JP2007123613A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2007123613A
JP2007123613A JP2005314854A JP2005314854A JP2007123613A JP 2007123613 A JP2007123613 A JP 2007123613A JP 2005314854 A JP2005314854 A JP 2005314854A JP 2005314854 A JP2005314854 A JP 2005314854A JP 2007123613 A JP2007123613 A JP 2007123613A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
type nitride
semiconductor layer
light emitting
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005314854A
Other languages
Japanese (ja)
Other versions
JP4951937B2 (en
Inventor
Takao Yamada
孝夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2005314854A priority Critical patent/JP4951937B2/en
Publication of JP2007123613A publication Critical patent/JP2007123613A/en
Application granted granted Critical
Publication of JP4951937B2 publication Critical patent/JP4951937B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features

Abstract

<P>PROBLEM TO BE SOLVED: To enhance light extraction efficiency of a light-emitting device, by suppressing decline in external quantum efficiency of a light-emitting device caused by a pad electrode. <P>SOLUTION: The light-emitting device 1 comprises a light-emitting diode 2, having an n-type nitride semiconductor layer 22, a p-type nitride semiconductor layer 24 formed on the n-type nitride semiconductor layer 22, a p-type electrode 25 formed on the surface of the p-type nitride semiconductor layer 24, a mounting substrate 4, having an n-side conductive portion 43 connected electrically with the n-type nitride semiconductor layer 22, and a p-side conductive portion 45 connected electrically to the p-type electrode 25, and an anisotropic conductive layer 6 including a resin adhesive layer 62 for bonding the mounting substrate 4 and the light-emitting diode 2 and conductive particles 64 dispersed into the resin adhesive layer 62, wherein at least the surface of the conductive particles 64 is formed of a metal material and the conductive particles 64 come into direct contact with the n-type nitride semiconductor 22, the n-side conductive portion 43, the p-type electrode 25 and the p-side conductive portion 45. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光素子を備えた発光装置に関し、特に、発光素子をフリップチップ実装した発光装置に関する。   The present invention relates to a light emitting device including a light emitting element, and more particularly, to a light emitting device in which the light emitting element is flip-chip mounted.

一般的な半導体窒化物素子の1つとして、図10の断面図に示すような発光ダイオードがあり、サファイア基板21にn型窒化物半導体層22、活性層23、p型窒化物半導体層24、及び導電性酸化物電極25をこの順に積層し、一部に段差部26を形成してn型窒化物半導体層22を露出している。露出したn型窒化物半導体層22の上にはn側パッド電極52が、そして導電性酸化物電極25の上にはp側パッド電極54が、それぞれ形成されている。   As a general semiconductor nitride element, there is a light emitting diode as shown in the cross-sectional view of FIG. 10, and an sapphire substrate 21 has an n-type nitride semiconductor layer 22, an active layer 23, a p-type nitride semiconductor layer 24, And the conductive oxide electrode 25 are laminated in this order, and a stepped portion 26 is formed in a part to expose the n-type nitride semiconductor layer 22. An n-side pad electrode 52 is formed on the exposed n-type nitride semiconductor layer 22, and a p-side pad electrode 54 is formed on the conductive oxide electrode 25.

この発光ダイオード2をフリップチップ実装するときには、n側及びp側のパッド電極52、54の上にAuやはんだ等から成るバンプ設けて、実装基板の電極に導電ペーストや異方性導電ペーストを用いて電気的に接続する方法が知られている(例えば特許文献1参照)。また、別の電気的接合方法としては、n側及びp側のパッド電極52、54の上にAuバンプを形成し、実装基板の電極をAlから形成して、AuバンプとAlとの共晶組成により接合が知られている(例えば特許文献2参照)。   When the light emitting diode 2 is flip-chip mounted, bumps made of Au, solder, or the like are provided on the n-side and p-side pad electrodes 52, 54, and a conductive paste or anisotropic conductive paste is used for the electrodes of the mounting substrate. There is known a method of electrical connection (see, for example, Patent Document 1). As another electrical bonding method, Au bumps are formed on the n-side and p-side pad electrodes 52 and 54, and the electrodes of the mounting substrate are formed from Al, and the eutectic of Au bumps and Al is formed. Bonding is known depending on the composition (see, for example, Patent Document 2).

バンプや共晶による実装において、バンプのはみ出しや、融点の低い共晶層の回り込みによって、導電材料がパッド電極からはみ出してp型窒化物半導体層24とn型窒化物半導体層22とを短絡する恐れがある。そこで、図10の発光ダイオード2のように、パッド電極を除く上面全体を絶縁性材料からなる保護膜60で覆って、p型窒化物半導体層24とn型窒化物半導体層22とが短絡するのを防止している。   In mounting by bump or eutectic, the conductive material protrudes from the pad electrode due to the bump protruding or the eutectic layer having a low melting point, and the p-type nitride semiconductor layer 24 and the n-type nitride semiconductor layer 22 are short-circuited. There is a fear. Therefore, like the light-emitting diode 2 in FIG. 10, the entire upper surface except the pad electrode is covered with a protective film 60 made of an insulating material, and the p-type nitride semiconductor layer 24 and the n-type nitride semiconductor layer 22 are short-circuited. Is preventing.

また、発光ダイオードをフリップチップ実装する別の方法として、発光ダイオードと基板とを異方性導電材料を用いて接続する方法が知られている(例えば特許文献3参照)。異方性導電材料とは、微小な導電粒子を樹脂接着剤の中に分散させたものであり、この材料を用いることにより、接着剤による発光ダイオードと基板との固着と、導電粒子による発光ダイオードの電極と基板に形成された電極との電気的接続とを同時に達成している。
特開平11−168235号公報 特開平11−354848号公報 特開平9−8360号公報
As another method for flip-chip mounting a light emitting diode, a method of connecting a light emitting diode and a substrate using an anisotropic conductive material is known (see, for example, Patent Document 3). An anisotropic conductive material is a material in which minute conductive particles are dispersed in a resin adhesive. By using this material, the light-emitting diode and the substrate are fixed by the adhesive, and the light-emitting diode is formed by the conductive particles. The electrical connection between the electrode and the electrode formed on the substrate is achieved at the same time.
JP-A-11-168235 Japanese Patent Laid-Open No. 11-354848 Japanese Patent Laid-Open No. 9-8360

発光装置の輝度向上が望まれる中、発光ダイオードの内部量子効率の向上のみでなく、外部量子効率の向上、すなわち発光ダイオードの光の取出し効率の向上が不可欠である。さらには、発光ダイオードを実装基板に実装することにより生じる光の損失を減らして、発光装置としての光の取出し効率を向上することが重要になる。   While it is desired to improve the luminance of the light emitting device, it is indispensable not only to improve the internal quantum efficiency of the light emitting diode but also to improve the external quantum efficiency, that is, the light extraction efficiency of the light emitting diode. Furthermore, it is important to reduce the light loss caused by mounting the light emitting diode on the mounting substrate and improve the light extraction efficiency as the light emitting device.

発光ダイオードの段差部から露出したn型窒化物半導体に、Ti/Au等から成る円盤状又は板上のn側パッド電極を直接形成すると、n側パッド電極は半導体内部の光を高確率で吸収する。即ち、活性層で発光し、半導体積層体の内部を反射しながら横方向に伝搬する光は、n側パッド電極とn型半導体層との界面に到達すると、反射される代わりにn側パッド電極に吸収される。このため、外部への光の取出し効率が、n側パッド電極での光の吸収によって低下する問題があった。   When an n-side pad electrode made of Ti / Au or the like is directly formed on an n-type nitride semiconductor exposed from a step portion of a light emitting diode, the n-side pad electrode absorbs light inside the semiconductor with a high probability. To do. That is, light that is emitted from the active layer and propagates in the lateral direction while reflecting the inside of the semiconductor stacked body reaches the interface between the n-side pad electrode and the n-type semiconductor layer, and instead of being reflected, the n-side pad electrode To be absorbed. For this reason, there has been a problem that the light extraction efficiency to the outside is lowered due to the light absorption by the n-side pad electrode.

また、p側窒化物半導体の表面全体には、p側窒化物半導体に電流を広げるためにp側電極が形成されており、さらにその上に、p側パッド電極が形成されている。p側電極は、p型窒化物半導体とオーミック接触する材料から形成する必要があり、例えばITO等の導電性酸化物や、Ni/Au膜が利用できる。そして、p側パッド電極は、p側電極に対して密着性の良好な材料から形成する必要があり、例えばp側電極が導電性酸化物電極の場合には、p側パッド電極としてRhやAu等の貴金属が好適である。しかしながら、RhやAuは光の反射率がそれほど高くないので、p側電極とp側パッド電極との界面で光の損失が生じるという問題があった。   A p-side electrode is formed on the entire surface of the p-side nitride semiconductor to spread the current to the p-side nitride semiconductor, and a p-side pad electrode is further formed thereon. The p-side electrode needs to be formed from a material that is in ohmic contact with the p-type nitride semiconductor. For example, a conductive oxide such as ITO or a Ni / Au film can be used. The p-side pad electrode needs to be formed from a material having good adhesion to the p-side electrode. For example, when the p-side electrode is a conductive oxide electrode, Rh or Au is used as the p-side pad electrode. Noble metals such as are preferred. However, since Rh and Au have a light reflectance that is not so high, there is a problem that light loss occurs at the interface between the p-side electrode and the p-side pad electrode.

そこで、本発明は、光の取出し効率を向上させつつ、且つ電気的性能が良好な発光装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide a light-emitting device that improves light extraction efficiency and has good electrical performance.

本発明にかかる第1の発光装置は、(a)n型窒化物半導体層と、該n型窒化物半導体層に積層したp型窒化物半導体層と、該p型窒化物半導体層の表面に形成されたp側電極と、を有する発光素子と、(b)前記n型窒化物半導体層と電気的に接続するn側導電部と、前記p側電極と電気的に接続するp側導電部と、を有する実装基板と、(c)前記実装基板と前記発光素子とを接着する樹脂接着層と、該樹脂接着層に分散された導電粒子とを含む異方性導電層と、を備え、前記導電粒子は、少なくとも表面が金属材料から形成され、前記n型窒化物半導体及び前記n側導電部と直接接触していることを特徴とする。   A first light emitting device according to the present invention includes (a) an n-type nitride semiconductor layer, a p-type nitride semiconductor layer stacked on the n-type nitride semiconductor layer, and a surface of the p-type nitride semiconductor layer. A light emitting device having a p-side electrode formed; (b) an n-side conductive portion electrically connected to the n-type nitride semiconductor layer; and a p-side conductive portion electrically connected to the p-side electrode. And (c) a resin adhesive layer that adheres the mounting substrate and the light emitting element, and an anisotropic conductive layer including conductive particles dispersed in the resin adhesive layer, The conductive particles are formed of a metal material at least on the surface, and are in direct contact with the n-type nitride semiconductor and the n-side conductive portion.

本発明の第1の発光装置は、発光素子のn型窒化物半導体と異方性導電層の導電粒子とが直接接触している、すなわちn側パッド電極を備えていないので、n側パッド電極に起因する光の吸収を除去することができる。代わりとして、n型窒化物半導体層に接触した導電粒子が、横方向に伝搬する光を吸収するが、導電粒子とn型窒化物半導体層との接触面積は、n側パッド電極とn型窒化物半導体層との接触面積に比べて格段に小さいので、全体として、吸収される光量を減らすことができる。その結果として、発光装置の光の取出し効率を向上させることができる。   In the first light emitting device of the present invention, the n-type nitride semiconductor of the light emitting element and the conductive particles of the anisotropic conductive layer are in direct contact, that is, the n-side pad electrode is not provided. The absorption of light caused by can be removed. Instead, the conductive particles in contact with the n-type nitride semiconductor layer absorb the light propagating in the lateral direction, but the contact area between the conductive particles and the n-type nitride semiconductor layer is different from that of the n-side pad electrode and n-type nitride. Since it is much smaller than the contact area with the physical semiconductor layer, the amount of absorbed light can be reduced as a whole. As a result, the light extraction efficiency of the light emitting device can be improved.

