JP2000049217A - Wafer holding member - Google Patents

Wafer holding member

Info

Publication number
JP2000049217A
JP2000049217A JP21678698A JP21678698A JP2000049217A JP 2000049217 A JP2000049217 A JP 2000049217A JP 21678698 A JP21678698 A JP 21678698A JP 21678698 A JP21678698 A JP 21678698A JP 2000049217 A JP2000049217 A JP 2000049217A
Authority
JP
Japan
Prior art keywords
ceramic body
plate
power supply
supply terminal
shaped ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21678698A
Other languages
Japanese (ja)
Other versions
JP3771722B2 (en
Inventor
Norio Okuda
憲男 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21678698A priority Critical patent/JP3771722B2/en
Publication of JP2000049217A publication Critical patent/JP2000049217A/en
Application granted granted Critical
Publication of JP3771722B2 publication Critical patent/JP3771722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wafer holding member which is free from breaking of a board-like ceramic body, even when it is heated up repeatedly to a high temperature above 550 deg.C, and free of anomalous heating or disconnection of an inner electrode due to exfoliation of the brazing material. SOLUTION: The upper face of a board-like ceramic body 2, in which an inner electrode 4 is embedded, is used as a loading plane for a wafer W, and on the lower surface of the board-like ceramic body 2, a lower hole 2a is provided for the inner electrode 4 to penetrate. Meanwhile, a recess 5a is prepared on a feed terminal 5 at its jointing end, and a stress-relaxing material member 8 is inserted into the recess 5a, where the stress-relaxing material member 8 has a thermal expansion coefficient difference which is not more than +2.9×10-6/ deg.C as compared with that of the board-like ceramic body 2 and has a protrusion 8b partially protruding from the jointing side edge of the feed terminal 5. Then, the feed terminal 5 is inserted into the lower hole 2a and is brazed to the lower hole 2a of the board-like ceramic body 2. The protruding part 8b of the stress-relaxing material member 8 and the exposed part 4a of the inner electrode 4 at the lower hole 2a are brazed to each other, to be fastened to constitute a wafer holding member 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリング、
PVD、CVD等の成膜装置やエッチング装置に使用さ
れる半導体ウエハ等のウエハを支持するサセプタや静電
チャックなどのウエハ支持部材に関するものである。
TECHNICAL FIELD The present invention relates to sputtering,
The present invention relates to a wafer support member such as a susceptor or an electrostatic chuck for supporting a wafer such as a semiconductor wafer used for a film forming apparatus such as PVD or CVD or an etching apparatus.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程におけるス
パッタリング、PVD、プラズマCVD、減圧CVD、
光CVDなどの成膜装置やプラズマエッチング、光エッ
チングなどのエッチング装置においては、半導体ウエハ
を支持するためにサセプタや静電チャックなどのウエハ
支持部材が用いられている。
2. Description of the Related Art Conventionally, sputtering, PVD, plasma CVD, reduced pressure CVD,
2. Description of the Related Art In a film forming apparatus such as an optical CVD or an etching apparatus such as a plasma etching or an optical etching, a wafer supporting member such as a susceptor or an electrostatic chuck is used to support a semiconductor wafer.

【0003】例えば、図7に示すウエハ支持部材21は
ヒータ内蔵型サセプタで、円盤状をした板状セラミック
体22からなり、その上面を半導体ウエハWの載置面2
3とするとともに、内部にヒータ電極用としての内部電
極24を埋設してなり、上記板状セラミック体22の下
面に穿孔された下穴22aにロウ付け固定してなる金属
製の給電端子25を介して内部電極24へ通電するよう
になっていた。
For example, a wafer support member 21 shown in FIG. 7 is a susceptor with a built-in heater, which is formed of a disc-shaped plate-like ceramic body 22, and the upper surface of which is placed on the mounting surface 2 of the semiconductor wafer W.
3, and a metal power supply terminal 25 formed by embedding an internal electrode 24 for a heater electrode therein and being brazed and fixed to a prepared hole 22a formed in the lower surface of the plate-shaped ceramic body 22. The internal electrode 24 is energized through the switch.

【0004】また、図8に示すウエハ支持部材31はヒ
ータ内蔵型静電チャックで、円盤状をした板状セラミッ
ク体32からなり、その上面を半導体ウエハWの載置面
33とするとともに、内部の載置面33側に静電吸着用
としての内部電極36を、載置面33と反対側にヒータ
電極用としての内部電極34をそれぞれ埋設してなり、
上記板状セラミック体33の下面に穿孔された下穴32
a,32bにロウ付け固定してなる金属製の給電端子3
5,37を介してそれぞれの内部電極34,36へ通電
するようになっていた。
A wafer support member 31 shown in FIG. 8 is an electrostatic chuck with a built-in heater and is made of a disc-shaped plate-like ceramic body 32. An internal electrode 36 for electrostatic adsorption is embedded on the mounting surface 33 side of the mounting surface 33, and an internal electrode 34 for a heater electrode is embedded on the opposite side to the mounting surface 33, respectively.
A pilot hole 32 formed in the lower surface of the plate-like ceramic body 33
a, power supply terminal 3 made of metal and fixed to brazing portions 32a and 32b
Electric current is supplied to the respective internal electrodes 34 and 36 via the reference numerals 5 and 37.

【0005】なお、図7及び図8に示すウエハ支持部材
21,31おける給電端子25,35,37には、いず
れもロウ付け時の残留応力を緩和するために外径が2〜
15mm程度の中実の円柱状をしたものが使用され、板
状セラミック体22,32の下穴22a,32a,32
bは内部電極24,34,36を貫通してそれぞれ穿孔
されていた。
The power supply terminals 25, 35 and 37 of the wafer support members 21 and 31 shown in FIGS. 7 and 8 each have an outer diameter of 2 to alleviate residual stress during brazing.
A solid cylinder having a diameter of about 15 mm is used, and prepared holes 22a, 32a, 32
b was perforated through the internal electrodes 24, 34 and 36, respectively.

【0006】[0006]

【発明が解決しようとする課題】ところで、成膜装置や
エッチング装置では、図7及び図8に示すウエハ支持部
材21,31の内部電極24,34に通電し、100〜
300℃、さらには500℃程度の高温に半導体ウエハ
Wを加熱した状態で各種処理が行われるのであるが、ウ
エハ支持部材21,31には常温から各種処理温度の範
囲で熱サイクルが加わることになる。
By the way, in the film forming apparatus and the etching apparatus, the internal electrodes 24 and 34 of the wafer supporting members 21 and 31 shown in FIGS.
Various processes are performed in a state where the semiconductor wafer W is heated to a high temperature of about 300 ° C., and further, about 500 ° C., but a heat cycle is applied to the wafer support members 21 and 31 in a range from room temperature to various processing temperatures. Become.

【0007】そして、このような温度範囲での熱サイク
ルが繰り返し加わると、給電端子25,35,37と板
状セラミック体22,32との間の熱膨張差に伴う熱応
力が下穴22a,32a,32bに集中し、板状セラミ
ック体22,32にクラックが発生してウエハ支持部材
21,31が破損するといった課題があった。
[0007] When a thermal cycle in such a temperature range is repeatedly applied, thermal stress caused by a difference in thermal expansion between the power supply terminals 25, 35, 37 and the plate-like ceramic bodies 22, 32 causes a thermal stress in the pilot holes 22a, 22a. There is a problem that cracks occur in the plate-like ceramic bodies 22 and 32 due to concentration on the bases 32a and 32b and the wafer support members 21 and 31 are damaged.

【0008】そこで、本件出願人は図9に示すように、
給電端子45の接合側の端面に凹部45aを設けるとと
もに、この凹部45aに板状セラミック体22(32)
と同程度の熱膨張係数を有するセラミック製の応力緩和
材48を挿嵌することにより、給電端子45の熱膨張に
伴う変形を板状セラミック体22(32)と応力緩和材
48とで拘束して防ぐとともに、下穴22a(32a,
32b)に集中する熱応力を緩和し、板状セラミック体
22(32)の破損を防ぐことを先に提案した。
Accordingly, the applicant of the present application has shown in FIG.
A concave portion 45a is provided on an end surface on the joining side of the power supply terminal 45, and the plate-like ceramic body 22 (32) is formed in the concave portion 45a.
By inserting a ceramic stress relaxation material 48 having the same thermal expansion coefficient as that of the power supply terminal 45, deformation of the power supply terminal 45 due to thermal expansion is restricted by the plate-like ceramic body 22 (32) and the stress relaxation material 48. As well as the pilot hole 22a (32a,
It has been previously proposed to alleviate the thermal stress concentrated on 32b) and prevent breakage of the plate-like ceramic body 22 (32).

【0009】しかしながら、近年、半導体ウエハWに成
膜する膜材質の多様化により、これまで使用されていた
W膜以外に、Ti膜、SiO2 膜、WSiX 膜などが使
用されるようになり、これに伴いこれまで処理温度が5
00℃程度であったものが550℃〜900℃の処理温
度で成膜することが要求されており、このような高温域
になると急速な昇温や冷却の繰り返しに伴う熱サイクル
によって図9に示すような構造を採用したとしても板状
セラミック体22(32)と給電端子45との間の熱膨
張差に伴う熱応力を十分に緩和しきれず、ロウ材qが板
状セラミック体22(32)の下穴22a(32a,3
2b)から剥離し、その部分の抵抗値が部分的に大きく
なるために、ロウ材qが剥離した部位において局部的な
異常発熱を起こすといった結果があった。特に、ロウ材
qの剥離が下穴22a(32a,32b)に露出する内
部電極24(34,36)との間で起こると異常発熱に
よって内部電極24(34,36)が断線するといった
課題があった。
However, in recent years, the diversification of film material for forming the semiconductor wafer W, other than W film which has been used so far, Ti film, become SiO 2 film, such as WSi X film is used The processing temperature has been 5
What has been required to be formed at a processing temperature of 550 ° C. to 900 ° C. from what was about 00 ° C. is required. Even if the structure shown in the figure is adopted, the thermal stress caused by the difference in thermal expansion between the plate-like ceramic body 22 (32) and the power supply terminal 45 cannot be sufficiently reduced, and the brazing material q becomes the plate-like ceramic body 22 (32). ) Prepared hole 22a (32a, 3
2b), the resistance value of the portion was partially increased, and there was a result that local abnormal heat generation occurred at the portion where the brazing material q was separated. In particular, if peeling of the brazing material q occurs between the internal electrodes 24 (34, 36) exposed in the prepared holes 22a (32a, 32b), the internal electrodes 24 (34, 36) are disconnected due to abnormal heat generation. there were.

【0010】[0010]

【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、内部電極を埋設してなる板状セラミック体の
上面をウエハの載置面とし、上記板状セラミック体の下
面に上記内部電極を貫通する下穴を備え、該下穴に給電
端子をロウ付けしてなるウエハ支持部材において、上記
給電端子の接合側の端面に凹部を設け、該凹部に前記板
状セラミック体との熱膨張差が+2.9×10-6/℃以
下でかつ上記給電端子の接合側の端面より部分的に突き
出た突出部を有する応力緩和材を挿嵌せしめ、上記給電
端子を前記板状セラミック体の下穴にロウ付け固定する
とともに、上記応力緩和材の突出部を上記下穴より露出
する内部電極の露出部ともロウ付け固定するようにした
ことを特徴とする。
In view of the above-mentioned problems, the present invention has been made in consideration of the above-mentioned problems, and has an upper surface of a plate-like ceramic body in which internal electrodes are buried as a mounting surface of a wafer, and a lower surface of the above-mentioned plate-like ceramic body. In a wafer supporting member having a pilot hole penetrating an electrode, and a power supply terminal being brazed to the pilot hole, a concave portion is provided on an end surface on the joining side of the power supply terminal, and the concave portion has a thermal conductivity with the plate-shaped ceramic body. A stress relaxation material having a difference in expansion of not more than + 2.9 × 10 −6 / ° C. and having a protruding part partially protruding from the end face of the power supply terminal on the joining side is inserted and the power supply terminal is connected to the plate-shaped ceramic body. And the brazing and fixing of the projecting portion of the stress relieving material to the exposed portion of the internal electrode exposed from the prepared hole.

【0011】また、本発明は、上記板状セラミック体に
穿孔された下穴の入口から応力緩和材の先端面までの距
離を3mm以下とし、板状セラミック体の下穴入口部に
おける破損を防ぐようにしたものである。
Further, the present invention makes the distance from the entrance of the pilot hole drilled in the plate-shaped ceramic body to the front end surface of the stress relaxation material 3 mm or less, thereby preventing breakage at the entrance hole of the plate-shaped ceramic body. It is like that.

【0012】さらに、本発明は、上記応力緩和材を絶縁
性セラミックスにより形成するとともに、その内部に導
体層を埋設し、該導体層の一部を突出部の側面より露出
させるようにすることで、大電流が流れた際に下穴に露
出する内部電極近傍が局部的に発熱することを抑え、載
置面の温度がばらつくことを防ぐようにしたものであ
る。
Further, according to the present invention, the stress relaxation material is formed of insulating ceramics, and a conductor layer is buried therein, so that a part of the conductor layer is exposed from a side surface of the protrusion. In addition, when a large current flows, the vicinity of the internal electrode exposed in the prepared hole is suppressed from locally generating heat, and the temperature of the mounting surface is prevented from fluctuating.

【0013】また、本発明は、上記給電端子にAu−N
i系ロウ材を被覆することで、給電端子の耐酸化性を高
めたものである。
Further, according to the present invention, an Au-N
By coating with an i-type brazing material, the oxidation resistance of the power supply terminal is improved.

【0014】[0014]

【作用】本発明のウエハ支持部材によれば、給電端子の
接合側の端面に凹部を設けることによって上記凹部を構
成する薄肉部の厚み幅を極力薄くし、板状セラミック体
との熱膨張差に伴う熱応力を緩和することができるた
め、板状セラミック体の割れを防ぐことができる。ま
た、給電端子の凹部には板状セラミック体との熱膨張差
が+2.9×10-6/℃以下である応力緩和材を挿嵌
し、給電端子の薄肉部を板状セラミック体と応力緩和材
とで挾持するようにしてあることから、給電端子が変形
することによる導通不良を極力防ぐことができる。
According to the wafer support member of the present invention, the thickness of the thin portion constituting the concave portion is made as small as possible by providing the concave portion on the end face on the joining side of the power supply terminal, and the thermal expansion difference between the thin plate portion and the plate-shaped ceramic body is reduced. Since the thermal stress accompanying the above can be reduced, cracking of the plate-shaped ceramic body can be prevented. Further, a stress relaxation material having a thermal expansion difference of + 2.9 × 10 −6 / ° C. or less with respect to the plate-shaped ceramic body is inserted into the concave portion of the power supply terminal, and the thin portion of the power supply terminal is stressed with the plate-shaped ceramic body. Since the power supply terminal is sandwiched by the cushioning material, it is possible to prevent the conduction failure due to the deformation of the power supply terminal as much as possible.

【0015】さらに、上記応力緩和材には給電端子の接
合側の端面より部分的に突き出た突出部を設け、この突
出部と板状セラミック体の下穴に露出する内部電極の露
出部とを直接ロウ付け固定するようにしたことから、ウ
エハ支持部材を550℃以上の高温に加熱しても内部電
極の露出部に加わる熱応力が小さく、この内部電極の露
出部近傍におけるロウ材の剥離を生じることがない。そ
の為、内部電極の露出部における局部的な異常発熱がな
く、内部電極を断線させることがない。
Further, the stress relieving material is provided with a protruding portion which partially protrudes from the end face on the joining side of the power supply terminal, and this protruding portion and the exposed portion of the internal electrode exposed in the prepared hole of the plate-shaped ceramic body are connected. Since the wafer support member is directly fixed by brazing, even if the wafer support member is heated to a high temperature of 550 ° C. or more, the thermal stress applied to the exposed portion of the internal electrode is small. Will not occur. Therefore, there is no local abnormal heat generation in the exposed portion of the internal electrode, and there is no disconnection of the internal electrode.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は本発明のウエハ支持部材をヒータ内蔵
型サセプタとして用いた例を示す図であり、(a)はそ
の斜視図、(b)はX−X線断面図である。
Embodiments of the present invention will be described below. FIGS. 1A and 1B are views showing an example in which the wafer supporting member of the present invention is used as a susceptor with a built-in heater, wherein FIG. 1A is a perspective view thereof, and FIG.

【0017】このウエハ支持部材1は、円盤状をした板
状セラミック体2からなり、その上面を半導体ウエハW
の載置面3とするとともに、内部にヒータ電極用として
の内部電極4を埋設したもので、上記板状セラミック体
2の下面には上記内部電極4を貫通する2つの下穴2a
を穿孔してあり、これら2つの下穴2aにロウ付け固定
した給電端子5を介して上記内部電極4へ通電するよう
にしてある。そして、このウエハ支持部材1を作動させ
るには、半導体ウエハWを載置面3に載せた状態で内部
電極4に通電してウエハ支持部材1を加熱することによ
り半導体ウエハWを所定の処理温度に加熱するようにな
っている。
The wafer support member 1 is composed of a disk-shaped plate-like ceramic body 2 and the upper surface thereof is
And an internal electrode 4 for a heater electrode embedded therein, and two lower holes 2a penetrating the internal electrode 4 on the lower surface of the plate-shaped ceramic body 2.
The internal electrode 4 is energized through a power supply terminal 5 brazed and fixed to these two prepared holes 2a. In order to operate the wafer support member 1, the semiconductor wafer W is heated at a predetermined processing temperature by heating the wafer support member 1 by energizing the internal electrode 4 while the semiconductor wafer W is mounted on the mounting surface 3. To be heated.

【0018】一方、図2は本発明のウエハ支持部材をヒ
ータ内蔵型静電チャックとして用いた例を示す図であ
り、(a)はその斜視図、(b)はY−Y線断面図であ
る。
On the other hand, FIG. 2 is a view showing an example in which the wafer support member of the present invention is used as an electrostatic chuck with a built-in heater, (a) is a perspective view thereof, and (b) is a sectional view taken along line YY. is there.

【0019】このウエハ支持部材11は、円盤状をした
板状セラミック体12からなり、その上面を半導体ウエ
ハWの載置面13とするとともに、内部の載置面13側
に静電吸着用としての内部電極16を、載置面13と反
対側にヒータ電極用としての内部電極14をそれぞれ埋
設したもので、上記板状セラミック体12の下面には上
記内部電極16を貫通する1つの下穴12bと、内部電
極14を貫通する2つの下穴12aをそれぞれ穿孔して
あり、各下穴12a,12bにロウ付け固定した給電端
子15,17を介して上記内部電極14,15へそれぞ
れ通電するようにしてある。そして、このウエハ支持部
材11を作動させるには、半導体ウエハWを載置面13
に載置し、半導体ウエハWと内部電極16との間に通電
して誘電分極によるクーロン力や微少な漏れ電流による
ジョンソン・ラーベック力を発現させ、半導体ウエハW
を載置面13に吸着固定するとともに、この状態で内部
電極14に通電してウエハ支持部材11を加熱すること
により半導体ウエハWを所定の処理温度に加熱するよう
になっている。
The wafer support member 11 is made of a disk-shaped plate-like ceramic body 12, and its upper surface is used as a mounting surface 13 for the semiconductor wafer W, and is used for electrostatic attraction on the inner mounting surface 13 side. And an internal electrode 14 for a heater electrode is buried on the opposite side of the mounting surface 13, and one lower hole penetrating the internal electrode 16 is formed on the lower surface of the plate-shaped ceramic body 12. 12b and two pilot holes 12a penetrating the internal electrode 14 are respectively formed. Electric current is supplied to the internal electrodes 14 and 15 via power supply terminals 15 and 17 fixed to the pilot holes 12a and 12b by brazing. It is like that. To operate the wafer support member 11, the semiconductor wafer W is placed on the mounting surface 13
And a current is applied between the semiconductor wafer W and the internal electrode 16 so that Coulomb force due to dielectric polarization and Johnson-Rahbek force due to a small leakage current are developed.
Is fixed to the mounting surface 13 by suction, and in this state, the internal electrode 14 is energized to heat the wafer support member 11, thereby heating the semiconductor wafer W to a predetermined processing temperature.

【0020】このようなウエハ支持部材1,11を構成
する板状セラミック体2,12の材質としては、アルミ
ナ、窒化アルミニウム、窒化珪素のいずれか一種を主成
分とするセラミックスを用いることができ、これらの中
でも特に、アルミナ(Al23 )を主成分とし、シリ
カ(SiO2 )、マグネシア(MgO)、カルシア(C
aO)等の焼結助剤を1重量%以下の範囲で含有するア
ルミナセラミックスや、アルミナ含有量が99.8重量
%以上の高純度アルミナセラミックス、あるいは窒化ア
ルミニウムを主成分とし、Y2 3 あるいはEr2 3
などの希土類元素の酸化物をl〜9重量%の範囲で含有
する窒化アルミニウム質セラミックス、さらには窒化ア
ルミニウム含有量が99.8重量%以上の高純度窒化ア
ルミニウム質セラミックスは、成膜装置やエッチング装
置等においてデポジッション用ガスやエッチング用ガ
ス、あるいはクリーニング用ガスとして用いられるフッ
素系や塩素系等のハロゲン系ガスに対して優れた耐食性
を有するとともに、耐プラズマ性にも優れることから好
適である。
As a material of the plate-like ceramic bodies 2 and 12 constituting the wafer support members 1 and 11, a ceramic mainly containing any one of alumina, aluminum nitride and silicon nitride can be used. Among these, alumina (Al 2 O 3 ) as a main component, silica (SiO 2 ), magnesia (MgO), and calcia (C
and alumina ceramics containing a sintering aid such as aO-) in the range of 1 wt% or less, the alumina content of the main component 99.8% by weight or more of high-purity alumina ceramics or aluminum nitride,, Y 2 O 3 Or Er 2 O 3
Aluminum nitride ceramics containing an oxide of a rare earth element such as 1 to 9% by weight, and high-purity aluminum nitride ceramics having an aluminum nitride content of 99.8% by weight or more are formed by a film forming apparatus or an etching method. It is suitable because it has excellent corrosion resistance to fluorine-based and chlorine-based halogen-based gases used as a deposition gas, an etching gas, or a cleaning gas in an apparatus and the like, and also has excellent plasma resistance. .

【0021】板状セラミック体2,12中に埋設する内
部電極4,14,16の材質としては、タングステン
(W)、モリブデン(Mo)、レニウム(Re)、白金
(Pt)等の高融点金属又はこれらの合金、あるいはタ
ングステンカーバイト(WC)や窒化チタン(TiN)
などの周期律表第4a族、第5a族、第6a族元素の炭
化物又は窒化物を用いることができる。
The material of the internal electrodes 4, 14, 16 embedded in the plate-like ceramic bodies 2, 12 is a high melting point metal such as tungsten (W), molybdenum (Mo), rhenium (Re), and platinum (Pt). Or alloys thereof, or tungsten carbide (WC) or titanium nitride (TiN)
For example, carbides or nitrides of elements of Groups 4a, 5a, and 6a of the periodic table can be used.

【0022】なお、板状セラミック体2,12の形状と
しては円盤状をしたものだけに限らず、四角形や六角形
など多角形をしたものや楕円状をしたものなどどのよう
な形状をしたものでも良く、また、板状セラミック体
2,12中に埋設する内部電極4,14,16の形態と
しては、印刷等の手段による膜状をしたものや線材のい
ずれであっても構わない。
The shape of the plate-shaped ceramic bodies 2 and 12 is not limited to a disk shape, but may be any shape such as a polygonal shape such as a square or a hexagon or an elliptical shape. The internal electrodes 4, 14, 16 embedded in the plate-shaped ceramic bodies 2, 12 may be in the form of a film or a wire by means such as printing.

【0023】ところで、図1や図2に示すウエハ支持部
材1,11において、板状セラミック体2,12への給
電端子5,15,17の接合は、例えば、図3に示すよ
うな円柱状をした給電端子5(15,17)の接合側の
端面に、断面形状が円形をした凹部5a(15a,17
a)を設け、この凹部5a(15a,17a)に前記板
状セラミック体2,12との熱膨張差が+2.9×10
-6/℃以下でかつ上記給電端子5(15,17)の接合
側の端面より突き出た突出部8b(18b,19b)を
有する応力緩和部材8(18,19)を挿嵌する。この
応力緩和部材8(18,19)の突出部8b(18b,
19b)は、給電端子5(15,17)の外径とほぼ同
径としてあり、先端部8a(18a,19a)は突出部
8b(18b,19b)より小径でかつ給電端子5(1
5,17)の凹部5a(15a,17a)に係合するよ
うな外形状としてある。
By the way, in the wafer support members 1 and 11 shown in FIGS. 1 and 2, the joining of the power supply terminals 5, 15 and 17 to the plate-like ceramic bodies 2 and 12 is performed, for example, in a columnar shape as shown in FIG. A concave portion 5a (15a, 17) having a circular cross section
a), and a thermal expansion difference of + 2.9 × 10 between the plate-shaped ceramic bodies 2 and 12 is provided in the concave portions 5a (15a and 17a).
The stress relaxation member 8 (18, 19) having a protrusion 8b (18b, 19b) projecting from the end face on the joining side of the power supply terminal 5 (15, 17) at a temperature not higher than -6 / ° C. is inserted. The projecting portion 8b (18b, 18b) of the stress relaxation member 8 (18, 19)
19b) has substantially the same diameter as the outer diameter of the power supply terminal 5 (15, 17), and the tip 8a (18a, 19a) has a smaller diameter than the protrusion 8b (18b, 19b) and the power supply terminal 5 (1).
(5, 17) are formed so as to engage with the concave portions 5a (15a, 17a).

【0024】そして、図4に示すように、板状セラミッ
ク体2,12の下穴2a(12a,12b)の内壁面に
ロウ材qを塗布しておき、応力緩和部材8(18,1
9)を挿嵌した給電端子5(15,17)を挿入したあ
と熱処理を加えてロウ付け固定するのであるが、この
時、下穴2a(12a,12b)と給電端子5(15,
17)とをロウ付け固定するとともに、下穴2a(12
a,12b)に露出する内部電極4(14,16)の露
出部4a(14a,16a)と応力緩和部材8(18,
19)の突出部8b(18b,19b)ともロウ付け固
定する。
Then, as shown in FIG. 4, a brazing material q is applied to the inner wall surfaces of the pilot holes 2a (12a, 12b) of the plate-shaped ceramic bodies 2, 12, and the stress relaxing members 8 (18, 1) are applied.
After inserting the power supply terminal 5 (15, 17) into which the power supply terminal 9 (9) is inserted, heat treatment is applied and brazing is fixed. At this time, the pilot hole 2a (12a, 12b) and the power supply terminal 5 (15, 17) are fixed.
17), and the lower hole 2a (12)
a, 12b) and the exposed portions 4a (14a, 16a) of the internal electrodes 4 (14, 16) and the stress relaxation members 8 (18, 18).
Also, the projection 8b (18b, 19b) of 19) is brazed and fixed.

【0025】このように、給電端子5(15,17)の
接合側の端面に凹部5a(15a,17a)を設けるこ
とによって上記凹部5a(15a,17a)を構成する
薄肉部5b(15b,17b)の厚み幅tを薄くするこ
とができるため、加熱や冷却の繰り返しにより熱膨張差
に伴う熱応力が板状セラミック体2,12に加わったと
しても、その熱応力を緩和し、板状セラミック体2,1
2の割れを防ぐことができる。
As described above, by providing the concave portion 5a (15a, 17a) on the end face on the joining side of the power supply terminal 5 (15, 17), the thin portion 5b (15b, 17b) constituting the concave portion 5a (15a, 17a) is provided. ) Can be reduced, so that even if thermal stress due to the difference in thermal expansion is applied to the plate-shaped ceramic bodies 2 and 12 due to repetition of heating and cooling, the thermal stress is reduced and the plate-shaped ceramic Body 2,1
2 can be prevented.

【0026】また、給電端子5(15,17)に凹部5
a(15a,17a)を設けただけでは、給電端子5
(15,17)の薄肉部5b(15b,17b)が内側
に変形することによりロウ材qが剥離し、導体不良を生
じる恐れがあるが、上記給電端子5(15,17)の凹
部5a(15a,17a)には、前記板状セラミック体
2,12との熱膨張差が+2.9×10-6/℃以下であ
る応力緩和部材8(18,19)を挿嵌してあることか
ら、給電端子5(15,17)の薄肉部5b(15b,
17b)が変形しようとするのを板状セラミック体2,
12と応力緩和材8(18,19)とで挾持して拘束す
ることができるため、導通不良の発生を極力抑えること
ができる。
The power supply terminal 5 (15, 17) has a concave 5
a (15a, 17a) alone, the power supply terminal 5
When the thin portion 5b (15b, 17b) of (15, 17) is deformed inward, the brazing material q is peeled off, which may cause a conductor failure. However, the concave portion 5a of the power supply terminal 5 (15, 17) may be formed. 15a, 17a), the stress relaxation members 8 (18, 19) having a thermal expansion difference of + 2.9 × 10 −6 / ° C. or less with respect to the plate-shaped ceramic bodies 2 and 12 are inserted. , The thin portion 5b (15b, 15b) of the power supply terminal 5 (15, 17).
17b) attempts to deform the plate-shaped ceramic body 2,
12 and the stress relieving material 8 (18, 19) can be held and restrained, so that occurrence of poor conduction can be suppressed as much as possible.

【0027】さらに、処理温度が550℃以上となる
と、給電端子5(15,17)の凹部5a(15a,1
7a)に応力緩和部材8(18,19)を挿嵌した構造
としても板状セラミック体2,12と給電端子5(1
5,17)との間に働く熱応力を十分に緩和することが
できず、その結果、ロウ材qが下穴2a(12a,12
b)から剥離して部分的に抵抗値が高くなり、局部的に
異常発熱する。特に、厚みの薄い内部電極4(14,1
6)の露出部4a(14a,16a)でロウ材qの剥離
が生じると、異常発熱によって内部電極4(14,1
6)が断線する恐れがあるが、内部電極4,14,16
の露出部4a(14a,16a)は、板状セラミック体
2,12と近似した熱膨張係数を有する応力緩和材8
(18,19)の突出部8b(18b,19b)と直接
ロウ付けし、その間に給電端子5(15,17)が介在
しない構造としたことから、内部電極4(14,16)
の露出部4a(14a,16a)に加わる熱応力をさら
に小さくし、この露出部4a(14a,16a)でのロ
ウ材qの剥離を防ぐことができる。その為、内部電極4
(14,16)の露出部4a(14a,16a)におい
て局部的な異常発熱を生じることがなく、内部電極4
(14,16)を断線させることがないため、550℃
以上の温度域でも常に安定した導通を図ることができ
る。なお、給電端子5(15,17)の薄肉部5b(1
5b,17b)の厚みtが厚すぎると熱応力を緩和する
効果が小さいため、その厚みtは給電端子5(15,1
7)の直径Lに対して0.2倍以下とすることが良い。
Further, when the processing temperature becomes 550 ° C. or more, the concave portion 5a (15a, 1) of the power supply terminal 5 (15, 17) is formed.
7a), the plate-shaped ceramic bodies 2 and 12 and the power supply terminals 5 (1
5, 17) cannot sufficiently be relieved, and as a result, the brazing material q is not formed in the prepared holes 2a (12a, 12a).
The resistance value is partially increased by peeling off from b) and abnormal heat is locally generated. In particular, the thin internal electrode 4 (14, 1
When peeling of the brazing material q occurs at the exposed portions 4a (14a, 16a) of 6), the internal electrodes 4 (14, 1) are caused by abnormal heat generation.
6), the internal electrodes 4, 14, 16
The exposed portions 4a (14a, 16a) of the stress relief members 8 having a thermal expansion coefficient similar to those of the plate-shaped ceramic bodies 2 and 12 are formed.
The internal electrodes 4 (14, 16) are formed by directly brazing to the protruding portions 8b (18b, 19b) of the (18, 19) without the power supply terminals 5 (15, 17) interposed therebetween.
The thermal stress applied to the exposed portion 4a (14a, 16a) can be further reduced, and the peeling of the brazing material q at the exposed portion 4a (14a, 16a) can be prevented. Therefore, the internal electrode 4
There is no local abnormal heat generation in the exposed portions 4a (14a, 16a) of (14, 16), and the internal electrodes 4
550 ° C to prevent disconnection of (14,16)
Even in the above temperature range, stable conduction can always be achieved. The thin portion 5b (1) of the power supply terminal 5 (15, 17)
5b, 17b) is too thick, the effect of relaxing the thermal stress is small.
The diameter L is preferably 0.2 times or less of the diameter L of 7).

【0028】さらに、応力緩和部材8(18,19)の
先端部8a(18a,19a)はできるだけ長くした方
が良い。即ち、応力緩和部材8(18,19)の先端部
8a(18a,19a)が、板状セラミック体2(1
2)の下穴2a(12a,12b)内にある状態では、
下穴2a(12a,12b)の入口に作用する熱応力が
大きくなるため、クラックは発生して破損する恐れがあ
るからであり、下穴2a(12a,12b)の入口から
応力緩和材8(18,19)の先端面までの距離Lで3
mm以下、好ましくは応力緩和材8(18,19)の先
端部8a(18a,19a)が下穴2a(12a,12
b)から突き出るように構成することが良い。
Further, it is preferable that the tip 8a (18a, 19a) of the stress relaxation member 8 (18, 19) be as long as possible. That is, the tip 8a (18a, 19a) of the stress relaxation member 8 (18, 19) is
2) In the state where it is in the prepared hole 2a (12a, 12b),
This is because thermal stress acting on the entrance of the pilot hole 2a (12a, 12b) is increased, which may cause cracks and breakage. The distance L to the front end surface of 18, 19) is 3
mm or less, preferably the front end portion 8a (18a, 19a) of the stress relaxation material 8 (18, 19) is formed in the prepared hole 2a (12a, 12a).
It is good to constitute so that it may protrude from b).

【0029】ただし、図4に示す構造としても、応力緩
和部材8(18,19)として、板状セラミック体2,
12との熱膨張差が+2.9×10-6/℃より大きいも
のを用いると、ロウ付け直後や通電後の冷却時におい
て、応力緩和部材8(18,19)と給電端子5(1
5,17)の薄肉部5b(15b,17b)とが収縮
し、給電端子5(15,17)の薄肉部5b(15b,
17b)が内側へ変形しようとするのを拘束する効果が
小さくなるため、ロウ材qが剥離して局部的な異常発熱
を生じる恐れがある。
However, even in the structure shown in FIG. 4, the plate-like ceramics 2 and 2 are used as the stress relaxation members 8 (18, 19).
With those thermal expansion difference between the 12 is greater than + 2.9 × 10 -6 / ℃, during cooling after brazing or immediately after energization, the stress relaxation member 8 (18, 19) and the feeding terminal 5 (1
5, 17) and the thin portion 5b (15b, 17b) of the power supply terminal 5 (15, 17) contracts.
Since the effect of restraining 17b) from deforming inward is reduced, the brazing material q may peel off, causing local abnormal heat generation.

【0030】その為、応力緩和部材8(18,19)は
板状セラミック体2(12)との熱膨張差が+2.9×
10-6/℃以下である材質により形成する必要がある。
なお、ここで板状セラミック体2(12)との熱膨張差
が+2.9×10-6/℃以下であるとは、応力緩和部材
8(18,19)の熱膨張係数が板状セラミック体2
(12)の熱膨張係数に2.9×10-6/℃を加えた値
より小さいことを言う。このような材質としては、板状
セラミック体2(12)と同様にアルミナ、窒化アルミ
ニウム、窒化珪素のいずれか一種を主成分とするセラミ
ックスや超硬合金を用いることができ、好ましくは板状
セラミック体2(12)と同じ主成分を有するセラミッ
クス、望ましくは板状セラミック体2(12)と同組成
のセラミックスを用いることが良い。
Therefore, the stress relaxation member 8 (18, 19) has a thermal expansion difference of + 2.9 × from the plate-like ceramic body 2 (12).
It must be formed of a material having a temperature of 10 −6 / ° C. or less.
Here, the difference in thermal expansion between the plate-shaped ceramic body 2 (12) and + 2.9 × 10 −6 / ° C. or less means that the stress relaxation member 8 (18, 19) has a coefficient of thermal expansion of plate-shaped ceramic. Body 2
It is smaller than the value obtained by adding 2.9 × 10 −6 / ° C. to the thermal expansion coefficient of (12). As such a material, as in the case of the plate-shaped ceramic body 2 (12), a ceramic or a cemented carbide mainly containing any one of alumina, aluminum nitride, and silicon nitride can be used. Ceramics having the same main components as the body 2 (12), preferably ceramics having the same composition as the plate-like ceramic body 2 (12), may be used.

【0031】ところで、給電端子5(15,17)を構
成する材質としては、ステンレス、インコネル、ニッケ
ル、Fe−Ni−Co合金、Fe−Ni合金を用いるこ
とができ、特に耐酸化性が要求されるような場合には、
Au−Ni系ロウ材を給電端子5(15,17)に被覆
することで、耐久性を高めることができる。なお、図
3,4では給電端子5(15,17)として外形状が円
形をしたものを示したが、これに限らず、四角形や三角
形など多角形をしたもの、あるいは楕円状をしたもの、
さらには半円状をしたものなどどのような外形状をした
ものでも構わない。
Incidentally, stainless steel, inconel, nickel, Fe-Ni-Co alloy, Fe-Ni alloy can be used as a material for forming the power supply terminal 5 (15, 17), and particularly, oxidation resistance is required. If
By covering the power supply terminals 5 (15, 17) with the Au-Ni-based brazing material, the durability can be improved. 3 and 4, the power supply terminal 5 (15, 17) has a circular outer shape. However, the present invention is not limited to this, and the power supply terminal 5 (15, 17) may have a polygonal shape such as a square or a triangle, or an elliptical shape.
Further, any external shape such as a semicircular shape may be used.

【0032】また、板状セラミック体2(12)と給電
端子5(15,17)とを接合するロウ材qとしては、
高温域中で溶融、液化しないものを用いる必要があり、
Ag−Cu系やTi−Cu−Ag系のロウ材qや、60
0℃以上の高温域中で使用する場合には、Au−Ni−
V系のロウ材qが耐酸化性に優れることから好適であ
る。
As the brazing material q for joining the plate-shaped ceramic body 2 (12) and the power supply terminal 5 (15, 17),
It is necessary to use a material that does not melt and liquefy in a high temperature range,
Ag-Cu or Ti-Cu-Ag brazing material q, 60
When used in a high temperature range of 0 ° C or higher, Au-Ni-
V-based brazing material q is preferable because of its excellent oxidation resistance.

【0033】次に、本発明の応用例について説明する。Next, an application example of the present invention will be described.

【0034】図5は図1や図2に示すウエハ支持部材
1,11にプラズマ発生用としての内部電極を埋設した
時の給電端子の接合部を拡大した断面図で、図6は図5
に用いた応力緩和材58を示す斜視図であり、基本的に
は図4と同様の構造をしたものであるが、応力緩和材5
8の内部に導体層59を埋設するとともに、該導体層5
9の一部を突出部58bの側面と先端部58aの側面よ
り部分的に露出させてある。そして、上記突出部58b
の側面より露出する導体層59と、板状セラミック体2
(12)の下穴52aに露出するプラズマ発生用として
の内部電極54とがロウ付け固定されるように構成す
る。
FIG. 5 is an enlarged cross-sectional view of the junction of the power supply terminals when the internal electrodes for plasma generation are embedded in the wafer support members 1 and 11 shown in FIGS. 1 and 2. FIG.
FIG. 5 is a perspective view showing a stress relieving material 58 used in the first embodiment, which basically has the same structure as that of FIG.
8 and a conductor layer 59 is buried in the conductor layer 5.
9 is partially exposed from the side surface of the protruding portion 58b and the side surface of the tip portion 58a. Then, the protrusion 58b
Conductor layer 59 exposed from the side surface of
(12) The internal electrode 54 for plasma generation exposed in the pilot hole 52a is brazed and fixed.

【0035】即ち、プラズマを発生させる場合、給電端
子55に30アンペア程度の大電流を流す必要がある
が、図4に示す構造にこのような大電流を流すと、応力
緩和材58の表面だけに電流が流れ、内部電極54を断
線させるまでには至らないものの、異常発熱するために
載置面3,13を均一に加熱することができなくなる。
これに対して図6に示すように、応力緩和材58中に導
体層59を埋設し、その一部を突出部58bの側面より
露出させてロウ材qと接触させることで、応力緩和材5
8中の導体層59を介して電流を内部電極54に印加す
ることができるため、この接合部での異常発熱を抑え、
載置面3,13の温度分布を均一にすることができる。
That is, when generating a plasma, it is necessary to flow a large current of about 30 amps to the power supply terminal 55. However, when such a large current is supplied to the structure shown in FIG. Although current does not flow until the internal electrode 54 is disconnected, the mounting surfaces 3 and 13 cannot be uniformly heated due to abnormal heat generation.
On the other hand, as shown in FIG. 6, a conductor layer 59 is buried in the stress relieving material 58, and a part thereof is exposed from the side surface of the protruding portion 58b and is brought into contact with the brazing material q, whereby the stress relieving material 5 is formed.
8, a current can be applied to the internal electrode 54 through the conductor layer 59, thereby suppressing abnormal heat generation at this junction.
The temperature distribution on the mounting surfaces 3 and 13 can be made uniform.

【0036】(実施例)以下、図1に示す窒化アルミニ
ウムセラミック製のウエハ支持部材1を例にとって具体
的に説明する。
(Embodiment) The wafer support member 1 made of aluminum nitride ceramic shown in FIG. 1 will be specifically described below as an example.

【0037】純度99.9%の窒化アルミニウム粉末に
対してバインダーと溶媒を添加混練して泥漿を作製し、
ドクターブレード法にて複数枚のグリーンシートを製作
した。このうち数枚のグリーンシートを積み重ねたうえ
に内部電極4となる導体ペーストをスクリーン印刷機に
て所定のパターン形状に敷設したあと、上記パターンを
覆うように残りのグリーンシートを積み重ね、熱圧着に
て一体化することによりグリーンシート積層体を製作し
た。そして、このグリーンシート積層体に切削加工を施
して円盤状に形成したあと、窒素雰囲気中にて2010
〜2100℃の温度で焼成することにより、ヒータ電極
としての内部電極4を埋設してなり、直径約200m
m、板厚約15mmの円盤状をした板状セラミック体2
を得た。また、同様の方法により焼成した窒化アルミニ
ウムセラミックスをICP−AES(Inductively Coup
led Plasma Atomic Emission Spectroscopy)によって測
定したところ、窒化アルミニウムの含有量が99.8重
量%である高純度窒化アルミニウムセラミックスからな
ることが判った。
A binder and a solvent are added to and mixed with aluminum nitride powder having a purity of 99.9% to form a slurry.
A plurality of green sheets were manufactured by the doctor blade method. After stacking several green sheets among them, laying a conductor paste to be the internal electrode 4 in a predetermined pattern shape by a screen printing machine, and then stacking the remaining green sheets so as to cover the above pattern, and performing thermocompression bonding. Then, a green sheet laminated body was manufactured by integrating them. Then, after cutting the green sheet laminate to form a disk shape, the green sheet laminate is subjected to a process in a nitrogen atmosphere.
By firing at a temperature of about 2100 ° C., the internal electrode 4 as a heater electrode is buried and has a diameter of about 200 m.
m, disk-shaped plate-shaped ceramic body 2 with a thickness of about 15 mm
I got Further, aluminum nitride ceramics fired by the same method is used for ICP-AES (Inductively Coupling).
Measurement by led Plasma Atomic Emission Spectroscopy) revealed that the sample was composed of high-purity aluminum nitride ceramics having an aluminum nitride content of 99.8% by weight.

【0038】次に、得られた板状セラミック体2の一方
の主面に研磨加工を施して半導体ウエハWの載置面3と
するとともに、板状セラミック体2の他方の主面にドリ
ルでもって内部電極4を貫通する2つの下穴2aを穿設
し、この下穴2aの内壁面にロウ材qを塗布した。な
お、ロウ材qにはAu(82重量%)−Ni(18重量
%)−V(3重量%)系のロウを用いた。
Next, one main surface of the obtained plate-shaped ceramic body 2 is polished to form a mounting surface 3 for the semiconductor wafer W, and the other main surface of the plate-shaped ceramic body 2 is drilled. Thus, two pilot holes 2a penetrating the internal electrode 4 were formed, and a brazing material q was applied to the inner wall surface of the pilot hole 2a. It should be noted that Au (82% by weight) -Ni (18% by weight) -V (3% by weight) based brazing material q was used.

【0039】一方、上記板状セラミック体2の下穴2a
とほぼ同径の円柱状をなし、Fe−Co−Ni合金から
なる給電端子5と、板状セラミック体2と同一組成の高
純度窒化アルミニウムセラミックスからなり、先端部8
bと突出部8aとが一体的に形成された応力緩和材8を
用意し、上記給電端子5の一方の端面に凹部5aを形成
したあと、該凹部5aに応力緩和材8の先端部8bを挿
嵌した給電端子5を板状セラミック体2の下穴2aに挿
入し、応力緩和材8の突出部8aを下穴2aに露出する
内部電極4の露出部4aと位置合わせした状態で105
0℃、10-5torrの真空中で10分間熱処理を加え
ることにより給電端子5をロウ付け固定してウエハ支持
部材1を製作した。
On the other hand, the pilot hole 2a of the plate-shaped ceramic body 2
A power supply terminal 5 made of a Fe-Co-Ni alloy and a high-purity aluminum nitride ceramic having the same composition as the plate-shaped ceramic body 2 are formed.
After preparing a stress relief material 8 in which the b and the protruding portion 8a are integrally formed, forming a concave portion 5a on one end surface of the power supply terminal 5, the distal end portion 8b of the stress relief material 8 is placed in the concave portion 5a. The inserted power supply terminal 5 is inserted into the prepared hole 2a of the plate-shaped ceramic body 2, and the projection 8a of the stress relaxation material 8 is aligned with the exposed portion 4a of the internal electrode 4 exposed to the prepared hole 2a.
By applying heat treatment for 10 minutes in a vacuum of 10 -5 torr at 0 ° C., the power supply terminal 5 was brazed and fixed to manufacture the wafer support member 1.

【0040】そこで、このウエハ支持部材1の給電端子
5間に交流電圧を印加して載置面3の最高温度が850
℃となるように加熱し、この温度で10分間保持したあ
と、冷風機で常温まで急冷させる熱サイクル試験を繰り
返し、異常発熱の有無、内部電極4の断線の有無、及び
板状セラミック体2の破損の有無をそれぞれ調べる実験
を行った。なお、異常発熱の判断は、異常発熱が発生す
ると載置面3の温度バラツキが大きくなることから、温
度バラツキが±5%以上となった時を異常発熱有りとし
た。
Therefore, an AC voltage is applied between the power supply terminals 5 of the wafer support member 1 so that the maximum temperature of the mounting surface 3 becomes 850.
° C, and after maintaining at this temperature for 10 minutes, a heat cycle test of rapidly cooling to room temperature with a cooler is repeated, and whether or not there is abnormal heat generation, whether or not the internal electrode 4 is disconnected, and whether or not the plate-shaped ceramic body 2 An experiment was conducted to check for damage. It should be noted that the abnormal heat generation was judged to be abnormal heat when the temperature fluctuation became ± 5% or more because the temperature fluctuation of the mounting surface 3 increased when the abnormal heat generation occurred.

【0041】この結果、200回の熱サイクル試験にお
いても板状セラミック体2の破損は見られず、また、内
部電極4の断線もなかった。しかも、載置面3の温度バ
ラツキが常に±2%以下と安定した温度分布が得られ、
異常発熱もなかった。
As a result, no breakage of the plate-shaped ceramic body 2 was observed even in the heat cycle test 200 times, and no disconnection of the internal electrode 4 was found. Moreover, a stable temperature distribution in which the temperature variation of the mounting surface 3 is always ± 2% or less is obtained,
There was no abnormal fever.

【0042】(実験例1)ここで、実施例におけるウエ
ハ支持部材1において、応力緩和材8の材質を変えて実
施例と同様の熱サイクル試験を施し、異常発熱の有無と
内部電極4の断線の有無を調べる実験を行った。なお、
応力緩和材8の材質を変える以外、他の条件は実施例と
同じ条件にて行った。また、本件出願人が先に提案した
図9に示す構造を持ったウエハ支持部材21も試作し、
これについても実験を行った。
(Experimental Example 1) Here, in the wafer support member 1 in the embodiment, a heat cycle test similar to that in the embodiment was performed by changing the material of the stress relaxation material 8, and the presence or absence of abnormal heat generation and the disconnection of the internal electrode 4 were performed. An experiment was conducted to check for the presence or absence of. In addition,
Except for changing the material of the stress relaxation material 8, the other conditions were the same as those in the example. Further, a wafer support member 21 having the structure shown in FIG.
This was also tested.

【0043】それぞれの結果は表1に示す通りである。The results are as shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】この結果、本件出願人が先に提案した図9
に示す構造のものは、50回程度では内部電極4の断線
は見られなかった。ただし、20個中10個において異
常発熱が見られ、200回の熱サイクル試験を行うまえ
に全てのウエハ支持部材21において内部電極4が断線
した。
As a result, as shown in FIG.
In the structure shown in FIG. 7, no disconnection of the internal electrode 4 was observed after about 50 times. However, abnormal heat generation was observed in 10 out of 20 wafers, and the internal electrodes 4 were disconnected in all the wafer support members 21 before performing the thermal cycle test 200 times.

【0046】また、図4に示す構造のうち、応力緩和材
としてベリリアを用いたものでは、板状セラミック体2
との熱膨張差が+2.9×10-6/℃より大きいため、
50回の熱サイクル試験により20個中8個において異
常発熱が見られ、200回の熱サイクル試験では全ての
ウエハ支持部材21において異常発熱が見られた。
In the structure shown in FIG. 4 in which beryllia is used as a stress relaxation material, the plate-like ceramic body 2
Is larger than + 2.9 × 10 -6 / ° C.
In 50 heat cycle tests, abnormal heat generation was observed in 8 out of 20 wafers, and in 200 heat cycle tests, abnormal heat generation was observed in all wafer support members 21.

【0047】これに対し、応力緩和材としてアルミナ、
超硬合金、窒化珪素、スポジュメンを用いたものはいず
れも板状セラミック体2との熱膨張差が+2.9×10
-6/℃以下の範囲にあるため、応力緩和材として窒化ア
ルミニウムを用いた時と同様に、200回の熱サイクル
試験においても内部電極4の断線がなく、また、載置面
3の温度バラツキが常に±2%以下と安定した温度分布
が得られ、異常発熱も見られなかった。
On the other hand, alumina as a stress relaxing material
In any of those using cemented carbide, silicon nitride, and spodumene, the difference in thermal expansion from the plate-like ceramic body 2 is + 2.9 × 10
-6 / ° C. or less, there is no disconnection of the internal electrode 4 even in the thermal cycle test 200 times, and the temperature variation of the mounting surface 3 as in the case of using aluminum nitride as the stress relaxation material. However, a stable temperature distribution of always ± 2% or less was obtained, and no abnormal heat generation was observed.

【0048】(実験例2)次に、実施例におけるウエハ
支持部材1において、板状セラミック体2の下穴2aの
入口から応力緩和材8の先端面までの距離を異ならせて
実施例と同様の熱サイクル試験を施し、異常発熱の有無
と板状セラミック体2の破損の有無を調べる実験を行っ
た。なお、給電端子5に形成する凹部5aの深さと応力
緩和材8の先端部8aの長さを変える以外、他の条件は
実施例と同じ条件にて行った。
(Experimental Example 2) Next, in the wafer support member 1 in the embodiment, the distance from the entrance of the pilot hole 2a of the plate-shaped ceramic body 2 to the tip end surface of the stress relaxation material 8 was changed, similarly to the embodiment. The heat cycle test was performed, and an experiment was conducted to determine whether there was abnormal heat generation and whether the plate-shaped ceramic body 2 was damaged. Except for changing the depth of the concave portion 5a formed in the power supply terminal 5 and the length of the distal end portion 8a of the stress relaxation material 8, the other conditions were the same as those in the example.

【0049】それぞれの結果は表2に示す通りである。The results are as shown in Table 2.

【0050】[0050]

【表2】 [Table 2]

【0051】この結果、距離Lが0〜5mmの範囲にお
いては200回の熱サイクル試験でも異常発熱は見られ
なかった。ただし、距離Lが4mmより大きくなると、
50回の熱サイクル試験において板状セラミック体2に
割れが見られ、200回の熱サイクル試験では10個中
半分以上において板状セラミック体2に割れが発生し
た。
As a result, when the distance L was in the range of 0 to 5 mm, no abnormal heat generation was observed even in the heat cycle test 200 times. However, when the distance L is larger than 4 mm,
Cracks were observed in the plate-shaped ceramic body 2 in 50 heat cycle tests, and cracks occurred in the plate-shaped ceramic body 2 in half or more of the 10 heat cycle tests in 200 heat cycle tests.

【0052】これに対し、距離Lが0〜3mmの範囲で
は、200回の熱サイクル試験でも板状セラミック体2
に割れがなく、長期使用が可能であった。
On the other hand, when the distance L is in the range of 0 to 3 mm, the plate-like ceramic body 2 is not subjected to 200 heat cycle tests.
Had no cracks and could be used for a long time.

【0053】この結果より、板状セラミック体2の下穴
2aの入口から応力緩和材8の先端面までの距離Lは3
mm以下とすることが良いことが判る。
From this result, the distance L from the entrance of the pilot hole 2a of the plate-shaped ceramic body 2 to the tip end surface of the stress relaxation material 8 is 3
It can be seen that it is better to set the thickness to not more than mm.

【0054】[0054]

【発明の効果】以上のように、本発明によれば、内部電
極を埋設してなる板状セラミック体の上面をウエハの載
置面とし、上記板状セラミック体の下面に上記内部電極
を貫通する下穴を備え、該下穴に給電端子をロウ付け固
定してなるウエハ支持部材において、上記給電端子の接
合側の端面に凹部を設け、該凹部に前記板状セラミック
体との熱膨張差が+2.9×10-6/℃以下で、かつ上
記給電端子の接合側の端面より部分的に突き出た突出部
を有する応力緩和材を挿嵌せしめ、上記給電端子と前記
板状セラミック体の下穴とをロウ付け固定するととも
に、上記応力緩和材の突出部と上記下穴における内部電
極の露出部とをロウ付け固定したことによって、550
℃以上の高温に繰り返し加熱しても熱応力に伴う板状セ
ラミック体の破損がなく、また、ロウ材の剥離に伴う異
常発熱や内部電極の断線がないため、高温域において長
期使用が可能な耐久性に優れたウエハ支持部材を提供す
ることができる。
As described above, according to the present invention, the upper surface of the plate-shaped ceramic body in which the internal electrodes are buried is used as the wafer mounting surface, and the internal electrodes are penetrated through the lower surface of the plate-shaped ceramic body. In the wafer support member having a lower hole to which the power supply terminal is brazed and fixed, a concave portion is provided on an end surface on the joining side of the power supply terminal, and a thermal expansion difference between the concave portion and the plate-shaped ceramic body is provided in the concave portion. Is not more than + 2.9 × 10 −6 / ° C. and a stress relaxation material having a protruding portion partially protruding from the end face on the joining side of the power supply terminal is inserted. 550 is fixed by brazing the pilot hole to the exposed portion of the internal electrode in the pilot hole and the exposed portion of the internal electrode in the pilot hole.
Even if repeatedly heated to a high temperature of ℃ or more, there is no breakage of the plate-shaped ceramic body due to thermal stress, and there is no abnormal heating and internal electrode disconnection due to peeling of the brazing material, so it can be used for a long time in a high temperature range A highly durable wafer support member can be provided.

【0055】しかも、ウエハ支持部材を構成する板状セ
ラミック体は、フッ素系や塩素系等のハロゲン系ガスに
対して優れた耐食性を有することから、半導体装置の製
造工程における成膜装置やエッチング装置においても好
適に使用することができる。また、本発明は、板状セラ
ミック体に穿孔された下穴の入口から応力緩和材の先端
面までの距離を3mm以下としたことから、下穴の入口
近傍に作用する熱応力を緩和し、下穴入口部の破損を防
止することができる。
Moreover, the plate-shaped ceramic body constituting the wafer support member has excellent corrosion resistance to halogen-based gas such as fluorine-based or chlorine-based, so that a film-forming apparatus or an etching apparatus in a semiconductor device manufacturing process. Can also be suitably used. Further, the present invention, since the distance from the entrance of the prepared hole perforated in the plate-shaped ceramic body to the front end surface of the stress relaxation material is 3 mm or less, to reduce the thermal stress acting near the entrance of the prepared hole, Damage of the pilot hole entrance can be prevented.

【0056】さらに、本発明は、上記応力緩和材を絶縁
性セラミックスにより形成するとともに、その内部に導
体層を埋設し、該導体層の一部を突出部の側面より露出
させるようにしたことから、内部電極がプラズマ発生用
電極であって、大電流を流したとしても板状セラミック
体の下穴に露出する内部電極近傍において異常発熱する
ことがなく、載置面の温度分布を均一化することができ
る。
Further, according to the present invention, the stress relaxation material is formed of insulating ceramics, and a conductor layer is buried inside the stress relaxation material so that a part of the conductor layer is exposed from the side surface of the protrusion. The internal electrode is a plasma generating electrode, and even if a large current is applied, abnormal heat generation is not generated near the internal electrode exposed in the prepared hole of the plate-shaped ceramic body, and the temperature distribution on the mounting surface is made uniform. be able to.

【0057】また、本発明では、給電端子にAu−Ni
系ロウ材を被覆するようにしたことから、給電端子の耐
酸化性を高め耐久性を向上させることができる。
In the present invention, the power supply terminal is made of Au-Ni.
Since the system brazing material is coated, the oxidation resistance of the power supply terminal can be increased and the durability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のウエハ支持部材をヒータ内蔵型サセプ
タとして用いた例を示す図で、(a)はその斜視図、
(b)はX−X線断面図である。
FIG. 1 is a diagram showing an example in which a wafer supporting member of the present invention is used as a susceptor with a built-in heater, and FIG.
(B) is XX sectional drawing.

【図2】本発明のウエハ支持部材をヒータ内蔵型静電チ
ャックとして用いた例を示す図で、(a)はその斜視
図、(b)はY−Y線断面図である。
FIGS. 2A and 2B are diagrams showing an example in which the wafer support member of the present invention is used as an electrostatic chuck with a built-in heater, wherein FIG. 2A is a perspective view thereof, and FIG.

【図3】本発明のウエハ支持部材に用いる給電端子と応
力緩和材を示す斜視図である。
FIG. 3 is a perspective view showing a power supply terminal and a stress relaxation material used for a wafer support member of the present invention.

【図4】板状セラミック体の下穴と給電端子との接合部
を拡大した断面図である。
FIG. 4 is an enlarged cross-sectional view of a joint between a prepared hole of a plate-shaped ceramic body and a power supply terminal.

【図5】内部電極としてプラズマ発生用電極を埋設した
時の給電端子の接合部を拡大した断面図である。
FIG. 5 is an enlarged cross-sectional view of a junction of a power supply terminal when a plasma generating electrode is embedded as an internal electrode.

【図6】図5に示す給電端子の接合部に用いる応力緩和
材を示す斜視図である。
FIG. 6 is a perspective view showing a stress relaxation material used for a joint portion of the power supply terminal shown in FIG.

【図7】従来のウエハ支持部材をヒータ内蔵型サセプタ
として用いた例を示す図で、(a)はその斜視図、
(b)はA−A線断面図である。
7A and 7B are diagrams showing an example in which a conventional wafer supporting member is used as a susceptor with a built-in heater, and FIG.
(B) is a sectional view taken along line AA.

【図8】従来のウエハ支持部材をヒータ内蔵型静電チャ
ックとして用いた例を示す図で、(a)はその斜視図、
(b)はB−B線断面図である。
8A and 8B are views showing an example in which a conventional wafer support member is used as an electrostatic chuck with a built-in heater, and FIG.
(B) is a sectional view taken along line BB.

【図9】本件出願人が先に提案した板状セラミック体の
下穴と給電端子との接合部を示す断面図である。
FIG. 9 is a cross-sectional view showing a joint portion between a prepared hole of a plate-shaped ceramic body and a power supply terminal previously proposed by the present applicant.

【符号の説明】[Explanation of symbols]

1,11,21,31 ・・・
ウエハ支持部材 2,12,22,32 ・・・
板状セラミック体 2a,12a,12b,22a,32a,32b・・・
下穴 3,13,23,33 ・・・
載置面 4,14,16,24,34,36 ・・・
内部電極 5,15,17,25,35,37 ・・・
給電端子 5a,15a,17a,25a,35a,37a・・・
凹部 5b,15b,17b,25b,35b,37b・・・
薄肉部 8,18,19 ・・・
応力緩和材 8a,18a,19a ・・・
先端部 8b,18b,19b ・・・
突出部 W ・・・
半導体ウエハ
1,11,21,31 ...
Wafer support members 2, 12, 22, 32 ...
Plate-shaped ceramic bodies 2a, 12a, 12b, 22a, 32a, 32b,...
Prepared holes 3,13,23,33 ・ ・ ・
Mounting surface 4,14,16,24,34,36 ...
Internal electrode 5, 15, 17, 25, 35, 37 ...
Power supply terminals 5a, 15a, 17a, 25a, 35a, 37a ...
Recesses 5b, 15b, 17b, 25b, 35b, 37b ...
Thin section 8, 18, 19 ...
Stress relief material 8a, 18a, 19a ...
Tip portions 8b, 18b, 19b ...
Projection W
Semiconductor wafer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内部電極を埋設してなる板状セラミック体
の上面をウエハの載置面とし、上記板状セラミック体の
下面に上記内部電極を貫通する下穴を備え、該下穴に給
電端子をロウ付け固定してなるウエハ支持部材におい
て、上記給電端子の接合側の端面に凹部を設け、該凹部
に前記板状セラミック体との熱膨張差が+2.9×10
-6/℃以下でかつ上記給電端子の接合側の端面より部分
的に突き出た突出部を有する応力緩和材を挿嵌せしめ、
上記給電端子を前記板状セラミック体の下穴にロウ付け
固定するとともに、上記応力緩和材の突出部を上記下穴
における内部電極の露出部ともロウ付け固定したことを
特徴とするウエハ支持部材。
An upper surface of a plate-like ceramic body in which internal electrodes are embedded is used as a wafer mounting surface, and a lower hole penetrating the internal electrode is provided on a lower surface of the plate-like ceramic body, and power is supplied to the lower hole. In the wafer support member having the terminals fixed by brazing, a concave portion is provided on an end surface on the joining side of the power supply terminal, and the thermal expansion difference between the concave portion and the plate-shaped ceramic body is + 2.9 × 10.
-6 / ° C. or less and a stress relaxation material having a protrusion partly protruding from the end face on the joining side of the power supply terminal is inserted,
A wafer support member, wherein the power supply terminal is brazed and fixed to a lower hole of the plate-shaped ceramic body, and a protruding portion of the stress relaxation material is brazed and fixed to an exposed portion of an internal electrode in the lower hole.
【請求項2】上記板状セラミック体に穿孔された下穴の
入口から応力緩和材の先端面までの距離を3mm以下と
したことを特徴とする請求項1に記載のウエハ支持部
材。
2. The wafer supporting member according to claim 1, wherein a distance from an entrance of a pilot hole formed in the plate-shaped ceramic body to a front end surface of the stress relaxation material is 3 mm or less.
【請求項3】上記応力緩和材を絶縁性セラミックスによ
り形成するとともに、その内部に導体層を埋設し、該導
体層の一部を突出部の側面より露出させたことを特徴と
する請求項1及び請求項2に記載のウエハ支持部材。
3. The semiconductor device according to claim 1, wherein said stress relaxation material is formed of insulating ceramics, and a conductor layer is buried therein, and a part of said conductor layer is exposed from a side surface of said projection. And the wafer support member according to claim 2.
【請求項4】上記給電端子にAu−Ni系ロウ材を被覆
したことを特徴とする請求項1乃至請求項3に記載のウ
エハ支持部材。
4. The wafer supporting member according to claim 1, wherein the power supply terminal is coated with an Au—Ni-based brazing material.
JP21678698A 1998-07-31 1998-07-31 Wafer support member Expired - Fee Related JP3771722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21678698A JP3771722B2 (en) 1998-07-31 1998-07-31 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21678698A JP3771722B2 (en) 1998-07-31 1998-07-31 Wafer support member

Publications (2)

Publication Number Publication Date
JP2000049217A true JP2000049217A (en) 2000-02-18
JP3771722B2 JP3771722B2 (en) 2006-04-26

Family

ID=16693872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21678698A Expired - Fee Related JP3771722B2 (en) 1998-07-31 1998-07-31 Wafer support member

Country Status (1)

Country Link
JP (1) JP3771722B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043033A (en) * 2000-07-19 2002-02-08 Nhk Spring Co Ltd Heater unit, and method of manufacturing the same
JP2006287213A (en) * 2005-03-07 2006-10-19 Ngk Spark Plug Co Ltd Electrostatic chuck, electrostatic chuck device, and method of fabricating electrostatic chuck, vacuum chuck, vacuum chuck device and method of fabricating vacuum chuck, and ceramic heater, ceramic heater device and method of fabricating ceramic heater
JP2008305968A (en) * 2007-06-07 2008-12-18 Sei Hybrid Kk Electrode connection structure of wafer holder
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
US7633738B2 (en) * 2006-11-01 2009-12-15 Ngk Insulators, Ltd. Electrostatic chuck and manufacturing method thereof
JP2010177503A (en) * 2009-01-30 2010-08-12 Nihon Ceratec Co Ltd Metal bushing and ceramic product including the same
KR100995250B1 (en) * 2008-09-09 2010-11-18 주식회사 코미코 Electrostatic chuck containing buffer layer for reducing thermal stress
JP2016225355A (en) * 2015-05-27 2016-12-28 京セラ株式会社 Sample holder and plasma etching apparatus using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043033A (en) * 2000-07-19 2002-02-08 Nhk Spring Co Ltd Heater unit, and method of manufacturing the same
JP4545896B2 (en) * 2000-07-19 2010-09-15 日本発條株式会社 Heater unit and manufacturing method thereof
JP2006287213A (en) * 2005-03-07 2006-10-19 Ngk Spark Plug Co Ltd Electrostatic chuck, electrostatic chuck device, and method of fabricating electrostatic chuck, vacuum chuck, vacuum chuck device and method of fabricating vacuum chuck, and ceramic heater, ceramic heater device and method of fabricating ceramic heater
US7633738B2 (en) * 2006-11-01 2009-12-15 Ngk Insulators, Ltd. Electrostatic chuck and manufacturing method thereof
JP2008305968A (en) * 2007-06-07 2008-12-18 Sei Hybrid Kk Electrode connection structure of wafer holder
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
KR100995250B1 (en) * 2008-09-09 2010-11-18 주식회사 코미코 Electrostatic chuck containing buffer layer for reducing thermal stress
JP2010177503A (en) * 2009-01-30 2010-08-12 Nihon Ceratec Co Ltd Metal bushing and ceramic product including the same
JP2016225355A (en) * 2015-05-27 2016-12-28 京セラ株式会社 Sample holder and plasma etching apparatus using the same

Also Published As

Publication number Publication date
JP3771722B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
CN107078086B (en) Electrostatic chuck and method of manufacturing the same
JP4796354B2 (en) Electrostatic chuck and method for producing yttria sintered body
JP4648030B2 (en) Yttria sintered body, ceramic member, and method for producing yttria sintered body
JP3297637B2 (en) Wafer support member
TWI480972B (en) A wafer holding body for improving the connection method of the high-frequency electrode, and a semiconductor manufacturing apparatus including the same
JP3447495B2 (en) Power supply structure of wafer holding device
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP2002293655A (en) Jointing structure of metal terminal and ceramic member, jointing structure of metal member and ceramic member and jointing material for jointing metal terminal and ceramic member
JP3145664B2 (en) Wafer heating device
JP4858319B2 (en) Wafer holder electrode connection structure
US11142484B2 (en) Component for semiconductor production device, and production method of component for semiconductor production device
JP2000049217A (en) Wafer holding member
JP4331983B2 (en) Wafer support member and manufacturing method thereof
JP2006186351A (en) Semiconductor manufacturing device
JPH1174336A (en) Wafer support member
JP2007251124A (en) Electrostatic chuck
JP2003086519A (en) Supporter of object to be treated, manufacturing method and treatment device thereof
JP3906087B2 (en) Wafer support member
JP7140297B2 (en) electrostatic chuck
KR20040007347A (en) Electrode-built-in susceptor
JP4439108B2 (en) Wafer support member
KR20180048324A (en) Heating element
JP3854145B2 (en) Wafer support member
JPH0969555A (en) Electrostatic chuck
JP3821075B2 (en) Ceramic heater and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees