JPH11214691A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH11214691A
JPH11214691A JP10312033A JP31203398A JPH11214691A JP H11214691 A JPH11214691 A JP H11214691A JP 10312033 A JP10312033 A JP 10312033A JP 31203398 A JP31203398 A JP 31203398A JP H11214691 A JPH11214691 A JP H11214691A
Authority
JP
Japan
Prior art keywords
semiconductor
heat
polycrystalline silicon
semiconductor device
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10312033A
Other languages
Japanese (ja)
Other versions
JP3204226B2 (en
Inventor
Yukio Tsuzuki
幸夫 都築
Masami Yamaoka
正美 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP31203398A priority Critical patent/JP3204226B2/en
Publication of JPH11214691A publication Critical patent/JPH11214691A/en
Application granted granted Critical
Publication of JP3204226B2 publication Critical patent/JP3204226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Abstract

PROBLEM TO BE SOLVED: To surely protect a semiconductor element from thermal breakdown, by arranging a heatsensitive element part detecting the state of heat generation of a semiconductor power element, inside a layout pattern of a metal terminal electrode of a semiconductor power element which is stuck on a greater part of one surface of a semiconductor chip. SOLUTION: A heat-sensitive polycrystalline silicon diode 15, is arranged inside a layout pattern of an aluminum electrode 9 (a source S) formed in common with a plurality of power MOS's 13 which is stuck on a greater part of the surface of a semiconductor chip. The aluminum electrode 9 is excellent in thermal conductivity, so that heat generated in the semiconductor chip is made uniform in the chip by the aluminum electrode 9, and quickly transferred to the forming position of the polycrystalline silicon diode 15. As a result, temperature difference in the semiconductor chip is also restrained, so that local element breakdown due to local current concentration or local temperature rise can be restrained.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は半導体装置に係り、
特に温度検出機能を有する半導体装置に関するものであ
る。 【0002】 【従来の技術】従来、半導体素子として例えば複数のM
OSトランジスタ構造の単位セルを並列接続するように
して構成したパワーMOSトランジスタ・スイッチが知
られている。MOSトランジスタ・スイッチには消費電
力に限界が有り、それを超えると過熱さらにはMOSト
ランジスタ・スイッチの自己破壊を引き起こす。MOS
トランジスタ・スイッチは通常、負荷と接続されて使用
され、そのソース/ドレイン端子間の電圧と通電電流
は、通常の動作条件下において、負荷により当該MOS
トランジスタ・スイッチの消費電力容量内のある値に制
限されている。しかしながら、不注意で負荷が短絡され
ると、MOSトランジスタ・スイッチのソース/ドレイ
ン端子間にかかる電圧は消費電力容量に帰結するところ
の最大供給電圧を超え、結果としてMOSトランジスタ
・スイッチの過熱さらには破壊を引き起こすのである。 【0003】 【発明が解決しようとする課題】従って、このような半
導体素子の動作時の異常な接合温度上昇による破壊をさ
ける為に、感熱素子により半導体素子の発熱に伴う半導
体基板の温度上昇を検出し、その検出信号により半導体
素子を制御して熱破壊しないように保護することは、望
ましいことである。 【0004】そこで本発明は上記事情に鑑みて創案され
たもので、半導体素子を熱破壊から確実に保護すること
のできる半導体装置を提供する事を目的とする。 【0005】 【課題を解決するための手段】上記目的を達成する為に
本発明の半導体装置は、その導通状態の際に電流が流れ
ることで高熱を発する半導体パワー素子が形成された半
導体チップにおいて、該半導体チップの一表面側の大部
分に被着された前記半導体パワー素子の金属製端子電極
のレイアウトパターンの内側に、前記半導体パワー素子
の発熱状況を検出する感熱素子部を配置したことを特徴
とする。 【0006】 【作用及び発明の効果】本発明は前記の構成により、半
導体基板の温度が異常に上昇した時、すなわち半導体パ
ワー素子の発熱温度が異常に高くなった時には、この温
度上昇を感熱素子部で検出することができる。ここで、
感熱素子部は、半導体チップの一表面側の大部分に被着
された半導体パワー素子の金属製端子電極のレイアウト
パターンの内側に配置されており、また金属製端子電極
は熱伝導性の良い例えばアルミニウム等の金属よりなる
ため、半導体チップ内に発生した熱は、半導体チップ内
において、金属製端子電極により均一化されながら素早
く感熱素子部に伝達されることとなる。このため半導体
パワー素子が形成された半導体チップ内における温度差
も抑えられ、局部的な電流集中あるいは局部的な温度上
昇に起因した局部的な素子破壊を抑制でき、半導体パワ
ー素子の素子性能を十分に発揮しつつ半導体チップの発
熱状態を正確に応答性良く感熱素子部に伝達できる。こ
れにより半導体パワー素子を確実に熱破壊から保護する
ことのできるようになる。 【0007】 【実施例】以下、本発明を図に示す実施例により詳述す
る。図1及び図2は自己過熱保護機能を有する縦形パワ
ーMOSトランジスタ(以下、パワーMOSという)に
応用した例であって、図1にその半導体チップの模式的
平面図を示す。また図2に図1中のα−α断面図を示
す。半導体基板Aの全体の大部分に能動素子であるパワ
ーMOS13が複数個並列接続してマルチソース構造と
なりパワー領域Mを形成している。半導体基板Aの中央
部、言い換えれば最も放熱しにくい部分で、温度が高く
成り易い部分に感熱素子としての多結晶シリコンダイオ
ード15を複数個直列接続して形成し、その周辺に制御
部としての横形MOSトランジスタ14、多結晶シリコ
ン抵抗16、定電圧ツェナダイオード17を形成し、全
体として制御領域Cを形成する。また、半導体基板A上
には外部から電圧(Vin)を印加する為のボンディング
パッド部Bを形成する。これらパワー領域M及び制御領
域Cの各素子及びボンディングバッド部Bは電気的に互
いに接続される。 【0008】次に図2において、その構成を詳しく説明
する。1はN+ 形のシリコン基板、2はN- 形のシリコ
ンエピタキシャル層、3及び3aは深く拡散したP形拡
散層、4はP形拡散層、5,5a,5b及び5cはN+
形拡散層、11はP+ 形拡散層であり、P形拡散層3と
3a、N+ 形拡散層5,5a,5b及び5cはそれぞれ
同時に同じ拡散行程で形成される。パワーMOS13の
MOS構造は、シリコンピタキシャル層2とシリコン基
板1とドレイン電極12から成るドレインDと、ゲート
酸化膜6を介して形成される多結晶シリコン層7から成
るゲートGと、その表面に層間絶縁膜8を介しパワーM
OS13表面全体を覆うアルミニウム電極9から成るソ
ースSとから構成され、その動作はゲートGに電圧を印
加すると図中chの部分にN形のチャネルが形成されソ
ースSとドレインD間に電流が流れる。尚、拡散層4と
拡散層3が一部重なって、しかも拡散層3が深く拡散し
ているのは過電圧保護の為であり、所定のブレークダウ
ン電圧に設定する為である。次に横形MOSトランジス
タ14のMOS構造は拡散層5a及び5b上のアルミニ
ウム電極9a及び9bから成るそれぞれソースS1及び
ドレインD1と、ゲート酸化膜6aを介して形成される
多結晶シリコン層7aから成るゲートG1とから構成さ
れ、その動作はゲートG1に電圧がかかると図中ch1
の部分にN形のチャネルが形成されソースS1とドレイ
ンD1間に電流が流れる。定電圧ツェナダイオード17
は拡散層5cと拡散層11とから形成され、その表面に
それぞれアルミニウム電極9c及び9dを形成する。次
に拡散層3a表面上の一部を熱酸化して絶縁膜(SiO
2 膜等)10を形成する。そして絶縁膜10上に多結晶
シリコン抵抗16と、感熱素子としての多結晶シリコン
ダイオード15を形成する。多結晶シリコン抵抗16
は、多結晶シリコン層7cと層間絶縁膜8とアルミニウ
ム電極9g及び9hから形成される。また、多結晶シリ
コンダイオード15は多結晶シリコン層7bを選択的拡
散しPN接合をつくり、その上に層間絶縁膜8を一部介
しアルミニウム電極9e及び9fを形成する。以上述べ
た実施例の構成でゲート酸化膜6と6a、多結晶シリコ
ン層7,7a,7b,7c,アルミニウム電極9,9
a,9b,9c,9d,9e,9g,9hはそれぞれ同
じ工程で造る事が出来る。また前記の各素子は、図3に
示す等価回路図にあるように互いに配線される。 【0009】尚、各々の素子は例えば図11の上面図に
示すように配置される。すなわち、制御領域Cには横形
MOSトランジスタ14、多結晶シリコンダイオード1
5、抵抗16C,定電圧ツェナーダイオード17が配置
しており、パワー領域の表面を覆うアルミニウム電極9
とその各々は接続路C1を経由して電気接続される。図
中、20は図3中における20と同じ点であり、アルミ
ニウム電極9の外部接続端子を表わす。ここで、定電圧
ツェナダイオード17の陽極に電気接続する外部接続端
子20はソース電位である接地電位に固定されている。
従って、図2に示されるように、定電圧ツェナダイオー
ド17の拡散層11に電気接続するP形拡散層3aもソ
ース電位である接地電位に固定される。又、ボンディン
グパッド部Bに印加される電圧の一部はその横に配置す
る抵抗16bを介してパワーMOS13のゲート電極G
1あるいは横型MOSトランジスタ14のドレインD1
に加わり、他は同じく横に配置する抵抗16a等を介し
て横形MOSトランジスタ14のゲートG1に加わる。 【0010】次に、図3の等価回路図を用いて全体の動
作を説明する。図において符号は図1及び図2と共通で
ある。但し、16a,16b,16cは多結晶シリコン
抵抗、RL は外部の負荷抵抗、VDDは外部電源である。
シリコン基板温度が通常温度の時、すなわちパワーMO
S13の接合温度が通常温度の時には印加された電圧V
inによりパワーMOS13はオン状態となっているが、
シリコン基板温度が異常に高い時、すなわちパワーMO
S13の接合温度が異常に上昇した時には感熱素子であ
る多結晶シリコンダイオード15の順方向電圧は一定の
負の温度係数を持つ為に低下し、抵抗16cの端子間電
圧(すなわち、横形MOSトランジスタ14のゲートG
1−ソースS1間電圧)が上昇する。一定の電圧以上に
なると横形MOSトランジスタ14がオン状態となる。
抵抗16bの抵抗値を横形MOSトランジスタ14のオ
ン抵抗値より十分に大きくしておけば、図4の22の電
位V22及び23の電位V23の接合温度による変化を表す
グラフに示すように接合温度130℃近辺(保護動作温
度)でV22はほぼ0Vまで急激に下がるのでパワーMO
S13は強制的にオフ状態となり、接合温度上昇による
素子の破壊をさける事が出来る。 【0011】ここで、感熱素子である多結晶シリコンダ
イオード15は、半導体チップの表面側の大部分に被着
された複数のパワーMOS13に共通に形成されたアル
ミニウム電極9(ソースS)のレイアウトパターンの内
側に配置されている。アルミニウム電極9は熱伝導性が
良く、半導体チップ内に発生した熱は、半導体チップ内
においてアルミニウム電極9により均一化されながら素
早く多結晶シリコンダイオード15の形成位置に伝達さ
れる。このため半導体チップ内における温度差も抑えら
れ、局部的な電流集中あるいは局部的な温度上昇に起因
した局部的な素子破壊を抑制でき、パワーMOS13の
素子性能を十分に発揮しつつ半導体チップの発熱状態を
正確に応答性良く感熱素子である多結晶シリコンダイオ
ード15に伝達できる。これによりパワーMOS13の
熱破壊からの保護を確実にすることができる。 【0012】また上記の実施例の構成によれば、絶縁膜
10を形成する事により、個別素子のトリミングが可能
な、しかも寄生動作がない半導体装置を提供する事がで
き、またパワーMOS13の接合温度の異常な上昇が、
感熱素子を温度の高く成り易い中央部の制御領域Cに配
置するのでより正確に検出でき、また、製造工程が同時
に同じ工程で行えるので簡単となり、コストダウンにも
つながり、さらに絶縁膜上の多結晶シリコン抵抗16c
の抵抗値及び、多結晶シリコンダイオード15の直列接
続数により保護動作温度を任意に設定出来る。多結晶シ
リコン抵抗16cの抵抗値を個別にトリミング出来る
為、製造後に保護動作温度を精密に制御出来る等という
優れた効果がある。 【0013】又、シリコンエピタキシャル層2はパワー
MOS13のドレインの一部を構成しているのでパワー
MOS13の動作状態に応じてその電位が変化し、その
上に形成されている多結晶シリコンダイオード15の温
度検出精度を悪化させるように作用する可能性がある
が、本実施例によると、シリコンエピタキシャル層2内
にP形拡散層3aを形成し、その上に絶縁膜10を介し
て多結晶シリコンダイオード15を形成しているのでこ
のような不具合をなくすことができる。この点について
詳述すると、仮に、P形拡散層3aがない構造を想定す
ると、シリコンエピタキシャル層2の電位に応じて絶縁
膜(SiO2 膜等)10が分極し、多結晶シリコンダイ
オード15の絶縁膜10側表面に電荷が誘起されてしま
う。本実施例の場合には、例えばシリコンエピタキシャ
ル層2が高電位になると、多結晶シリコンダイオード1
5のPN接合部における不純物濃度が変化してしまい、
その順方向電圧における温度特性が変化して温度検出の
精度が悪化してしまう。極端な場合、多結晶シリコンダ
イオード15のP形領域下部に反転層が形成されてしま
いMOSトランジスタのような寄生動作をしてしまうの
で、もはや温度検出が不可能になる。 【0014】本実施例によると、多結晶シリコンダイオ
ード15下にP形拡散層3aを形成しているので、P形
拡散層3aとシリコンエピタキシャル層2との間にPN
接合が形成され、パワーMOS13のドレイン電位から
電気的に分離することができるので、多結晶シリコンダ
イオード15はドレイン電位の影響を受けることがな
く、上述のような寄生動作をなくすことができ、より精
度が高い温度検出を行うことができるという効果があ
る。 【0015】また、多結晶シリコンダイオード15両端
に定電圧を供給する定電圧ツェナダイオード17は、バ
ルク内(シリコンエピタキシャル層2表面のP型拡散層
3a内)に形成されている。したがって、多結晶体に形
成した定電圧ツェナダイオードに比べてより精度高く定
電圧を提供することができ、換言すれば多結晶シリコン
ダイオード15両端に供給する定電圧を狙いの定電圧値
に精度高く調整することができ、多結晶シリコンダイオ
ード15による温度検出をより精度高いものとすること
ができる。また、得られる定電圧値のチップ間,ウエハ
間,ロット間におけるばらつきもより抑えることが可能
であり、製品間の保護動作温度におけるばらつきも抑え
ることができる。 【0016】尚、本発明は上記の実施例に限定されず、
以下の如く種々変形可能である。 【0017】(1)制御領域Cの素子は全て絶縁膜10
上に形成してもよく、図5の第2の実施例に示す様に横
形MOSトランジスタ14aを絶縁膜10上に形成し、
定電圧ツェナダイオード17だけを拡散層3a内に形成
してもよい。また逆に、横形MOSトランジスタ14a
を拡散層3a内に、定電圧ツェナダイオード17を絶縁
膜10上に形成してもよい。この他に多結晶シリコン抵
抗16を拡散層3a内に形成してもよい。 【0018】(2)図6の第3の実施例としての図1に
おけるα−α断面図、及びその等価回路図である図7に
示すように、絶縁膜10上にP形チャネルMOSトラン
ジスタ24(24a,24b,24c)、及びN形チャ
ネルMOSトラジスタ25(25a,25b)を形成
し、相補形MOSトランジスタ(C−MOS)を構成し
て22の電位V22を増幅して26の電位V26としてもよ
い。又、絶縁膜10上にP形チャネルMOSトランジス
タ24(24a、24b,24c)を形成し、N形チャ
ネルMOSトランジスタ25(25a,25b)を拡散
層3a内に形成したC−MOS構成でも良い。 【0019】本例によるとC−MOSが多段に接続され
るので、その入出力特性は、各々の段の入出力特性の積
となり、図8のV23及びV26と接合温度の関係のグラフ
に示すように、26の電位V26を急峻に下げる事がで
き、従って、パワーMOS13を接合温度上昇に対し急
峻にオフ状態にする事ができる。尚、C−MOSの接続
段数は限定される事なく、その数が多い程、入出力特性
は急峻となる。また、図6、図7において同一構成要素
の符号は、それぞれ図2、図3のものと同じものを使用
している。 【0020】(3)制御領域Cあるいは感温素子として
の多結晶シリコンダイオード15の配置は、上記実施例
の如く半導体基板Aの中央部だけに限定される事なく、
例えば半導体装置の模式的平面図を表わす図9(a)乃
至(e)に示すように、複数箇所に対称に配置してもよ
い。尚、本発明者らの実験結果によると、図10の負荷
ショートさせパワーMOS13を強制的に発熱させた場
合の配置箇所数と不良率との関係図に示すように、自己
過熱保護機能がない(0箇所)場合には不良率は100
%となり、1箇所、すなわち半導体基板Aの中央部だけ
に多結晶シリコンダイオード15を配置した場合には不
良率は大幅に低減し、5箇所以上配置すると不良率は0
%となる。負荷ショートの様な短時間に大きな電力を消
費し発熱するような場合を想定した場合には、半導体基
板A内の温度分布が不均一になり易いため、1箇所の配
置では保護機能が不十分であるので、本例の如く、複数
箇所配置するのが有効である。 【0021】(4)上記実施例はパワーMOS13及び
横形MOSトランジスタ14をN型のチャネルで示した
が、本発明はそれに限らずP形のチャネルでもよい。こ
の場合には上記実施例において符号3aに相当する拡散
層はN形導電形となり、そこで、絶縁層10上にN形チ
ャンネルMOSトランジスタ25(25a,25b)を
形成し、P形チャンネルMOSトランジスタ24(24
a,24b,24c)をその拡散層3a内に形成しても
よい。通常、多結晶半導体内におけるMOSトランジス
タのチャネルモビリティは単結晶半導体内におけるもの
と比較して小さくなるが、上記のように形成する事によ
り、N形チャネルMOSトランジスタはP形チャネルM
OSトランジスタに比較してキャリアが電子であるため
にチャネルモビリティの高いものが作り易く、C−MO
S構成としたときモビリティのバランスがとり易くな
る。 【0022】(5)能動機能をもつ半導体素子はパワー
MOS13に限定されず、バイポーラトランジスタ、パ
ワーIC等であってもよい。また、感熱素子も多結晶シ
リコンダイオード15に限らずサーミスタ等でもよい。
さらに制御部の構成は実施例に示す構成に限定されない
事はもちろんである。 【0023】(6)実施例は抵抗体として多結晶シリコ
ン抵抗16を用いたが、それに限らず窒化タンタル等の
抵抗体であってもよい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device,
In particular, the present invention relates to a semiconductor device having a temperature detecting function. 2. Description of the Related Art Conventionally, for example, a plurality of M
2. Description of the Related Art A power MOS transistor switch configured so that unit cells having an OS transistor structure are connected in parallel is known. A MOS transistor switch has a limit in power consumption. Exceeding the limit causes overheating and further self-destruction of the MOS transistor switch. MOS
A transistor switch is usually used in connection with a load, and a voltage between the source / drain terminals and a current flowing through the transistor switch under normal operating conditions are determined by the load and the MOS transistor.
Limited to a certain value within the power consumption capacity of the transistor switch. However, if the load is inadvertently shorted, the voltage across the source / drain terminals of the MOS transistor switch will exceed the maximum supply voltage resulting in power consumption capacity, resulting in overheating of the MOS transistor switch and even overheating. It causes destruction. Therefore, in order to avoid destruction due to an abnormal junction temperature rise during the operation of the semiconductor device, the temperature rise of the semiconductor substrate accompanying the heat generation of the semiconductor device by the heat-sensitive device is avoided. It is desirable to detect and control the semiconductor element by the detection signal to protect the semiconductor element from thermal destruction. Accordingly, the present invention has been made in view of the above circumstances, and has as its object to provide a semiconductor device capable of reliably protecting a semiconductor element from thermal destruction. In order to achieve the above object, a semiconductor device according to the present invention is a semiconductor device having a semiconductor chip on which a semiconductor power element that generates high heat when a current flows in a conductive state is formed. A heat-sensitive element portion for detecting a heat generation state of the semiconductor power element is arranged inside a layout pattern of metal terminal electrodes of the semiconductor power element which is attached to most of the one surface side of the semiconductor chip. Features. According to the present invention, when the temperature of the semiconductor substrate rises abnormally, that is, when the heat generation temperature of the semiconductor power element becomes abnormally high, the temperature rise of the semiconductor power element can be reduced. It can be detected by the part. here,
The heat-sensitive element portion is arranged inside the layout pattern of the metal terminal electrodes of the semiconductor power element attached to the majority of the one surface side of the semiconductor chip, and the metal terminal electrodes have good thermal conductivity, for example. Since the semiconductor chip is made of metal such as aluminum, the heat generated in the semiconductor chip is quickly transferred to the heat-sensitive element portion in the semiconductor chip while being made uniform by the metal terminal electrodes. Therefore, the temperature difference in the semiconductor chip on which the semiconductor power element is formed can be suppressed, the local element destruction caused by local current concentration or local temperature rise can be suppressed, and the element performance of the semiconductor power element can be sufficiently improved. The heat generation state of the semiconductor chip can be accurately and responsively transmitted to the thermosensitive element portion while exerting the same effect. As a result, the semiconductor power element can be reliably protected from thermal destruction. The present invention will be described below in detail with reference to an embodiment shown in the drawings. 1 and 2 show an example in which the present invention is applied to a vertical power MOS transistor (hereinafter referred to as a power MOS) having a self-overheating protection function. FIG. 1 is a schematic plan view of a semiconductor chip. FIG. 2 is a sectional view taken along line α-α in FIG. A plurality of power MOSs 13 as active elements are connected in parallel to most of the entire semiconductor substrate A to form a multi-source structure, forming a power region M. A plurality of polycrystalline silicon diodes 15 as heat-sensitive elements are formed in series at a central portion of the semiconductor substrate A, in other words, a portion where heat radiation is least likely to occur, and a portion where the temperature is likely to be high. A MOS transistor 14, a polycrystalline silicon resistor 16, and a constant voltage zener diode 17 are formed to form a control region C as a whole. Further, a bonding pad portion B for applying a voltage (V in ) from outside is formed on the semiconductor substrate A. Each element of the power region M and the control region C and the bonding pad portion B are electrically connected to each other. Next, the configuration will be described in detail with reference to FIG. 1 is an N + type silicon substrate, 2 is an N − type silicon epitaxial layer, 3 and 3a are deeply diffused P type diffusion layers, 4 is a P type diffusion layer, and 5, 5a, 5b and 5c are N + types.
The diffusion layers 11 and 11 are P + -type diffusion layers, and the P-type diffusion layers 3 and 3a and the N + -type diffusion layers 5, 5a, 5b and 5c are simultaneously formed in the same diffusion step. The MOS structure of the power MOS 13 includes a drain D including a silicon epitaxial layer 2, a silicon substrate 1, and a drain electrode 12, a gate G including a polycrystalline silicon layer 7 formed via a gate oxide film 6, and an interlayer on the surface. Power M via insulating film 8
The source 13 is composed of an aluminum electrode 9 that covers the entire surface of the OS 13. When a voltage is applied to the gate G, an N-type channel is formed in the portion of channel ch in the drawing, and a current flows between the source S and the drain D. . The reason why the diffusion layer 4 partially overlaps with the diffusion layer 3 and that the diffusion layer 3 is deeply diffused is to protect the overvoltage and to set a predetermined breakdown voltage. Next, the MOS structure of the lateral MOS transistor 14 has a source S1 and a drain D1 formed of aluminum electrodes 9a and 9b on diffusion layers 5a and 5b, respectively, and a gate formed of a polysilicon layer 7a formed via a gate oxide film 6a. G1 in FIG. 3 operates when a voltage is applied to the gate G1.
And an N-type channel is formed in the portion, and a current flows between the source S1 and the drain D1. Constant voltage zener diode 17
Is formed of a diffusion layer 5c and a diffusion layer 11, and aluminum electrodes 9c and 9d are formed on the surface thereof, respectively. Next, a part of the surface of the diffusion layer 3a is thermally oxidized to form an insulating film (SiO 2).
To form a 2 film) 10. Then, a polycrystalline silicon resistor 16 and a polycrystalline silicon diode 15 as a thermal element are formed on the insulating film 10. Polycrystalline silicon resistor 16
Is formed of a polycrystalline silicon layer 7c, an interlayer insulating film 8, and aluminum electrodes 9g and 9h. The polycrystalline silicon diode 15 selectively diffuses the polycrystalline silicon layer 7b to form a PN junction, and forms aluminum electrodes 9e and 9f thereon with a part of the interlayer insulating film 8 interposed therebetween. The gate oxide films 6 and 6a, the polycrystalline silicon layers 7, 7a, 7b, 7c, and the aluminum electrodes 9, 9 in the configuration of the embodiment described above.
a, 9b, 9c, 9d, 9e, 9g, 9h can be manufactured in the same process. The above-mentioned elements are wired together as shown in the equivalent circuit diagram of FIG. Each element is arranged, for example, as shown in the top view of FIG. That is, the lateral MOS transistor 14 and the polycrystalline silicon diode 1 are provided in the control region C.
5, a resistor 16C and a constant voltage zener diode 17 are arranged, and an aluminum electrode 9 covering the surface of the power region.
And each of them is electrically connected via a connection path C1. In the figure, reference numeral 20 denotes the same point as 20 in FIG. 3 and represents an external connection terminal of the aluminum electrode 9. Here, the external connection terminal 20 electrically connected to the anode of the constant voltage zener diode 17 is fixed to the ground potential which is the source potential.
Therefore, as shown in FIG. 2, the P-type diffusion layer 3a electrically connected to the diffusion layer 11 of the constant voltage zener diode 17 is also fixed to the ground potential which is the source potential. A part of the voltage applied to the bonding pad portion B is supplied to the gate electrode G of the power MOS 13 via the resistor 16b disposed beside the bonding pad portion B.
1 or the drain D1 of the lateral MOS transistor 14
And the others are applied to the gate G1 of the lateral MOS transistor 14 via a resistor 16a or the like arranged horizontally. Next, the overall operation will be described with reference to the equivalent circuit diagram of FIG. In the figure, reference numerals are common to those in FIGS. Here, 16a, 16b and 16c are polycrystalline silicon resistors, RL is an external load resistance, and VDD is an external power supply.
When the silicon substrate temperature is normal, that is, when the power MO
When the junction temperature in S13 is the normal temperature, the applied voltage V
The power MOS 13 is turned on by in ,
When the silicon substrate temperature is abnormally high,
When the junction temperature in S13 rises abnormally, the forward voltage of the polycrystalline silicon diode 15, which is a heat-sensitive element, drops because it has a constant negative temperature coefficient, and the voltage between the terminals of the resistor 16c (that is, the lateral MOS transistor 14). Gate G
1-source S1). When the voltage exceeds a certain level, the lateral MOS transistor 14 is turned on.
If the resistance value of the resistor 16b is sufficiently larger than the on-resistance value of the lateral MOS transistor 14, the junction is changed as shown in the graph showing the change in the junction temperature between the potential V22 of 22 and the potential V23 of 23 in FIG. When the temperature is around 130 ° C. (protection operation temperature), V 22 rapidly drops to almost 0 V, so that the power MO
S13 is forcibly turned off, so that destruction of the element due to a rise in the junction temperature can be avoided. Here, a polycrystalline silicon diode 15, which is a heat-sensitive element, has a layout pattern of an aluminum electrode 9 (source S) formed in common with a plurality of power MOSs 13 attached to most of the front surface side of the semiconductor chip. It is located inside. The aluminum electrode 9 has good thermal conductivity, and the heat generated in the semiconductor chip is quickly transferred to the position where the polycrystalline silicon diode 15 is formed while being made uniform by the aluminum electrode 9 in the semiconductor chip. Therefore, a temperature difference in the semiconductor chip can be suppressed, a local element destruction caused by a local current concentration or a local temperature rise can be suppressed, and the heat generation of the semiconductor chip can be suppressed while sufficiently exhibiting the element performance of the power MOS 13. The state can be accurately transmitted to the polycrystalline silicon diode 15 which is a thermal element with good responsiveness. Thereby, protection of the power MOS 13 from thermal destruction can be ensured. Further, according to the configuration of the above-described embodiment, by forming the insulating film 10, it is possible to provide a semiconductor device capable of trimming individual elements and having no parasitic operation. An abnormal rise in temperature
Since the heat-sensitive element is arranged in the central control region C where the temperature tends to be high, detection can be performed more accurately. In addition, since the manufacturing process can be performed in the same process at the same time, simplification is achieved, leading to cost reduction, and furthermore, a large number of insulating films are formed. Crystal silicon resistor 16c
And the protection operation temperature can be arbitrarily set according to the resistance value and the number of polycrystalline silicon diodes 15 connected in series. Since the resistance value of the polycrystalline silicon resistor 16c can be individually trimmed, there is an excellent effect that the protection operation temperature can be precisely controlled after manufacturing. Since the silicon epitaxial layer 2 forms a part of the drain of the power MOS 13, its potential changes in accordance with the operation state of the power MOS 13, and the potential of the polycrystalline silicon diode 15 formed on the silicon epitaxial layer 2 changes. According to the present embodiment, a P-type diffusion layer 3a is formed in the silicon epitaxial layer 2 and a polycrystalline silicon diode Since the number 15 is formed, such a problem can be eliminated. To explain this point in detail, assuming a structure without the P-type diffusion layer 3a, the insulating film (SiO 2 film or the like) 10 is polarized according to the potential of the silicon epitaxial layer 2, and the insulation of the polycrystalline silicon diode 15 is reduced. Electric charges are induced on the surface on the film 10 side. In the case of this embodiment, for example, when the silicon epitaxial layer 2 becomes high potential, the polycrystalline silicon diode 1
5, the impurity concentration at the PN junction changes.
Temperature characteristics at the forward voltage change, and the accuracy of temperature detection deteriorates. In an extreme case, an inversion layer is formed below the P-type region of the polycrystalline silicon diode 15 to perform a parasitic operation like a MOS transistor, so that temperature detection is no longer possible. According to the present embodiment, since the P-type diffusion layer 3a is formed under the polycrystalline silicon diode 15, the PN between the P-type diffusion layer 3a and the silicon epitaxial layer 2 is formed.
Since the junction is formed and can be electrically separated from the drain potential of the power MOS 13, the polysilicon diode 15 is not affected by the drain potential, and the above-described parasitic operation can be eliminated. There is an effect that highly accurate temperature detection can be performed. A constant voltage zener diode 17 for supplying a constant voltage to both ends of the polysilicon diode 15 is formed in the bulk (in the P-type diffusion layer 3a on the surface of the silicon epitaxial layer 2). Therefore, a constant voltage can be provided with higher precision than a constant voltage zener diode formed of a polycrystalline body. In other words, a constant voltage supplied to both ends of the polycrystalline silicon diode 15 can be provided with high precision to a target constant voltage value. It can be adjusted, and the temperature detection by the polycrystalline silicon diode 15 can be made more accurate. In addition, it is possible to further suppress variations in the obtained constant voltage value between chips, wafers, and lots, and it is also possible to suppress variations in protection operation temperature between products. The present invention is not limited to the above embodiment,
Various modifications are possible as follows. (1) The elements in the control region C are all insulating films 10
The lateral MOS transistor 14a may be formed on the insulating film 10 as shown in the second embodiment of FIG.
Only the constant voltage zener diode 17 may be formed in the diffusion layer 3a. Conversely, the lateral MOS transistor 14a
May be formed in the diffusion layer 3a, and the constant voltage zener diode 17 may be formed on the insulating film 10. Alternatively, the polycrystalline silicon resistor 16 may be formed in the diffusion layer 3a. (2) As shown in the sectional view taken along the line α-α in FIG. 1 as a third embodiment of FIG. 6 and an equivalent circuit diagram thereof in FIG. 7, a P-type channel MOS transistor 24 is formed on the insulating film 10. (24a, 24b, 24c) and an N-type channel MOS transistor 25 (25a, 25b) are formed, and a complementary MOS transistor (C-MOS) is formed to amplify the potential V22 of 22 and increase the potential V of 26. It may be 26 . Further, a C-MOS configuration in which a P-type channel MOS transistor 24 (24a, 24b, 24c) is formed on the insulating film 10 and an N-type channel MOS transistor 25 (25a, 25b) is formed in the diffusion layer 3a may be used. [0019] Since the C-MOS are connected in multiple stages, according to the present embodiment, the input-output characteristics, the product of input-output characteristics of each stage, graph of the junction temperature and the V 23 and V 26 in FIG. 8 As shown in (5), the potential V26 of 26 can be sharply reduced, and therefore, the power MOS 13 can be turned off rapidly with an increase in junction temperature. The number of C-MOS connection stages is not limited, and the larger the number, the sharper the input / output characteristics. In FIGS. 6 and 7, the same reference numerals are used for the same components as those in FIGS. 2 and 3, respectively. (3) The arrangement of the polycrystalline silicon diode 15 as the control region C or the temperature-sensitive element is not limited to the central portion of the semiconductor substrate A as in the above-described embodiment.
For example, as shown in FIGS. 9A to 9E showing schematic plan views of the semiconductor device, the semiconductor devices may be symmetrically arranged at a plurality of locations. According to the experimental results of the present inventors, there is no self-overheating protection function as shown in FIG. 10 showing the relationship between the number of locations and the failure rate when the load is short-circuited and the power MOS 13 is forcibly heated. (0 locations), the defect rate is 100
%, When the polycrystalline silicon diode 15 is arranged only at one location, that is, only at the center of the semiconductor substrate A, the defect rate is greatly reduced.
%. In a case where heat is generated by consuming a large amount of power in a short time such as a load short-circuit, the temperature distribution in the semiconductor substrate A tends to be non-uniform, so that the protection function is insufficient with one arrangement. Therefore, it is effective to arrange a plurality of positions as in this example. (4) In the above embodiment, the power MOS 13 and the lateral MOS transistor 14 are shown as N-type channels, but the present invention is not limited to this, and P-type channels may be used. In this case, the diffusion layer corresponding to the reference numeral 3a in the above embodiment is of the N-type conductivity type. (24
a, 24b, 24c) may be formed in the diffusion layer 3a. Normally, the channel mobility of a MOS transistor in a polycrystalline semiconductor is smaller than that in a single crystal semiconductor, but by forming as described above, the N-channel MOS transistor becomes a P-channel
Since the carriers are electrons compared to the OS transistor, a transistor having high channel mobility can be easily manufactured.
When the configuration is S, mobility is easily balanced. (5) The semiconductor element having the active function is not limited to the power MOS 13, but may be a bipolar transistor, a power IC, or the like. Further, the thermal element is not limited to the polycrystalline silicon diode 15, but may be a thermistor or the like.
Further, it goes without saying that the configuration of the control unit is not limited to the configuration shown in the embodiment. (6) In the embodiment, the polycrystalline silicon resistor 16 is used as the resistor. However, the resistor is not limited to this and may be a resistor such as tantalum nitride.

【図面の簡単な説明】 【図1】本発明の一実施例を示す半導体装置の模式的平
面図である。 【図2】図1中のα−α断面図である。 【図3】図1及び図2の等価回路図である。 【図4】V22及びV23と接合温度の関係を示すグラフで
ある。 【図5】第2の実施例を示す断面図である。 【図6】第3の実施例としての図1中のα−α断面図で
ある。 【図7】図6の等価回路図である。 【図8】図6の実施例のV23及びV26と接合温度の関係
を示すグラフである。 【図9】多結晶シリコンダイオードを複数箇所配置した
半導体装置の模式的平面図である。 【図10】配置箇所数と不良率との関係図である。 【図11】図1における実施例の具体的な配置を示す上
面図である。 【符号の説明】 2 シリコンエピタキシャル層 3a P型拡散層 9 アルミニウム電極 10 絶縁膜(SiO2 膜) 13 縦形パワーMOSトランジスタ 15 感熱素子である多結晶シリコンダイオード
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic plan view of a semiconductor device showing one embodiment of the present invention. FIG. 2 is a sectional view taken along line α-α in FIG. FIG. 3 is an equivalent circuit diagram of FIGS. 1 and 2; 4 is a graph showing the relationship between the junction temperature and the V 22 and V 23. FIG. 5 is a sectional view showing a second embodiment. FIG. 6 is a sectional view taken along the line α-α in FIG. 1 as a third embodiment. FIG. 7 is an equivalent circuit diagram of FIG. 6; 8 is a graph showing the relationship between V 23 and V 26 of the embodiment junction temperature of FIG. FIG. 9 is a schematic plan view of a semiconductor device in which a plurality of polycrystalline silicon diodes are arranged. FIG. 10 is a diagram showing the relationship between the number of locations and the defect rate. FIG. 11 is a top view showing a specific arrangement of the embodiment in FIG. 1; [Explanation of Symbols] 2 Silicon epitaxial layer 3a P-type diffusion layer 9 Aluminum electrode 10 Insulating film (SiO 2 film) 13 Vertical power MOS transistor 15 Polycrystalline silicon diode as thermal element

Claims (1)

【特許請求の範囲】 (1)その導通状態の際に電流が流れることで高熱を発
する半導体パワー素子が形成された半導体チップにおい
て、 該半導体チップの一表面側の大部分は前記半導体パワー
素子の金属製端子電極が被着されており、当該金属製端
子電極のレイアウトパターンの内側に、前記半導体パワ
ー素子の発熱状況を検出する感熱素子部を配置したこと
を特徴とする半導体装置。 (2)前記半導体パワー素子は並列接続された複数のM
OSトランジスタ構造から構成されるものであり、前記
金属製端子電極は前記複数のMOSトランジスタ構造に
共通に形成された金属電極である特許請求の範囲第1項
記載の半導体装置。 (3)前記感熱素子部は、前記半導体チップのほぼ中央
部に配置されている特許請求の範囲第1項又は第2項記
載の半導体装置。 (4)前記感熱素子部は、半導体基板の表面に絶縁膜を
介して配置された多結晶シリコンに形成されている特許
請求の範囲第1項乃至第3項のいずれかに記載の半導体
装置。 (5)前記感熱素子部の下方に位置する前記半導体基板
の表面領域には、該半導体基板の前記半導体パワー素子
の形成される領域との間でPN接合を形成する半導体領
域が形成されている特許請求の範囲第4項記載の半導体
装置。 (6)前記半導体領域は前記金属製端子電極と同電位と
されている特許請求の範囲第5項記載の半導体装置。
Claims: (1) In a semiconductor chip on which a semiconductor power element which generates high heat when a current flows in a conducting state is formed, most of the one surface side of the semiconductor chip is the semiconductor power element. A semiconductor device, wherein a metal terminal electrode is attached, and a heat-sensitive element portion for detecting a heat generation state of the semiconductor power element is arranged inside a layout pattern of the metal terminal electrode. (2) The semiconductor power element includes a plurality of M connected in parallel.
2. The semiconductor device according to claim 1, wherein the semiconductor device has an OS transistor structure, and the metal terminal electrode is a metal electrode commonly formed in the plurality of MOS transistor structures. (3) The semiconductor device according to claim 1 or 2, wherein the heat-sensitive element section is disposed substantially at a center of the semiconductor chip. (4) The semiconductor device according to any one of claims 1 to 3, wherein the heat-sensitive element portion is formed of polycrystalline silicon disposed on a surface of a semiconductor substrate via an insulating film. (5) A semiconductor region that forms a PN junction with a region of the semiconductor substrate where the semiconductor power element is formed is formed in a surface region of the semiconductor substrate located below the heat-sensitive element unit. The semiconductor device according to claim 4. (6) The semiconductor device according to claim 5, wherein the semiconductor region has the same potential as the metal terminal electrode.
JP31203398A 1985-11-29 1998-11-02 Semiconductor device Expired - Lifetime JP3204226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31203398A JP3204226B2 (en) 1985-11-29 1998-11-02 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27014185 1985-11-29
JP60-270141 1985-11-29
JP31203398A JP3204226B2 (en) 1985-11-29 1998-11-02 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9210636A Division JP3008900B2 (en) 1985-11-29 1997-08-05 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH11214691A true JPH11214691A (en) 1999-08-06
JP3204226B2 JP3204226B2 (en) 2001-09-04

Family

ID=26549079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31203398A Expired - Lifetime JP3204226B2 (en) 1985-11-29 1998-11-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3204226B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097896A1 (en) * 2005-03-15 2006-09-21 Nxp B.V. Mosfet with temperature sense facility
JP2011096699A (en) * 2009-10-27 2011-05-12 Mitsubishi Electric Corp Semiconductor device, and method of manufacturing the same
JP2015164159A (en) * 2014-02-28 2015-09-10 トヨタ自動車株式会社 semiconductor device
CN105849889A (en) * 2013-12-26 2016-08-10 罗姆股份有限公司 Semiconductor device, and design method for same
JP2017183581A (en) * 2016-03-31 2017-10-05 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor apparatus
EP3817039A4 (en) * 2019-02-07 2021-12-08 Fuji Electric Co., Ltd. Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097896A1 (en) * 2005-03-15 2006-09-21 Nxp B.V. Mosfet with temperature sense facility
US8742825B2 (en) 2005-03-15 2014-06-03 Nxp B.V. MOSFET with temperature sense facility
JP2011096699A (en) * 2009-10-27 2011-05-12 Mitsubishi Electric Corp Semiconductor device, and method of manufacturing the same
CN105849889A (en) * 2013-12-26 2016-08-10 罗姆股份有限公司 Semiconductor device, and design method for same
CN105849889B (en) * 2013-12-26 2019-03-01 罗姆股份有限公司 Semiconductor device and its design method
JP2015164159A (en) * 2014-02-28 2015-09-10 トヨタ自動車株式会社 semiconductor device
JP2017183581A (en) * 2016-03-31 2017-10-05 ルネサスエレクトロニクス株式会社 Semiconductor device and semiconductor apparatus
EP3817039A4 (en) * 2019-02-07 2021-12-08 Fuji Electric Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP3204226B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JPH0693485B2 (en) Semiconductor device
JP3485655B2 (en) Composite MOSFET
US4994904A (en) MOSFET having drain voltage detection function
KR0145069B1 (en) Semiconductor Structure with Substrate Temperature Sensing Element and Formation Process
JPH01157573A (en) Semiconductor device and its manufacture
JP3639596B2 (en) Protective switch
TWI402944B (en) Semiconductor integrated circuit device
JP2006302977A (en) Temperature measurement apparatus for power semiconductor device
US4963970A (en) Vertical MOSFET device having protector
JP2007235151A (en) Protection structure for integrated circuit
CN105810678B (en) Semiconductor device with a plurality of semiconductor chips
US5969927A (en) Integrated overload protective device
US5128823A (en) Power semiconductor apparatus
JPH10132871A (en) Semiconductor device
JP3204226B2 (en) Semiconductor device
JP3008900B2 (en) Semiconductor device
US6088208A (en) Electronic device, electronic switching apparatus including the same, and production method thereof
JP3204227B2 (en) Semiconductor device
JP2701824B2 (en) Semiconductor device
JP2008244487A (en) Compound type mosfet
JP2523678B2 (en) MOSFET with overcurrent protection function
EP0774784A2 (en) Semiconductor integrated circuit device including protection means
US4922316A (en) Infant protection device
JP2002222953A (en) Semiconductor device
JP2004031980A (en) Composite mosfet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010529

EXPY Cancellation because of completion of term