また、本発明にかかる第2の発光装置は、(a)n型窒化物半導体層と、該n型窒化物半導体層に積層したp型窒化物半導体層と、該p型窒化物半導体層の表面のほぼ全面に形成されたp側電極と、を有する発光素子と、(b)前記n型窒化物半導体層と電気的に接続するn側導電部と、前記p側電極と電気的に接続するp側導電部と、を有する実装基板と、(c)前記実装基板と前記発光素子とを接着する樹脂接着層と、該樹脂接着層に分散された導電粒子とを含む異方性導電層と、を備え、前記導電粒子は、前記p側電極及び前記p側導電部と直接接触していることを特徴とする。   A second light emitting device according to the present invention includes (a) an n-type nitride semiconductor layer, a p-type nitride semiconductor layer stacked on the n-type nitride semiconductor layer, and the p-type nitride semiconductor layer. A light emitting device having a p-side electrode formed on substantially the entire surface; (b) an n-side conductive portion electrically connected to the n-type nitride semiconductor layer; and electrically connected to the p-side electrode. A p-side conductive portion, an anisotropic conductive layer including (c) a resin adhesive layer that adheres the mounting substrate and the light emitting element, and conductive particles dispersed in the resin adhesive layer The conductive particles are in direct contact with the p-side electrode and the p-side conductive part.

この本発明の第2の発光装置では、発光素子のp側パッド電極の代わりに異方性導電層の導電粒子により実装基板の電極との導通を図り、p側電極と導電粒子との密着性は、異方性導電層の樹脂接着層により保持する。従って、導電粒子にはp側電極との密着性を必要とせず、導電粒子の材料を任意に選択することができる。   In the second light emitting device of the present invention, the conductive particles of the anisotropic conductive layer are connected to the electrodes of the mounting substrate instead of the p side pad electrodes of the light emitting elements, and the adhesion between the p side electrodes and the conductive particles is improved. Is held by the resin adhesive layer of the anisotropic conductive layer. Therefore, the conductive particles do not require adhesion with the p-side electrode, and the material of the conductive particles can be arbitrarily selected.

そして、本発明にかかる第3の発光装置は、(a)n型窒化物半導体層と、該n型窒化物半導体層に積層したp型窒化物半導体層と、該p型窒化物半導体層の表面のほぼ全面に形成されたp側電極と、を有する発光素子と、(b)前記n型窒化物半導体層と電気的に接続するn側導電部と、前記p側電極と電気的に接続するp側導電部と、を有する実装基板と、(c)前記実装基板と前記発光素子とを接着する樹脂接着層と、該樹脂接着層に分散された導電粒子とを含む異方性導電層と、を備え、前記導電粒子は、少なくとも表面が金属材料から形成され、前記n型窒化物半導体及び前記n側導電部と直接接触し、前記p側電極及び前記p側導電部と直接接触していることを特徴とする。   The third light emitting device according to the present invention includes (a) an n-type nitride semiconductor layer, a p-type nitride semiconductor layer stacked on the n-type nitride semiconductor layer, and a p-type nitride semiconductor layer. A light emitting device having a p-side electrode formed on substantially the entire surface; (b) an n-side conductive portion electrically connected to the n-type nitride semiconductor layer; and electrically connected to the p-side electrode. A p-side conductive portion, an anisotropic conductive layer including (c) a resin adhesive layer that adheres the mounting substrate and the light emitting element, and conductive particles dispersed in the resin adhesive layer The conductive particles are formed of a metal material at least on the surface, and are in direct contact with the n-type nitride semiconductor and the n-side conductive portion, and are in direct contact with the p-side electrode and the p-side conductive portion. It is characterized by.

本発明の第3の発光装置は、第1及び第2の発光装置の構成を有していることから、n側及びp側パッド電極に起因する光の取出し効率の低下を排除することができ、光の取出し効率を向上させることができる。さらに、発光素子の製造工程からパッド電極を形成する工程を省けるので、発光装置の製造コストを下げることができる。   Since the third light-emitting device of the present invention has the configurations of the first and second light-emitting devices, it is possible to eliminate a decrease in light extraction efficiency caused by the n-side and p-side pad electrodes. , The light extraction efficiency can be improved. Furthermore, since the step of forming the pad electrode can be omitted from the manufacturing process of the light emitting element, the manufacturing cost of the light emitting device can be reduced.

本発明にかかる第1乃至第3の発光装置のいずれも、パッド電極に起因する発光素子の外部量子効率の低下を抑制して、発光装置の光の取出し効率を向上させることを可能にした。   In any of the first to third light emitting devices according to the present invention, it is possible to improve the light extraction efficiency of the light emitting device by suppressing a decrease in the external quantum efficiency of the light emitting element due to the pad electrode.

また、第2及び第3の発光装置では、p側電極が透光性である場合には、発光素子の内部からp側電極方向に向かう光の一部を、導電粒子の隙間から実装基板に到達させることができ、そして、実装基板の表面に反射率の高い金属膜を形成することにより、従来のp側パッド電極に比べて、光を高反射することが可能になる。このときに、金属膜を形成する材料は、p側電極に対する密着性が良好である必要はなく、光の反射率の良い材料を任意に選択可能であるので、発光素子の発光波長の光を効率よく反射する材料を利用することができる。また、導電粒子に反射率の高い材料を用いることで、導電粒子に到達した光を反射することも可能である。   In the second and third light-emitting devices, when the p-side electrode is translucent, a part of the light traveling from the inside of the light-emitting element toward the p-side electrode is transferred from the gap between the conductive particles to the mounting substrate. By forming a metal film having a high reflectivity on the surface of the mounting substrate, it becomes possible to reflect light more than a conventional p-side pad electrode. At this time, the material for forming the metal film does not need to have good adhesion to the p-side electrode, and a material having good light reflectance can be arbitrarily selected. Materials that reflect efficiently can be used. In addition, by using a highly reflective material for the conductive particles, light reaching the conductive particles can be reflected.

実施形態1
図1に示した本発明の発光装置1は、発光ダイオード2と、発光ダイオード2をフリップチップ実装するための実装基板4と、発光ダイオード2と実装基板4とを固定する異方性導電層6とから構成されている。
Embodiment 1
The light-emitting device 1 of the present invention shown in FIG. 1 includes a light-emitting diode 2, a mounting substrate 4 for flip-chip mounting the light-emitting diode 2, and an anisotropic conductive layer 6 for fixing the light-emitting diode 2 and the mounting substrate 4. It consists of and.

発光ダイオード2は、サファイア基板21にn型窒化物半導体層22、活性層23、及びp型窒化物半導体層24を順に積層して形成されており、さらに、p型窒化物半導体層24と活性層23とを一部切除するか、又は選択成長することにより段差部26が形成されている。この段差部26には、n型窒化物半導体層22の一部が露出している。また、p型窒化物半導体層24の表面のほぼ全面に、p側電極として透光性の導電性酸化物電極25が被覆されている。   The light emitting diode 2 is formed by sequentially stacking an n-type nitride semiconductor layer 22, an active layer 23, and a p-type nitride semiconductor layer 24 on a sapphire substrate 21, and further, the p-type nitride semiconductor layer 24 and the active layer are activated. A stepped portion 26 is formed by partially cutting or selectively growing the layer 23. Part of the n-type nitride semiconductor layer 22 is exposed at the step portion 26. Further, almost the entire surface of the p-type nitride semiconductor layer 24 is covered with a light-transmitting conductive oxide electrode 25 as a p-side electrode.

発光ダイオード2は、導電性酸化物電極25とn型窒化物半導体層22との間に電圧を印加して、p型窒化物半導体層24から活性層23を通ってn型窒化物半導体層22まで電流を流すことにより発光する。発光は、活性層23で生じるので、活性層23が切除された段差部26から露出したn型窒化物半導体層22の露出部27を除く全ての部分が発光領域になる。   In the light emitting diode 2, a voltage is applied between the conductive oxide electrode 25 and the n-type nitride semiconductor layer 22, and the n-type nitride semiconductor layer 22 passes from the p-type nitride semiconductor layer 24 through the active layer 23. It emits light by passing a current up to. Since light emission occurs in the active layer 23, all portions except the exposed portion 27 of the n-type nitride semiconductor layer 22 exposed from the stepped portion 26 from which the active layer 23 has been removed become light emitting regions.

発光ダイオード2の段差部26は、導電性酸化物電極25側からみたときに中央部分に形成されており、その周囲をp型半導体層24にかこまれている。別の形態としては、段差部26を、矩形の発光ダイオード2の角部や辺部に形成することもでき、さらに別の形態としては、発光ダイオード2を横断する溝状にすることもできる。いずれの場合も、段差部26に形成されたn型窒化物半導体層22の露出部27の面積をできるだけ小さくして、発光領域を広く確保するのが好ましい。   The step portion 26 of the light emitting diode 2 is formed in the center portion when viewed from the conductive oxide electrode 25 side, and the periphery thereof is surrounded by the p-type semiconductor layer 24. As another form, the step part 26 can also be formed in the corner | angular part or side part of the rectangular light-emitting diode 2, and as another form, it can also be made into the groove | channel shape which crosses the light-emitting diode 2. FIG. In any case, it is preferable that the area of the exposed portion 27 of the n-type nitride semiconductor layer 22 formed in the step portion 26 is made as small as possible to ensure a wide light emitting region.

本発明の発光装置1に利用する発光ダイオード2では、活性層23で発光した光は、一部がサファイア基板21の方向に、一部がサファイア基板21と逆の方向、すなわち導電性酸化物電極25の方向に、さらに一部が多重反射を繰り返しながらサファイア基板と平行な方向に進行する。サファイア基板21の方向に進んだ光は、そのまま基板21を透過して外部に取り出される。導電性酸化物電極25の方向に進んだ光は、導電性酸化物電極を通過し、実装基板4で反射して発光ダイオード2の内部に戻り、サファイア基板21を透過して取り出される。そして、サファイア基板21と平行に進んだ光は、窒化物半導体層の内部を伝搬して、発光ダイオード2の側面から外に取り出される。   In the light emitting diode 2 used for the light emitting device 1 of the present invention, the light emitted from the active layer 23 is partially in the direction of the sapphire substrate 21 and partially in the direction opposite to the sapphire substrate 21, that is, a conductive oxide electrode. A part further proceeds in a direction parallel to the sapphire substrate while repeating multiple reflections in the direction of 25. The light traveling in the direction of the sapphire substrate 21 passes through the substrate 21 as it is and is extracted outside. The light traveling in the direction of the conductive oxide electrode 25 passes through the conductive oxide electrode, is reflected by the mounting substrate 4, returns to the inside of the light emitting diode 2, passes through the sapphire substrate 21, and is extracted. Then, the light traveling parallel to the sapphire substrate 21 propagates inside the nitride semiconductor layer and is taken out from the side surface of the light emitting diode 2.

このように、活性層23で発生した光は、どの方向に進んでも外部に取り出すことができるが、光の取出し効率はそれぞれ異なっている。例えば、透光性の導電性酸化物電極25の方向に進んだ光の一部は、導電性酸化物電極25を透過して実装基板4に達する。このとき、実装基板4の反射率が低ければ光の損失が生じて、発光装置の取出し効率が低下する。そこで、本実施形態では、導電性酸化物電極25と対向している実装基板4の表面領域、すなわちp側導電部45を発光波長における反射率が75%以上の金属材料から形成する。これによって、従来のp側パッド電極に比べて光の損失量を減らすことができるので、発光装置の光の取出し効率を向上する。p側導電部45に適した金属材料としては、窒化物半導体から成る発光ダイオードの発光波長であれば、Al、Ag、Pt、Rh又はこれらの合金を挙げることができる。   As described above, the light generated in the active layer 23 can be extracted to the outside in any direction, but the light extraction efficiency is different. For example, part of the light traveling in the direction of the light-transmitting conductive oxide electrode 25 passes through the conductive oxide electrode 25 and reaches the mounting substrate 4. At this time, if the reflectance of the mounting substrate 4 is low, a loss of light occurs, and the extraction efficiency of the light emitting device decreases. Therefore, in the present embodiment, the surface region of the mounting substrate 4 facing the conductive oxide electrode 25, that is, the p-side conductive portion 45 is formed from a metal material having a reflectance of 75% or more at the emission wavelength. As a result, the amount of light loss can be reduced as compared with the conventional p-side pad electrode, so that the light extraction efficiency of the light emitting device is improved. Examples of the metal material suitable for the p-side conductive portion 45 include Al, Ag, Pt, Rh, and alloys thereof as long as the emission wavelength of a light emitting diode made of a nitride semiconductor.

