ
る多重厚膜電極120が、n+層103上には負電極1
40が形成されている。多重厚膜電極120は、p型層
106に接合する第1金属層111、第1金属層111
の上部に形成される第2金属層112、更に第2金属層
112の上部に形成される第3金属層113の3層構造
である。
On the p-type layer 106, a multi-thick film electrode 120 formed by metal deposition, and on the n + layer 103, a negative electrode 1
40 are formed. The multi-thick film electrode 120 includes a first metal layer 111 and a first metal layer 111 bonded to the p-type layer 106.
2 has a three-layer structure of a second metal layer 112 formed on the top of the first metal layer 112 and a third metal layer 113 formed on the second metal layer 112.

【0019】第1金属層111は、p型層106に接合
する膜厚約0.3μmのロジウム(Rh)又は白金(Pt)より成る
金属層である。また、第2金属層112は、膜厚約1.2
μmの金(Au)より成る金属層である。また、第3金属層
113は、膜厚約30Åのチタン(Ti)より成る金属層であ
る。
The first metal layer 111 is a metal layer made of rhodium (Rh) or platinum (Pt) having a thickness of about 0.3 μm and joined to the p-type layer 106. The second metal layer 112 has a thickness of about 1.2
A metal layer made of μm gold (Au). The third metal layer 113 is a metal layer made of titanium (Ti) having a thickness of about 30 °.

【0020】2層構造の負電極140は、膜厚約175Å
のバナジウム(V)層141と、膜厚約1.8μmのアルミニ
ウム(Al)層142とを高キャリア濃度n+層103の一
部露出された部分の上から順次積層させることにより構
成されている。
The negative electrode 140 having a two-layer structure has a thickness of about 175 °.
Is formed by sequentially laminating a vanadium (V) layer 141 and an aluminum (Al) layer 142 having a thickness of about 1.8 μm from a part of the high carrier concentration n + layer 103 which is partially exposed.

【0021】このように形成された多重厚膜正電極12
0と負電極140との間にはSiO2膜より成る保護膜13
0が形成されている。保護層130は、負電極140を
形成するために露出したn+層103から、エッチング
されて露出した、発光層104の側面、p型層105の
側面、及びp型層106の側面及び上面の一部、第1金
属層111、第2金属層112の側面、第3金属層11
3の上面の一部を覆っている。SiO2膜より成る保護膜1
30の第3金属層113を覆う部分の厚さは0.5μmであ
る。
The thus formed multi-thick film positive electrode 12
Protective film 13 made of a SiO 2 film between
0 is formed. The protective layer 130 is formed by etching the side surface of the light emitting layer 104, the side surface of the p-type layer 105, and the side surface and the upper surface of the p-type layer 106, which are exposed by etching from the n + layer 103 exposed to form the negative electrode 140. Part of the first metal layer 111, side surfaces of the second metal layer 112, the third metal layer 11
3 is partially covered. Protective film 1 made of SiO 2 film
The thickness of the portion covering the third metal layer 113 is 0.5 μm.

【0022】上記のように、多重厚膜正電極120をロ
ジウム(Rh)又は白金(Pt)より成る第1金属層、金(Au)よ
り成る第2金属層、チタン(Ti)より成る第3金属層によ
り構成した、発光素子100の発光光度を測定し、従来
の発光素子910と比較した。結果を図2に示す。ここ
から、従来技術による発光素子910に比較し、本発明
により約60%〜90%発光光度を向上することができた。
As described above, the multi-thick positive electrode 120 is composed of the first metal layer made of rhodium (Rh) or platinum (Pt), the second metal layer made of gold (Au), and the third metal layer made of titanium (Ti). The luminous intensity of the light-emitting element 100 composed of a metal layer was measured and compared with the conventional light-emitting element 910. The results are shown in FIG. From this, it was possible to improve the luminous intensity by about 60% to 90% according to the present invention as compared with the light emitting device 910 according to the prior art.

