JPH11220008A - Wafer susceptor - Google Patents

Wafer susceptor

Info

Publication number
JPH11220008A
JPH11220008A JP2008598A JP2008598A JPH11220008A JP H11220008 A JPH11220008 A JP H11220008A JP 2008598 A JP2008598 A JP 2008598A JP 2008598 A JP2008598 A JP 2008598A JP H11220008 A JPH11220008 A JP H11220008A
Authority
JP
Japan
Prior art keywords
ceramic body
power supply
supply terminal
internal electrode
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008598A
Other languages
Japanese (ja)
Other versions
JP3297637B2 (en
Inventor
Norio Okuda
憲男 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008598A priority Critical patent/JP3297637B2/en
Publication of JPH11220008A publication Critical patent/JPH11220008A/en
Application granted granted Critical
Publication of JP3297637B2 publication Critical patent/JP3297637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wafer susceptor, in which a ceramic body, the main constituent of the wafer susceptor, is free from damages during brazing process for fastening a feeding terminal to an internal electrode embedded inside the ceramic body and during suseceptor usage, and which has prolonged lifetime even under usage, at temperatures over approximately 500 deg.C by suppressing the oxidation of the internal electrode due to the diffusion of oxygen in atmospheric air through the brazing material. SOLUTION: To construct a wafer susceptor, a film-like internal electrode 4 is embedded inside a ceramic body 2 which has a wafer loading plane, then a depression 6 is filled piecing the internal electrode 4 to fasten a feeding terminal 5 on a surface plane other than the wafer loading plane of the ceramic body 2, and the feeding terminal 5 is fastened to the depression 6 by brazing with a brazing material 7 which consists mainty of silver, to electrically connect the feeding terminal 5 to the internal electrode 4. In addition, a flange 5c is formed at the outer periphery of the feeding trminal 5, and the flange 5c is fastened to the surface plane of the ceramic body 2 by brazing with the brazing material 7, composed mainly of silver, in which the distance h of the gap between the flange 5c of the feeding terminal 5 and the surface plane of the ceramic body 2 is set smaller than 50 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウエハなど
のウエハの載置面を有するセラミック体中に静電吸着用
電極やヒータ電極、あるいは高周波発生用電極などの内
部電極を備えたウエハ支持部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer support member provided with an internal electrode such as an electrode for electrostatic attraction, a heater electrode, or an electrode for high frequency generation in a ceramic body having a wafer mounting surface such as a semiconductor wafer. It is about.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程において
は、半導体ウエハ(以下、ウエハと称す。)を保持する
ために静電チャックやヒータ内蔵型サセプタなどのウエ
ハ支持部材が使用されている。
2. Description of the Related Art Conventionally, in a manufacturing process of a semiconductor device, a wafer supporting member such as an electrostatic chuck or a susceptor with a built-in heater is used to hold a semiconductor wafer (hereinafter, referred to as a wafer).

【0003】例えば、図5に一般的なウエハ支持部材5
1の断面図を示すように、セラミック体52の上面をウ
エハの載置面53とし、セラミック体52中に膜状の内
部電極54を埋設したものがあった。そして、上記内部
電極54を静電吸着用電極として用いる場合、載置面5
3にウエハWを載せ、ウエハWと内部電極54との間に
直流電圧を印加して静電吸着力を発現させれば、ウエハ
Wを載置面53に吸着保持することができ、また、上記
内部電極54をヒータ電極として用いる場合、ウエハW
を載置面53に載せ、内部電極54に交流電圧を印加し
て発熱させれば、載置面53に支持したウエハWを加熱
することができ、さらに、上記内部電極54をプラズマ
発生用電極として用いる場合、ウエハWを載置面53に
載せ、別に用意されたプラズマ発生用電極(不図示)と
内部電極54との間に高周波電力を印加してプラズマを
発生させれば、載置面53に支持したウエハWへの各種
加工速度を高めることができるようになっていた。
For example, FIG. 5 shows a general wafer support member 5.
As shown in the cross-sectional view of FIG. 1, there was a ceramic body 52 in which the upper surface of a ceramic body 52 was used as a wafer mounting surface 53 and a film-like internal electrode 54 was embedded in the ceramic body 52. When the internal electrode 54 is used as an electrostatic attraction electrode, the mounting surface 5
3, a DC voltage is applied between the wafer W and the internal electrode 54 to generate an electrostatic attraction force, whereby the wafer W can be attracted and held on the mounting surface 53. When the internal electrode 54 is used as a heater electrode, the wafer W
Is mounted on the mounting surface 53, and an AC voltage is applied to the internal electrodes 54 to generate heat, whereby the wafer W supported on the mounting surface 53 can be heated. When the wafer W is mounted on the mounting surface 53 and plasma is generated by applying high-frequency power between a separately prepared electrode for plasma generation (not shown) and the internal electrode 54, the mounting surface 53 Thus, various processing speeds for the wafer W supported by the wafer 53 can be increased.

【0004】また、上記セラミック体52中に埋設され
たヒータ電極54への給電は、図6に示すように、セラ
ミック体52の下面に給電端子55を取り付けるための
凹部56が前記内部電極54を貫通して穿設され、この
凹部56に銀を主体とするロウ材57を介して外径が3
〜10mm程度である棒状の給電端子55をロウ付け固
定することにより電気的に接続するようにしたものがあ
った。
As shown in FIG. 6, power is supplied to the heater electrode 54 embedded in the ceramic body 52 by a concave portion 56 for attaching a power supply terminal 55 to the lower surface of the ceramic body 52. The outer diameter is set to 3 through a brazing material 57 mainly composed of silver.
There has been a configuration in which a rod-shaped power supply terminal 55 of about 10 to 10 mm is electrically connected by brazing and fixing.

【0005】[0005]

【発明が解決しようとする課題】ところで、近年、ウエ
ハWへの成膜工程においては、使用温度が年々高くなる
傾向にあった。例えば、ウエハW上へ金属膜を被覆する
CVD装置においては、薄膜の種類がW膜からTi膜、
SiO2 膜、WSiX 膜等が使用されるようになり、こ
れまで処理温度が400℃程度であったものが500〜
850℃の高温域での使用が求められるようになってい
た。
In recent years, in the film forming process on the wafer W, the use temperature has tended to increase year by year. For example, in a CVD apparatus that coats a metal film on a wafer W, the type of the thin film is changed from a W film to a Ti film,
Become SiO 2 film, WSi X film or the like is used, so far 500 what treatment temperature was about 400 ° C.
It has been required to be used in a high temperature range of 850 ° C.

【0006】しかしながら、このような高温域でウエハ
支持部材51を使用すると、セラミック体52中の内部
電極54が酸化されて抵抗値が変化するために、ウエハ
Wの温度制御ができなくなり、ついには断線してしまう
といった課題があった。
However, when the wafer support member 51 is used in such a high temperature range, the internal electrode 54 in the ceramic body 52 is oxidized and the resistance value changes, so that the temperature of the wafer W cannot be controlled. There was a problem of disconnection.

【0007】即ち、処理温度が500℃以上になると、
大気中における酸素が銀を主体とするロウ材57中に拡
散し易くなり、セラミック体52の凹部56に露出して
いる内部電極54を酸化させていた。
That is, when the processing temperature exceeds 500 ° C.,
Oxygen in the atmosphere is easily diffused into the brazing material 57 mainly composed of silver, and the internal electrode 54 exposed in the concave portion 56 of the ceramic body 52 is oxidized.

【0008】また、処理温度が高くなると、セラミック
体52とロウ材57との間の熱応力やセラミック体52
と給電端子55との間の熱応力がそれぞれ大きくなるた
め、加熱、冷却の繰り返しに伴ってセラミック体52に
クラックが発生するといった課題もあった。そして、セ
ラミックスの中でも機械的強度が若干劣る窒化アルミニ
ウムにおいては、これらの問題は顕著であった。
When the processing temperature increases, the thermal stress between the ceramic body 52 and the brazing material 57 or the ceramic body 52
Since the thermal stress between the power supply terminal 55 and the power supply terminal 55 increases, there is also a problem that cracks occur in the ceramic body 52 with repeated heating and cooling. These problems were remarkable in aluminum nitride, which has a somewhat poor mechanical strength among ceramics.

【0009】一方、給電端子55を固定する他の方法と
して、内部電極54と給電端子55とをかしめ圧着した
り、給電端子55を焼き嵌めにより固定する方法も提案
されている(特開平4−104494号公報参照)が、
かしめ圧着や焼き嵌めでは、製作上のばらつきが大きく
信頼性に欠けるものであった。
On the other hand, as other methods for fixing the power supply terminal 55, a method of caulking and crimping the internal electrode 54 and the power supply terminal 55 or fixing the power supply terminal 55 by shrink fitting has been proposed (Japanese Patent Application Laid-Open No. Hei 4-1992). 104494),
In the crimping or shrink fitting, there is a large variation in the production and the reliability is lacking.

【0010】[0010]

【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、ウエハの載置面を有するセラミック体中に少
なくとも一つの内部電極を埋設してなり、上記載置面以
外のセラミック体の表面に給電端子を取り付けるための
凹部を上記内部電極を貫通して穿設し、該凹部に銀を主
体とするロウ材を介して前記給電端子をロウ付け固定す
ることにより給電端子と上記内部電極とを電気的に接続
してなるウエハ支持部材であって、上記給電端子は外周
にフランジ部を設け、このフランジ部とセラミック体の
表面との間にも前記銀を主体とするロウ材を介してロウ
付け固定するとともに、上記給電端子のフランジ部とセ
ラミック体の表面との間隔の距離を50μm以下とした
ことを特徴とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention has at least one internal electrode buried in a ceramic body having a mounting surface for a wafer, and is provided with a ceramic body other than the mounting surface described above. A concave portion for attaching a power supply terminal to the surface is drilled through the internal electrode, and the power supply terminal and the internal electrode are fixed to the concave portion by brazing the power supply terminal through a brazing material mainly composed of silver. Wherein the power supply terminal is provided with a flange on the outer periphery, and the silver-based brazing material is also provided between the flange and the surface of the ceramic body. And the distance between the flange portion of the power supply terminal and the surface of the ceramic body is set to 50 μm or less.

【0011】また、本発明は、上記給電端子のフランジ
部に、前記セラミック体と同種のセラミックスからなる
リング体をロウ付け固定することで、熱応力に伴う上記
フランジ部の剥離を抑え、さらに耐久性を高めることが
できる。
Further, the present invention suppresses peeling of the flange portion due to thermal stress by brazing and fixing a ring body made of the same type of ceramic as the ceramic body to the flange portion of the power supply terminal. Can be enhanced.

【0012】なお、上記セラミック体中の内部電極とし
ては、静電吸着用電極、ヒータ電極、プラズマ発生用電
極として用いることができる。
The internal electrode in the ceramic body can be used as an electrode for electrostatic attraction, a heater electrode, or an electrode for plasma generation.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0014】図1(a)は本発明のウエハ支持部材の一
例を示す斜視図であり、(b)は(a)のX−X線断面
図である。
FIG. 1A is a perspective view showing an example of the wafer support member of the present invention, and FIG. 1B is a sectional view taken along line XX of FIG.

【0015】このウエハ支持部材1は、円盤状をしたセ
ラミック体2からなり、その上面をウエハWの載置面3
とするとともに、セラミック体2中には膜状の内部電極
4を埋設してあり、該内部電極4への給電はセラミック
体2の下面に接合した給電端子5を介して通電するよう
にしてある。そして、載置面3に半導体ウエハなどのウ
エハWを載せ、ウエハWと内部電極4との間に直流電圧
を印加して静電吸着力を発現させれば、上記内部電極4
に静電吸着用電極としての機能を持たせ、ウエハWを載
置面3に吸着保持することができ、また、ウエハWを載
置面3に載せ、内部電極4に交流電圧を印加して発熱さ
せれば、上記内部電極4にヒータ電極としての機能を持
たせ、載置面3に支持したウエハWを加熱することがで
き、さらに、ウエハWを載置面3に載せ、内部電極4と
別に用意したプラズマ発生用電極(不図示)との間に高
周波電力を印加してプラズマを発生させれば、上記内部
電極4にプラズマ発生用電極としての機能を持たせ、載
置面3に支持したウエハWへの各種加工速度を高めるこ
とができるようになっている。
The wafer support member 1 is made of a disc-shaped ceramic body 2 and its upper surface is placed on the mounting surface 3 of the wafer W.
A film-like internal electrode 4 is embedded in the ceramic body 2, and power is supplied to the internal electrode 4 via a power supply terminal 5 joined to the lower surface of the ceramic body 2. . Then, a wafer W such as a semiconductor wafer is placed on the mounting surface 3, and a DC voltage is applied between the wafer W and the internal electrode 4 to develop an electrostatic attraction force.
Has a function as an electrode for electrostatic attraction, and can hold the wafer W on the mounting surface 3 by suction. The wafer W is mounted on the mounting surface 3, and an AC voltage is applied to the internal electrode 4. When the heat is generated, the internal electrode 4 has a function as a heater electrode, so that the wafer W supported on the mounting surface 3 can be heated. If high-frequency power is applied between the electrode and a plasma generating electrode (not shown) separately prepared to generate plasma, the internal electrode 4 has a function as a plasma generating electrode, and the mounting surface 3 Various processing speeds for the supported wafer W can be increased.

【0016】このようなウエハ支持部材1を構成するセ
ラミック体2としては、アルミナ、窒化アルミニウム、
窒化珪素、炭化珪素、炭化硼素、イットリウム−アルミ
ニウム−ガーネットを主成分とするセラミックスを用い
ることができる。この中でも特に窒化アルミニウムは、
優れた熱伝導率を有することから、加工精度に影響を与
えるウエハW上の温度ムラを小さくすることができると
ともに、デポジッション用ガスやエッチング用ガスとし
て使用されるハロゲン系腐食性ガスに対して優れた耐蝕
性を有することから、セラミック体2を構成する材質と
して好適である。
As the ceramic body 2 constituting such a wafer support member 1, alumina, aluminum nitride,
Ceramics containing silicon nitride, silicon carbide, boron carbide, and yttrium-aluminum-garnet as main components can be used. Among these, aluminum nitride is particularly
Since it has excellent thermal conductivity, it is possible to reduce temperature unevenness on the wafer W which affects the processing accuracy, and to reduce halogen-based corrosive gas used as a deposition gas or an etching gas. Since it has excellent corrosion resistance, it is suitable as a material forming the ceramic body 2.

【0017】また、上記セラミック体2中に埋設する内
部電極4の材質としては、タングステン、モリブデン、
白金等の高融点金属やこれらの合金、あるいはWCやT
iNなどの導電性セラミックスを用いることができる。
これらの金属、合金、導電性セラミックスは、上記セラ
ミック体2との熱膨張差が小さいことから、製作時や使
用時におけるセラミック体2との密着性を高めることが
できる。
The material of the internal electrode 4 embedded in the ceramic body 2 is tungsten, molybdenum,
Refractory metals such as platinum and their alloys, WC and T
Conductive ceramics such as iN can be used.
Since these metals, alloys, and conductive ceramics have a small difference in thermal expansion from the ceramic body 2, it is possible to enhance the adhesion to the ceramic body 2 during production or use.

【0018】ところで、図2に示すように、セラミック
体2中の内部電極4と給電端子5との接合は、セラミッ
ク体2の下面に給電端子5を取り付けるための凹部6を
前記内部電極4を貫通して穿設し、この凹部6にフラン
ジ部5cを有する棒状の給電端子5を挿入するととも
に、セラミック体2の下面の凹部6近傍と給電端子5の
フランジ部5cとの間、及び凹部6の内壁面6aと給電
端子5の先端部5aとの間にそれぞれ、耐熱性に優れた
銀を主体とするロウ材7を介在させてロウ付け固定する
とともに、給電端子5のフランジ部5cとセラミック体
2の下面との隙間の距離hを50μm以下としてある。
なお、本実施形態ではセラミック体2の下面の凹部6近
傍及び凹部6の内壁面6aにはロウ材7との密着性を高
めるために銀を主体とするメタライズ層8を設けてあ
り、凹部6に露出する内部電極4はメタライズ層8と電
気的に接続されている。ただし、メタライズ層8はロウ
付け時にロウ材7と溶け合って数μm〜20μm程度の
ロウ材の一部を形成するようになっている。このよう
に、給電端子5の外周にフランジ部5cを設け、このフ
ランジ部5cとセラミック体2の下面との間にも銀を主
体とするロウ材7を介して接合することにより、ロウ付
け面積を大きくすることができ、給電端子5をより強固
に接合することができるとともに、外気から内部電極4
までの距離を長くすることができるため、大気中の酸素
がロウ材7やメタライズ層8中を拡散して内部電極4に
到達するまでの時間を長くすることができ、酸化に伴う
内部電極4の寿命を高めることができる。
By the way, as shown in FIG. 2, the internal electrode 4 in the ceramic body 2 and the power supply terminal 5 are joined by forming a concave portion 6 for mounting the power supply terminal 5 on the lower surface of the ceramic body 2 with the internal electrode 4. A rod-shaped power supply terminal 5 having a flange portion 5c is inserted into the concave portion 6, and a portion between the vicinity of the concave portion 6 on the lower surface of the ceramic body 2 and the flange portion 5c of the power supply terminal 5, and the concave portion 6 are formed. And a brazing material 7 mainly composed of silver having excellent heat resistance is interposed between the inner wall surface 6a of the power supply terminal 5 and the tip 5a of the power supply terminal 5, and the flange 5c of the power supply terminal 5 and the ceramic are fixed. The distance h of the gap with the lower surface of the body 2 is set to 50 μm or less.
In the present embodiment, a metallized layer 8 mainly composed of silver is provided on the lower surface of the ceramic body 2 in the vicinity of the concave portion 6 and on the inner wall surface 6a of the concave portion 6 in order to enhance the adhesion to the brazing material 7. The internal electrode 4 exposed to the substrate is electrically connected to the metallized layer 8. However, the metallized layer 8 melts with the brazing material 7 at the time of brazing so as to form a part of the brazing material of about several μm to 20 μm. As described above, the flange portion 5c is provided on the outer periphery of the power supply terminal 5, and the flange portion 5c and the lower surface of the ceramic body 2 are also joined via the brazing material 7 mainly composed of silver, so that the brazing area is obtained. And the power supply terminal 5 can be more firmly joined, and the internal electrode 4
, The time required for oxygen in the atmosphere to diffuse through the brazing material 7 and the metallized layer 8 and reach the internal electrode 4 can be increased, and the internal electrode 4 associated with oxidation can be extended. Life can be increased.

【0019】ただし、給電端子5にフランジ部5cを設
けたとしても500℃以上の高温域では内部電極4の酸
化を充分に抑えることができないため、給電端子5のフ
ランジ部5cとセラック体2の下面との間隔の距離hを
50μm以下とすることが重要である。
However, even if the power supply terminal 5 is provided with the flange portion 5c, the oxidation of the internal electrode 4 cannot be sufficiently suppressed in a high temperature range of 500 ° C. or more, so that the flange portion 5c of the power supply terminal 5 and the shellac body 2 It is important that the distance h between the lower surface and the lower surface be 50 μm or less.

【0020】即ち、本件発明者は鋭意実験を重ねたとこ
ろ、給電端子5のフランジ部5cとセラミック体2の下
面との隙間の距離hによって酸素の拡散速度が異なるこ
とを見出し、その隙間の距離hを50μm以下とすれば
良いことを突き止めた。このように給電端子5のフラン
ジ部5cとセラミック体2の下面との隙間の距離hを5
0μm以下にまで狭めてロウ材7やメタライズ層8をよ
り緻密化することで、酸素の拡散速度を大幅に低減する
ことができるため、500℃以上の高温域での酸化に伴
う内部電極4の寿命を高めることができる。
That is, the inventor of the present invention has conducted intensive experiments and found that the diffusion speed of oxygen varies depending on the distance h between the flange 5c of the power supply terminal 5 and the lower surface of the ceramic body 2. It has been found that h should be 50 μm or less. Thus, the distance h of the gap between the flange portion 5c of the power supply terminal 5 and the lower surface of the ceramic body 2 is 5
Since the diffusion rate of oxygen can be greatly reduced by narrowing the brazing material 7 and the metallized layer 8 by narrowing the thickness to 0 μm or less, the internal electrode 4 accompanying oxidation at a high temperature region of 500 ° C. or higher can be greatly reduced. Service life can be extended.

【0021】また、図2において、給電端子5の先端部
5aにおける先端面とセラミック体2の凹部6の底面と
の間には隙間を設けてロウ付けしない構造としてある。
その為、熱膨張差に伴う熱応力を凹部6のコーナーにお
いて皆無とすることができ、凹部6のコーナーに発生す
る応力集中を抑制してセラミック体2の破損を防ぐこと
ができる。
In FIG. 2, a gap is provided between the tip surface of the tip portion 5a of the power supply terminal 5 and the bottom surface of the concave portion 6 of the ceramic body 2 so as not to be brazed.
Therefore, the thermal stress due to the difference in thermal expansion can be completely eliminated at the corner of the concave portion 6, and the stress concentration generated at the corner of the concave portion 6 can be suppressed to prevent the ceramic body 2 from being damaged.

【0022】一方、セラミック体2と給電端子5を接合
するロウ材7としては、銀80〜99重量%に対して銅
を1〜20重量%の範囲で含んだものが良い。これは、
ロウ材として従来より使用されているBag−8(銀7
2重量%、銅28重量%)は融点が780℃程度と低い
ために、処理温度が800℃以上となると使用に耐え
ず、また、銅の含有量が多いと耐酸化性に劣るからであ
る。ただし、800℃未満の温度での使用においてはB
ag−8でも構わない。
On the other hand, the brazing material 7 for joining the ceramic body 2 and the power supply terminal 5 preferably contains copper in a range of 1 to 20% by weight with respect to 80 to 99% by weight of silver. this is,
Bag-8 (silver 7) conventionally used as a brazing material
(2% by weight, 28% by weight of copper) has a melting point as low as about 780 ° C., so that it cannot withstand use at a processing temperature of 800 ° C. or higher, and has poor oxidation resistance when the content of copper is large. . However, when used at a temperature lower than 800 ° C., B
ag-8 may be used.

【0023】また、メタライズ層8を構成する材質とし
ては、上記ロウ材7を構成する銀と銅の合計100重量
%に対して活性金属としてチタンを0.2〜20重量%
の範囲で含有させたものを用いれば、セラミック体2と
の濡れ性を高め、接合強度を高めることができる。
The material constituting the metallized layer 8 is such that titanium as an active metal is 0.2 to 20% by weight based on 100% by weight of the total of silver and copper constituting the brazing material 7.
Is used, the wettability with the ceramic body 2 can be increased, and the bonding strength can be increased.

【0024】このようなウエハ支持部材1を製作する方
法としては、各種セラミック原料に対してバインダーと
溶媒を添加混練して泥漿を作成し、ドクターブレード法
などのテープ成形法にて複数枚のセラミックグリーンシ
ートを形成したあと、数枚のグリーンシートを積層して
グリーンシート積層体とし、この表面に内部電極4をな
す導体ペーストを所定のパターン形状に敷設したあと、
該導体ペーストを覆うように残りのグリーンシートを積
層し熱圧着することによりグリーンシート積層体を形成
する。次に、このグリーンシート積層体を所定の形状に
切削加工を施して円盤状となし、各種セラミックスを焼
結させることができる温度にて焼成することにより、膜
状の内部電極4を埋設してなるセラミック基体2を製作
する。
As a method of manufacturing such a wafer support member 1, a binder and a solvent are added and kneaded to various ceramic raw materials to form a slurry, and a plurality of ceramic materials are formed by a tape forming method such as a doctor blade method. After forming a green sheet, several green sheets are laminated to form a green sheet laminate, and a conductor paste forming the internal electrode 4 is laid on the surface in a predetermined pattern shape.
The remaining green sheets are laminated so as to cover the conductor paste, and thermocompression-bonded to form a green sheet laminate. Next, the green sheet laminate is cut into a predetermined shape to form a disc shape, and fired at a temperature at which various ceramics can be sintered, thereby embedding the film-shaped internal electrode 4. The ceramic substrate 2 is manufactured.

【0025】また、セラミック体2を製作する他の方法
としては、予め所定のパターン形状を有する内部電極4
を敷設してなる円盤状のセラミック成形体を用意し、こ
のセラミック成形体の表面上に内部電極4を埋めるよう
にセラミック粉末を堆積させ、プレス機により加圧した
あと、各種セラミックスを焼結させることができる温度
にて焼成したものでも構わない。
Another method for manufacturing the ceramic body 2 is to use an internal electrode 4 having a predetermined pattern shape in advance.
Is prepared, a ceramic powder is deposited on the surface of the ceramic molded body so as to bury the internal electrode 4, and after pressing by a press machine, various ceramics are sintered. It may be fired at a temperature at which it can be heated.

【0026】しかるのち、セラミック体2の上面に研磨
加工を施してウエハWの載置面3を形成するとともに、
セラミック体2の下面に内部電極4を貫通する凹部6を
ドリル等で穿設したあと、セラミック体2の下面の凹部
6近傍及び凹部6の内壁面6aにメタライズ層8を形成
し、メタライズ層8上に銀を主体とするロウ材7を塗布
しつつフランジ部5cを有する給電端子5を挿入し、給
電端子5のフランジ部5cに荷重を加えた状態で所定の
高温雰囲気で加熱することにより、給電端子5のフラン
ジ部5cとセラミック体2の下面との隙間の距離hが5
0μm以下となるようにロウ付け固定することにより得
ることができる。
Thereafter, the upper surface of the ceramic body 2 is polished to form the mounting surface 3 of the wafer W,
After drilling a concave portion 6 penetrating the internal electrode 4 on the lower surface of the ceramic body 2 with a drill or the like, a metallized layer 8 is formed near the concave portion 6 on the lower surface of the ceramic body 2 and on an inner wall surface 6a of the concave portion 6. The power supply terminal 5 having the flange portion 5c is inserted while the brazing material 7 mainly composed of silver is applied thereon, and the power supply terminal 5 is heated in a predetermined high-temperature atmosphere with a load applied to the flange portion 5c. The distance h between the flange 5c of the power supply terminal 5 and the lower surface of the ceramic body 2 is 5
It can be obtained by brazing and fixing so as to be 0 μm or less.

【0027】ところで、処理温度が500℃以上の高温
域になると、セラミック体2と給電端子5との間の熱膨
張差に伴う熱応力によってセラミック体2が破損し易く
なる。
When the processing temperature is in a high temperature range of 500 ° C. or higher, the ceramic body 2 is easily damaged by thermal stress caused by a difference in thermal expansion between the ceramic body 2 and the power supply terminal 5.

【0028】その為、内部電極4に通電するための給電
端子5の材質としては、高い耐熱性を有するとともに、
熱膨張係数が前記セラミック体2の熱膨張係数の3倍以
内の範囲にあるものが良く、このような金属や合金とし
ては、タングステン、モリブデン、タンタル、鉄−コバ
ルト−ニッケル合金(商品名:コバール)を用いること
ができる。
Therefore, the material of the power supply terminal 5 for supplying current to the internal electrode 4 has high heat resistance,
It is preferable that the coefficient of thermal expansion is within the range of three times the coefficient of thermal expansion of the ceramic body 2. Examples of such metals and alloys include tungsten, molybdenum, tantalum, iron-cobalt-nickel alloy (trade name: Kovar). ) Can be used.

【0029】これらの金属や合金は、熱膨張係数が3〜
7×10-6/℃と前述したセラミック体2の熱膨張係数
(3×10-6〜7.8×10-6/℃)の3倍以内の範囲
にあることから、セラミック体2に加わる熱応力を軽減
することができる。また、高温域では給電端子5の酸化
が進んで導通がとれなくなる恐れがあるため、このよう
な場合には給電端子5の表面にメッキ処理等によってニ
ッケル、ニッケル−クロム、金、白金などの耐熱金属膜
を被覆しておけば良い。
These metals and alloys have a coefficient of thermal expansion of 3 to 3.
Since it is within a range of 7 × 10 −6 / ° C., which is within 3 times the thermal expansion coefficient (3 × 10 −6 to 7.8 × 10 −6 / ° C.) of the ceramic body 2 described above, it is applied to the ceramic body 2. Thermal stress can be reduced. Further, in a high temperature range, the power supply terminal 5 may be oxidized and conduction may not be established. In such a case, the surface of the power supply terminal 5 is plated with nickel, nickel-chromium, gold, platinum, or the like. What is necessary is just to cover a metal film.

【0030】また、セラミック体2の破損は、給電端子
5の形状とも密接な関係があり、給電端子5のフランジ
部5cの厚み幅tが1.0mmより大きくなると、セラ
ミック体2との熱膨張差による熱応力が大きくなり、セ
ラミック体2の下面の凹部6近傍にクラックが発生す
る。ただし、フランジ部5cの厚み幅tが0.1mm未
満では、接合強度が10kgf未満にまで大きく低下す
る。
Further, the breakage of the ceramic body 2 is closely related to the shape of the power supply terminal 5, and when the thickness t of the flange portion 5c of the power supply terminal 5 becomes larger than 1.0 mm, thermal expansion with the ceramic body 2 occurs. The thermal stress due to the difference increases, and cracks occur near the concave portion 6 on the lower surface of the ceramic body 2. However, when the thickness t of the flange portion 5c is less than 0.1 mm, the joining strength is significantly reduced to less than 10 kgf.

【0031】その為、給電端子5のフランジ部5cの厚
み幅tは0.1〜1.0mmとすることが良い。
Therefore, the thickness t of the flange portion 5c of the power supply terminal 5 is preferably set to 0.1 to 1.0 mm.

【0032】また、給電端子5のフランジ部5cの長さ
dは、長ければ長いほど内部電極4の酸化を抑えること
ができるものの、内部電極4のパターン形状等によって
さまざまな制約がある。その為、本発明における効果を
得るためには給電端子5のフランジ部5cの長さdは少
なくとも1.5mm以上あれば良い。
The longer the length d of the flange portion 5c of the power supply terminal 5 is, the more the oxidation of the internal electrode 4 can be suppressed. However, there are various restrictions depending on the pattern shape of the internal electrode 4. Therefore, in order to obtain the effect of the present invention, the length d of the flange portion 5c of the power supply terminal 5 may be at least 1.5 mm or more.

【0033】さらに、給電端子5の後端部5bの外径が
セラミック体2の凹部6の穴径より大きくなっても熱応
力によってセラミック体2にクラックが発生し易くな
る。特に給電端子5の後端部5bの外径が、セラミック
体2の凹部6の穴径の1.5倍より大きくなると、破損
する確率が大幅に高くなる。その為、給電端子5の後端
部5bの外径はセラミック体2の凹部6の穴径の1.5
倍以下とすることが好ましい。
Further, even if the outer diameter of the rear end portion 5b of the power supply terminal 5 becomes larger than the diameter of the hole of the concave portion 6 of the ceramic body 2, cracks are easily generated in the ceramic body 2 due to thermal stress. In particular, when the outer diameter of the rear end portion 5b of the power supply terminal 5 is larger than 1.5 times the hole diameter of the concave portion 6 of the ceramic body 2, the probability of breakage is greatly increased. Therefore, the outer diameter of the rear end portion 5b of the power supply terminal 5 is 1.5 times the hole diameter of the concave portion 6 of the ceramic body 2.
It is preferable to set it to twice or less.

【0034】また、図3に示すように、給電端子5のフ
ランジ部5bに、前記セラミック体2と同種のセラミッ
クスからなるリング体9を銀を主体とするロウ材7で接
合しても良い。このように給電端子5のフランジ部5b
をセラミック体2とリング体9とで挟み込む構造とする
ことで、熱膨張差に伴うフランジ部5bの変形を抑え、
セラミック体2からの剥離を防ぎ、抵抗発熱体4の酸化
を効果的に抑えることができる。なお、セラミック体2
と同種のセラミックスとは、セラミック体2を構成する
主成分が同一材料からなるセラミックスのことである。
As shown in FIG. 3, a ring member 9 made of the same kind of ceramics as the ceramic member 2 may be joined to the flange portion 5b of the power supply terminal 5 with a brazing material 7 mainly composed of silver. Thus, the flange portion 5b of the power supply terminal 5
Is sandwiched between the ceramic body 2 and the ring body 9 to suppress deformation of the flange portion 5b due to a difference in thermal expansion.
Separation from the ceramic body 2 can be prevented, and oxidation of the resistance heating element 4 can be effectively suppressed. The ceramic body 2
The ceramics of the same kind are ceramics whose main components constituting the ceramic body 2 are made of the same material.

【0035】かくして、本願発明のウエハ支持部材1を
用いれば、500℃以上の高温域で使用してもセラミッ
ク体2を破損させることなく給電端子5より確実に内部
電極4へ通電することができるとともに、内部電極4の
酸化を大幅に低減することができることから、長寿命の
ウエハ支持部材1とすることができる。
Thus, when the wafer support member 1 of the present invention is used, the power can be reliably supplied to the internal electrode 4 from the power supply terminal 5 without damaging the ceramic body 2 even when used in a high temperature range of 500 ° C. or more. At the same time, the oxidation of the internal electrodes 4 can be greatly reduced, so that the wafer support member 1 having a long life can be obtained.

【0036】[0036]

【実施例】(実施例1)ここで、フランジ部5cを備え
た給電端子5とフランジ部のない給電端子55を用いた
ヒータ電極内蔵型のウエハ支持部材1,51をそれぞれ
用意するとともに、フランジ部5cを備えた給電端子5
を用いたものにあってはセラミック体2の下面との隙間
の距離hを適宜異ならせたものを用意し、各ウエハ支持
部材1,51を850℃の温度で加熱しつつづけた時の
寿命について調べる実験を行った。
(Embodiment 1) Here, the wafer support members 1 and 51 with a built-in heater electrode using a power supply terminal 5 having a flange portion 5c and a power supply terminal 55 without a flange portion are prepared. Power supply terminal 5 provided with section 5c
Are prepared by appropriately varying the distance h between the lower surface of the ceramic body 2 and the wafer support members 1 and 51 while the wafer support members 1 and 51 are heated at a temperature of 850 ° C. An experiment was conducted to determine

【0037】本実験で用いるウエハ支持部材1,51
は、平均粒子径が1.2μm程度である純度99.9%
のAlN粉末にバインダーと溶媒のみを添加混合して泥
漿を製作し、ドクターブレード法により厚さ0.4mm
程度のグリーンシートを複数枚成形したあと、数枚積層
したグリーンシート積層体の表面にAlN粉末を混ぜた
タングステン(W)のペーストをスクリーン印刷機でも
って図4に示すパターン形状に敷設し、残りのグリーン
シートを積層して80℃、50kg/cm2 の圧力にて
熱圧着したあと、切削加工を施して円板状のグリーンシ
ート積層体とした。しかるのち、このグリーンシート積
層体を真空脱脂したあと、真空雰囲気にて2000℃程
度の温度で5時間焼成することにより、外径200m
m、厚み幅10mmで、かつ内部に膜厚15μm程度の
膜状の内部電極4,54を埋設してなる窒化アルミニウ
ム製のセラミック体2,52を製作し、その上面に研磨
加工を施して載置面3,53を形成した。
The wafer support members 1 and 51 used in this experiment
Is 99.9% purity having an average particle diameter of about 1.2 μm.
A slurry was prepared by adding and mixing only a binder and a solvent to the AlN powder of the above, and the thickness was 0.4 mm by a doctor blade method.
After forming a plurality of green sheets, a paste of tungsten (W) mixed with AlN powder is laid on the surface of the green sheet laminate obtained by laminating several sheets with a screen printing machine in a pattern shape shown in FIG. The green sheets were laminated and thermocompressed at 80 ° C. under a pressure of 50 kg / cm 2 , followed by cutting to obtain a disc-shaped green sheet laminate. Thereafter, the green sheet laminate was degreased in vacuum, and then baked in a vacuum atmosphere at a temperature of about 2000 ° C. for 5 hours to obtain an outer diameter of 200 m.
m, an aluminum nitride ceramic body 2, 52 having a film width of about 15 .mu.m and a thickness of about 15 .mu.m embedded therein is manufactured, and the upper surface thereof is polished and mounted. The placement surfaces 3 and 53 were formed.

【0038】そして、セラミック体2,52の下面に前
記内部電極4,54を貫通する凹部6,56を穿設し、
セラミック体2,52の下面の凹部6,56近傍と凹部
6,56の内壁面6aにメタライズ層8を形成したあ
と、図2及び図5に示す構造のようにモリブデンからな
る給電端子5,55をロウ材7,57を用いてロウ付け
固定した。
Then, recesses 6 and 56 penetrating the internal electrodes 4 and 54 are formed in the lower surfaces of the ceramic bodies 2 and 52,
After the metallized layer 8 is formed on the lower surfaces of the ceramic bodies 2 and 52 near the concave portions 6 and 56 and on the inner wall surfaces 6a of the concave portions 6 and 56, the power supply terminals 5 and 55 made of molybdenum are formed as shown in FIGS. Was fixed by brazing using brazing materials 7,57.

【0039】なお、図2の構造に用いる給電端子5の形
状としては棒状体をなし、その外周にリング状のフラン
ジ部5cを設けたものであり、先端部5aの外径が3m
m、後端部5bの外径が3.5mm、フランジ部5cの
長さdが1.75mm、フランジ部5cの厚み幅tが
0.5mmのものを使用し、図5の構造に用いる給電端
子51の形状としては棒状体をなし、先端部5aの外径
が3mm、後端部5bの外径が3.5mmのものをそれ
ぞれ使用した。また、メタライズ層8には、銀、銅、チ
タンの合金を、ロウ材7,57には銀と銅を重量比で
8:2の割合で含有してなる銀銅ロウを使用し、それぞ
れ950℃の温度でロウ付け固定した。
The power supply terminal 5 used in the structure shown in FIG. 2 has a rod-like shape, and a ring-shaped flange portion 5c is provided on the outer periphery thereof. The outer diameter of the tip 5a is 3 m.
m, the outer diameter of the rear end 5b is 3.5 mm, the length d of the flange 5c is 1.75 mm, and the thickness t of the flange 5c is 0.5 mm. The terminal 51 had a rod-like shape with an outer diameter of the front end 5a of 3 mm and an outer diameter of the rear end 5b of 3.5 mm. The metallized layer 8 is made of an alloy of silver, copper and titanium, and the brazing materials 7 and 57 are made of silver-copper brazing containing silver and copper in a weight ratio of 8: 2, each of 950. It was brazed and fixed at a temperature of ° C.

【0040】そして、各ウエハ支持部材1,51の給電
端子5,55に通電して850℃に発熱させた状態で放
置し、酸化に伴う内部電極4,54の断線が起こるまで
の時間を測定した。それぞれの結果は表1に示す通りで
ある。
Then, the power supply terminals 5 and 55 of the wafer support members 1 and 51 are energized to generate heat at 850 ° C., and are left to stand. The time until the internal electrodes 4 and 54 are disconnected due to oxidation is measured. did. Each result is as shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】この結果、試料Aの給電端子55にフラン
ジ部のないもの、及び試料Bの給電端子5のフランジ部
5cとセラミック体2の下面との隙間の距離hが150
μmであるものは、10時間以内に発熱させることがで
きなくなった。そこで、ロウ付け接合部を観察したとこ
ろ、内部電極54の酸化によって断線が発生していた。
As a result, when the power supply terminal 55 of the sample A had no flange, and the distance h between the flange 5c of the power supply terminal 5 of the sample B and the lower surface of the ceramic body 2 was 150 mm.
Those having a size of μm could not generate heat within 10 hours. Then, when the brazed joint was observed, disconnection occurred due to oxidation of the internal electrode 54.

【0043】また、試料Cの隙間の距離hが100μm
であるものは100時間以内に、試料Dの隙間の距離h
が80μmであるものは1000時間以内にそれぞれ内
部電極4が酸化して断線した。
The distance h between the gaps of the sample C is 100 μm.
Is the distance h of the gap of the sample D within 100 hours.
, The internal electrodes 4 were oxidized and disconnected within 1000 hours.

【0044】これに対し、試料E〜Gの給電端子5のフ
ランジ部5cとセラミック体2の下面との隙間の距離h
が50μm以下であるものは、1000時間もの間85
0℃に発熱させつづけても内部電極4の酸化による断線
は見られず、良好に発熱させることができた。
On the other hand, the distance h between the flanges 5c of the power supply terminals 5 of the samples E to G and the lower surface of the ceramic body 2 is h.
Is 50 μm or less for 85 hours for 1000 hours.
Even when the heat generation was continued at 0 ° C., no disconnection due to oxidation of the internal electrode 4 was observed, and the heat generation was successfully performed.

【0045】この結果より、給電端子5にフランジ部5
cを設けるとともに、そのフランジ部5cとセラミック
体2の下面との隙間の距離hを50μmとすれば寿命を
大幅に高められることが判る。
As a result, the power supply terminal 5 was connected to the flange 5
It can be seen that if the distance c between the flange 5c and the lower surface of the ceramic body 2 is 50 μm, the life can be greatly increased.

【0046】(実施例2)次に、フランジ部5cを有す
る給電端子5を用いたウエハ支持部材1において、セラ
ミック体2の凹部6の穴径と給電端子5の後端部5bの
径との関係を異ならせたものを30個ずつ用意し、常温
(25℃)から850℃の間で加熱、冷却を繰り返す熱
サイクル試験を50回行ったあと、硝酸により給電端子
5、ロウ材7、メタライズ層8を溶かし、セラミック体
2の破損の有無をそれぞれ調べる実験を行った。
(Embodiment 2) Next, in the wafer supporting member 1 using the power supply terminal 5 having the flange portion 5c, the diameter of the hole of the concave portion 6 of the ceramic body 2 and the diameter of the rear end 5b of the power supply terminal 5 are determined. 30 pieces each having a different relationship were prepared, and a heat cycle test in which heating and cooling were repeated between room temperature (25 ° C.) and 850 ° C. was repeated 50 times. Experiments were conducted in which the layer 8 was melted and the ceramic body 2 was checked for damage.

【0047】それぞれの結果は表2に示す通りである。The results are as shown in Table 2.

【0048】[0048]

【表2】 [Table 2]

【0049】この結果、給電端子5の後端部5bの外径
がセラミック体2の凹部6の穴径より大きくなるにつれ
てセラミック体2の破損確率が大きくなることが判る。
そして、給電端子5の後端部5bの外径をセラミック体
2の凹部6の穴径の1.5倍以下とすれば、セラミック
体2の破損は見られなかった。
As a result, it is found that the probability of breakage of the ceramic body 2 increases as the outer diameter of the rear end portion 5b of the power supply terminal 5 becomes larger than the diameter of the hole of the concave portion 6 of the ceramic body 2.
When the outer diameter of the rear end portion 5b of the power supply terminal 5 was set to 1.5 times or less the hole diameter of the concave portion 6 of the ceramic body 2, no damage to the ceramic body 2 was observed.

【0050】従って、給電端子5の後端部5bの外径
は、セラミック体2の凹部6の穴径の1.5倍以下とす
れば良いことが判る。
Therefore, it is understood that the outer diameter of the rear end portion 5b of the power supply terminal 5 should be 1.5 times or less the hole diameter of the concave portion 6 of the ceramic body 2.

【0051】(実施例3)さらに、フランジ部5cの厚
み幅tを異ならせた給電端子5を備えるウエハ支持部材
1をそれぞれ31個ずつ用意し、このうち各1つのウエ
ハ支持部材1に対して給電端子5の接合強度を調べると
ともに、残りの30個について、常温(25℃)から8
50℃の間で加熱、冷却を繰り返す熱サイクル試験を5
0回行ったあと、硝酸により給電端子5、ロウ材7、メ
タライズ層8を溶かし、セラミック体2の破損の有無を
それぞれ調べる実験を行った。
(Embodiment 3) Further, 31 wafer support members 1 each having a power supply terminal 5 with a different thickness t of the flange portion 5c are prepared. The bonding strength of the power supply terminal 5 was examined, and the remaining 30 were changed from room temperature (25 ° C.) to 8
A heat cycle test in which heating and cooling are repeated between 50 ° C
After performing the test 0 times, an experiment was performed in which the power supply terminal 5, the brazing material 7, and the metallized layer 8 were melted with nitric acid to check whether the ceramic body 2 was damaged.

【0052】それぞれの結果は表3に示す通りである。The results are as shown in Table 3.

【0053】[0053]

【表3】 [Table 3]

【0054】この結果、給電端子5のフランジ部5cの
厚み幅tが厚くなるにしたがって接合強度を高めること
ができることが判る。ただし、試料No.25のように
給電端子5のフランジ部5cの厚み幅tが0.05mm
では接合強度が2kgfしかなく、試料No.30,3
1のように給電端子5のフランジ部5cの厚み幅tが1
mmより厚くなるとセラミック体2にクラックが発生す
るものが見られた。
As a result, it is understood that the bonding strength can be increased as the thickness t of the flange portion 5c of the power supply terminal 5 increases. However, the sample No. 25, the thickness t of the flange portion 5c of the power supply terminal 5 is 0.05 mm.
Has a joint strength of only 2 kgf. 30,3
1, the thickness t of the flange portion 5c of the power supply terminal 5 is 1
When the thickness was larger than 1 mm, cracks were observed in the ceramic body 2.

【0055】従って、給電端子5のフランジ部5cの厚
み幅tは0.1〜1.0mmの範囲にあるものが良い。
Accordingly, the thickness t of the flange portion 5c of the power supply terminal 5 is preferably in the range of 0.1 to 1.0 mm.

【0056】(実施例4)次に、表1の試料Eのウエハ
支持部材1と、このウエハ支持部材1の給電端子5にお
けるフランジ部5cに、図3のようにセラミック体2と
同一の窒化アルミニウム質セラミックスからなるリング
体9をロウ付け固定したものをそれぞれ30個ずつ用意
し、これらのウエハ支持部材1を常温(25℃)から8
50℃の間で加熱、冷却を繰り返す熱サイクル試験を2
000回行ったあと、硝酸により給電端子5、ロウ材
7、メタライズ層8を溶かし、セラミック体2の破損の
有無をそれぞれ調べる実験を行った。
Example 4 Next, the same nitriding as that of the ceramic body 2 was applied to the wafer supporting member 1 of the sample E in Table 1 and the flange portion 5c of the power supply terminal 5 of the wafer supporting member 1 as shown in FIG. Thirty ring members 9 made of aluminum ceramics were fixed by brazing, and these wafer support members 1 were cooled from room temperature (25 ° C.) to 8%.
A heat cycle test that repeats heating and cooling between 50 ° C
After performing 000 times, the power supply terminal 5, the brazing material 7, and the metallized layer 8 were melted with nitric acid, and an experiment was performed to check whether the ceramic body 2 was damaged or not.

【0057】この結果、リング体9を持たないウエハ支
持部材1では、30個中15個に抵抗発熱体4の断線が
発生したが、リング体9を有するウエハ支持部材1にお
いては、抵抗発熱体4の断線が全く見られなかった。
As a result, in the wafer supporting member 1 having no ring body 9, the disconnection of the resistance heating element 4 occurred in 15 out of 30 wafers, but in the wafer supporting member 1 having the ring body 9, the resistance heating element 4 was disconnected. No disconnection of No. 4 was seen.

【0058】このことから、リング体9を設けた方が良
いことが判る。
From this, it is understood that it is better to provide the ring body 9.

【0059】(実施例5)次に、組成を異ならせた銀を
含むロウ材7を用いて給電端子5を窒化アルミニウム製
のセラミック体2にロウ付け固定した時の接合強度につ
いて調べる実験を行った。
Example 5 Next, an experiment was conducted to examine the bonding strength when the power supply terminal 5 was brazed and fixed to the aluminum nitride ceramic body 2 using a brazing material 7 containing silver having a different composition. Was.

【0060】なお、ウエハ支持部材1は使用中、給電端
子5の自重以外に大きな荷重は加わらないことから、1
kgf以上の荷重に耐ええるものであれば使用可とし
た。
In addition, since a large load is not applied to the wafer supporting member 1 other than its own weight of the power supply terminal 5 during use, 1
Any material that can withstand a load of kgf or more was usable.

【0061】それぞれの結果は表4に示す通りである。The results are as shown in Table 4.

【0062】[0062]

【表4】 [Table 4]

【0063】この結果、まず、銀の含有量が多いほど接
合強度を高めることができることが判る。ただし、銅の
含有量が1重量%より少なくなるとセラミック体2との
濡れ性が悪くなり、試料No.39のように銅を含まな
い場合は接合させることができなかった。また、逆に試
料No.32,33のように銅の含有量が20重量%よ
り大きくなると引っ張り強度が1kgf以上を満足する
ことができなかった。
As a result, first, it can be seen that the higher the silver content, the higher the bonding strength can be. However, when the copper content is less than 1% by weight, the wettability with the ceramic body 2 deteriorates, and the sample No. In the case where copper was not contained as in 39, joining could not be performed. Conversely, for sample no. When the content of copper is larger than 20% by weight as in Examples 32 and 33, the tensile strength cannot satisfy 1 kgf or more.

【0064】従って、ロウ材7としては、銀を80〜9
9重量%、銅を1〜20重量%の範囲で含んだものが良
いことが判る。なお、実施例5では、銀及び銅を100
重量%に対し、活性金属であるチタンを5重量%添加し
たものを示したが、この活性金属は銀及び銅を100重
量%に対して0.2〜20重量%の範囲で添加してあれ
ば良好な接合強度を得ることができた。
Accordingly, silver is used as the brazing material 7 in an amount of 80 to 9%.
It can be seen that those containing 9 wt% and copper in the range of 1 to 20 wt% are good. In Example 5, silver and copper were added in 100 parts.
5% by weight of titanium, which is an active metal, is shown with respect to 100% by weight of the active metal, and silver and copper are added in an amount of 0.2 to 20% by weight based on 100% by weight. Good bonding strength could be obtained.

【0065】[0065]

【発明の効果】以上のように、本発明によれば、ウエハ
の載置面を有するセラミック体中に少なくとも一つの内
部電極を埋設してなり、上記載置面以外のセラミック体
の表面に給電端子を取り付けるための凹部を上記内部電
極を貫通して穿設し、該凹部に銀を主体とするロウ材を
介して前記給電端子をロウ付け固定し、該給電端子と内
部電極とを電気的に接続してなるウエハ支持部材であっ
て、上記給電端子の外周にはフランジ部を設け、このフ
ランジ部とセラミック体の表面との間にも前記銀を主体
とするロウ材を介してロウ付け固定するとともに、上記
給電端子のフランジ部とセラミック体の表面との間隔の
距離を50μm以下としたことにより、500℃以上の
高温域に曝されたとしても、上記給電端子を強固に接合
することができるとともに、大気中の酸素がロウ材中を
拡散することを抑え、セラミック体の凹部に露出する内
部電極の酸化を抑えることができるため、高温域におい
て長寿命のウエハ支持部材を提供することができる。
As described above, according to the present invention, at least one internal electrode is embedded in a ceramic body having a wafer mounting surface, and power is supplied to the surface of the ceramic body other than the mounting surface described above. A concave portion for mounting a terminal is formed by penetrating the internal electrode, and the power supply terminal is brazed and fixed to the concave portion via a brazing material mainly composed of silver, so that the power supply terminal and the internal electrode are electrically connected to each other. A flange portion provided on the outer periphery of the power supply terminal, and brazing between the flange portion and the surface of the ceramic body via the silver-based brazing material. By fixing the power supply terminal and the distance between the flange portion of the power supply terminal and the surface of the ceramic body to 50 μm or less, the power supply terminal can be firmly joined even when exposed to a high temperature range of 500 ° C. or more. Can In both cases, the diffusion of the oxygen in the atmosphere through the brazing material can be suppressed, and the oxidation of the internal electrode exposed in the concave portion of the ceramic body can be suppressed, so that a long-life wafer support member can be provided in a high-temperature region. .

【0066】また、本発明は上記給電端子のフランジ部
の厚み幅を0.1〜1.0mmとするとともに、給電端
子の後端部の径をセラミック体の凹部の穴径の1.5倍
とし、さらに給電端子のフランジ部にセラミック体と同
種のセラミックスからなるリング体をロウ付けしたこと
から、熱応力に伴うセラミック体の破損と抵抗発熱体の
酸化を防ぎ、ウエハ支持部材の耐久性をさらに高めるこ
とができる。
In the present invention, the thickness width of the flange portion of the power supply terminal is 0.1 to 1.0 mm, and the diameter of the rear end portion of the power supply terminal is 1.5 times the hole diameter of the concave portion of the ceramic body. In addition, a ring body made of the same type of ceramic as the ceramic body was brazed to the flange part of the power supply terminal, preventing damage to the ceramic body due to thermal stress and oxidation of the resistance heating element, and improving the durability of the wafer support member. Can be even higher.

【0067】その為、ウエハ支持部材の内部電極を静電
吸着用電極として用いれば、高温域においてウエハを精
度良く吸着保持することができ、内部電極をヒータ電極
として用いれば、ウエハの均熱性を高めることができ、
さらに内部電極を高周波発生用電極として用いれば、各
種加工速度を高めることができるとともに、これらの特
性を長期間にわたって得ることができる。
For this reason, if the internal electrodes of the wafer support member are used as electrodes for electrostatic attraction, the wafer can be suction-held with high accuracy in a high temperature range, and if the internal electrodes are used as heater electrodes, the uniformity of the wafer can be reduced. Can be enhanced,
Further, if the internal electrode is used as a high-frequency generation electrode, various processing speeds can be increased, and these characteristics can be obtained for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明のウエハ支持部材の一例を示す
斜視図であり、(b)は(a)のX−X線断面図であ
る。
FIG. 1A is a perspective view illustrating an example of a wafer support member of the present invention, and FIG. 1B is a cross-sectional view taken along line XX of FIG.

【図2】図1(b)のA部を拡大した断面図である。FIG. 2 is an enlarged sectional view of a portion A in FIG. 1 (b).

【図3】本発明のウエハ支持部材における他の給電構造
を示す断面図である。
FIG. 3 is a sectional view showing another power supply structure in the wafer support member of the present invention.

【図4】内部電極のパターン形状を示す模式図である。FIG. 4 is a schematic view showing a pattern shape of an internal electrode.

【図5】従来のウエハ支持部材を示す断面図である。FIG. 5 is a sectional view showing a conventional wafer support member.

【図6】図5のB部を拡大した断面図である。FIG. 6 is an enlarged sectional view of a portion B in FIG. 5;

【符号の説明】[Explanation of symbols]

1…ウエハ支持部材 2…セラミック体 3…載置面
4…内部電極 5…給電端子 5a…先端部 5b…後端部 5c…フ
ランジ部 6…セラミック体の凹部 7…ロウ材 8…メタライズ
層 W…ウエハ
DESCRIPTION OF SYMBOLS 1 ... Wafer support member 2 ... Ceramic body 3 ... Mounting surface
DESCRIPTION OF SYMBOLS 4 ... Internal electrode 5 ... Power supply terminal 5a ... Front end part 5b ... Rear end part 5c ... Flange part 6 ... Concave part of ceramic body 7 ... Brazing material 8 ... Metallization layer W ... Wafer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ウエハの載置面を有するセラミック体中に
少なくとも一つの内部電極を埋設してなり、上記載置面
以外のセラミック体の表面に給電端子を取り付けるため
の凹部を前記内部電極を貫通して穿設し、該凹部に銀を
主体とするロウ材を介して上記給電端子をロウ付け固定
することにより給電端子と上記内部電極とを電気的に接
続してなるウエハ支持部材であって、上記給電端子は外
周にフランジ部を備え、このフランジ部とセラミック体
の表面との間にも前記銀を主体とするロウ材を介してロ
ウ付け固定するとともに、上記給電端子のフランジ部と
セラミック体の表面との間隔の距離を50μm以下とし
たことを特徴とするウエハ支持部材。
At least one internal electrode is embedded in a ceramic body having a mounting surface of a wafer, and a concave portion for attaching a power supply terminal to a surface of the ceramic body other than the mounting surface is formed with the internal electrode. A wafer support member that is formed by penetrating through the hole and brazing and fixing the power supply terminal to the recess through a brazing material mainly composed of silver, thereby electrically connecting the power supply terminal and the internal electrode. The power supply terminal has a flange portion on the outer periphery, and is also fixed between the flange portion and the surface of the ceramic body via the brazing material mainly composed of silver. A wafer support member, wherein the distance between the surface and the ceramic body is 50 μm or less.
【請求項2】上記給電端子のフランジ部に、前記セラミ
ック体と同種のセラミックスからなるリング体をロウ付
け固定したことを特徴とする請求項1に記載のウエハ支
持部材。
2. The wafer support member according to claim 1, wherein a ring body made of the same kind of ceramic as the ceramic body is brazed and fixed to the flange portion of the power supply terminal.
【請求項3】上記セラミック体中の内部電極が、静電吸
着用電極、ヒータ電極、プラズマ発生用電極のいずれか
である請求項1及び請求項2に記載のウエハ支持部材。
3. The wafer support member according to claim 1, wherein the internal electrode in the ceramic body is any one of an electrode for electrostatic attraction, a heater electrode, and an electrode for plasma generation.
JP2008598A 1998-01-30 1998-01-30 Wafer support member Expired - Lifetime JP3297637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008598A JP3297637B2 (en) 1998-01-30 1998-01-30 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008598A JP3297637B2 (en) 1998-01-30 1998-01-30 Wafer support member

Publications (2)

Publication Number Publication Date
JPH11220008A true JPH11220008A (en) 1999-08-10
JP3297637B2 JP3297637B2 (en) 2002-07-02

Family

ID=12017278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008598A Expired - Lifetime JP3297637B2 (en) 1998-01-30 1998-01-30 Wafer support member

Country Status (1)

Country Link
JP (1) JP3297637B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008824A (en) * 2000-06-26 2002-01-11 Kyocera Corp Ceramic heater
JP2002121083A (en) * 2000-10-10 2002-04-23 Kyocera Corp Jointed body of ceramic member and metal member and wafer-supporting member using the same
JP2005019480A (en) * 2003-06-24 2005-01-20 Taiheiyo Cement Corp Joining structure for feeding terminal
JP2006114250A (en) * 2004-10-12 2006-04-27 Toshiba Ceramics Co Ltd Power supply terminal installation structure of metal member embedding ceramic substrate
JP2006127900A (en) * 2004-10-28 2006-05-18 Kyocera Corp Annular heater
KR100633978B1 (en) * 1998-12-14 2006-10-13 어플라이드 머티어리얼스, 인코포레이티드 Semiconductor wafer chuck apparatus and connector used therein
WO2007013497A1 (en) * 2005-07-26 2007-02-01 Kyocera Corporation Brazed structure, ceramic heater, and glow plug
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
WO2013047555A1 (en) * 2011-09-28 2013-04-04 住友大阪セメント株式会社 Electrostatic chuck device
JP2014186872A (en) * 2013-03-23 2014-10-02 Kyocera Corp Ceramic heater
JP2016072201A (en) * 2014-10-02 2016-05-09 京セラ株式会社 heater
JP2016143796A (en) * 2015-02-03 2016-08-08 日本特殊陶業株式会社 Electrostatic chuck
JPWO2015198892A1 (en) * 2014-06-27 2017-04-20 日本碍子株式会社 Bonding structure
JP2017135260A (en) * 2016-01-28 2017-08-03 京セラ株式会社 Component for semiconductor manufacturing apparatus
JP2017212406A (en) * 2016-05-27 2017-11-30 京セラ株式会社 Member for electrostatic attraction
JP2018037488A (en) * 2016-08-30 2018-03-08 京セラ株式会社 Electrostatic absorption member
JP2018137163A (en) * 2017-02-23 2018-08-30 京セラ株式会社 heater
WO2018159687A1 (en) * 2017-03-02 2018-09-07 日本碍子株式会社 Wafer heating device
JP2018185972A (en) * 2017-04-26 2018-11-22 京セラ株式会社 Sample holder
WO2020110954A1 (en) * 2018-11-30 2020-06-04 京セラ株式会社 Ceramic structure and structure with terminal
JP2020107520A (en) * 2018-12-27 2020-07-09 京セラ株式会社 Multilayer substrate and method for manufacturing the same
JP2020107519A (en) * 2018-12-27 2020-07-09 京セラ株式会社 Multilayer substrate and method for manufacturing the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100633978B1 (en) * 1998-12-14 2006-10-13 어플라이드 머티어리얼스, 인코포레이티드 Semiconductor wafer chuck apparatus and connector used therein
JP4582868B2 (en) * 2000-06-26 2010-11-17 京セラ株式会社 Ceramic heater
JP2002008824A (en) * 2000-06-26 2002-01-11 Kyocera Corp Ceramic heater
JP2002121083A (en) * 2000-10-10 2002-04-23 Kyocera Corp Jointed body of ceramic member and metal member and wafer-supporting member using the same
JP2005019480A (en) * 2003-06-24 2005-01-20 Taiheiyo Cement Corp Joining structure for feeding terminal
JP2006114250A (en) * 2004-10-12 2006-04-27 Toshiba Ceramics Co Ltd Power supply terminal installation structure of metal member embedding ceramic substrate
JP4596883B2 (en) * 2004-10-28 2010-12-15 京セラ株式会社 Annular heater
JP2006127900A (en) * 2004-10-28 2006-05-18 Kyocera Corp Annular heater
WO2007013497A1 (en) * 2005-07-26 2007-02-01 Kyocera Corporation Brazed structure, ceramic heater, and glow plug
US8552343B2 (en) 2005-07-26 2013-10-08 Kyocera Corporation Brazing structure, ceramic heater, and glow plug
KR101016977B1 (en) 2005-07-26 2011-02-25 쿄세라 코포레이션 Brazed structure, ceramic heater, and glow plug
JP4751392B2 (en) * 2005-07-26 2011-08-17 京セラ株式会社 Brazing structure, ceramic heater and glow plug
US8324535B2 (en) 2005-07-26 2012-12-04 Kyocera Corporation Brazing structure, ceramic heater, and glow plug
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
JPWO2013047555A1 (en) * 2011-09-28 2015-03-26 住友大阪セメント株式会社 Electrostatic chuck device
WO2013047555A1 (en) * 2011-09-28 2013-04-04 住友大阪セメント株式会社 Electrostatic chuck device
US9209061B2 (en) 2011-09-28 2015-12-08 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
JP2014186872A (en) * 2013-03-23 2014-10-02 Kyocera Corp Ceramic heater
JPWO2015198892A1 (en) * 2014-06-27 2017-04-20 日本碍子株式会社 Bonding structure
JP2016072201A (en) * 2014-10-02 2016-05-09 京セラ株式会社 heater
JP2016143796A (en) * 2015-02-03 2016-08-08 日本特殊陶業株式会社 Electrostatic chuck
JP2017135260A (en) * 2016-01-28 2017-08-03 京セラ株式会社 Component for semiconductor manufacturing apparatus
JP2017212406A (en) * 2016-05-27 2017-11-30 京セラ株式会社 Member for electrostatic attraction
JP2018037488A (en) * 2016-08-30 2018-03-08 京セラ株式会社 Electrostatic absorption member
JP2018137163A (en) * 2017-02-23 2018-08-30 京セラ株式会社 heater
WO2018159687A1 (en) * 2017-03-02 2018-09-07 日本碍子株式会社 Wafer heating device
US11515180B2 (en) 2017-03-02 2022-11-29 Ngk Insulators, Ltd. Wafer-heating device
JP2018185972A (en) * 2017-04-26 2018-11-22 京セラ株式会社 Sample holder
WO2020110954A1 (en) * 2018-11-30 2020-06-04 京セラ株式会社 Ceramic structure and structure with terminal
JPWO2020110954A1 (en) * 2018-11-30 2021-10-14 京セラ株式会社 Ceramic structure and structure with terminals
US11945755B2 (en) 2018-11-30 2024-04-02 Kyocera Corporation Ceramic structure and structure with terminal
JP2020107520A (en) * 2018-12-27 2020-07-09 京セラ株式会社 Multilayer substrate and method for manufacturing the same
JP2020107519A (en) * 2018-12-27 2020-07-09 京セラ株式会社 Multilayer substrate and method for manufacturing the same

Also Published As

Publication number Publication date
JP3297637B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP3297637B2 (en) Wafer support member
JP5968651B2 (en) Components for semiconductor manufacturing equipment
JP2003160874A (en) Supporter for article to be treated, susceptor for semiconductor manufacturing apparatus and treatment apparatus
US6869689B2 (en) Joined structures of metal terminals and ceramic members, joined structures of metal members and ceramic members, and adhesive materials
JP3447495B2 (en) Power supply structure of wafer holding device
JP2006128603A (en) Ceramic member and manufacturing method therefor
JP5345449B2 (en) Junction structure and manufacturing method thereof
KR100553444B1 (en) Susceptors and the methods of manufacturing them
KR100978395B1 (en) Electrode-built-in susceptor and a manufacturing method therefor
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP4136648B2 (en) Dissimilar material joined body and manufacturing method thereof
JP4331427B2 (en) Power supply electrode member used in semiconductor manufacturing equipment
JP4331983B2 (en) Wafer support member and manufacturing method thereof
JPH08306629A (en) Wafer holding equipment
JP2003124299A (en) Electrode contained susceptor and its manufacturing method
JP2006186351A (en) Semiconductor manufacturing device
JP3685962B2 (en) Susceptor and manufacturing method thereof
JP3906087B2 (en) Wafer support member
JP2003152064A (en) Electrode built-in susceptor and its manufacturing method
JP2004055608A (en) Susceptor with built-in electrode
JP2003086519A (en) Supporter of object to be treated, manufacturing method and treatment device thereof
JP2000049217A (en) Wafer holding member
JP2003086663A (en) Holder of article being processed, processing unit and ceramic susceptor for semiconductor manufacturing device
JP2001199775A (en) Joined structure brazed with metal and wafer support member using the same
JP3854145B2 (en) Wafer support member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

EXPY Cancellation because of completion of term