また、サファイア基板21と平行に進んだ光は、窒化物半導体層の内部を伝搬中に、異方性導電層6の中の導電粒子64とn型窒化物半導体層22との界面において、吸収が起こる。しかしながら、光の吸収が起こる金属−n型窒化物半導体層の接触部分の面積は、導電粒子64とn型窒化物半導体層22とが接触する複数の点状部分の合計面積であり、n側パッド電極を備えた従来の発光ダイオード2に比べると、極めて小さい接触面積に抑えることができる。すなわち、n側パッド電極を省略して異方性導電層6によって導通を取ることにより、光の吸収が起こる金属−n型窒化物半導体層の接触面積を大幅に減少させることができ、その結果、吸収による光の損失を大幅に減らすことができる。   The light traveling parallel to the sapphire substrate 21 is absorbed at the interface between the conductive particles 64 in the anisotropic conductive layer 6 and the n-type nitride semiconductor layer 22 while propagating through the nitride semiconductor layer. Happens. However, the area of the contact portion of the metal-n-type nitride semiconductor layer where light absorption occurs is the total area of a plurality of dot-like portions where the conductive particles 64 and the n-type nitride semiconductor layer 22 are in contact, and the n-side Compared with the conventional light emitting diode 2 provided with a pad electrode, it can be suppressed to a very small contact area. That is, the contact area of the metal-n-type nitride semiconductor layer in which light absorption occurs can be greatly reduced by omitting the n-side pad electrode and conducting by the anisotropic conductive layer 6, and as a result. , Light loss due to absorption can be greatly reduced.

本発明では、n型窒化物半導体層22に対してオーミック接触可能な異方性導電層6を使用することにより、n側パッド電極及びp側パッド電極を省略している。
即ち、異方性導電層6には、少なくとも表面が前記n型窒化物半導体とオーミック接触可能な金属材料から成る導電粒子64が分散されており、その導電粒子64は、n型窒化物半導体22及びn側導電部43と直接接触し、且つp側電極25及びp側導電部45と直接接触している。
In the present invention, the n-side pad electrode and the p-side pad electrode are omitted by using the anisotropic conductive layer 6 that can make ohmic contact with the n-type nitride semiconductor layer 22.
That is, conductive particles 64 made of a metal material capable of making ohmic contact with the n-type nitride semiconductor at least on the surface are dispersed in the anisotropic conductive layer 6, and the conductive particles 64 are the n-type nitride semiconductor 22. And in direct contact with the n-side conductive portion 43 and in direct contact with the p-side electrode 25 and the p-side conductive portion 45.

この発光装置1は、従来ではn側パッド電極によって達成していたn型窒化物半導体層22とのオーミック接触を、導電粒子64によって達成することにより、発光ダイオード22の性能を劣化させることなくn側パッド電極を省略することを可能にした。これにより、本実施形態の発光装置1ではn側パッド電極を省略して、半導体積層体を横方向に伝搬する光の吸収量に寄与するn型窒化物半導体22と金属の接触面積を大幅に減少して、発光ダイオード2内で吸収される光量を減らしている。
なお、ここで「オーミック接触」とは、接続する半導体との接触抵抗が少ないことを意味している。
In the light emitting device 1, the ohmic contact with the n-type nitride semiconductor layer 22, which is conventionally achieved by the n-side pad electrode, is achieved by the conductive particles 64, so that the performance of the light emitting diode 22 is not degraded. The side pad electrode can be omitted. Thereby, in the light emitting device 1 of the present embodiment, the n-side pad electrode is omitted, and the contact area between the n-type nitride semiconductor 22 and the metal that contributes to the absorption amount of light propagating through the semiconductor stacked body in the lateral direction is greatly increased. The amount of light absorbed in the light emitting diode 2 is reduced.
Here, “ohmic contact” means that the contact resistance with the semiconductor to be connected is small.

また、発光装置1が、光の反射膜としても機能していたp側パッド電極を省略しているので、p側電極と直接接触しない光の反射膜を準備することができる。この光の反射膜は、実装基板4のp側導電部45であり、p側電極との密着性を要求されないことから反射率の高い金属材料を任意に選択することができる。そして、発光装置1が、n側及びp側パッド電極を省略しているので、発光ダイオードの製造工程からパッド電極を形成する工程を省けるので、発光装置の製造コストを下げることができる。   In addition, since the light emitting device 1 omits the p-side pad electrode that also functions as a light reflecting film, a light reflecting film that does not directly contact the p-side electrode can be prepared. This light reflection film is the p-side conductive portion 45 of the mounting substrate 4 and does not require adhesion to the p-side electrode, so that a metal material having a high reflectance can be arbitrarily selected. Since the light-emitting device 1 omits the n-side and p-side pad electrodes, the process of forming the pad electrodes can be omitted from the light-emitting diode manufacturing process, so that the manufacturing cost of the light-emitting device can be reduced.

本発明の発光装置は、発光ダイオード2と実装基板4とを異方性導電膜6により接続することにより、金属バンプや共晶層を不要にした。これにより、金属バンプのはみ出しや共晶層の回り込みによってn型窒化物半導体層22とp型窒化物半導体層24とが短絡する恐れがなくなり、保護膜60を省くことも可能になった。すなわち、従来の発光ダイオードを用いた発光装置では、n型窒化物半導体層22及びp型窒化物半導体層24の実装基板との接続面が部分的に保護膜60に覆われていたが、本発明の発光装置1は、n型窒化物半導体層22及びp型窒化物半導体層24の実装基板との接続面が全て露出して、異方性導電層6に接触している。n型及びp型窒化物半導体層22、24の接続面は、異方性導電層6の樹脂接着層62によって直接覆われている。これにより、保護膜60によって損失していた光が外部に取り出せるようになるので、発光装置の取出し効率が向上すると期待される。さらに、従来の発光ダイオード2の上面は、n側パット電極及びp側パット電極の上面部分を除いて、全て保護膜60によって絶縁されていたので、導電性酸化物電極25と基板電極を直接接続することができなかった。本実施形態の発光装置では、保護膜60を省くことにより、導電性酸化物電極25の全面に渡ってp側導電部43とを導通することができるので、発光ダイオード2の輝度分布が均一になる効果がある。また、絶縁層60を形成するのに必要としていた工程が不要になり、発光装置をコストダウンできる利点もある。   The light emitting device of the present invention eliminates the need for metal bumps and eutectic layers by connecting the light emitting diode 2 and the mounting substrate 4 with the anisotropic conductive film 6. Thereby, there is no possibility that the n-type nitride semiconductor layer 22 and the p-type nitride semiconductor layer 24 are short-circuited due to the protrusion of the metal bump or the eutectic layer, and the protective film 60 can be omitted. That is, in the conventional light emitting device using the light emitting diode, the connection surfaces of the n-type nitride semiconductor layer 22 and the p-type nitride semiconductor layer 24 to the mounting substrate are partially covered with the protective film 60. In the light-emitting device 1 of the invention, the connection surfaces of the n-type nitride semiconductor layer 22 and the p-type nitride semiconductor layer 24 with the mounting substrate are all exposed and are in contact with the anisotropic conductive layer 6. The connection surfaces of the n-type and p-type nitride semiconductor layers 22 and 24 are directly covered by the resin adhesive layer 62 of the anisotropic conductive layer 6. As a result, the light lost by the protective film 60 can be extracted to the outside, so that it is expected that the extraction efficiency of the light emitting device is improved. Further, since the upper surface of the conventional light emitting diode 2 is all insulated by the protective film 60 except for the upper surface portions of the n-side pad electrode and the p-side pad electrode, the conductive oxide electrode 25 and the substrate electrode are directly connected. I couldn't. In the light emitting device of this embodiment, by omitting the protective film 60, the p-side conductive portion 43 can be conducted over the entire surface of the conductive oxide electrode 25, so that the luminance distribution of the light emitting diode 2 is uniform. There is an effect. In addition, there is an advantage that the process required for forming the insulating layer 60 becomes unnecessary, and the cost of the light emitting device can be reduced.

本発明の実装基板4は、発光ダイオード2を異方性導電層6でフリップチップ実装するための独特の形態を有しており、実装基板4の実装面41側に、発光ダイオード2の段差部26の凹部形状に対応した突出部46を備えている。図1の発光ダイオード2は、窒化物半導体層側から見たときに、段差部26が中央付近に形成されているので、実装基板4の突出部46も、実装面41側から見たときに、中央付近に形成されている。   The mounting substrate 4 of the present invention has a unique form for flip-chip mounting the light emitting diode 2 with the anisotropic conductive layer 6, and the stepped portion of the light emitting diode 2 on the mounting surface 41 side of the mounting substrate 4. The protrusion part 46 corresponding to 26 recessed part shapes is provided. Since the step portion 26 is formed near the center when the light emitting diode 2 in FIG. 1 is viewed from the nitride semiconductor layer side, the protruding portion 46 of the mounting substrate 4 is also viewed from the mounting surface 41 side. It is formed near the center.

実装基板4は、導電性材料から成形することも、絶縁性材料から成形することもできる。これら実装基板の電気的性質により、n側導電部とp側導電部の形態が異なる。
図1の発光装置は、導電性の実装基板4を用いており、実装基板4の突出部46の上面47の上に、金属膜から成るn側導電部43を直接有して、実装基板4と導通している。また、突出部46の上面47の金属膜を省略して、実装基板4の突出部46をそのままn側導電部43として用いることも可能である。p側導電部45は、突起部46の上面及び側面を除く実装基板4の実装面41側に絶縁膜44を介して積層した金属膜から形成されている。n側導電部43及びp側導電部45は、Agの膜から形成するのが好ましく、メッキにより所定の位置に成膜することができる。
導電性実装基板4を作製する材料は、異方性導電層6の樹脂接着層62との密着性が良く導電粒子64に良好に導通する材料が好ましく、例えばSiのような半導体や、Cu/W等の金属の複合材料などが好適である。
The mounting substrate 4 can be formed from a conductive material or an insulating material. Depending on the electrical properties of these mounting boards, the n-side conductive portion and the p-side conductive portion are different in form.
The light emitting device of FIG. 1 uses a conductive mounting substrate 4, and has an n-side conductive portion 43 made of a metal film directly on the upper surface 47 of the protruding portion 46 of the mounting substrate 4. And continuity. It is also possible to omit the metal film on the upper surface 47 of the protruding portion 46 and use the protruding portion 46 of the mounting substrate 4 as it is as the n-side conductive portion 43. The p-side conductive portion 45 is formed of a metal film laminated on the mounting surface 41 side of the mounting substrate 4 excluding the upper surface and side surfaces of the protrusion 46 via an insulating film 44. The n-side conductive portion 43 and the p-side conductive portion 45 are preferably formed from an Ag film, and can be formed at predetermined positions by plating.
The material for producing the conductive mounting substrate 4 is preferably a material that has good adhesion to the resin adhesive layer 62 of the anisotropic conductive layer 6 and that conducts well to the conductive particles 64. For example, a semiconductor such as Si, Cu / A composite material of metal such as W is preferable.

これに対して、図2〜4には、絶縁性の実装基板4を用いた場合の例を示す。絶縁性実装基板4は、例えばガラスエポキシ積層基板、液晶ポリマー基板、ポリイミド樹脂基板、AlN等のセラミックス基板などから成形することができる。   On the other hand, FIGS. 2 to 4 show examples in the case where the insulating mounting substrate 4 is used. The insulating mounting substrate 4 can be formed from, for example, a glass epoxy laminated substrate, a liquid crystal polymer substrate, a polyimide resin substrate, a ceramic substrate such as AlN, or the like.