【0023】次に、発光素子100の発光光度の経時変
化を測定し、従来の発光素子910と比較した。結果を
図3に示す。ここから、従来技術による発光素子910
が100時間後に初期発光光度の80%、1000時間後に初期
発光光度の70%まで発光光度が低下するのに対し、本発
明の発光素子100は100時間後に初期発光光度の95
%、1000時間後に初期発光光度の90%の発光光度を保
持することができた。即ち、本発明により、従来の発光
素子910に比較し、著しく耐久性の向上した発光素子
とすることができた。
Next, the change over time in the luminous intensity of the light emitting element 100 was measured and compared with the conventional light emitting element 910. The results are shown in FIG. From here, the light emitting device 910 according to the prior art
The light-emitting intensity of the light-emitting element 100 of the present invention decreases to 80% of the initial light-emitting intensity after 100 hours and to 70% of the initial light-emitting intensity after 100 hours.
%, And after 100 hours, a luminous intensity of 90% of the initial luminous intensity could be maintained. That is, according to the present invention, a light-emitting element with significantly improved durability as compared with the conventional light-emitting element 910 can be obtained.

【0024】(応用例)このような構成のフリップチッ
プ型発光素子100は、高い発光光度と高い耐久性を持
ち合わせており、保護層130を大幅に省略でき、外部
電極との接続に際し、正電極、負電極とも広い面積を使
用することができる。図4に、本発明にかかる発光素子
100の具体的な応用例である、発光素子200の平面
図を示す。図4の発光素子200は、図1の発光素子1
00とほぼ同一の構成であり、同一の符号を記載した。
発光素子200は、上面面積の10%以上を負電極、40%
以上を正電極とできるので、外部電極との接続はワイヤ
ボンディングに限定されない。一例としては、ハンダ等
によるバンプ形成、あるいは金ボールを直接正電極、負
電極上に形成し、素子を反転させて回路基板に直接接続
することができる。
(Application Example) The flip-chip type light emitting device 100 having such a configuration has a high luminous intensity and a high durability, can largely omit the protective layer 130, and has a positive electrode when connected to an external electrode. A large area can be used for both the negative electrode and the negative electrode. FIG. 4 is a plan view of a light emitting device 200 which is a specific application example of the light emitting device 100 according to the present invention. The light emitting device 200 of FIG.
The configuration is almost the same as that of 00, and the same reference numerals are described.
The light emitting element 200 has a negative electrode of 40% or more of the upper surface area.
Since the above can be a positive electrode, the connection with the external electrode is not limited to wire bonding. As an example, bumps can be formed with solder or the like, or gold balls can be formed directly on the positive and negative electrodes, and the device can be inverted and directly connected to a circuit board.

【0025】上記の実施例では、多重厚膜正電極120
の膜厚は、約1.5μmであったが、多重厚膜正電極120
の膜厚は、0.11μm以上、10μm以下であれば良い。多重
厚膜正電極120の膜厚が0.11μm未満だと、光を十分
に反射することができなくなり、バンプ材や金ボール等
の接続部材との強固な密着が得られなくなる。一方、10
μmを越えると、蒸着時間や材料が必要以上に掛かり生
産コストの面で劣る。
In the above embodiment, the multiple thick film positive electrodes 120
Was about 1.5 μm, but the multiple thick film positive electrode 120
May have a thickness of 0.11 μm or more and 10 μm or less. If the thickness of the multi-thick positive electrode 120 is less than 0.11 μm, light cannot be sufficiently reflected, and strong adhesion to a connecting member such as a bump material or a gold ball cannot be obtained. On the other hand, 10
If it exceeds μm, the deposition time and the material are unnecessarily increased, and the production cost is inferior.

【0026】また、上記の実施例では、第1金属層の膜
厚は、0.3μmであったが、第1金属層の膜厚は、0.01〜
5μmであればその効果を発揮する。第1金属層の膜厚は
望ましくは0.02〜2μmであり、より望ましくは0.05〜1
μmである。第1金属層111は、薄過ぎると光の反射
が不十分となり、厚過ぎると蒸着時間や材料が必要以上
に掛かり、生産コストの面で劣る。
Further, in the above embodiment, the thickness of the first metal layer was 0.3 μm, but the thickness of the first metal layer was 0.01 to 0.01 μm.
If it is 5 μm, the effect is exhibited. The thickness of the first metal layer is preferably 0.02 to 2 μm, more preferably 0.05 to 1 μm.
μm. If the first metal layer 111 is too thin, light reflection will be insufficient. If it is too thick, the deposition time and material will be unnecessarily long, and the production cost will be poor.

【0027】また、上記の実施例では、第2金属層の膜
厚は、1.2μmであったが、第2金属層の膜厚は、0.1〜5
μmであればその効果を発揮する。第2金属層112の
膜厚は望ましくは0.2〜3μmであり、より望ましくは0.5
〜2μmである。第2金属層112は、薄過ぎると第1金
属層111の光の反射を補えず、バンプ材や金ボール等
の接続部材との強固な密着が得られなくなる。一方、厚
過ぎると負電極140のバランスをとる必要上、第2金
属層112と負電極140の両方で蒸着時間や材料が必
要以上に掛かり、好ましくない。
In the above embodiment, the thickness of the second metal layer was 1.2 μm, but the thickness of the second metal layer was 0.1 to 5 μm.
If it is μm, the effect is exhibited. The thickness of the second metal layer 112 is preferably 0.2 to 3 μm, more preferably 0.5 to 3 μm.
22 μm. If the second metal layer 112 is too thin, it cannot compensate for the light reflection of the first metal layer 111, and it will not be possible to obtain strong adhesion with a connection member such as a bump material or a gold ball. On the other hand, if the thickness is too large, the negative electrode 140 needs to be balanced, and both the second metal layer 112 and the negative electrode 140 require more deposition time and material than necessary, which is not preferable.

【0028】また、上記の実施例では、第3金属層の膜
厚は、30Åであったが、第3金属層の膜厚は、5〜1000
Åであればその効果を発揮する。第3金属層112の膜
厚は望ましくは10〜500Åであり、より望ましくは15〜1
00Åである。第3金属層113は、薄過ぎると保護層と
の密着性が悪くなり、厚過ぎると抵抗値が高くなり、好
ましくない。
In the above embodiment, the thickness of the third metal layer was 30 °, but the thickness of the third metal layer was 5 to 1000 °.
If Å, the effect is exhibited. The thickness of the third metal layer 112 is preferably 10 to 500 °, more preferably 15 to 1 °.
00Å. If the third metal layer 113 is too thin, the adhesion to the protective layer deteriorates, and if it is too thick, the resistance value increases, which is not preferable.

【0029】また、上記の実施例では、第3金属層とし
てチタン(Ti)を使用したが、第3金属層としてはクロム
(Cr)を使用してもよい。
In the above embodiment, titanium (Ti) was used as the third metal layer.
(Cr) may be used.

【0030】また、上記の実施例における発光素子の各
層の構成は、あくまでも各層を形成する際の物理的又は
化学的構成であって、その後、より強固な密着性を得る
ために、あるいは、コンタクト抵抗の値を下げる等の目
的で実施される例えば熱処理などのような物理的又は化
学的処理によって各層間では、固溶あるいは化合物形成
が起きていることは言うまでもない。
Further, the structure of each layer of the light emitting element in the above embodiment is a physical or chemical structure when forming each layer, and thereafter, in order to obtain stronger adhesion, It goes without saying that a solid solution or a compound is formed between the layers by a physical or chemical treatment such as a heat treatment for the purpose of lowering the resistance value.

【0031】なお、上記の実施例では、発光素子100
の発光層104はMQW構造としたが、SQW構造やホ
モ接合構造でもよい。また、本発明の発光素子を形成す
るIII族窒化物系化合物半導体層は、任意の混晶比の4
元、3元、2元系のAlxGayIn1 -x-yN(0≦x≦1,0≦y≦
1,0≦x+y≦1)としても良い。また、p型不純物として
は、マグネシウム(Mg)の他、ベリリウム(Be)、亜鉛(Zn)
等の2族元素を用いることができる。
In the above embodiment, the light emitting device 100
Although the light emitting layer 104 has an MQW structure, it may have an SQW structure or a homojunction structure. Further, the group III nitride compound semiconductor layer forming the light emitting device of the present invention has a mixed crystal ratio of 4
Ternary, binary , Al x Ga y In 1 -xy N (0 ≦ x ≦ 1, 0 ≦ y ≦
1, 0 ≦ x + y ≦ 1). The p-type impurities include magnesium (Mg), beryllium (Be), and zinc (Zn).
And the like can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるフリップチップ型の半導体発光素
子100の模式的断面図。
FIG. 1 is a schematic cross-sectional view of a flip-chip type semiconductor light emitting device 100 according to the present invention.

【図2】フリップチップ型の半導体発光素子100、9
10の発光光度を示す表図。
FIG. 2 shows flip-chip type semiconductor light emitting devices 100 and 9;
FIG. 10 is a table showing the luminous intensity of No. 10.

【図3】フリップチップ型の半導体発光素子100、9
10の発光光度の経時変化を示す表図。
FIG. 3 shows flip-chip type semiconductor light emitting devices 100 and 9;
FIG. 10 is a table showing changes with time in the luminous intensity of light emission of No. 10;

【図4】本発明によるフリップチップ型の半導体発光素
子200の平面図。
FIG. 4 is a plan view of a flip-chip type semiconductor light emitting device 200 according to the present invention.

【図5】フリップチップ型の半導体発光素子910の模
式的断面図。
FIG. 5 is a schematic cross-sectional view of a flip-chip type semiconductor light emitting device 910.

【図6】透過性薄膜電極を有する発光素子920の模式
的断面図。
FIG. 6 is a schematic cross-sectional view of a light-emitting element 920 having a transparent thin-film electrode.

【符号の説明】[Explanation of symbols]

101…サファイヤ基板 102…AlNから成るバッファ層 103…GaNから成るn+層 104…発光層 105…AlGaNから成るp型層 106…GaNから成るp型層 111…第1金属層 112…第2金属層 113…第3金属層 120…多重厚膜正電極 130…保護膜 140…負電極 191、192、193…従来の発光素子の正電極を成
す金属層
DESCRIPTION OF SYMBOLS 101 ... Sapphire substrate 102 ... Buffer layer made of AlN 103 ... N + layer made of GaN 104 ... Emitting layer 105 ... P-type layer made of AlGaN 106 ... P-type layer made of GaN 111 ... First metal layer 112 ... Second metal Layer 113 Third metal layer 120 Multi-layer thick positive electrode 130 Protective film 140 Negative electrode 191, 192, 193 Metal layer forming positive electrode of conventional light emitting device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA04 CA02 CA04 CA05 CA13 CA34 CA40 CA57 CA83 CA85 CA92 CB15 DA09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F041 AA04 CA02 CA04 CA05 CA13 CA34 CA40 CA57 CA83 CA85 CA92 CB15 DA09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上にIII族窒化物系化合物半導体か
ら成る層が積層されたフリップチップ型の発光素子であ
って、p型半導体層上にその大部分を覆うよう形成され
た、光を前記基板側へ反射する多重厚膜正電極を有する
III族窒化物系化合物半導体発光素子において、 前記多重厚膜正電極の前記p型半導体層に接する第1金
属層をロジウム(Rh)、白金(Pt)、又は、これらの金属を
少なくとも1種類以上含んだ合金より形成したことを特
徴とするIII族窒化物系化合物半導体発光素子。
1. A flip-chip type light-emitting element in which a layer made of a group III nitride compound semiconductor is laminated on a substrate, wherein light is formed on a p-type semiconductor layer so as to cover most of the light. Having a multiple thick-film positive electrode that reflects to the substrate side
In the group III nitride compound semiconductor light emitting device, the first metal layer in contact with the p-type semiconductor layer of the multi-thick film positive electrode is rhodium (Rh), platinum (Pt), or at least one of these metals. A group III nitride compound semiconductor light-emitting device characterized by being formed from an alloy containing the compound.
【請求項2】 前記第1金属層の膜厚が0.01〜5μmであ
ることを特徴とする請求項1に記載のIII族窒化物系化
合物半導体発光素子。
2. The group III nitride compound semiconductor light emitting device according to claim 1, wherein said first metal layer has a thickness of 0.01 to 5 μm.
【請求項3】 前記第1金属層の上に金(Au)から成る第
2金属層を形成したことを特徴とする請求項1又は請求
項2に記載のIII族窒化物系化合物半導体発光素子。
3. The group III nitride compound semiconductor light emitting device according to claim 1, wherein a second metal layer made of gold (Au) is formed on the first metal layer. .
【請求項4】 前記第2金属層の膜厚が0.1〜5μmであ
ることを特徴とする請求項3に記載のIII族窒化物系化
合物半導体発光素子。
4. The group III nitride compound semiconductor light emitting device according to claim 3, wherein said second metal layer has a thickness of 0.1 to 5 μm.
【請求項5】 前記第2金属層の上にチタン(Ti)又はク
ロム(Cr)から成る第3金属層を形成したことを特徴とす
る請求項1乃至請求項4のいずれか1項に記載のIII族
窒化物系化合物半導体発光素子。
5. The semiconductor device according to claim 1, wherein a third metal layer made of titanium (Ti) or chromium (Cr) is formed on the second metal layer. III-nitride-based compound semiconductor light emitting device.
【請求項6】 前記第3金属層の膜厚が5〜1000Åであ
ることを特徴とする請求項5に記載のIII族窒化物系化
合物半導体発光素子。
6. The group III nitride compound semiconductor light emitting device according to claim 5, wherein the thickness of the third metal layer is 5 to 1000 °.
JP35854998A 1998-05-13 1998-12-17 Group III nitride compound semiconductor light emitting device Expired - Fee Related JP3847477B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35854998A JP3847477B2 (en) 1998-12-17 1998-12-17 Group III nitride compound semiconductor light emitting device
DE19921987A DE19921987B4 (en) 1998-05-13 1999-05-12 Light-emitting semiconductor device with group III element-nitride compounds
TW88107776A TW419836B (en) 1998-05-13 1999-05-13 Flip tip type of light-emitting semiconductor device using group III nitride compound
US09/559,273 US6936859B1 (en) 1998-05-13 2000-04-27 Light-emitting semiconductor device using group III nitride compound
US10/864,495 US7109529B2 (en) 1998-05-13 2004-06-10 Light-emitting semiconductor device using group III nitride compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35854998A JP3847477B2 (en) 1998-12-17 1998-12-17 Group III nitride compound semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004249566A Division JP2004349726A (en) 2004-08-30 2004-08-30 Group iii nitride compound-based semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2000183400A true JP2000183400A (en) 2000-06-30
JP3847477B2 JP3847477B2 (en) 2006-11-22

Family

ID=18459898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35854998A Expired - Fee Related JP3847477B2 (en) 1998-05-13 1998-12-17 Group III nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3847477B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036619A (en) * 1998-05-13 2000-02-02 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
KR20020065948A (en) * 2001-02-08 2002-08-14 (주)나리지* 온 p-type Ohmic contact of GaN Semiconductor Device
WO2003100872A1 (en) * 2002-05-27 2003-12-04 Toyoda Gosei Co., Ltd. Semiconductor light-emitting device
JP2004006991A (en) * 2002-08-27 2004-01-08 Nichia Chem Ind Ltd Nitride semiconductor element
JP2005005727A (en) * 2001-11-19 2005-01-06 Sanyo Electric Co Ltd Compound semiconductor light emitting device
US6940099B2 (en) 2001-09-14 2005-09-06 Sharp Kabushiki Kaisha Semiconductor light emitting element and semiconductor light emitting device
US6956245B2 (en) 2002-05-31 2005-10-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
WO2006011458A1 (en) * 2004-07-26 2006-02-02 Matsushita Electric Industrial Co., Ltd. Light emitting device, and lighting apparatus, display apparatus and cellular phone provided with the light emitting device
US7049160B2 (en) 2003-09-16 2006-05-23 Stanley Electric Co., Ltd. Gallium nitride compound semiconductor device and method of manufacturing the same
US7297988B2 (en) 2005-04-15 2007-11-20 Samsung Electro-Mechanics Co., Ltd. Flip chip type nitride semiconductor light emitting device
KR100843787B1 (en) * 1999-12-22 2008-07-03 필립스 루미리즈 라이팅 캄파니 엘엘씨 Iii-nitride light-emitting device with increased light generating capability
US7763477B2 (en) 2004-03-15 2010-07-27 Tinggi Technologies Pte Limited Fabrication of semiconductor devices
JP2011035324A (en) * 2009-08-05 2011-02-17 Showa Denko Kk Semiconductor light emitting element, lamp, electronic apparatus, and mechanical apparatus
US8004001B2 (en) 2005-09-29 2011-08-23 Tinggi Technologies Private Limited Fabrication of semiconductor devices for light emission
US8034643B2 (en) 2003-09-19 2011-10-11 Tinggi Technologies Private Limited Method for fabrication of a semiconductor device
US8067269B2 (en) 2005-10-19 2011-11-29 Tinggi Technologies Private Limted Method for fabricating at least one transistor
US8124994B2 (en) 2006-09-04 2012-02-28 Tinggi Technologies Private Limited Electrical current distribution in light emitting devices
US8158990B2 (en) 2006-10-05 2012-04-17 Mitsubishi Chemical Corporation Light emitting device using GaN LED chip
US8309377B2 (en) 2004-04-07 2012-11-13 Tinggi Technologies Private Limited Fabrication of reflective layer on semiconductor light emitting devices
US8329556B2 (en) 2005-12-20 2012-12-11 Tinggi Technologies Private Limited Localized annealing during semiconductor device fabrication
US8395167B2 (en) 2006-08-16 2013-03-12 Tinggi Technologies Private Limited External light efficiency of light emitting diodes
US8643046B2 (en) 2009-05-14 2014-02-04 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, method for producing the same, lamp, lighting device, electronic equipment, mechanical device and electrode
US8981420B2 (en) 2005-05-19 2015-03-17 Nichia Corporation Nitride semiconductor device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036619A (en) * 1998-05-13 2000-02-02 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
KR100843787B1 (en) * 1999-12-22 2008-07-03 필립스 루미리즈 라이팅 캄파니 엘엘씨 Iii-nitride light-emitting device with increased light generating capability
KR20020065948A (en) * 2001-02-08 2002-08-14 (주)나리지* 온 p-type Ohmic contact of GaN Semiconductor Device
US6940099B2 (en) 2001-09-14 2005-09-06 Sharp Kabushiki Kaisha Semiconductor light emitting element and semiconductor light emitting device
JP2005005727A (en) * 2001-11-19 2005-01-06 Sanyo Electric Co Ltd Compound semiconductor light emitting device
US7042012B2 (en) 2002-05-27 2006-05-09 Toyoda Gosei Co., Ltd. Semiconductor light-emitting device
WO2003100872A1 (en) * 2002-05-27 2003-12-04 Toyoda Gosei Co., Ltd. Semiconductor light-emitting device
US6956245B2 (en) 2002-05-31 2005-10-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
JP2004006991A (en) * 2002-08-27 2004-01-08 Nichia Chem Ind Ltd Nitride semiconductor element
JP4507532B2 (en) * 2002-08-27 2010-07-21 日亜化学工業株式会社 Nitride semiconductor device
US7049160B2 (en) 2003-09-16 2006-05-23 Stanley Electric Co., Ltd. Gallium nitride compound semiconductor device and method of manufacturing the same
US7193247B2 (en) 2003-09-16 2007-03-20 Stanley Electric Co., Ltd. Gallium nitride compound semiconductor device
US8034643B2 (en) 2003-09-19 2011-10-11 Tinggi Technologies Private Limited Method for fabrication of a semiconductor device
US7763477B2 (en) 2004-03-15 2010-07-27 Tinggi Technologies Pte Limited Fabrication of semiconductor devices
US8309377B2 (en) 2004-04-07 2012-11-13 Tinggi Technologies Private Limited Fabrication of reflective layer on semiconductor light emitting devices
WO2006011458A1 (en) * 2004-07-26 2006-02-02 Matsushita Electric Industrial Co., Ltd. Light emitting device, and lighting apparatus, display apparatus and cellular phone provided with the light emitting device
DE102006001402B4 (en) * 2005-04-15 2008-06-26 Samsung Electro-Mechanics Co., Ltd., Suwon Nitride light emitting flip-chip semiconductor device
US7297988B2 (en) 2005-04-15 2007-11-20 Samsung Electro-Mechanics Co., Ltd. Flip chip type nitride semiconductor light emitting device
US8981420B2 (en) 2005-05-19 2015-03-17 Nichia Corporation Nitride semiconductor device
US8004001B2 (en) 2005-09-29 2011-08-23 Tinggi Technologies Private Limited Fabrication of semiconductor devices for light emission
US8067269B2 (en) 2005-10-19 2011-11-29 Tinggi Technologies Private Limted Method for fabricating at least one transistor
US8329556B2 (en) 2005-12-20 2012-12-11 Tinggi Technologies Private Limited Localized annealing during semiconductor device fabrication
US8395167B2 (en) 2006-08-16 2013-03-12 Tinggi Technologies Private Limited External light efficiency of light emitting diodes
US8124994B2 (en) 2006-09-04 2012-02-28 Tinggi Technologies Private Limited Electrical current distribution in light emitting devices
US8158990B2 (en) 2006-10-05 2012-04-17 Mitsubishi Chemical Corporation Light emitting device using GaN LED chip
US8455886B2 (en) 2006-10-05 2013-06-04 Mitsubishi Chemical Corporation Light emitting device using GaN LED chip
US8643046B2 (en) 2009-05-14 2014-02-04 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, method for producing the same, lamp, lighting device, electronic equipment, mechanical device and electrode
JP2011035324A (en) * 2009-08-05 2011-02-17 Showa Denko Kk Semiconductor light emitting element, lamp, electronic apparatus, and mechanical apparatus

Also Published As

Publication number Publication date
JP3847477B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
JP3847477B2 (en) Group III nitride compound semiconductor light emitting device
JP3736181B2 (en) Group III nitride compound semiconductor light emitting device
US7109529B2 (en) Light-emitting semiconductor device using group III nitride compound
JP5470673B2 (en) Semiconductor light emitting device and semiconductor light emitting element
US10636941B2 (en) Light emitting device, and method for manufacturing thereof
US7297988B2 (en) Flip chip type nitride semiconductor light emitting device
JP5179766B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4118370B2 (en) Nitride semiconductor light-emitting device having reflective p-electrode, method for manufacturing the same, and semiconductor optoelectronic device
TWI275190B (en) Positive electrode for semiconductor light-emitting device
TWI257714B (en) Light-emitting device using multilayer composite metal plated layer as flip-chip electrode
JP5347219B2 (en) Semiconductor light emitting device
JP5780242B2 (en) Nitride semiconductor light emitting device
US20020117672A1 (en) High-brightness blue-light emitting crystalline structure
JPH09129919A (en) Nitride semiconductor light emitting device
JP4159865B2 (en) Nitride compound semiconductor light emitting device manufacturing method
JP2007123613A (en) Light-emitting device
US7352009B2 (en) Light emitting nitride semiconductor device and method of fabricating the same
JP2005123489A (en) Nitride semiconductor light emitting element and its manufacturing method
WO2012026068A1 (en) Light-emitting element
JP4963950B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5609607B2 (en) Nitride semiconductor light emitting device
JP4925512B2 (en) Wavelength conversion type semiconductor device
JP3997523B2 (en) Light emitting element
CN1866559B (en) Nitride semiconductor light emitting device
JP6136717B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040930

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees