JPH11214234A - Manufacture of rare earth resin bonded magnet - Google Patents

Manufacture of rare earth resin bonded magnet

Info

Publication number
JPH11214234A
JPH11214234A JP10302822A JP30282298A JPH11214234A JP H11214234 A JPH11214234 A JP H11214234A JP 10302822 A JP10302822 A JP 10302822A JP 30282298 A JP30282298 A JP 30282298A JP H11214234 A JPH11214234 A JP H11214234A
Authority
JP
Japan
Prior art keywords
magnet
organic
resin
molded body
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10302822A
Other languages
Japanese (ja)
Other versions
JP2980122B2 (en
Inventor
Yukihiko Shiobara
幸彦 塩原
Mitsuru Sakurai
充 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10302822A priority Critical patent/JP2980122B2/en
Publication of JPH11214234A publication Critical patent/JPH11214234A/en
Application granted granted Critical
Publication of JP2980122B2 publication Critical patent/JP2980122B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PROBLEM TO BE SOLVED: To coat an inner part which is not easily coated with resin, by setting the ratio of the inner diameter of a cylindrical mold to the outer diameter within a specified range and by almost uniformly forming an organic film whose composition is different from that of an organic binder on the inner and outer circumference planes of the cylindrical mold. SOLUTION: After grinding a powder having an atomic ratio of Nd11 Fe80 B8 obtained by a super rapid cooling method into approximately 177 μm, epoxy resin is added and compression-molded. The mold is thermally set at approximately 150 deg.C to manufacture a magnet, and then organic material coating is performed by an impregnation method on the magnet. The ratio of the inner diameter of the cylindrical mold to the outer diameter is within a range of 1/6-24/25, and a coating film (organic film) such as of fluorine resin is almost uniformly formed on the inner and outer circumference planes of the cylindrical mold. At that time, the coating film thickness is 2-100 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基本組成が希土類
金属,鉄,ボロンからなる超急冷法でつくられた磁石粉
末に有機物バインダーを加えた後、円筒形状に成形した
磁石に有機物コーティングを浸漬法により有機物液中に
漬けて施した耐酸化性にすぐれた高性能希土類樹脂結合
型磁石の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a magnet powder having a basic composition of a rare earth metal, iron, and boron, which is formed by a super-quenching method, to which an organic binder is added. The present invention relates to a method for producing a high-performance rare-earth resin-bonded magnet having excellent oxidation resistance and immersed in an organic liquid by a method.

【0002】[0002]

【従来の技術】永久磁石は、大きく分けてフエライト磁
石,アルニコ磁石,希土類磁石の3つに分けられるが、
近年のOA機器,FA機器の小型化,高効率化に伴ない、希
土類磁石の需要が大きく伸びてきた。
2. Description of the Related Art Permanent magnets are roughly divided into three types: ferrite magnets, alnico magnets, and rare earth magnets.
The demand for rare-earth magnets has greatly increased with the recent miniaturization and higher efficiency of OA equipment and FA equipment.

【0003】希土類磁石は、その組成から希土類・コバ
ルト系と希土類・鉄系に大別される。希土類・鉄系磁石
は、1983年にゼネラルモータース社(GM社)と住友特殊
金属社が発表した磁石で共にNd,Fe,Bを主成分としてい
るが、GM社は、その製造方法に超急冷法を採用している
のに対し住友特殊金属社は、焼結法を採用している。
[0003] Rare earth magnets are roughly classified into rare earth / cobalt and rare earth / iron based on their composition. Rare-earth and iron-based magnets were announced by General Motors (GM) and Sumitomo Special Metals in 1983, and both have Nd, Fe, and B as their main components. Sumitomo Special Metals employs the sintering method, while the sintering method is used.

【0004】超急冷法の場合、厚み20μm位のリボン状
の磁石粉末が得られ、その一つ一つの中は、単磁区粒子
の臨界半径よりも微細なサブミクロンオーダー(0.1〜
0.5μm)の結晶粒より構成されている。従って177μm
以下のバルク状粉末に粉砕しても保磁力が出る状態に保
持されているので樹脂結合型磁石の原料として利用でき
る。以上の原料を使用して、熱硬化性樹脂または熱可塑
性樹脂を加えた磁石は、複雑な形状に成形できる樹脂結
合磁石の利点を生かして、肉薄な同筒状磁石や、板状の
磁石等に成形され、電子機器等に使用されていた。しか
し、組成中に鉄分が多く含まれているため錆やすく、モ
ータースピーカ,リレー等に組み込んだ場合に、錆又は
酸化による磁石性能低下のために著しく性能を低下させ
ていた。
In the case of the ultra-quenching method, a ribbon-shaped magnet powder having a thickness of about 20 μm is obtained, and each of them has a submicron order (0.1 to 0.1 μm) smaller than the critical radius of a single magnetic domain particle.
0.5 μm). Therefore 177μm
Even when the powder is pulverized into the following bulk powder, it is kept in a state where a coercive force is generated, so that it can be used as a raw material for a resin-bound magnet. Using the above raw materials and adding a thermosetting resin or a thermoplastic resin, magnets can take advantage of the resin-bonded magnets that can be formed into complex shapes, making them thinner, like cylindrical magnets, plate-like magnets, etc. And used in electronic equipment. However, since the composition contains a large amount of iron, it is easily rusted, and when incorporated in a motor speaker, a relay, or the like, the performance is remarkably deteriorated due to rust or oxidation, which deteriorates the magnet performance.

【0005】そこで、その表面に有機物をスプレーによ
り吹き付けてコーティングを施して耐酸化性を得てい
た。
[0005] Therefore, an organic substance is sprayed on the surface to apply a coating, thereby obtaining oxidation resistance.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、希土
類,鉄系樹脂結合型磁石の円筒形状のもの、特に内径/
高さが5以下のものに有機物コーティングをスプレーに
より吹付けても、内側にまで有機物がとどかないためコ
ーティング膜厚が極めて薄くなる、また、厚くコーティ
ングしようとすると外側に厚くコーティングされすぎて
しまい、寸法が制御できなくなるという問題点を有して
いた。そこで本発明は、従来のこのような問題点を解決
するため、磁石表面に有機物を浸漬法により磁石を有機
物液中に漬けてコーティングして、スプレーによる吹付
けでは、コーティングしにくい内側部分に樹脂をコーテ
ィングして、空気,水分,溶剤,薬品等を遮断し、酸化
防止,錆防止することを目的とする。
However, the rare-earth and iron-based resin-bonded magnets having a cylindrical shape,
Even if the organic material coating is sprayed on a thing with a height of 5 or less, the organic material does not reach the inside, so the coating film thickness is extremely thin, and if it is going to be thick, it will be coated too thick on the outside, There was a problem that the dimensions could not be controlled. Therefore, in order to solve such a conventional problem, the present invention coats the magnet surface with an organic substance by immersing the magnet in an organic substance liquid by a dipping method, and spraying a resin on an inner part which is difficult to coat by spraying. The purpose is to prevent air, moisture, solvents, chemicals, etc., and to prevent oxidation and rust.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明の希土類樹脂結合型磁石の製造方法は、希土類
金属、鉄、ボロンを主成分とし、超急冷法で製造された
磁石粉末に有機物バインダーを加えて成形した円筒状の
成形体を有機物の液中に浸漬して、前記円筒状成形体の
少なくとも内周面および外周面に膜厚2〜100μmの有
機被膜を形成してなる希土類樹脂結合型磁石の製造方法
であって、前記円筒状成形体の外径に対する内径の比率
が、1/6〜24/25の範囲内であり、前記円筒状成形体の前
記内周面および前記外周面に前記有機物バインダーの組
成とは異なる組成の有機被膜をほぼ均一に形成したこと
を特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a method for manufacturing a rare earth resin-bonded magnet according to the present invention is directed to a magnet powder mainly composed of a rare earth metal, iron and boron and manufactured by a super-quenching method. A rare earth element formed by immersing a cylindrical molded body formed by adding an organic binder into a liquid of an organic substance to form an organic film having a thickness of 2 to 100 μm on at least an inner peripheral surface and an outer peripheral surface of the cylindrical molded body. A method of manufacturing a resin-bonded magnet, wherein the ratio of the inner diameter to the outer diameter of the cylindrical molded body is in the range of 1/6 to 24/25, the inner peripheral surface of the cylindrical molded body and the An organic film having a composition different from the composition of the organic binder is formed substantially uniformly on the outer peripheral surface.

【0008】また、本発明において、前記円筒状成形体
の内径は、1mm以上であるのが好ましい。
[0008] In the present invention, the inner diameter of the cylindrical molded body is preferably 1 mm or more.

【0009】また、磁石粉末の組成は、前記鉄の一部を
コバルト等の鉄以外の遷移金属で置換したものでもよ
い。
The composition of the magnet powder may be such that a part of the iron is replaced by a transition metal other than iron such as cobalt.

【0010】本発明に使用する有機物コーティング材
は、四フッ化エチレン等を含むフッ素樹脂,エポキシ樹
脂,ナイロン樹脂,メラミン樹脂,アクリル樹脂,フェ
ノール樹脂,シリコン系樹脂である。
The organic coating material used in the present invention is a fluororesin containing ethylene tetrafluoride or the like, an epoxy resin, a nylon resin, a melamine resin, an acrylic resin, a phenol resin, or a silicone resin.

【0011】コーティング膜厚は、2μm未満では、樹
脂結合型磁石が有している微細な空孔を埋めることがで
きないため耐酸化性が無く、100μmを超えると作業時
間が長くなり高コストになる。なお、基本組成が、希土
類金属,鉄,ボロンからなる超急冷法により製造した希
土類磁石粉末としては、原子比で8〜18%,73〜88%,4
〜9%であり希土類金属は、Y,La,Ce,Pr,Sm,Nd,Eu,Gd,T
b,Dy単体及び2種以上の混合物、そして鉄の一部をAl,C
o,Nd,Ga等のうちの1種以上の遷移金属で置換したもの
とする。このような磁石粉末は、有機物バインダーを加
えられ、加圧成形により円筒状の成形体とされる。この
円筒状成形体の内周面と外周面に形成されるコーティン
グ膜(有機被膜)をほぼ均一なものとするために、円筒
状成形体の外径に対する内径の比率は、1/6〜24/25の範
囲内とされる。
If the coating film thickness is less than 2 μm, the fine pores of the resin-bonded magnet cannot be filled, so there is no oxidation resistance. If the coating film thickness exceeds 100 μm, the working time becomes longer and the cost becomes higher. . The rare earth magnet powder whose basic composition is made of a rare earth metal, iron, and boron by a rapid quenching method is 8 to 18%, 73 to 88%,
-9% and rare earth metals are Y, La, Ce, Pr, Sm, Nd, Eu, Gd, T
b, Dy alone or a mixture of two or more, and part of iron is Al, C
It shall be substituted with at least one transition metal of o, Nd, Ga and the like. Such a magnet powder is added with an organic binder and formed into a cylindrical molded body by pressure molding. In order to make the coating film (organic coating) formed on the inner peripheral surface and the outer peripheral surface of this cylindrical molded body almost uniform, the ratio of the inner diameter to the outer diameter of the cylindrical molded body is 1/6 to 24. / 25.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0013】[0013]

【実施例】〔実施例1〕原子比がNd14Fe80B8である超急
冷法により得られた粉末と177μmに粉砕した後、エポ
キシ樹脂を加え圧縮成形した。この成形品を150℃にお
いて1時間熱硬化させ磁石を製造した後に樹脂コーティ
ングを施した。表1に磁石寸法(外径×内径×高さ[単
位:mm]),有機物コーティングの種類,膜厚,方法,
及び60℃×95%(湿度)の条件下に500H置いた後の錆発
生の状態を調査した結果を示す。
EXAMPLES Example 1 A powder obtained by a super-quenching method having an atomic ratio of Nd 14 Fe 80 B 8 and pulverized to 177 μm were added with an epoxy resin and compression-molded. The molded article was heat-cured at 150 ° C. for 1 hour to produce a magnet, followed by resin coating. Table 1 shows the magnet dimensions (outer diameter x inner diameter x height [unit: mm]), type of organic coating, film thickness, method,
The results of investigating the state of rust generation after 500 hours under the conditions of 60 ° C. and 95% (humidity) are shown.

【0014】No.11,12の比較例に示したようにブロック
形状では、スプレー及び浸漬のどちらのコーティング方
法においても良好にコーティングされている。
As shown in the comparative examples of Nos. 11 and 12, the block shape is well coated by both spraying and dipping coating methods.

【0015】No.1,3,6,9の円筒形状の磁石のように浸漬
法により有機物コーティングを2μm以上施した場合に
は、良好な防錆力を示す。
When the organic coating is applied to a thickness of 2 μm or more by the dipping method as in the case of the cylindrical magnets of Nos. 1, 3, 6, and 9, good rust prevention is exhibited.

【0016】しかし、No.2,4,7,8のように円筒形状の磁
石にスプレー吹付けでコーティングした場合には、コー
ティング膜厚の平均値が2μm以上でも、内側の膜厚が
薄いため錆が発生している。
However, when a cylindrical magnet is coated by spraying spray as in Nos. 2, 4, 7, and 8, even if the average value of the coating film thickness is 2 μm or more, the inner film thickness is small. Rust has occurred.

【0017】また、No.5のようにコーティング膜厚が2
μm以下であると、防錆力が得られていない。
Further, as shown in No. 5, the coating film thickness is 2
If it is less than μm, no rust-preventing force is obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】〔実施例2〕原子比がNd14Fe77Co4B5であ
り超急冷法により得られた磁石粉末を177μmに粉砕し
た後に、エポキシ樹脂を加え圧縮成形した磁石と、ナイ
ロン12とを加え混合後射出成形又は押出成形した磁石を
得た。
Example 2 Magnet powder having an atomic ratio of Nd 14 Fe 77 Co 4 B 5 and obtained by a super-quenching method was pulverized to 177 μm, and then an epoxy resin was added thereto, followed by compression molding of a magnet, nylon 12 and Was added and mixed to obtain an injection-molded or extruded magnet.

【0020】これらの磁石の磁気性能は、それぞれ、表
2に示すとおりであった。測定磁場は25kOeであり25℃
の気温でV,S,M,により測定した。
The magnetic performances of these magnets were as shown in Table 2. Measurement magnetic field is 25kOe and 25 ℃
It was measured by V, S, M at the air temperature.

【0021】[0021]

【表2】 [Table 2]

【0022】これらの性能を有する磁石にフッ素樹脂コ
ーティングを約20μm施した後60℃×95%×500Hの耐食
試験を行った後の結果を表3に示す。
Table 3 shows the results after applying a fluororesin coating to these magnets having a performance of about 20 μm and conducting a corrosion test at 60 ° C. × 95% × 500H.

【0023】表3により、円筒形状の磁石においては、
コーティング方法による耐食性の差が明らかに出ており
浸漬法により、磁石を有機物の液中に漬けてコーティン
グしたものの方が高い耐食性を示している。
According to Table 3, for a cylindrical magnet,
The difference in corrosion resistance between the coating methods is apparent, and the one coated with the magnet immersed in an organic liquid by the dipping method shows higher corrosion resistance.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】以上述べたように、本発明は、希土類樹
脂結合型磁石の円筒形状のものが、スプレー吹付によっ
てコーティングしにくいため浸漬法により有機物コーテ
ィングを2〜100μmの膜厚で施し,さらに円筒状成形
体の外径に対する内径の比率が、1/6〜24/25の範囲内で
あり、前記円筒状成形体の前記内周面および前記外周面
に前記有機物バインダーの組成とは異なる組成の有機被
膜をほぼ均一に形成したので、大変優れた耐食性を有す
る磁石を製造することができた。このことは、モータ
ー,スピーカ,センサー等に使用されている希土類樹脂
結合型磁石の形状の制限がなくなり幅広い応用ができる
ようになるという効果を有している。
As described above, according to the present invention, since the rare-earth resin-bonded magnet having a cylindrical shape is difficult to be coated by spraying, an organic coating is applied to a thickness of 2 to 100 μm by a dipping method. The ratio of the inner diameter to the outer diameter of the cylindrical molded body is in the range of 1/6 to 24/25, and a composition different from the composition of the organic binder on the inner peripheral surface and the outer peripheral surface of the cylindrical molded body. Since the organic coating of was formed substantially uniformly, a magnet having extremely excellent corrosion resistance could be manufactured. This has the effect that the shape of the rare-earth resin-bonded magnet used in motors, speakers, sensors, and the like is not limited, and a wide range of applications can be achieved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/00 303 B22F 5/00 B H01F 1/08 H01F 1/08 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/00 303 B22F 5/00 B H01F 1/08 H01F 1/08 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】希土類金属、鉄、ボロンを主成分とし、超
急冷法で製造された磁石粉末に有機物バインダーを加え
て成形した円筒状の成形体を有機物の液中に浸漬して、
前記円筒状成形体の少なくとも内周面および外周面に膜
厚2〜100μmの有機被膜を形成してなる希土類樹脂結
合型磁石の製造方法であって、 前記円筒状成形体の外径に対する内径の比率が、1/6〜2
4/25の範囲内であり、前記円筒状成形体の前記内周面お
よび前記外周面に前記有機物バインダーの組成とは異な
る組成の有機被膜をほぼ均一に形成したことを特徴とす
る希土類樹脂結合型磁石の製造方法。
1. A cylindrical molded body containing a rare earth metal, iron and boron as main components and an organic binder added to a magnet powder produced by a super-quenching method, and immersed in an organic liquid.
A method for producing a rare-earth resin-bonded magnet in which an organic coating having a thickness of 2 to 100 μm is formed on at least an inner peripheral surface and an outer peripheral surface of the cylindrical molded body, wherein an inner diameter of the cylindrical molded body with respect to an outer diameter of the magnet is determined. Ratio is 1/6 to 2
Within a range of 4/25, wherein an organic coating having a composition different from the composition of the organic binder is substantially uniformly formed on the inner peripheral surface and the outer peripheral surface of the cylindrical molded body. Manufacturing method of mold magnet.
JP10302822A 1998-10-23 1998-10-23 Manufacturing method of rare earth resin bonded magnet Expired - Lifetime JP2980122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10302822A JP2980122B2 (en) 1998-10-23 1998-10-23 Manufacturing method of rare earth resin bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10302822A JP2980122B2 (en) 1998-10-23 1998-10-23 Manufacturing method of rare earth resin bonded magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62325704A Division JPH0834165B2 (en) 1987-12-23 1987-12-23 Rare earth / iron resin-bonded magnet

Publications (2)

Publication Number Publication Date
JPH11214234A true JPH11214234A (en) 1999-08-06
JP2980122B2 JP2980122B2 (en) 1999-11-22

Family

ID=17913520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10302822A Expired - Lifetime JP2980122B2 (en) 1998-10-23 1998-10-23 Manufacturing method of rare earth resin bonded magnet

Country Status (1)

Country Link
JP (1) JP2980122B2 (en)

Also Published As

Publication number Publication date
JP2980122B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
JP3986043B2 (en) Powder magnetic core and manufacturing method thereof
JPH04328804A (en) Corrosion-proof permanent magnet and manufacture thereof
JP2010232468A (en) Rare earth bonded magnet
JP3709292B2 (en) Resin bonded rare earth magnet
JPS60153109A (en) Permanent magnet
JP2791659B2 (en) Manufacturing method of corrosion resistant permanent magnet
JPH0422007B2 (en)
JP2980122B2 (en) Manufacturing method of rare earth resin bonded magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JPH0834165B2 (en) Rare earth / iron resin-bonded magnet
JP3208057B2 (en) Corrosion resistant permanent magnet
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JPS6377103A (en) Rare-earth magnet excellent in corrosion resistance and manufacture thereof
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP7460904B2 (en) Manufacturing method of rare earth magnet powder
JP3145473B2 (en) Fluorine resin magnetic material composite material
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP7409117B2 (en) Soft magnetic compound, its manufacturing method and bonded magnetic core
JPH01114006A (en) Manufacture of resin bond type magnet
JP2005268352A (en) Resin bonded magnet and method for manufacturing the same
JPH10256012A (en) Permanent magnet with excellent corrosion resistance
JPH06302418A (en) Bond-type permanent magnet and its manufacture
JPH0752685B2 (en) Corrosion resistant permanent magnet
JP4411840B2 (en) Method for producing oxidation-resistant rare earth magnet powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9