図2の絶縁性実装基板4では、突出部46の上面47から実装基板4の下面まで貫通したスルーホール48を備えており、スルーホール48には、金属ペースト等の導電材料が充填される。突出部46の上面47には、スルーホール48内の導電材料と導通した金属膜から成るn側導電部43が備えられている。そして、p側導電部45は、突起部46を除く実装基板4の実装面41側に成膜した金属膜から形成されている。n側導電部43及びp側導電部45は、Agの膜から形成するのが好ましく、蒸着法やスパッタ法、またメッキや印刷法により所定の位置に成膜することができる。特に、メッキ法は、段差等の凹凸のある表面にも良好に成膜でき、複雑な形状の膜形成も容易であり、さらに、厚膜であっても短時間で安価に形成できる量産性に優れた方法であるので好ましい。   2 includes a through hole 48 penetrating from the upper surface 47 of the protrusion 46 to the lower surface of the mounting substrate 4, and the through hole 48 is filled with a conductive material such as a metal paste. An n-side conductive portion 43 made of a metal film that is electrically connected to the conductive material in the through hole 48 is provided on the upper surface 47 of the protruding portion 46. The p-side conductive portion 45 is formed of a metal film formed on the mounting surface 41 side of the mounting substrate 4 excluding the protrusions 46. The n-side conductive portion 43 and the p-side conductive portion 45 are preferably formed from an Ag film, and can be formed at predetermined positions by vapor deposition, sputtering, plating, or printing. In particular, the plating method can satisfactorily form a film with uneven surfaces such as a step, can easily form a film having a complicated shape, and can be formed at a low cost in a short time even with a thick film. This is preferable because it is an excellent method.

図3の絶縁性実装基板4は、突出部46の下端から実装基板4の縁部に向かう溝部49を有しており、n側導電部43は、突出部46の上面47から側面に沿って延び、さらに溝部49の中を通って実装基板4の縁部まで延びている。そして、p側導電部45は、突起部46と溝部49とを除く実装基板4の実装面41側に成膜した金属膜から形成されている。n側導電部43及びp側導電部45は、Agの膜から形成するのが好ましく、蒸着法やスパッタ法、またメッキや印刷法により所定の位置に成膜することができる。特に、メッキ法は、段差等の凹凸のある表面にも良好に成膜でき、複雑な形状の膜形成も容易であり、さらに、厚膜であっても短時間で安価に形成できる量産性に優れた方法であるので好ましい。
溝部49内のn側導電部43は、実装基板4表面のp側導電部45よりも下方に位置するので、発光ダイオード2と実装基板4とを異方性導電層6によって実装したときに、溝部49内のn側導電部43と導電性酸化物電極25とは、溝部49に充填される樹脂接着層62により絶縁される。
The insulating mounting substrate 4 of FIG. 3 has a groove 49 that extends from the lower end of the protrusion 46 toward the edge of the mounting substrate 4, and the n-side conductive portion 43 extends from the upper surface 47 of the protrusion 46 along the side surface. It further extends to the edge of the mounting substrate 4 through the groove 49. The p-side conductive portion 45 is formed of a metal film formed on the mounting surface 41 side of the mounting substrate 4 excluding the protruding portion 46 and the groove portion 49. The n-side conductive portion 43 and the p-side conductive portion 45 are preferably formed from an Ag film, and can be formed at predetermined positions by vapor deposition, sputtering, plating, or printing. In particular, the plating method can satisfactorily form a film with uneven surfaces such as a step, can easily form a film having a complicated shape, and can be formed at a low cost in a short time even with a thick film. This is preferable because it is an excellent method.
Since the n-side conductive portion 43 in the groove 49 is positioned below the p-side conductive portion 45 on the surface of the mounting substrate 4, when the light emitting diode 2 and the mounting substrate 4 are mounted by the anisotropic conductive layer 6, The n-side conductive part 43 and the conductive oxide electrode 25 in the groove part 49 are insulated by the resin adhesive layer 62 filled in the groove part 49.

図4の絶縁性実装基板4では、実装基板4の実装面41の全面にn側導電部43を構成する金属膜が形成されている。そして、実装面41の突出部46の上面及び側面を除くn側導電部43の上には、絶縁膜44とp側導電部45用の金属膜とが順次積層されている。n側導電部43及びp側導電部45は、Agの膜から形成するのが好ましく、蒸着法やスパッタ法、またメッキや印刷法により所定の位置に成膜することができる。特に、メッキ法は、段差等の凹凸のある表面にも良好に成膜でき、複雑な形状の膜形成も容易であり、さらに、厚膜であっても短時間で安価に形成できる量産性に優れた方法であるので好ましい。   In the insulating mounting substrate 4 of FIG. 4, a metal film constituting the n-side conductive portion 43 is formed on the entire mounting surface 41 of the mounting substrate 4. An insulating film 44 and a metal film for the p-side conductive portion 45 are sequentially stacked on the n-side conductive portion 43 excluding the upper surface and side surfaces of the protruding portion 46 of the mounting surface 41. The n-side conductive portion 43 and the p-side conductive portion 45 are preferably formed from an Ag film, and can be formed at predetermined positions by vapor deposition, sputtering, plating, or printing. In particular, the plating method can satisfactorily form a film with uneven surfaces such as a step, can easily form a film having a complicated shape, and can be formed at a low cost in a short time even with a thick film. This is preferable because it is an excellent method.

図5の絶縁性実装基板4は、図2〜4とは異なり、突出部46が金属材料から形成されている。この突出部46全体がn側導電部43であり、実装基板4の実装面41のうち突出部46を除く全面に形成された金属膜と一体に、又は別体に形成されている。突出部46と実装面41上の金属膜とは、電気的に接続されている。そして、実装面41の突出部46の上面及び側面を除くn側導電部43の上には、絶縁膜44とp側導電部45用の金属膜とが順次積層されている。n側導電部43はCuから、p側導電部45はAgの膜から形成するのが好ましく、いずれの導電部も、蒸着法やスパッタ法、またメッキや印刷法により所定の位置に成膜することができる。特に、メッキ法は、段差等の凹凸のある表面にも良好に成膜でき、複雑な形状の膜形成も容易であり、さらに、厚膜であっても短時間で安価に形成できる量産性に優れた方法であるので好ましい。   5 differs from FIGS. 2 to 4 in that the protruding portion 46 is made of a metal material. The entire protruding portion 46 is the n-side conductive portion 43, and is formed integrally with or separately from the metal film formed on the entire mounting surface 41 of the mounting substrate 4 except the protruding portion 46. The protrusion 46 and the metal film on the mounting surface 41 are electrically connected. An insulating film 44 and a metal film for the p-side conductive portion 45 are sequentially stacked on the n-side conductive portion 43 excluding the upper surface and side surfaces of the protruding portion 46 of the mounting surface 41. The n-side conductive portion 43 is preferably formed from Cu, and the p-side conductive portion 45 is preferably formed from an Ag film. Each conductive portion is formed at a predetermined position by vapor deposition, sputtering, plating, or printing. be able to. In particular, the plating method can satisfactorily form a film with uneven surfaces such as a step, can easily form a film having a complicated shape, and can be formed at a low cost in a short time even with a thick film. This is preferable because it is an excellent method.

上述のように、図1〜5のいずれの実装基板4も、発光ダイオード2の段差部26に露出したn型窒化物半導体層22の露出部27と導通するn側導電部43と、導電性酸化物電極25のほぼ全面と導通するp側導電部45とを備え、そして、異方性導電層6により発光ダイオード2を実装したときに、短絡を起こすことなく、導電性酸化物電極25の全面にわたってほぼ均一な電流を流すことができる。これにより、信頼性が高く、輝度むらの少ない発光素子を得ることができる。   As described above, any of the mounting substrates 4 of FIGS. 1 to 5 includes the n-side conductive portion 43 that is electrically connected to the exposed portion 27 of the n-type nitride semiconductor layer 22 exposed at the step portion 26 of the light emitting diode 2, and the conductive property. The p-side conductive portion 45 that is electrically connected to almost the entire surface of the oxide electrode 25 is provided, and when the light emitting diode 2 is mounted by the anisotropic conductive layer 6, the conductive oxide electrode 25 is not short-circuited. A substantially uniform current can flow over the entire surface. Accordingly, a light-emitting element with high reliability and less luminance unevenness can be obtained.

本発明の異方性導電層6は、絶縁体の樹脂接着層62と、樹脂接着層62の中に分散された導電粒子64とから構成されており、ペースト状の樹脂接着剤に導電粒子64を分散した異方性導電ペーストや、シート状に成形された樹脂接着シート内に導電粒子64が分散された異方性導電シートから形成することができる。   The anisotropic conductive layer 6 of the present invention is composed of an insulating resin adhesive layer 62 and conductive particles 64 dispersed in the resin adhesive layer 62, and the conductive particles 64 are added to a paste-like resin adhesive. Can be formed from an anisotropic conductive paste in which a conductive particle 64 is dispersed, or an anisotropic conductive sheet in which conductive particles 64 are dispersed in a resin adhesive sheet formed into a sheet shape.

異方性導電層6は、発光ダイオード2の実装時には、樹脂接着層61が軟化した状態にされており、実装基板4と発光ダイオード2との間に挟んで圧力をかけると、実装基板4の突起部46の上面47と発光ダイオード2のn型窒化物半導体層22の露出部27との隙間から樹脂接着層61が押し出され、そして、実装基板4のp側導電部45と発光ダイオード2の導電性酸化物電極25との隙間からも樹脂接着層61が押し出される。これにより、樹脂接着層61に分散されていた導電粒子64が、実装基板4の上面47と発光ダイオード2のn型窒化物半導体層22の露出部27との両方と接触した状態で挟まれ、また、実装基板4のp側導電部45と発光ダイオード2の導電性酸化物電極25との両方と接触した状態で挟まれる。これにより、n側導電部43と露出部27に露出したn型窒化物半導体層22とが導通し、p側導電部45と導電性酸化物電極25とが導通する。   The anisotropic conductive layer 6 is in a state in which the resin adhesive layer 61 is softened when the light emitting diode 2 is mounted, and when pressure is applied between the mounting substrate 4 and the light emitting diode 2, The resin adhesive layer 61 is pushed out from the gap between the upper surface 47 of the protrusion 46 and the exposed portion 27 of the n-type nitride semiconductor layer 22 of the light emitting diode 2, and the p-side conductive portion 45 of the mounting substrate 4 and the light emitting diode 2 The resin adhesive layer 61 is also pushed out from the gap with the conductive oxide electrode 25. Thereby, the conductive particles 64 dispersed in the resin adhesive layer 61 are sandwiched between the upper surface 47 of the mounting substrate 4 and the exposed portion 27 of the n-type nitride semiconductor layer 22 of the light emitting diode 2, Further, it is sandwiched between the p-side conductive portion 45 of the mounting substrate 4 and the conductive oxide electrode 25 of the light emitting diode 2. As a result, the n-side conductive portion 43 and the n-type nitride semiconductor layer 22 exposed at the exposed portion 27 are electrically connected, and the p-side conductive portion 45 and the conductive oxide electrode 25 are electrically connected.

異方性導電層6は、実装時に圧力のかからない方向では樹脂接着層61が押し出されることがないので、導電性粒子64を介した導通が発生しない。よって、実装基板4の突起部46の側面と、段差部26の側面との間に電気的な接触を発生させることがない。また、本発明の発光装置1では、発光ダイオード2と実装基板4との間の隙間に異方性導電層6が充填されていてもよく、発光ダイオード2の段差部26の側面(n型窒化物半導体層22、活性層23、p型窒化物半導体層24、及び導電性酸化物電極25が露出している)と、実装基板4の突出部46との間が、導電粒子64の粒子径よりも大きければ、樹脂接着層6によって絶縁されるので、短絡する恐れがない。   The anisotropic conductive layer 6 does not push out the resin adhesive layer 61 in a direction in which no pressure is applied during mounting, and therefore conduction through the conductive particles 64 does not occur. Therefore, no electrical contact is generated between the side surface of the protrusion 46 of the mounting substrate 4 and the side surface of the stepped portion 26. Further, in the light emitting device 1 of the present invention, the gap between the light emitting diode 2 and the mounting substrate 4 may be filled with the anisotropic conductive layer 6, and the side surface (n-type nitridation) of the stepped portion 26 of the light emitting diode 2. The particle diameter of the conductive particles 64 is between the physical semiconductor layer 22, the active layer 23, the p-type nitride semiconductor layer 24, and the conductive oxide electrode 25) and the protrusion 46 of the mounting substrate 4. If it is larger than this, since it is insulated by the resin adhesive layer 6, there is no possibility of short circuit.

図6には導電粒子64の断面を示している。図6(A)のように、導電粒子64は、n型窒化物半導体22とオーミック接触する材料の粒子から形成することが好ましい。粒子を形成する材料としては、Ti、Zr、Hf、Cr、Mo、W、Al又はこれらの合金のいずれかから形成されていると、n型窒化物半導体層22と良好なオーミック接触するので好ましい。   FIG. 6 shows a cross section of the conductive particles 64. As shown in FIG. 6A, the conductive particles 64 are preferably formed from particles of a material that is in ohmic contact with the n-type nitride semiconductor 22. As a material for forming the particles, it is preferable that the material is formed from any one of Ti, Zr, Hf, Cr, Mo, W, Al, or an alloy thereof because the ohmic contact with the n-type nitride semiconductor layer 22 is good. .

また、図6(B)に示すように、導電粒子64を、粒子の内部に芯粒子66を有する2層構造にすることもできる。芯粒子66には、樹脂材料や金属材料を用いることができるが、特に、Al、Ag、Pt、Rh、Ni又はこれらの合金のような光の反射率の高い金属材料を用いるのが好ましい。ここで、「芯粒子66」とは、導電粒子64の内部に位置する略球状又は略楕円球状の粒子であり、表面に金属を被覆して導電粒子64として使用するものである。芯粒子66が光の反射率の高い金属材料から成る2層構造の導電粒子64は、異方性導電層6の中に漏れ出してきた光のうち、導電粒子64に当たる光を芯粒子66が発光ダイオード2の方向に効率よく反射して、発光装置の取出し効率が向上する、という効果が期待できる。また、芯粒子66にAlを用いるのが最も好ましく、導電粒子64とn型窒化物半導体層22とのオーミック特性が、他の材料の芯粒子66を含む導電粒子64に比較して、最も良好になる。   In addition, as shown in FIG. 6B, the conductive particles 64 can have a two-layer structure having core particles 66 inside the particles. For the core particle 66, a resin material or a metal material can be used. In particular, it is preferable to use a metal material having a high light reflectance such as Al, Ag, Pt, Rh, Ni, or an alloy thereof. Here, the “core particle 66” is a substantially spherical or substantially oval spherical particle located inside the conductive particle 64, and is used as the conductive particle 64 by covering the surface with a metal. In the conductive particle 64 having a two-layer structure in which the core particle 66 is made of a metal material having a high light reflectance, the core particle 66 emits light that strikes the conductive particle 64 out of the light leaking into the anisotropic conductive layer 6. It can be expected that the light is efficiently reflected in the direction of the light emitting diode 2 and the extraction efficiency of the light emitting device is improved. Al is most preferably used for the core particle 66, and the ohmic characteristics of the conductive particle 64 and the n-type nitride semiconductor layer 22 are the best compared to the conductive particle 64 including the core particle 66 of another material. become.

導電粒子64の芯粒子66を被覆する表面層68は、芯粒子66のない導電粒子64と同様にTi、Zr、Hf、Cr、Mo、W、Al又はこれらの合金から形成すると、n型窒化物半導体層22及び導電性酸化物電極25と良好なオーミック接触できるので好ましい。
さらに、表面層68を、2層以上の材料を積層した積層体にすることもできる。表面層68のうち最も外側の層は、導電性材料から形成されており、特に、Ti、Zr、Hf、Cr、Mo、W、Al又はこれらの合金のいずれかから形成されていると、n型窒化物半導体層22及び導電性酸化物電極25と良好なオーミック接触できるので好ましい。表面層68の最外層以外の層には、任意の材料から形成された層を含むことができ、例えば、任意の金属材料から成る金属層や、芯材料66をポリマーコーティングして形成されたポリマー層を含むことができる。このような表面層68を含む導電粒子64は、少なくとも導電性材料から成る最外層によって、発光ダイオード2と実装基板4とを確実に導通することができる。
When the surface layer 68 covering the core particles 66 of the conductive particles 64 is formed of Ti, Zr, Hf, Cr, Mo, W, Al, or an alloy thereof, like the conductive particles 64 without the core particles 66, n-type nitriding is performed. This is preferable because good ohmic contact can be made with the physical semiconductor layer 22 and the conductive oxide electrode 25.
Furthermore, the surface layer 68 can also be made into the laminated body which laminated | stacked the material of two or more layers. The outermost layer of the surface layer 68 is formed of a conductive material, and in particular, when formed of any one of Ti, Zr, Hf, Cr, Mo, W, Al, or an alloy thereof, n This is preferable because good ohmic contact can be made with the type nitride semiconductor layer 22 and the conductive oxide electrode 25. The layer other than the outermost layer of the surface layer 68 can include a layer formed of an arbitrary material. For example, a metal layer formed of an arbitrary metal material or a polymer formed by polymer coating the core material 66. Layers can be included. The conductive particles 64 including such a surface layer 68 can reliably conduct the light emitting diode 2 and the mounting substrate 4 by at least the outermost layer made of a conductive material.

また、本実施形態の発光装置は、使用する発光ダイオードの製造工程のうち、n側及びp側パッド電極の形成工程と、保護膜形成工程との2工程を省略することができるので、従来の発光ダイオードを使用した発光装置に比べて製造コストを抑えることができる。   In addition, the light emitting device of the present embodiment can omit the two steps of forming the n-side and p-side pad electrodes and the protective film forming step in the manufacturing process of the light emitting diode to be used. Manufacturing costs can be reduced compared to a light emitting device using a light emitting diode.

実施形態2
実施形態2にかかる発光装置1は、発光ダイオード2がp側パッド電極54を備えており、n側パッド電極52を備えていないことを除いては、実施形態1と同様である。
図7に示すように、本実施形態の発光装置1の発光ダイオード2には、p側電極25の上面にp側パッド電極54が形成されている。p側パッド電極54は、p側電極25との密着性が良好な材料から形成されている。例えば、p側電極25がNi/Au膜等の金属膜や、ITO、ZnO、In、SnO、又はMgO等の導電性酸化物膜から形成されている場合には、p側パッド電極54は、Ti/Au積層膜、Rh/Pt/Au積層膜、Ti/Rh積層膜、又はW/Pt/Au積層膜から形成することができる。
Embodiment 2
The light emitting device 1 according to the second embodiment is the same as that of the first embodiment except that the light emitting diode 2 includes the p-side pad electrode 54 and does not include the n-side pad electrode 52.
As shown in FIG. 7, the p-side pad electrode 54 is formed on the upper surface of the p-side electrode 25 in the light-emitting diode 2 of the light-emitting device 1 of the present embodiment. The p-side pad electrode 54 is formed from a material having good adhesion to the p-side electrode 25. For example, when the p-side electrode 25 is formed of a metal film such as a Ni / Au film or a conductive oxide film such as ITO, ZnO, In 3 O 3 , SnO 2 , or MgO, the p-side pad The electrode 54 can be formed from a Ti / Au laminated film, a Rh / Pt / Au laminated film, a Ti / Rh laminated film, or a W / Pt / Au laminated film.

p側パッド電極54は、図7のようにp側電極25の表面の一部に形成してもよいが、p側電極25の全面に形成するのが好ましく、p型窒化物半導体層25の全体に、均一に電流を流すことができる。また、p側電極25が透光性を有する場合には、発光ダイオードで発光した光の一部がp側電極25を透過してp側パッド電極54に達する。よって、p側パッド電極54に使用する材料は、発光ダイオードの発光波長の光に対する反射率ができるだけ高い材料、例えばRh等を選択するのが好ましく、光の取出し効率を良好に維持することができる。   The p-side pad electrode 54 may be formed on a part of the surface of the p-side electrode 25 as shown in FIG. 7, but is preferably formed on the entire surface of the p-side electrode 25. The current can flow uniformly throughout. Further, when the p-side electrode 25 has translucency, part of the light emitted from the light emitting diode passes through the p-side electrode 25 and reaches the p-side pad electrode 54. Therefore, the material used for the p-side pad electrode 54 is preferably a material having a reflectivity as high as possible with respect to light of the light emitting wavelength of the light emitting diode, such as Rh, and can maintain good light extraction efficiency. .

本実施形態の発光装置1では、p側パッド電極54があることにより、p側導電部45とp側パッド電極54とが異方性導電膜6の導電粒子64によって導通される。また、実施形態1と同様に、n側導電部43と露出部27に露出したn型窒化物半導体層22とが導電粒子64によって導通される。よって、導電粒子64の少なくとも表面側の金属材料を、Ti、Zr、Hf、Cr、Mo、W、Al又はこれらの合金のいずれかから選択すると、n型窒化物半導体層22と良好なオーミック接触するので好ましい。   In the light emitting device 1 of the present embodiment, since the p-side pad electrode 54 is provided, the p-side conductive portion 45 and the p-side pad electrode 54 are electrically connected by the conductive particles 64 of the anisotropic conductive film 6. Similarly to the first embodiment, the n-side conductive portion 43 and the n-type nitride semiconductor layer 22 exposed at the exposed portion 27 are electrically connected by the conductive particles 64. Therefore, when the metal material on at least the surface side of the conductive particles 64 is selected from Ti, Zr, Hf, Cr, Mo, W, Al, or an alloy thereof, good ohmic contact with the n-type nitride semiconductor layer 22 This is preferable.

本実施形態では、発光ダイオードのn側パッド電極52がないので、横方向に伝搬する光の吸収が減少して、発光ダイオードの光の取出し効率が良好になる。これにより、輝度の高い発光装置を得ることができる。   In the present embodiment, since there is no n-side pad electrode 52 of the light emitting diode, absorption of light propagating in the lateral direction is reduced, and light extraction efficiency of the light emitting diode is improved. Thereby, a light emitting device with high luminance can be obtained.

実施形態3
実施形態3にかかる発光装置1は、発光ダイオード2がn側パッド電極52を備えており、p側パッド電極54を備えていないことを除いては、実施形態1と同様である。
図8に示すように、本実施形態の発光装置1の発光ダイオード2には、段差部26から露出しているn型窒化物半導体22にn側パッド電極52が形成されている。n側パッド電極52は、n型窒化物半導体22とオーミック接触可能な材料から形成されており、例えばW、Pt、Auを含む材料から形成することができる。
Embodiment 3
The light-emitting device 1 according to the third embodiment is the same as that of the first embodiment except that the light-emitting diode 2 includes the n-side pad electrode 52 and does not include the p-side pad electrode 54.
As shown in FIG. 8, in the light emitting diode 2 of the light emitting device 1 of the present embodiment, an n-side pad electrode 52 is formed on the n-type nitride semiconductor 22 exposed from the step portion 26. The n-side pad electrode 52 is made of a material that can make ohmic contact with the n-type nitride semiconductor 22, and can be made of a material containing, for example, W, Pt, or Au.

p側電極25は、透光性を有する導電酸化物から形成しており、発光ダイオードで発光した光の一部がp側電極25を透過してp側導電部45に到達する。そこで、p側導電部45に使用する材料は、発光ダイオードの発光波長の光に対す反射率が75%以上の金属材料から形成すると、従来のp側パッド電極に比べて光の損失量を減らすことができるので、発光装置の光の取出し効率が向上する。p側導電部45に適した金属材料としては、窒化物半導体から成る発光ダイオードの発光波長であれば、Al、Ag、Pt、Rh又はこれらの合金を挙げることができる。このように、本実施形態の発光装置では、p側導電部45がp側電極25と直接に接触せず、p側パッド電極54のように密着性により制限を受けないので、p側導電部45に光の反射率の良好な材料を任意に選択することができる。   The p-side electrode 25 is made of a light-transmitting conductive oxide, and part of the light emitted from the light emitting diode passes through the p-side electrode 25 and reaches the p-side conductive portion 45. Therefore, when the material used for the p-side conductive portion 45 is formed of a metal material having a reflectance of 75% or more with respect to light having the emission wavelength of the light-emitting diode, the amount of light loss is reduced as compared with the conventional p-side pad electrode. Therefore, the light extraction efficiency of the light emitting device is improved. Examples of the metal material suitable for the p-side conductive portion 45 include Al, Ag, Pt, Rh, and alloys thereof as long as the emission wavelength of a light emitting diode made of a nitride semiconductor. Thus, in the light emitting device of this embodiment, the p-side conductive portion 45 is not in direct contact with the p-side electrode 25 and is not limited by the adhesiveness unlike the p-side pad electrode 54. A material having a good light reflectivity can be arbitrarily selected.

本実施形態の発光装置1では、n側パッド電極52があることにより、n側導電部43とn側パッド電極52とが異方性導電膜6の導電粒子64によって導通される。n側パッド電極52が、図8に図示したよりも厚く、その表面がp側電極25とほぼ面一又はわずかに突出する程度である場合には、凸部46を形成していない実装基板4を使用することも可能である。
なお、実施形態1と同様に、p側導電部45とn側電極25とが導電粒子64によって導通される。
In the light emitting device 1 of the present embodiment, since the n-side pad electrode 52 is provided, the n-side conductive portion 43 and the n-side pad electrode 52 are electrically connected by the conductive particles 64 of the anisotropic conductive film 6. When the n-side pad electrode 52 is thicker than that shown in FIG. 8 and its surface is substantially flush with or slightly protruding from the p-side electrode 25, the mounting substrate 4 on which the convex portion 46 is not formed. Can also be used.
As in the first embodiment, the p-side conductive part 45 and the n-side electrode 25 are electrically connected by the conductive particles 64.

本実施形態では、発光ダイオードのp側パッド電極がないので、透光性のp側電極25から漏れ出た光がp側パッド電極で反射されない。よって、p側電極25との密着性によって反射率を高めることのできなかったp側パッド電極に代えて、実装基板4に形成されたp側導電部45に反射率の高い材料を用いることで、p側電極25から漏れ出た光の反射率が上昇し、発光装置の光の取出し効率を向上することが可能である。   In this embodiment, since there is no p-side pad electrode of the light emitting diode, light leaking from the light-transmitting p-side electrode 25 is not reflected by the p-side pad electrode. Therefore, instead of the p-side pad electrode, whose reflectivity cannot be increased due to adhesion with the p-side electrode 25, a material having high reflectance is used for the p-side conductive portion 45 formed on the mounting substrate 4. The reflectance of the light leaking from the p-side electrode 25 is increased, and the light extraction efficiency of the light emitting device can be improved.

この実施例の発光装置を、図1に基づき説明する。
発光ダイオード2は、サファイア基板21の上に、AlGaNよりなるバッファ層(図示せず)、ノンドープGaN層(図示せず)が積層され、その上に、n型窒化物半導体層22として、SiドープGaNよりなるn型コンタクト層、GaN層とInGaN層とを交互に積層させた超格子のn型クラッド層が積層され、さらにその上に、最初にアンドープGaNからなる障壁層と続いてInGaNからなる井戸層とのInGaNからなる第1の障壁層とのアンドープGaNからなる第2の障壁層が繰り返し交互に積層されて形成された多重量子井戸構造の活性層23、p型窒化物半導体層24として、MgドープAlGaN層とMgドープInGaN層とが交互に積層された超格子のp型クラッド層、MgドープGaNよりなるp型コンタクト層がこの順に積層されて構成される。
The light emitting device of this embodiment will be described with reference to FIG.
In the light-emitting diode 2, a buffer layer (not shown) made of AlGaN and a non-doped GaN layer (not shown) are stacked on a sapphire substrate 21, and an n-type nitride semiconductor layer 22 is formed thereon as a Si-doped semiconductor layer 22. An n-type contact layer made of GaN, a superlattice n-type clad layer in which GaN layers and InGaN layers are alternately laminated are laminated, and further, a barrier layer made of undoped GaN and then made of InGaN. As a multi-quantum well structure active layer 23 and a p-type nitride semiconductor layer 24 formed by alternately and alternately stacking second barrier layers made of undoped GaN with well layers and first barrier layers made of InGaN. A p-type cladding layer of a superlattice in which Mg-doped AlGaN layers and Mg-doped InGaN layers are alternately stacked, and a p-type contour made of Mg-doped GaN Coat layer which are stacked in this order.

n型窒化物半導体層22の一部の領域においては、その上に積層された活性層23及びp型窒化物半導体層24をエッチングにより除去して段差部26を形成し、さらにn型窒化物半導体層22自体の厚さ方向の一部も除去してn型窒化物半導体層の22を形成している。
p型窒化物半導体層24上には、ほぼ全面に、ITOからなる導電性酸化物電極25が形成されている。
In a partial region of the n-type nitride semiconductor layer 22, the active layer 23 and the p-type nitride semiconductor layer 24 stacked on the n-type nitride semiconductor layer 22 are removed by etching to form a stepped portion 26, and the n-type nitride is further removed. A part of the semiconductor layer 22 itself in the thickness direction is also removed to form the n-type nitride semiconductor layer 22.
On the p-type nitride semiconductor layer 24, a conductive oxide electrode 25 made of ITO is formed on almost the entire surface.

この実施例1の発光装置1は、以下の製造方法により作製した。
<半導体層22〜24の形成>
2インチφのサファイア基板1の上に、MOVPE反応装置を用い、Al0.1Ga0.9Nよりなるバッファ層を100Å、ノンドープGaN層を1.5μm、n型窒化物半導体層22として、SiドープGaNよりなるn型コンタクト層を2.165μm、GaN層(40Å)とInGaN層(20Å)とを交互に10回積層させた超格子のn型クラッド層を640Å、最初に膜厚が250ÅのアンドープGaNからなる障壁層と続いて膜厚が30ÅのIn0.3Ga0.7Nからなる井戸層と膜厚が100ÅのIn0.02Ga0.98Nからなる第1の障壁層と膜厚が150ÅのアンドープGaNからなる第2の障壁層が繰り返し交互に6層ずつ積層されて形成された多重量子井戸構造の活性層23(総膜厚1930Å)、p型窒化物半導体層24として、MgドープAl0.1Ga0.9N層(40Å)とMgドープInGaN層(20Å)とを交互に10回積層させた超格子のp型クラッド層を0.2μm、MgドープGaNよりなるp型コンタクト層を0.5μmの膜厚でこの順に成長させ、ウェハを作製する。
The light emitting device 1 of Example 1 was manufactured by the following manufacturing method.
<Formation of Semiconductor Layers 22-24>
Using a MOVPE reactor on a 2-inch φ sapphire substrate 1, a buffer layer made of Al 0.1 Ga 0.9 N is 100 mm, a non-doped GaN layer is 1.5 μm, an n-type nitride semiconductor layer 22 is made of Si-doped GaN An n-type contact layer of 2.165 μm, a superlattice n-type clad layer in which a GaN layer (40 cm) and an InGaN layer (20 cm) are alternately stacked 10 times are 640 mm, and the first is an undoped GaN film having a thickness of 250 mm. And a well layer made of In 0.3 Ga 0.7 N with a thickness of 30 と, a first barrier layer made of In 0.02 Ga 0.98 N with a thickness of 100 と, and a thickness of A multi-quantum well structure active layer 23 (total thickness 1930 Å) formed by alternately stacking six second barrier layers made of 150 Å undoped GaN, p-type nitride half As the body layer 24, made Mg-doped Al 0.1 Ga 0.9 N layer (40 Å) and Mg-doped InGaN layer alternately superlattice formed by laminating 10 times the p-type cladding layer and (20 Å) 0.2 [mu] m, than Mg-doped GaN A p-type contact layer is grown in this order with a thickness of 0.5 μm to produce a wafer.

<段差部26の形成>
得られたウェハを反応容器内で、窒素雰囲気中、600℃にてアニールし、p型クラッド層及びp型コンタクト層をさらに低抵抗化する。
アニール後、ウェハを反応容器から取り出し、最上層のp型コンタクト層の表面に所定の形状のマスクを形成し、エッチング装置でマスクの上からエッチングして段差部26を形成し、n型コンタクト層を露出させた。
<Formation of the step part 26>
The obtained wafer is annealed in a reaction vessel at 600 ° C. in a nitrogen atmosphere to further reduce the resistance of the p-type cladding layer and the p-type contact layer.
After annealing, the wafer is taken out from the reaction vessel, a mask having a predetermined shape is formed on the surface of the uppermost p-type contact layer, and a step portion 26 is formed by etching from above the mask with an etching apparatus. Was exposed.

<導電性酸化物電極25の形成>
マスクを除去した後、スパッタリング装置にウェハを設置し、In23とSnO2との焼結体からなる酸化物ターゲットをスパッタリング装置内に設置して、加速電圧200kVでITOの導電性酸化物電極25を形成した。
<Formation of Conductive Oxide Electrode 25>
After removing the mask, a wafer is placed in the sputtering apparatus, an oxide target made of a sintered body of In 2 O 3 and SnO 2 is placed in the sputtering apparatus, and an ITO conductive oxide at an acceleration voltage of 200 kV. An electrode 25 was formed.

得られるウェハを所定の箇所で分割することにより、発光ダイオード2を得る。本発明の発光装置に使用する発光ダイオード2は、n型窒化物半導体層22の露出部27及び導電性酸化物電極25に、n側及びp側のパッド電極を備えていない。   The light emitting diode 2 is obtained by dividing the obtained wafer at a predetermined location. The light-emitting diode 2 used in the light-emitting device of the present invention does not include the n-side and p-side pad electrodes on the exposed portion 27 of the n-type nitride semiconductor layer 22 and the conductive oxide electrode 25.

<実装基板4の形成>
実装基板4は、導電性材料のSiから突起部46を備えた形状に成形された。実装基板4には、突起部46を除く実装基板4の実装面41側に、絶縁膜44と、Ag膜から成るp側導電部45とがこの順に積層された。また、突起部46の上面47には、Ag膜から成るn側導電部43が形成されている。p側導電部45及びn側導電部43は、いずれもメッキにより形成することができる。
<Formation of mounting substrate 4>
The mounting substrate 4 was formed into a shape having a protrusion 46 from Si, which is a conductive material. On the mounting substrate 4, an insulating film 44 and a p-side conductive portion 45 made of an Ag film were laminated in this order on the mounting surface 41 side of the mounting substrate 4 excluding the protrusions 46. An n-side conductive portion 43 made of an Ag film is formed on the upper surface 47 of the protrusion 46. Both the p-side conductive portion 45 and the n-side conductive portion 43 can be formed by plating.

<発光ダイオード2の実装>
中心粒径5μmのAl粒子を芯粒子66とし、その表面にTiの表面層68を厚さ100Åに被覆して導電粒子64を得た。樹脂接着剤としてシリコーン樹脂を使用し、その中に、導電粒子64を5vol%添加して異方性導電ペーストを得た。
この異方性導電ペーストを、実装基板4の実装面41に、厚さ10μm以上20μm以下の範囲となるよう塗布し、次いで発光ダイオード2を、導電性酸化物電極25が実装基板4の実装面41に対向する向きで、且つ実装基板4の突出部46が発光ダイオード2の段差部26にはまるように位置合わせして、実装基板4の実装面41に載置する。そして、実装基板4と発光ダイオード2とを近づける方向に圧力をかけて、実装基板4と発光ダイオード2との間の所定領域の導通を確立した状態でシリコーン樹脂を加熱硬化して、発光ダイオード2を実装して、発光装置1を得た。
<Mounting of light emitting diode 2>
Al particles having a central particle diameter of 5 μm were used as core particles 66, and a Ti surface layer 68 was coated on the surface thereof to a thickness of 100 mm to obtain conductive particles 64. A silicone resin was used as a resin adhesive, and 5 vol% of conductive particles 64 were added therein to obtain an anisotropic conductive paste.
This anisotropic conductive paste is applied to the mounting surface 41 of the mounting substrate 4 so as to have a thickness in the range of 10 μm to 20 μm, and then the light-emitting diode 2 is mounted on the mounting surface of the mounting substrate 4 with the conductive oxide electrode 25. It is placed on the mounting surface 41 of the mounting substrate 4 so as to face the surface 41 and so that the protruding portion 46 of the mounting substrate 4 fits into the stepped portion 26 of the light emitting diode 2. Then, pressure is applied in a direction in which the mounting substrate 4 and the light emitting diode 2 are brought close to each other, and the silicone resin is heat-cured in a state where conduction of a predetermined region between the mounting substrate 4 and the light emitting diode 2 is established. The light emitting device 1 was obtained.

以上のようにして得られた発光装置1は、駆動電圧が20mA、主波長が470nm、順方向電圧が3.2Vであり、明るさが15.5mWであった。   The light emitting device 1 obtained as described above had a driving voltage of 20 mA, a dominant wavelength of 470 nm, a forward voltage of 3.2 V, and a brightness of 15.5 mW.

(比較例)
図9に示した比較例の発光素子を説明する。導電性酸化物電極25の表面にp側パッド電極54を、露出したn型窒化物半導体層22の表面にn側パッド電極52を設ける他は実施例1と同様である。
(Comparative example)
The light emitting element of the comparative example shown in FIG. 9 will be described. Example 1 is the same as Example 1 except that a p-side pad electrode 54 is provided on the surface of the conductive oxide electrode 25 and an n-side pad electrode 52 is provided on the exposed surface of the n-type nitride semiconductor layer 22.

<n側及びp側パッド電極の形成>
エッチングにより露出させたn型窒化物半導体層22の露出部27に、ボンディング用のW、Pt、Auを含むn側パッド電極52を形成した。一方、p型窒化物半導体24の表面に形成した導電性酸化物電極25の上に、n側パッド電極52と同一工程にてW、Pt、Auを含むn側パッド電極52と同じ部材からなるp側パッド電極54を形成した。
<Formation of n-side and p-side pad electrodes>
An n-side pad electrode 52 containing W, Pt, and Au for bonding was formed on the exposed portion 27 of the n-type nitride semiconductor layer 22 exposed by etching. On the other hand, on the conductive oxide electrode 25 formed on the surface of the p-type nitride semiconductor 24, the same member as the n-side pad electrode 52 containing W, Pt, and Au is formed in the same process as the n-side pad electrode 52. A p-side pad electrode 54 was formed.

n側及びp側パッド電極52、54を設けた発光ダイオード2を備える発光素子1は、駆動電圧が20mA、主波長が470nm、順方向電圧が3.1Vであり、明るさが14mWと、本発明の発光素子に比較して暗い装置であった。また、発光ダイオードの製造において、n側及びp側パッド電極の形成工程を含むので、実施例1に比べてコスト高になった。   The light-emitting element 1 including the light-emitting diode 2 provided with the n-side and p-side pad electrodes 52 and 54 has a driving voltage of 20 mA, a dominant wavelength of 470 nm, a forward voltage of 3.1 V, and a brightness of 14 mW. The device was darker than the light emitting device of the invention. In addition, since the process of forming the n-side and p-side pad electrodes is included in the manufacture of the light-emitting diode, the cost is higher than that in Example 1.

本発明の発光装置は、バックライト光源、ディスプレイ、照明、車両用ランプ等の各種光源に好適に利用することができ、また、発光素子としては、発光ダイオードのみならず窒化物半導体レーザ素子を用いることもできる。さらに発光装置のみならず、受光装置など他の半導体素子を備えた装置にも適用可能である。   The light-emitting device of the present invention can be suitably used for various light sources such as a backlight light source, a display, illumination, and a vehicle lamp, and as the light-emitting element, not only a light-emitting diode but also a nitride semiconductor laser element is used. You can also. Furthermore, it is applicable not only to a light emitting device but also to a device including other semiconductor elements such as a light receiving device.

本発明の実施の形態1にかかる発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device concerning Embodiment 1 of this invention. 本発明の発光装置に使用される異方性導電層中の導電粒子を示す断面図である(A、B)。It is sectional drawing which shows the electrically-conductive particle in the anisotropic conductive layer used for the light-emitting device of this invention (A, B). 本発明の実施の形態2にかかる発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device concerning Embodiment 3 of this invention. 比較例の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of a comparative example. 従来の発光ダイオードを示す断面図である。It is sectional drawing which shows the conventional light emitting diode.

符号の説明Explanation of symbols

1 発光装置
2 発光ダイオード
4 実装基板
6 異方性導電層
22 n型窒化物半導体層
24 p型半導体層
23 段差部
27 下段部
43 n側導電部
45 p側導電部
46 突出部
62 樹脂接着層
64 導電粒子
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Light emitting diode 4 Mounting board 6 Anisotropic conductive layer 22 N-type nitride semiconductor layer 24 P-type semiconductor layer 23 Step part 27 Lower part 43 N side conductive part 45 p side conductive part 46 Protrusion part 62 Resin adhesion layer 64 conductive particles

Claims (9)

n型窒化物半導体層と、該n型窒化物半導体層に積層したp型窒化物半導体層と、該p型窒化物半導体層の表面に形成されたp側電極と、を有する発光素子と、
前記n型窒化物半導体層と電気的に接続するn側導電部と、前記p側電極と電気的に接続するp側導電部と、を有する実装基板と、
前記実装基板と前記発光素子を接着する樹脂接着層と、該樹脂接着層に分散された導電粒子とを含む異方性導電層と、を備え、
前記導電粒子は、少なくとも表面が金属材料から形成され、前記n型窒化物半導体及び前記n側導電部と直接接触していることを特徴とする発光装置。
a light emitting device having an n-type nitride semiconductor layer, a p-type nitride semiconductor layer stacked on the n-type nitride semiconductor layer, and a p-side electrode formed on the surface of the p-type nitride semiconductor layer;
A mounting substrate having an n-side conductive portion electrically connected to the n-type nitride semiconductor layer and a p-side conductive portion electrically connected to the p-side electrode;
A resin adhesive layer that adheres the mounting substrate and the light emitting element, and an anisotropic conductive layer that includes conductive particles dispersed in the resin adhesive layer,
The conductive particle is formed of a metal material at least on the surface, and is in direct contact with the n-type nitride semiconductor and the n-side conductive portion.
n型窒化物半導体層と、該n型窒化物半導体層に積層したp型窒化物半導体層と、該p型窒化物半導体層の表面のほぼ全面に形成されたp側電極と、を有する発光素子と、
前記n型窒化物半導体層と電気的に接続するn側導電部と、前記p側電極と電気的に接続するp側導電部と、を有する実装基板と、
前記実装基板と前記発光素子を接着する樹脂接着層と、該樹脂接着層に分散された導電粒子とを含む異方性導電層と、を備え、
前記導電粒子は、前記p側電極及び前記p側導電部と直接接触していることを特徴とする発光装置。
Light emission having an n-type nitride semiconductor layer, a p-type nitride semiconductor layer stacked on the n-type nitride semiconductor layer, and a p-side electrode formed on almost the entire surface of the p-type nitride semiconductor layer Elements,
A mounting substrate having an n-side conductive portion electrically connected to the n-type nitride semiconductor layer and a p-side conductive portion electrically connected to the p-side electrode;
A resin adhesive layer that adheres the mounting substrate and the light emitting element, and an anisotropic conductive layer that includes conductive particles dispersed in the resin adhesive layer,
The light-emitting device, wherein the conductive particles are in direct contact with the p-side electrode and the p-side conductive part.
n型窒化物半導体層と、該n型窒化物半導体層に積層したp型窒化物半導体層と、該p型窒化物半導体層の表面のほぼ全面に形成されたp側電極と、を有する発光素子と、
前記n型窒化物半導体層と電気的に接続するn側導電部と、前記p側電極と電気的に接続するp側導電部と、を有する実装基板と、
前記実装基板と前記発光素子を接着する樹脂接着層と、該樹脂接着層に分散された導電粒子とを含む異方性導電層と、を備え、
前記導電粒子は、少なくとも表面が金属材料から形成され、前記n型窒化物半導体及び前記n側導電部と直接接触し、且つ前記p側電極及び前記p側導電部と直接接触していることを特徴とする発光装置。
Light emission having an n-type nitride semiconductor layer, a p-type nitride semiconductor layer stacked on the n-type nitride semiconductor layer, and a p-side electrode formed on almost the entire surface of the p-type nitride semiconductor layer Elements,
A mounting substrate having an n-side conductive portion electrically connected to the n-type nitride semiconductor layer and a p-side conductive portion electrically connected to the p-side electrode;
A resin adhesive layer that adheres the mounting substrate and the light emitting element, and an anisotropic conductive layer that includes conductive particles dispersed in the resin adhesive layer,
The conductive particles have at least a surface formed of a metal material, are in direct contact with the n-type nitride semiconductor and the n-side conductive portion, and are in direct contact with the p-side electrode and the p-side conductive portion. A light emitting device characterized.
前記導電粒子は、少なくとも表面がTi、Zr、Hf、Cr、Mo、W、Al及びこれらの合金から成る群から選択された1種から成ることを特徴とする請求項1乃至3のいずれか1項に記載の発光装置。   4. The conductive particle according to claim 1, wherein at least a surface thereof is made of one selected from the group consisting of Ti, Zr, Hf, Cr, Mo, W, Al, and alloys thereof. The light emitting device according to item. 前記導電粒子は、その内部が、Al、Ag、Pt、Rh、Ni及びこれらの合金からなる群から選択された金属から成ることを特徴とする請求項4に記載の発光装置。   5. The light emitting device according to claim 4, wherein the conductive particles are made of a metal selected from the group consisting of Al, Ag, Pt, Rh, Ni, and alloys thereof. 前記p側導電部は、少なくとも表面が、前記発光素子の発光波長における反射率が75%以上の金属材料から成ることを特徴とする請求項1乃至5のいずれか1項に記載の発光装置。   6. The light emitting device according to claim 1, wherein at least a surface of the p-side conductive portion is made of a metal material having a reflectance of 75% or more at an emission wavelength of the light emitting element. 前記p側導電部は、少なくとも表面が、Al、Ag、Pt、Rh及びこれらの合金から成る群から選択された1種から成ることを特徴とする請求項6に記載の発光装置。   7. The light emitting device according to claim 6, wherein at least the surface of the p-side conductive portion is made of one selected from the group consisting of Al, Ag, Pt, Rh, and alloys thereof. 前記n型窒化物半導体層及び前記p型窒化物半導体層の実装基板との接続面が、前記異方性導電層の樹脂接着層によって直接覆われていることを特徴とする請求項1乃至7のいずれか1項に記載の発光装置。   8. The connection surface of the n-type nitride semiconductor layer and the p-type nitride semiconductor layer with a mounting substrate is directly covered with a resin adhesive layer of the anisotropic conductive layer. The light emitting device according to any one of the above. 前記発光素子は、前記p型窒化物半導体層側の表面に前記n型窒化物半導体層の一部が露出するように形成された段差部を有し、
前記実装基板が、前記発光素子の段差部の形状に対応して成形された基板突出部を備えていることを特徴とする請求項1乃至8のいずれか1項に記載の発光装置。
The light-emitting element has a step portion formed so that a part of the n-type nitride semiconductor layer is exposed on the surface on the p-type nitride semiconductor layer side,
9. The light emitting device according to claim 1, wherein the mounting substrate includes a substrate protruding portion formed corresponding to the shape of the stepped portion of the light emitting element.
JP2005314854A 2005-10-28 2005-10-28 Light emitting device Expired - Fee Related JP4951937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314854A JP4951937B2 (en) 2005-10-28 2005-10-28 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314854A JP4951937B2 (en) 2005-10-28 2005-10-28 Light emitting device

Publications (2)

Publication Number Publication Date
JP2007123613A true JP2007123613A (en) 2007-05-17
JP4951937B2 JP4951937B2 (en) 2012-06-13

Family

ID=38147114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314854A Expired - Fee Related JP4951937B2 (en) 2005-10-28 2005-10-28 Light emitting device

Country Status (1)

Country Link
JP (1) JP4951937B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135513A (en) * 2008-12-03 2010-06-17 Sumitomo Electric Ind Ltd Package
WO2011045962A1 (en) * 2009-10-16 2011-04-21 ソニーケミカル&インフォメーションデバイス株式会社 Light reflecting conductive particles, anisotropic conductive adhesive, and light emitting device
JP2011222875A (en) * 2010-04-13 2011-11-04 Sony Chemical & Information Device Corp Light-reflective, anisotropic and conductive adhesive, and light-emitting device
WO2011155348A1 (en) * 2010-06-09 2011-12-15 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflective anisotropic electrically conductive paste, and light-emitting device
WO2012000114A1 (en) 2010-06-29 2012-01-05 Cooledge Lightning Inc. Electronic devices with yielding substrates
JP2012178400A (en) * 2011-02-25 2012-09-13 Toyoda Gosei Co Ltd Led lamp
WO2012124724A1 (en) * 2011-03-16 2012-09-20 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflecting anisotropically conductive adhesive and light emitting device
CN102694107A (en) * 2011-03-22 2012-09-26 首尔Opto仪器股份有限公司 Light emitting diode package and method for manufacturing the same
WO2012144033A1 (en) * 2011-04-20 2012-10-26 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflecting conductive particles, anisotropic conductive adhesive, and light-emitting device
US8450751B2 (en) 2007-04-26 2013-05-28 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body and method for producing the same
WO2013157552A1 (en) * 2012-04-17 2013-10-24 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for manufacturing same, light emitting device, and method for manufacturing same
CN103378282A (en) * 2012-04-27 2013-10-30 展晶科技(深圳)有限公司 Method for manufacturing light emitting diode encapsulating structures
JP2013541857A (en) * 2010-11-08 2013-11-14 東芝テクノセンター株式会社 LED-based light source using asymmetric conductors
JP2014030026A (en) * 2013-08-30 2014-02-13 Dexerials Corp Anisotropic conducting adhesive material, and light-emitting device
JP2014195113A (en) * 2014-05-30 2014-10-09 Dexerials Corp Light-reflective anisotropic conductive adhesive, and light-emitting device
US9107272B2 (en) 2010-01-04 2015-08-11 Cooledge Lighting Inc. Failure mitigation in arrays of light-emitting devices
JP2015153829A (en) * 2014-02-12 2015-08-24 スタンレー電気株式会社 Semiconductor light emitting device, mounting substrate and semiconductor light emitting device manufacturing method
US9179510B2 (en) 2009-06-27 2015-11-03 Cooledge Lighting Inc. High efficiency LEDs and LED lamps
US9214615B2 (en) 2012-06-07 2015-12-15 Cooledge Lighting Inc. Methods of fabricating wafer-level flip chip device packages
KR20160132917A (en) 2014-03-12 2016-11-21 데쿠세리아루즈 가부시키가이샤 Light-emitting device
US11367819B2 (en) 2014-08-26 2022-06-21 Suzhou Lekin Semiconductor Co., Ltd. Light-emitting device array and light-emitting apparatus including light-emitting device array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098360A (en) * 1995-06-20 1997-01-10 Shichizun Denshi:Kk Light emitting diode
JP2004039983A (en) * 2002-07-05 2004-02-05 Rohm Co Ltd Semiconductor light emitting device
JP2005109434A (en) * 2003-09-11 2005-04-21 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098360A (en) * 1995-06-20 1997-01-10 Shichizun Denshi:Kk Light emitting diode
JP2004039983A (en) * 2002-07-05 2004-02-05 Rohm Co Ltd Semiconductor light emitting device
JP2005109434A (en) * 2003-09-11 2005-04-21 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450751B2 (en) 2007-04-26 2013-05-28 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body and method for producing the same
US8653540B2 (en) 2007-04-26 2014-02-18 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor body and method for producing the same
JP2010135513A (en) * 2008-12-03 2010-06-17 Sumitomo Electric Ind Ltd Package
US9179510B2 (en) 2009-06-27 2015-11-03 Cooledge Lighting Inc. High efficiency LEDs and LED lamps
WO2011045962A1 (en) * 2009-10-16 2011-04-21 ソニーケミカル&インフォメーションデバイス株式会社 Light reflecting conductive particles, anisotropic conductive adhesive, and light emitting device
JP2011086823A (en) * 2009-10-16 2011-04-28 Sony Chemical & Information Device Corp Light-reflective conductive particle, anisotropic conductive adhesive, and light-emitting device
US9340710B2 (en) 2009-10-16 2016-05-17 Dexerials Corporation Light-reflective conductive particle, anisotropic conductive adhesive and light-emitting device
CN102576798A (en) * 2009-10-16 2012-07-11 索尼化学&信息部件株式会社 Light reflecting conductive particles, anisotropic conductive adhesive, and light emitting device
TWI450280B (en) * 2009-10-16 2014-08-21 Dexerials Corp Light reflective conductive particles, anisotropic conductive adhesives and light-emitting devices
US8796725B2 (en) 2009-10-16 2014-08-05 Dexerials Corporation Light-reflective conductive particle, anisotropic conductive adhesive and light-emitting device
US9107272B2 (en) 2010-01-04 2015-08-11 Cooledge Lighting Inc. Failure mitigation in arrays of light-emitting devices
CN102859673A (en) * 2010-04-13 2013-01-02 索尼化学&信息部件株式会社 Light-reflective anisotropic conductive adhesive agent, and light emitting device
JP2011222875A (en) * 2010-04-13 2011-11-04 Sony Chemical & Information Device Corp Light-reflective, anisotropic and conductive adhesive, and light-emitting device
US8710662B2 (en) 2010-06-09 2014-04-29 Sony Corporation & Information Device Corporation Light-reflective anisotropic conductive paste and light-emitting device
WO2011155348A1 (en) * 2010-06-09 2011-12-15 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflective anisotropic electrically conductive paste, and light-emitting device
JP2012019203A (en) * 2010-06-09 2012-01-26 Sony Chemical & Information Device Corp Light-reflective anisotropic conductive paste, and light emitting device
CN102934243B (en) * 2010-06-09 2018-08-31 迪睿合电子材料有限公司 Light reflective anisotropic conductive paste and light-emitting device
TWI624516B (en) * 2010-06-09 2018-05-21 Dexerials Corp Light reflective anisotropic conductive paste and light emitting device
CN102934243A (en) * 2010-06-09 2013-02-13 索尼化学&信息部件株式会社 Light-reflective anisotropic electrically conductive paste, and light-emitting device
WO2012000114A1 (en) 2010-06-29 2012-01-05 Cooledge Lightning Inc. Electronic devices with yielding substrates
US9252373B2 (en) 2010-06-29 2016-02-02 Cooledge Lighting, Inc. Electronic devices with yielding substrates
US9426860B2 (en) 2010-06-29 2016-08-23 Cooledge Lighting, Inc. Electronic devices with yielding substrates
EP2589082A1 (en) * 2010-06-29 2013-05-08 Cooledge Lighting Inc. Electronic devices with yielding substrates
US9054290B2 (en) 2010-06-29 2015-06-09 Cooledge Lighting Inc. Electronic devices with yielding substrates
EP2589082A4 (en) * 2010-06-29 2015-02-25 Cooledge Lighting Inc Electronic devices with yielding substrates
JP2013541857A (en) * 2010-11-08 2013-11-14 東芝テクノセンター株式会社 LED-based light source using asymmetric conductors
JP2016029740A (en) * 2010-11-08 2016-03-03 株式会社東芝 Led-based light source using asymmetrical conductor
JP2012178400A (en) * 2011-02-25 2012-09-13 Toyoda Gosei Co Ltd Led lamp
JP2012207216A (en) * 2011-03-16 2012-10-25 Sony Chemical & Information Device Corp Light-reflective anisotropically conductive adhesive and light-emitting device
US8852462B2 (en) 2011-03-16 2014-10-07 Dexerials Corporation Light-reflective anisotropic conductive adhesive and light-emitting device
KR101995599B1 (en) * 2011-03-16 2019-07-02 데쿠세리아루즈 가부시키가이샤 Light-reflecting anisotropically conductive adhesive and light emitting device
WO2012124724A1 (en) * 2011-03-16 2012-09-20 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflecting anisotropically conductive adhesive and light emitting device
CN103415585A (en) * 2011-03-16 2013-11-27 迪睿合电子材料有限公司 Light-reflecting anisotropically conductive adhesive and light emitting device
CN103415585B (en) * 2011-03-16 2015-04-29 迪睿合电子材料有限公司 Light-reflecting anisotropically conductive adhesive and light emitting device
KR20130131299A (en) * 2011-03-16 2013-12-03 데쿠세리아루즈 가부시키가이샤 Light-reflecting anisotropically conductive adhesive and light emitting device
CN102694107A (en) * 2011-03-22 2012-09-26 首尔Opto仪器股份有限公司 Light emitting diode package and method for manufacturing the same
CN107316929A (en) * 2011-03-22 2017-11-03 首尔伟傲世有限公司 Light emission diode package member
US11563152B2 (en) 2011-03-22 2023-01-24 Seoul Viosys Co., Ltd. Light emitting diode package and method of manufacturing the same
US10727376B2 (en) 2011-03-22 2020-07-28 Seoul Viosys Co., Ltd. Light emitting diode package and method of manufacturing the same
CN102694107B (en) * 2011-03-22 2018-10-23 首尔伟傲世有限公司 Light emission diode package member
US10074778B2 (en) 2011-03-22 2018-09-11 Seoul Viosys Co., Ltd. Light emitting diode package and method for manufacturing the same
JPWO2012144033A1 (en) * 2011-04-20 2014-07-28 デクセリアルズ株式会社 Light reflective conductive particles, anisotropic conductive adhesive, and light emitting device
US8975654B2 (en) 2011-04-20 2015-03-10 Dexerials Corporation Light-reflective conductive particle, anisotropic conductive adhesive, and light-emitting device
WO2012144033A1 (en) * 2011-04-20 2012-10-26 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflecting conductive particles, anisotropic conductive adhesive, and light-emitting device
JP2013221104A (en) * 2012-04-17 2013-10-28 Dexerials Corp Anisotropic conductive adhesive agent, method for producing the same, light emitting device and method for manufacturing the same
WO2013157552A1 (en) * 2012-04-17 2013-10-24 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for manufacturing same, light emitting device, and method for manufacturing same
CN103378282A (en) * 2012-04-27 2013-10-30 展晶科技(深圳)有限公司 Method for manufacturing light emitting diode encapsulating structures
US9231178B2 (en) 2012-06-07 2016-01-05 Cooledge Lighting, Inc. Wafer-level flip chip device packages and related methods
US9214615B2 (en) 2012-06-07 2015-12-15 Cooledge Lighting Inc. Methods of fabricating wafer-level flip chip device packages
JP2014030026A (en) * 2013-08-30 2014-02-13 Dexerials Corp Anisotropic conducting adhesive material, and light-emitting device
JP2015153829A (en) * 2014-02-12 2015-08-24 スタンレー電気株式会社 Semiconductor light emitting device, mounting substrate and semiconductor light emitting device manufacturing method
KR20160132917A (en) 2014-03-12 2016-11-21 데쿠세리아루즈 가부시키가이샤 Light-emitting device
JP2014195113A (en) * 2014-05-30 2014-10-09 Dexerials Corp Light-reflective anisotropic conductive adhesive, and light-emitting device
US11367819B2 (en) 2014-08-26 2022-06-21 Suzhou Lekin Semiconductor Co., Ltd. Light-emitting device array and light-emitting apparatus including light-emitting device array

Also Published As

Publication number Publication date
JP4951937B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4951937B2 (en) Light emitting device
KR101546929B1 (en) Light emitting diode and led module having the same
JP5347219B2 (en) Semiconductor light emitting device
US7429750B2 (en) Solid-state element and solid-state element device
TWI275190B (en) Positive electrode for semiconductor light-emitting device
JP4946195B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5138873B2 (en) Nitride semiconductor device
JP5048960B2 (en) Semiconductor light emitting device
US20060273335A1 (en) Semiconductor light emitting device
JP5659728B2 (en) Light emitting element
JP2008041866A (en) Nitride semiconductor element
EP2006922A1 (en) Nitride semiconductor light emitting element and method for fabricating the same
JP2005183911A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
JP4766845B2 (en) Nitride-based compound semiconductor light-emitting device and method for manufacturing the same
US20100237382A1 (en) Semiconductor light emitting element, semiconductor light emitting device using the element, and method for manufacturing the device
JPWO2006006556A1 (en) Semiconductor light emitting device
US20070010035A1 (en) Light emitting diode and manufacturing method thereof
JP2006121084A (en) Luminous unit that uses multilayer compound metallic coating layer as flip chip electrode
WO2010041370A1 (en) Nitride semiconductor light emitting diode
JP2007103690A (en) Semiconductor light emitting device and its fabrication process
KR20130052002A (en) Method for manufacturing group iii nitride semiconductor light emitting element
JPWO2009057311A1 (en) Semiconductor light emitting element and semiconductor light emitting device using the same
JP2005123489A (en) Nitride semiconductor light emitting element and its manufacturing method
JP4134135B2 (en) Light emitting device
JP5945736B2 (en) Light emitting element

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4951937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees